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Abstract: Radio Frequency Interference (RFI) detection and characterization has a critical role to in
ensuring the security of all wireless communication networks. Advances in Machine Learning (ML)
have led to the deployment of many robust techniques dealing with various types of RFI. To sidestep
an unavoidable complicated feature extraction step in ML, this paper proposes an efficient end-to-end
method using the latest advances in deep learning to extract the appropriate features of the RFI signal.
Moreover, this study utilizes the benefits of transfer learning to determine both the type of received
RFI signals and their modulation types. To this end, the scalogram of the received signals is used as
the input of the pre-trained convolutional neural networks (CNN), followed by a fully-connected
classifier. This study considers a digital video stream as the signal of interest (SoI), transmitted in a
real-time satellite-to-ground communication using DVB-S2 standards. To create the RFI dataset, the
SoI is combined with three well-known jammers namely, continuous-wave interference (CWI), multi-
continuous-wave interference (MCWI), and chirp interference (CI). This study investigated four
well-known pre-trained CNN architectures, namely, AlexNet, VGG-16, GoogleNet, and ResNet-18,
for the feature extraction to recognize the visual RFI patterns directly from pixel images with minimal
preprocessing. Moreover, the robustness of the proposed classifiers is evaluated by the data generated
at different signal to noise ratios (SNR).

Keywords: Radio frequency interference detection, Deep learning, Transfer learning, Pre-trained
convolutional neural networks.

1. Introduction

Recent advances in Software-Defined Radios (SDR) and cognitive networking technologies, as
well as increasing the accessible low-cost hardware, have led to most applications becoming dependent
on the wireless networks [1]. It provides adversaries with an opportunity to deploy the jamming
attacks (also known as the intentional RFI) and harm systems that rely on wireless networks [1].
Jamming attacks cause Denial-of-Service (DoS) problems such as slowing browsing websites and
downloading files, intensively limiting the number of active voice users, and as a result, network
latency [2]. The jammers can be launched using simple and cheap technologies, however, they are
hard to completely defeat due to the large variety of available jammers [3].
To guarantee the Quality of Service (QoS) and security of the wireless communication system, a robust
RFI detection strategy is highly required to produce an effective mitigation process [3]. In addition,
it is essential to precisely determine the modulation type of SoI combined by any type of RFI. Since,
Automatic Modulation Classification (AMC) is a significant procedure in communication networks to
facilitate the demodulation process at the receiver side [4].
To address this concern, Machine Learning (ML) based techniques have shown promising results in the
area of multi-class RFI recognition [5,6] and Automatic modulation classification (AMC) [6]. However,
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the complex nature of tasks like pre- processing, feature extraction, feature selection etc in classical ML
techniques highly degrades the classification precision regarding efficiency and accuracy [7]. To tackle
these issues, deep learning (DL) neural networks, as a subfield of ML, have presented outstanding
results in the area of RFI detection. DL-based techniques include numerous information processing
layers in a hierarchical design for either pattern classification or feature extraction [8]. One of the
most successful types of DL is Convolutional Neural Networks (CNN) which has been typically used
for object detection in computer vision fields, without any prior knowledge regarding to the object’s
location [9].
The main challenge of DL in applications with supervised learning tasks could be the lack of enough
dataset to train the model from the scratch. To address this issue, image-based transfer learning method
has gained attraction in case of insufficient dataset to create models [10,11]. Transfer learning refers to
reuse the pre-trained CNN architectures on a pre-build large dataset, such as ImageNet project [10].
Hence, transfer learning leads to minimize the training time with considering the pre-trained layers of
a model [10].
In this paper, we propose a hierarchical classification design for RFI classification and AMC by
leveraging the benefits of transfer learning technology using pre-trained CNNs such as AlexNet,
VGG16, GoogleNet and ResNet18 for feature learning, followed by a fully-connected classifier. This
study provides a comparative analysis of these pre-trained CNNs with respect to accuracy in the
context of transfer learning and consumed training time. We have generated a visual representations
of the received signals in time-frequency domain as the input data, which is the magnitude squared of
the wavelet transform known as scalogram [12].
In this work, SoI is a video stream transmitted in a real-time digital video broadcasting scenario based
on DVB-S2 standards in a Satellite communication (Satcom). We have assumed that SoI is combined
with three well-known types of jammers, namely, continuous wave interference (CWI), multi-CWI
(MCWI), and chirp interference (CI), to increase the scenarios complexity and to simulate the realistic
situations [5]. As a result, the proposed methodology can precisely determine the type of the received
signal either is SoI or a combination of SoI with any other jammers, and also the modulation type of
SoI. We have investigated four different types of modulation due to their more applicable, namely,
quadrature phase shift keying (QPSK), 8-array asymmetric phase-shift keying (8-APSK), 16-array
APSK (16-APSK), and 32-array APSK (32-APSK).
The rest of this paper presents the related works in section 2, the proposed methodology in section 3
and the simulation results are provided in section 4. Finally, the paper is concluded in section 5.

