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Abstract

Accurate and timely testing has become an essential measure in combatting the COVID-19 global
pandemic. Currently, polymerase chain reaction (PCR) based assays are the most relied on methods for
SARS-CoV-2 detection. This traditional workflow involves a viral RNA extraction from the viral transport
media storing nasopharyngeal swabs collected from patients, followed by PCR based detection. While
accurate, this methodology is time consuming and resource heavy, causing for delays in receiving results
or limited access to testing. Herein, we demonstrate a validated method for SARS-CoV-2 detection from
viral transport media using a two-step, direct-to-PCR workflow revolving around shaker-mill
homogenization. This method completely bypasses the extraction steps of the traditional workflow,
replacing it with 30 seconds of mechanical disruption sufficient to allow for COVID-19 detection with a
96.43% sensitivity and 100% specificity when compared to traditional extraction to PCR based methods.
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1. Introduction

Amid the COVID-19 pandemic, the critical need for efficient and cost-effective viral detection methods
has been amplified globally [1,2]. Currently, the most relied on method for SARS-CoV-2 detection is a
standard viral RNA extraction procedure followed by a polymerase chain reaction (PCR) based assay
looking to detect a specific gene product from replicating viruses off patient acquired nasopharyngeal
swabs [2,3,4]. This methodology has been proven time and time again to be effective in respiratory virus
detection from patients actively infected with everything from influenza to SARS-CoV-2 [3,4,5].
However, this process of extraction followed by PCR based detection requires significant amounts of
chemical reagents, consumable plastics, and laboratory man-hours to complete. These costs of both
capital and time, potentially cause delays in patients receiving their results, and the possibility of
degradation of viral transcripts within the storage media impairing detection [6,7]. Shortages in the
supplies required for adequate viral detection and significant delays in patient notifications following
nasopharyngeal swab collections have both been attributed to the exponential growth of COVID-19
cases in the United States in June and July of 2020 [8].

Herein, we are proposing a validated methodology for SARS-CoV-2 detection from viral transport media
(VTM) storing patient derived nasopharyngeal swabs, which completely bypasses the extraction portion
of the classic workflow described above. This novel process employs shaker-mill homogenization to
mechanically lyse the virus particles in the transport media, permitting the lysate to be directly
transferred into a PCR based assay for detection. Taking a total of 30 seconds of processing prior to the
sample being added to PCR detection assays, this method allows patient samples to be processed
directly in the viral transport media (VTM) they are stored in following patient sampling, significantly
reducing the resources invested and time spent on processing each sample for virus detection.

2. Materials and Methods
2.1 Samples Used for Method Validation

The samples used for this method validation were obtained via a materials transfer agreement with
Emory University’s School of Medicine and their Clinical Virology Research Laboratory (Atlanta, GA,
USA). These samples were obtained with informed patient consent under and following the protocols
approved through the Emory University Institutional Review Board (IRB) (IRB Contract 000001082) and
conducted following the rules of the Declaration of Helsinki of 1975.

Each patient provided two nasopharyngeal swab samples. One of the samples was validated as COVID-
19 positive or negative by the CLIA approved laboratory at Emory University’s Clinical Virology Research
Laboratory following the traditional, US Centers for Disease Control and Prevention approved extraction
and PCR based detection protocols. The second sample from the same patient was then deidentified
and labeled as only COVID-19 positive or negative prior to transfer to our laboratory. 58 samples were
transferred, 30 confirmed COVID-19 and 28 confirmed COVID-19 positive patient samples. The samples
remained stored in their original viral transport media (Fisher, Cat. No. 23-001-726) and collection tube
which they were placed in at the time of acquisition and were frozen at -80°C for storage prior to
transfer.

2.2 Patient Sample Processing
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Patient samples stored in viral transport media were thawed in their original collection tubes at 24°C for
1 hr, or until VTM had completely thawed. The swabs and 1 mL of VTM were then transferred toa 2 mL
screw cap tube (Omni International Inc., Cat. No. 19-647) and sealed [9]. 24 samples were loaded into
the Omni Bead Ruptor Elite (Cat. No. 19-040E) for processing. The samples were run at 4.2 m/s for 30
seconds and removed from the device [9]. The samples were permitted to sit for 1 minute after
processing to allow for any froth that formed in the tubes during shaker-mill homogenization to settle

[9].
2.3 RT-qPCR Detection of SARS-CoV-2

1 uL of lysate was transferred into a premixed RT-gPCR plate from the 2 mL screw cap tube containing
the nasopharyngeal swab in VTM following shaker-mill homogenization. The RT-qPCR reaction plate was
premixed with New England Biolab’s Luna Universal Probe Based One-Step RT-gPCR Kit (Cat. No. E3006)
and US CDC approved primers and probes for the nucleocapsid (N) gene purchased from approved
vendor, Integrated DNA Technologies (Coralville, IL, USA). The 2019-nCoV_N1-F primer (GAC-CCC-AAA-
ATC-AGC-GAA-AT), the 2019-nCoV_N1-R primer (TCT-GGT-TAC-TGC-CAG-TTG-AAT-CTG), and the 2019-
nCoV_N1-P probe (FAM-ACC-CCG-CAT-TAC-GTT-TGG-TGG-ACC-BHQ1) sequences were all obtained
directly from the US CDC website [10,11]. The RT-qPCR reaction was premixed following vendor
guidelines and 1 uL of lysate was added to bring the reaction to a final volume of 20 pL. The reaction
was then loaded into the CFX Connect Real Time PCR Detection System (BioRad, Cat. No. 1855200) and
run with the vendor recommended temperature and cycle timing for a total of 45 ampilification cycles.
Cqg values were recorded and any sample with a Cq value less than or equal to 40 was labeled as positive
for COVID-19 detection based on the US CDC recommended analysis of COVID-19 probe based RT-gPCR
results [10,11] (Figure 1, Table 1).

Sample Number Traditional Testing Status Cq Value Mean Standard Deviation
1 Positive 24.93
2 Positive 38.94
3 Positive 37.25
4 Positive 22.11
5 Positive 36.57
6 Positive 37.78
7 Positive 29.18
8 Positive 27.44
9 Positive 32.05
10 Positive 22.50
11 Positive 31.33 29.94 >-44
12 Positive 37.60
13 Positive 28.78
14 Positive 36.51
15 Positive 22.58
16 Positive 35.46
17 Positive 34.70
18 Positive 31.20
19 Positive 31.26
20 Positive N/A
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21 Positive 22.79
22 Positive 24.37
23 Positive 23.10
24 Positive 24.15
25 Positive 32.84
26 Positive 26.11
27 Positive 27.84
28 Positive 29.04

Table 1. RT-gPCR results following shaker-mill homogenization represented as Cq values from VTM
containing patient samples that tested positive for COVID-19 when tested with the traditional extraction
to PCR methodology. Only one sample, sample 20, was not detected as COVID-19 positive after shaker-
mill homogenization processing from a previously confirmed COVID-19 positive patient. The 30 COVID-
19 negative samples are not shown because 0 of the 30 produced a Cq value following RT-qPCR.
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Figure 1. RT-gPCR results detecting the SARS-CoV-2 nucleocapsid gene off nasopharyngeal swabs
processed via shaker-mill homogenization. Blue lines, VTM containing patient samples from COVID-19
positive patients processed via shaker-mill homogenization. Orange lines, VTM containing patient
samples from COVID-19 negative patients processed via shaker-mill homogenization.

2.4 Statistical Comparison of COVID-19 Detection Methodologies
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The positive or negative COVID-19 status of each sample as determined by the traditional processing
method used by the Emory University laboratory was used as the baseline for our analysis of each
sample. Following sample processing conducted via our novel methodology, we compared the positive
or negative status obtained on each sample to the predetermined status in order to analyze the
sensitivity and specificity when compared to the current extraction to PCR based testing model.