2. Related Works

With rapid advances of AI technology, DL is also increasingly being applied to the field of RFI
and modulation classification. To name a few, in [13] a robust Dl-based technique is proposed known
as faster region-based convolutional neural networks (Faster R-CNN) for interference and clutter
detections in a high-frequency surface wave radar (HFSWR). To this end, the Range-Doppler (RD)
spectrum image is used as the input of the designed network. As the results , the proposed method
has a high classification accuracy and a decent detection performance [13].
Z. Yang and et. al, have proposed a CNN-based strategy named RFI-Net to detect interference in a
five-hundred-meter Aperture Spherical radio Tele-scope (FAST) [14], that can outperform other
techniques such as the U-Net model based on a CNN architecture, k-nearest neighbors (KNN)
algorithms, as well as Sum-Threshold. In [15], two DL-based strategies are used for jamming attack
detection, namely deep convolutional neural networks (DCNN) and deep recurrent neural networks
(DRNN). In this research, two different jamming attacks, namely, classical wide-band barrage jamming
and reference signal jamming have been analyzed [15]. The results show that the classification
accuracy reaches up to 86.1% under a realistic test environment [15].
In [16] three methods including a Convolutional Long Short-term Deep Neural Network (CLDNN), a
Long Short-Term Memory neural network (LSTM), and a deep Residual Network (ResNet) have been
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proposed to recognize ten different modulation types. The results show the classification accuracy is
increased up to 90% at high SNRs. Further Principal Component Analysis (PCA) has been deployed to
optimize the classification process by minimizing the size of training dataset [16]. A combination of
the transfer learning and a pre-trained Inception-ResNetV2 has been presented in [17] to recognize
three modulation types namely Binary Phase Shift Keying (BPSK), QPSK and 8PSK at SNR equal to 4
dB. As the results indicate, the classification accuracies to recognize BPSK, QPSK and 8PSK are 100%,
99.66% and 96.33% respectively [17].
In [18], a robust hierarchical DNN architecture is presented that performs a hierarchical classification
to estimate data type (Analog or digital modulation), modulation class, and modulation order. To this
purpose, spectrogram snapshots computed from baseband In-phase and Quadratic ( I/Q ) components
of the signal are used as the input of the CNN and reach out the performance of 90% at high SNR
for most modulation schemes [18]. Yang et al. present an efficient methodology using CNN and
recurrent neural networks (RNN) to classify six modulation types under two channel distortions such
as Additive White Gaussian noise (AWGN) and Rayleigh fading [19]. According to the experimental
results, the classification precision of the CNN is always close to 100% in AWGN channel [19].
Even in Rayleigh channel, the minimum classification accuracy still approaches to 84%, whereas the
maximum value is near to 96%. [20] proposes a robust CNN-based approach which can precisely
classify four types of modulation including BPSK, QPSK, 8PSK, and 16QAM in an orthogonal frequency
division multiplexing (OFDM) system under presence of Phase offset (PO). In [21], CNN and LSTM
have been used to solve AMC problem. Furthermore, the proposed classifiers based on the fusion
model in serial and parallel modes are of great benefit to improving classification accuracy when the
SNR is ranging from 0 dB to 20 dB [21]. As is shown, the serial fusion mode has the best performance
compared with other modes. As it was already mentioned, in our study a transfer learning-based
approach is proposed for RFI recognition and AMC.

3. Proposed Methodology

This study proposes a DL-based approach for RFI recognition and AMC by benefiting from
transfer learning strategy. The general framework is based on the hierarchical classification proposed
in [6], which the first and second levels determine the type of the received signal that is either SoI or
a combination of SoI with any of the jamming signals and the modulation type of SoI, respectively.
To this end, in the first classification level, a classifier is trained to determine the type of the received
signals. Further, a classifier is trained per each type of received signal to recognize the modulation
type. Figure 1 demonstrates the proposed methodology, which follows four steps: 1) data acquisition,
2) wavelet coefficients scalograms calculations, 3) Feature extraction using pre-trained CNN, and 4)
classification. Each step will be fully elaborated in the rest of this section.

Figure 1. Proposed RFI classification and AMC based on transfer learning
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3.1. Data acquisition set-up

As fully explained in [5,6], the desired signal is a real-time video stream, which is modulated and
processed by GNU radio and transmitted using a Universal Software Radio Peripheral (USRP-N210)
[22]. For modeling a real-time Satcom channel simulator (RTLogic T400) [23] is used. Further, the
generated jamming signals are combined to SoI by a combiner. Finally, the combined signal is received
by a MegaBee modem [5]. Notably, AWGN power can be manually adjusted in the range of -168 to
-125 dBm which is approximately equal to SNR 5 to 12 dB. Figure 2 shows the Real-time RFI data
acquisition set-up.

Figure 2. Real-time RFI data acquisition set-up
Table 1 presents a summary of the dataset specification generated in [5].

Table 1. Real-time dataset specification.

Characteristic Value

Total number of observations 4800

Length of each generated signal 32448 (8 ms)

Sampling frequency 40x106Hz

Modulation types QPSK, 8APSK, 16APSK, and 32APSK

AWGN power 140 dBm (SNR ∼= 9dB)

No. of each class of signals per modulation type 300

This study analyzes the efficiency of the proposed classification technique in the presence of
three jamming signals, such as, continuous-wave interference (CWI), multi-CWI (MCWI), and chirp
interference (CI) [5].
1) Continuous Wave Interference (CWI):

CW = exp(j2π fcwt) (1)

Where fcw and t represent the center frequency and the duration of interference respectively.
2) Multi Continuous Wave Interference (MCWI): In this study, we have considered two-tone CW
which is defined as:

MCW = exp(j2π fc1 t) + exp(j2π fc2 t) (2)

Where fc1 and fc2 are the center frequencies of each wave.
3) Chirp Interference (CI): The CI has been generated according to [24] as follows:

Chirp = exp(2π
k
2

t2 + 2π f0t) (3)
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where k = f1− f0
T so that the signal sweeps from f0 to f1 and T is the sweeping duration.

Note: the center frequencies have been considered to be changed randomly.

3.1.1. Dataset generation

This study has considered visual representation of the received signals in time-frequency domain
using scalogram as an input data. Scalogram is the squared magnitude of Continuous Wavelet
Transform (CWT) and mathematically is defined as[25]:

zx(α, τ) = | 1√
α

∫ +∞

−∞
x(t)Φ∗(

t− τ

α
)dt)|2 (4)

where, z and Φ∗ denotes scalogram and complex conjugate of the mother wavelet function. α and
τ are the oscillatory frequency and shifting position of the wavelet, respectively [25]. CWT is widely
applied for non-stationary and transient signal analysis, mainly through its scalogram [26]. The main
difference between wavelet transform and short-time Fourier transform (STFT) is that STFT has a fixed
signal analysis window whereas the wavelet transform utilizes short windows at high frequencies and
long windows at low frequencies [12].
Therefore, the wavelet transform provides superior time and frequency resolution at high and low
frequencies respectively [12]. Hence, the wavelet-based analysis is considered as an appropriate
choice when the signal at hand has high frequency components for short duration and low frequency
components for longer durations which are considered in this study [12]. As shown in Figure 3,
scalograms of SOI and its combination with CWI, CI and MCWI samples are computed using the
Morse wavelet [27]to calculate the wavelet transform as well as the coherence analysis of the time
series, and has been converted to an RGB image.