3. Results

With the use of shaker-mill homogenization on the Omni Bead Ruptor Elite, we were able to sufficiently
lyse SARS-CoV-2 out of patient samples stored in VTM with the resulting lysate providing sufficient
genetic material for RT-qPCR detection of the viral N gene. This data validates our novel two-step,
direct-to-PCR approach for detecting COVID-19 off nasopharyngeal samples when run using the
parameters described in this manuscript. With 27 of 28 COVID-19 positive samples being detected as
positive following our methodology, and 0 of 30 COVID-10 negative samples detecting as positive, this
detection method provides a 96.43% sensitivity and 100% specificity when compared to traditional
extraction to PCR based methods (Figure 1, Table 1).

The 27 COVID-19 positive samples had an average Cq value of 29.94, with a standard deviation of 5.44
(Table 1). This average Cq, falls 10 cycles below the US CDC cut-off Cq of 40 recommended for a COVID-
19 positive detection using these N gene primers [10,11,12]. The wide standard deviation associated
with these samples can be attributed to a variety of factors such as the variability of each patient’s viral
load, the quality of the swabbing procedure when obtaining each sample, and the inhibitors present in
the VTM when going directly to RT-qPCR reactions [12]. This wide standard deviation in Cq values should
not be viewed a prominent error in this methodology, but rather a byproduct of using patient samples,
and should in no way diminish the statistical validity of the sensitivity and specificity reported for this
novel process [12].

4. Discussion

Throughout the course of the COVID-19 pandemic, we have seen the need for efficient, effective, and
timely viral testing procedures dramatically increase [1,4]. As the demand for these tests rise, the
market availability of the reagents and consumable plastics required to complete the traditional
extraction to PCR workflow have become increasingly scarce. This lack of availability in reagents and
consumables needed for adequate testing is hindering the global efforts in disease surveillance and
combatting of the SARS-CoV-2 pandemic. Herein, we believe our novel two-step, direct-to-PCR workflow
is a potential solution to the resource pitfalls currently delaying testing in many parts of the world.
While we acknowledge that this may not be the perfect solution for all instances, the authors feel that
through bypassing the traditional extraction steps requiring multiple reagents and consumable plastics
that this method has the potential to fill critical gaps in testing in resource challenged areas.
Additionally, with this validation using COVID-19 patient samples, resource challenged areas will be able
to implement this technology with the reassurance that it has already proven a 100% positive predictive
value and a 96.77% negative predictive value when compared to traditional extraction to PCR based
methodologies in the first round of testing.

Aside from supplementing testing in resource challenged areas, this shaker-mill based detection
workflow significantly reduces the time required to process each sample through bypassing the
extraction steps, while increasing throughput of the process in preparing samples for PCR based
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detection. Using the Omni Bead Ruptor Elite, 24 swabs can be processed in 30 seconds, allowing for a
full 384 well PCR plate to be prepared in as little as 30 minutes. This is in comparison to the hours of
processing that a traditional viral RNA extraction kit requires [4,7]. As seen in the United States in July of
2020 when waiting periods for results after being swabbed have taken up to 8 days, any ability to reduce
the processing time surrounding COVID-19 testing is currently of critical need in order to provide public
health officials with the accurate data they need to advise patients and track infections [1,2,4,7].

While additional, larger scale testing is still needed to gain a more robust statistical interpretation on the
sensitivity and specificity of this methodology; we feel that after testing 58 sample resulting in a 96.43%
sensitivity and 100% specificity, this technology is validated and viable for implementation in the arsenal
of testing strategies currently employed surrounding COVID-19. It is our hope that this efficient and
cost-effective measure for COVID-19 PCR based testing can work to fill the void in testing in many areas
of the world or can be implemented for increasing the throughput of current testing sites, while
reducing the time to obtain results.
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