Figure 3. Scalogram representation of target classes: a) SoI, b) SoI+CWI, c) SoI+MCWI, and d) SoI+CI

3.2. Transfer learning process

Transfer learning with a pre-trained network has a common approach, namely, feature extraction
[28]. In the feature extraction approach, the output from one or more than one layer in the network is
used as the features for a trainable classifier for classification [29]. Since the deeper layers extract the
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higher level features so the layer right before the classification phase can be a good choice for feature
extraction [30].
A typical CNN structure consists of two parts; 1) convolutional layers, composed by a stack of
the convolutional and the pooling layers to extract the features from the image-based input. 2) a
classification part including a set of fully-connected (FC) layers followed by an activation function,
like Soft-Max, to classify the images using the extracted features [11]. In the transfer learning process,
the classification part can be replaced by a new classifier which fits to the objective of the application.
The model can be tuned using one of the following strategies [11]:

• Training the entire data-set: The pre-trained CNN can be trained from the scratch using a new
dataset. Therefore, a large dataset and lots of computational power are required.

• Training some layers and leaving the others frozen: As the lower layers extract the general
features while higher layers represent the most specific features, it can be decided how many of
layers needs to be re-trained depending on the objective of the application. For a small dataset
with a large number of parameters, it is efficient to leave more layers frozen. The frozen layers
are kept unchanged during the training process to avoid the overfitting. On the other hand, for a
large dataset with a small number of parameters, training more layers would be reasonable to
the new task, since overfitting is not an issue.

• Freezing the convolutional part: in this scenario the convolutional part can be kept unchanged
and its output can be fed to a new classifier. In the other words, the pre-trained models are
considered as a fixed feature extraction basis which is beneficial in case of having a small dataset
and suffering from lack of computational power. Notably, in this study, we have applied this
strategy.

It should be taken into account that the first two strategies highly depend on the learning
rate hyper-parameter which defines how much the weights of a network can be adjusted. Small
value learning rate can be chosen over high value learning rate to reduce the risk of losing previous
knowledge [11]. We present pre-trained CNNs and fully connected classification in the following
sections.

3.2.1. Pre-trained CNNs

As it is presented in the previous section, transfer learning refers to reuse of pre-trained CNN
architectures on a large dataset. In this study, we have analyzed the efficiency of four well-known
CNN architectures, namely, AlexNet [9], GoogleNet [31], ResNet18 [32] and VGG16 [33] regarding
to classification precision and training time, as you can see below:

• AlexNet: In 2012, AlexNet could outperform other prior architectures in ImageNet LSVRC-2012
competition, designed by the SuperVision group [9]. AlexNet includes five convolutional layers
and three FC layers in which Relu is applied after every convolutional and FC layer. Also dropout
technique is applied before the first and the second FC layer [9].

• GoogleNet : GoogleNet won ILSVRC 2014 competition with a high precision close to human’s
perception. Its architecture has taken benefits of several small convolutions in order to drastically
reduce the number of parameter. It consists of a 22 layer deep CNN but reduced the number of
parameters from 60 million (AlexNet) to 4 million [31].
• VGG: Visual Geometry Group (VGG) is a CNN proposed by University of Oxford [33] to improve

AlexNet by replacing large kernel-sized filters with multiple 3 by 3 kernel-sized filters one after
another. VGG16 was trained for weeks and was using NVIDIA Titan Black GPU [33].
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• ResNet: Residual Neural Network (ResNet) presented an outstanding performance in ILSRVC
2015 [32]. The Residual network directly copies the input matrix to the second transformation
output and sums the output in final ReLU function [32].

It should be taken into account that output of the following layers has been used as the feature
set for the designed classification; “fc8” for AlexNet and VGG16, “loss3-classifier” and “fc1000” for
GoogleNet and ResNet18 respectively. Since, these are the last layers of the convolutional structure
before the classification layer. Notably, the input image size for AlexNet is 227 by 227 and 224 by 224
for the three other CNNs.

3.2.2. Fully Connected (FC) layer

In CNN, the convolutional and pooling layers can be followed by a set of FC layers that performs
like any ANN such as MLP. The purpose of the FC layers is to combine all the features (local
information) learned by the previous layers across to recognize the larger patterns. For classification
problems, the number of neurons at the last FC layer is equal to the number of classes [34]. In image
classification problems, the standard method is to use a stack of FC layers, followed by a Soft-Max
activation function [11]. The output of Soft-Max is a set of probability distributions of different classes,
and where the neuron with the maximum probability is considered as the classification result [35]:

Plabel =
exp( f ormer layer output)

∑k
i=1( f ormer layer output)

(5)

where, P presents the prediction, the former layer output refers to the last fully connected layer,
and k represents the number of fully connected layers. The fundamental of the training phase is like
MLP that after defining the CNN layers, the training phase is started by determining the optimization
technique first. There are two well-known optimizers to minimize the loss function (Eq. 6), such as
adaptive moment estimation and Stochastic Gradient Descent (SGD) [36]. In this research, the loss
function is the cross-entropy which is mathematically defined as:

loss =
N

∑
i=1

K

∑
j=1

tij ln Plabelij (6)

where, N and K refer to number of samples and classes respectively. tij is an indicator that ith

sample belongs to jth class [36].

4. Results and Discussion

In this section, we illustrate the simulation results of the proposed methodology for both RFI
recognition and AMC, using MATLAB. We evaluate the performance of the four pre-trained CNNs
(AlexNet, GoogleNet, VGG 16 and ResNet18) to classify the received signal and the modulation type.
The results show a comparative analysis of these pre-trained CNNs with respect to the accuracy in
the context of transfer learning and consumed training time. The architecture of the FC part for each
classifier includes a layer with four neurons, followed by a Soft-Max classifier. In the experiments, the
highest classification results are achieved using SGD with momentum (SGDM) and Adam optimizers
for the RFI classification and AMC phases, respectively.

4.1. Simulation results for RFI classification

Figure 4 presents the confusion matrix of RFI classification using four different pre-trained CNNs.
As is vivid, the classification accuracy is above 90% for all the techniques, but the ResNet18 slightly
outperforms all the others, with a precision of 98.3%.
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Figure 4. RFI classification phase results using a) AlexNet (97.1%), b) VGG16 (97.5%), c) GoogleNet
(96.9%) and d) ResNet18 (98.3%)
Figure 5 illustrates a comparative result of the elapsed running time using each pre-trained CNN

architecture. The consumed time has been computed using “tic-toc” function of MATLAB. It is clear
that AlexNet is comparatively less time-consuming and more efficient.

Figure 5. Comparative elapsed training time results

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 July 2020                   doi:10.20944/preprints202007.0746.v1

https://doi.org/10.20944/preprints202007.0746.v1


9 of 16

4.2. Simulation results of AMC

For the AMC phase, we have trained another classifier per each received type of signal to specify
the modulation type of the received signals. Notably, the SoI is transmitted using four modulation
types: QPSK, 8APSK, 16APSK, and 32APSK. The following figures illustrate the AMC results for each
received signal. As can be seen, the presence of jammers highly degrades the classification accuracy.
As Figure 6 indicates that AMC is more efficient using AlexNet in the absence of jamming signals,
with a comparative classification precision of 95.00%.

Figure 6. AMC result in the presence of SoI (AMC1) using (a) AlexNet (95%), (b) VGG16 (90.08%), (c)
GoogleNet (89.7%), and (d) ResNet18 (93.6%)
Figure 7 shows the AMC results in the presence of CWI, the highest accuracy achieved using

ResNet18 with a precision of 92.2%.
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Figure 7. AMC results in the presence of CWI (AMC2) using a) AlexNet (90.30%), VGG16 (86.1%),
GoogleNet (88.1%) and ResNet18 (92.2%)
As the AMC results in the presence of MCWI shown in Figure 8, the highest accuracy is obtained

using VGG16, with a precision of 71.90%.
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Figure 8. AMC results in the presence of MCWI (AMC3) using a) AlexNet (71.4%), b)VGG16 (71.9%),
c) GoogleNet (71.10 %) and d) ResNet18 (71.7%)
Figure 9 demonstrates the AMC results in the presence of CI. As is clear, the highest precision is

81.90%, using ResNet18.
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Figure 9. AMC results in the presence of CI (AMC4) using a) AlexNet (79.20%), b) VGG16 (87.30%), c)
GoogleNet (78.10%) and d) ResNet18 (81.90%)
According to the AMC results, ResNet18 is more efficient because it shows a higher average

accuracy comparatively.

4.3. Prediction phase

The performance of the trained classifiers is assessed on new unseen datasets generated at different
AWGN powers ranging from −140 to −125 dBm which is approximately equal to an SNR range from
5 to 9 dB. Table 2 shows the robustness of the trained CNNs in predicting new unseen data at different
SNRs for RFI classification in the first classification level.
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Table 2. prediction results of the trained CNNs for RFI classification at different noise powers

AWGN Power (dBm) −140 −135 −130 −125

AlexNet 89.80% 79.13% 76.44% 74.55%
VGG16 95.51% 80.90% 78.77% 77%

GoogleNet 90% 78.80% 74.53% 72.80%
ResNet18 91.90% 80.88% 76% 74.32%

According to the results, VGG16 shows a more precise performance in detecting the type of
unseen RFI at different noise levels.

Tables 3–6 illustrate the prediction results for each AMC (SoI, SoI+CWI, SoI+MCWI and SoI+CI )
using the trained classifiers using different pre-trained CNNs

Table 3. The prediction result for AMC1

AWGN Power (dBm) −140 −135 −130 −125

AlexNet 94% 84% 52% 45.50%
VGG16 85.50% 53% 48.70% 42.25%

GoogleNet 87% 56.25% 38.25% 36.50%
ResNet18 92.41% 56.25% 42.25% 40.70%

As it was shown, in the absence of jamming signals, AlexNet performs more efficiently to
recognize the modulation types in different noise powers.

Table 4. The prediction result for AMC2

AWGN Power (dBm) −140 −135 −130 −125

AlexNet 90.03% 58.50% 40% 37.50%
VGG16 85.83% 52% 41% 31.50%

GoogleNet 87.88% 55.60% 44.13% 39.50%
ResNet18 91.03% 69% 50% 40.50%

As Table 4 shows, ResNet18 performs more accurately compared to the other classifiers.

Table 5. The prediction result for AMC3

AWGN Power (dBm) −140 −135 −130 −125

AlexNet 70.25% 58.50% 31.50% 24.90%
VGG16 71.91% 69.50% 50.50% 40%

GoogleNet 67.50% 62% 41% 31%
ResNet18 70.91% 64% 45% 37%

In the presence of MCWI, VGG16 is more robust in recognizing four different modulation types.

Table 6. The prediction result for AMC4

AWGN Power (dBm) −140 −135 −130 −125

AlexNet 78.60% 55% 52% 45%
VGG16 77% 56% 53% 44%

GoogleNet 76.70% 56.50% 50.50% 43%
ResNet18 80% 59.50% 58% 47%

As table 6 indicates ResNet18-based classification slightly outperforms three other techniques.
Also, it presents that the effect of each pre-trained CNN on the prediction performance varies
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depending on type of data. To sum up, ResNet-18 shows more promising results. However, the
presented techniques are highly sensitive to AWGN power. As is shown, the classifiers are less reliable
by increasing the AWGN power.

5. Conclusions

In this work, we presented a transfer learning-based approach for RFI recognition and modulation
classification. In this approach, the pre-trained CNN analyzes the scalogram of the received signal
to extract more informative features which will be further used in the classification phase using
fully-connected layer followed by a soft-max activation function. This work presented a comparative
analysis of using four well-known pre-trained CNNs such as AlexNet, GoogleNet, VGG16 and
ResNet18. As this results show, the classification accuracy highly depends on the type of the input data.
More importantly, the dataset used as the input in this study includes the scalogram of the signals
transmitted in a satellite-to-ground video broadcasting scenario based on DVB-S2 standards. Further,
the robustness of each trained classifier in predicting unseen data was fully evaluated. To sum up, in
terms of classification, all the pre-trained architectures perform relatively similarly, although AlexNet
and VGG16 have the least and the most elapsed training times.

6. Materials

The generated dataset in this study is available at https://doi.org/10.5281/zenodo.3958266. This
dataset includes the scalogram of the RFI signals in four modulation type including QPSK, 8APSK,
16APSK and 32APSK.
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