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Abstract  

Accurate and timely testing has become an essential measure in combatting the COVID-19 global 

pandemic. Currently, polymerase chain reaction (PCR) based assays are the most relied on methods for 

SARS-CoV-2 detection. This traditional workflow involves a viral RNA extraction from the viral transport 

media storing nasopharyngeal swabs collected from patients, followed by PCR based detection. While 

accurate, this methodology is time consuming and resource heavy, causing for delays in receiving results 

or limited access to testing. Herein, we demonstrate a validated method for SARS-CoV-2 detection from 

viral transport media using a two-step, direct-to-PCR workflow revolving around shaker-mill 

homogenization. This method completely bypasses the extraction steps of the traditional workflow, 

replacing it with 30 seconds of mechanical disruption sufficient to allow for COVID-19 detection with a 

96.43% sensitivity and 100% specificity when compared to traditional extraction to PCR based methods. 

 

Key Words (3 – 10):  

COVID-19, Virus Detection, Diagnostics, SARS-CoV-2, Coronavirus, Viral Diagnostics, PCR 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 July 2020                   doi:10.20944/preprints202007.0740.v1

https://doi.org/10.20944/preprints202007.0740.v1


 

Morehouse ZP 3 
 

1. Introduction 

Amid the COVID-19 pandemic, the critical need for efficient and cost-effective viral detection methods 

has been amplified globally [1,2]. Currently, the most relied on method for SARS-CoV-2 detection is a 

standard viral RNA extraction procedure followed by a polymerase chain reaction (PCR) based assay 

looking to detect a specific gene product from replicating viruses off patient acquired nasopharyngeal 

swabs [2,3,4]. This methodology has been proven time and time again to be effective in respiratory virus 

detection from patients actively infected with everything from influenza to SARS-CoV-2 [3,4,5]. 

However, this process of extraction followed by PCR based detection requires significant amounts of 

chemical reagents, consumable plastics, and laboratory man-hours to complete. These costs of both 

capital and time, potentially cause delays in patients receiving their results, and the possibility of 

degradation of viral transcripts within the storage media impairing detection [6,7]. Shortages in the 

supplies required for adequate viral detection and significant delays in patient notifications following 

nasopharyngeal swab collections have both been attributed to the exponential growth of COVID-19 

cases in the United States in June and July of 2020 [8]. 

Herein, we are proposing a validated methodology for SARS-CoV-2 detection from viral transport media 

(VTM) storing patient derived nasopharyngeal swabs, which completely bypasses the extraction portion 

of the classic workflow described above. This novel process employs shaker-mill homogenization to 

mechanically lyse the virus particles in the transport media, permitting the lysate to be directly 

transferred into a PCR based assay for detection. Taking a total of 30 seconds of processing prior to the 

sample being added to PCR detection assays, this method allows patient samples to be processed 

directly in the viral transport media (VTM) they are stored in following patient sampling, significantly 

reducing the resources invested and time spent on processing each sample for virus detection.   

2. Materials and Methods 

2.1 Samples Used for Method Validation 

The samples used for this method validation were obtained via a materials transfer agreement with 

Emory University’s School of Medicine and their Clinical Virology Research Laboratory (Atlanta, GA, 

USA). These samples were obtained with informed patient consent under and following the protocols 

approved through the Emory University Institutional Review Board (IRB) (IRB Contract 000001082) and 

conducted following the rules of the Declaration of Helsinki of 1975.  

Each patient provided two nasopharyngeal swab samples. One of the samples was validated as COVID-

19 positive or negative by the CLIA approved laboratory at Emory University’s Clinical Virology Research 

Laboratory following the traditional, US Centers for Disease Control and Prevention approved extraction 

and PCR based detection protocols. The second sample from the same patient was then deidentified 

and labeled as only COVID-19 positive or negative prior to transfer to our laboratory. 58 samples were 

transferred, 30 confirmed COVID-19 and 28 confirmed COVID-19 positive patient samples. The samples 

remained stored in their original viral transport media (Fisher, Cat. No. 23-001-726) and collection tube 

which they were placed in at the time of acquisition and were frozen at -80°C for storage prior to 

transfer.  

2.2 Patient Sample Processing  
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Patient samples stored in viral transport media were thawed in their original collection tubes at 24°C for 

1 hr, or until VTM had completely thawed. The swabs and 1 mL of VTM were then transferred to a 2 mL 

screw cap tube (Omni International Inc., Cat. No. 19-647) and sealed [9]. 24 samples were loaded into 

the Omni Bead Ruptor Elite (Cat. No. 19-040E) for processing. The samples were run at 4.2 m/s for 30 

seconds and removed from the device [9]. The samples were permitted to sit for 1 minute after 

processing to allow for any froth that formed in the tubes during shaker-mill homogenization to settle 

[9].  

2.3 RT-qPCR Detection of SARS-CoV-2 

1 µL of lysate was transferred into a premixed RT-qPCR plate from the 2 mL screw cap tube containing 

the nasopharyngeal swab in VTM following shaker-mill homogenization. The RT-qPCR reaction plate was 

premixed with New England Biolab’s Luna Universal Probe Based One-Step RT-qPCR Kit (Cat. No. E3006) 

and US CDC approved primers and probes for the nucleocapsid (N) gene purchased from approved 

vendor, Integrated DNA Technologies (Coralville, IL, USA). The 2019-nCoV_N1-F primer (GAC-CCC-AAA-

ATC-AGC-GAA-AT), the 2019-nCoV_N1-R primer (TCT-GGT-TAC-TGC-CAG-TTG-AAT-CTG), and the 2019-

nCoV_N1-P probe (FAM-ACC-CCG-CAT-TAC-GTT-TGG-TGG-ACC-BHQ1) sequences were all obtained 

directly from the US CDC website [10,11]. The RT-qPCR reaction was premixed following vendor 

guidelines and 1 µL of lysate was added to bring the reaction to a final volume of 20 µL. The reaction 

was then loaded into the CFX Connect Real Time PCR Detection System (BioRad, Cat. No. 1855200) and 

run with the vendor recommended temperature and cycle timing for a total of 45 amplification cycles. 

Cq values were recorded and any sample with a Cq value less than or equal to 40 was labeled as positive 

for COVID-19 detection based on the US CDC recommended analysis of COVID-19 probe based RT-qPCR 

results [10,11] (Figure 1, Table 1). 

Sample Number Traditional Testing Status Cq Value Mean Standard Deviation 

1 Positive 24.93 

29.94 5.44 

2 Positive 38.94 

3 Positive 37.25 

4 Positive 22.11 

5 Positive 36.57 

6 Positive 37.78 

7 Positive 29.18 

8 Positive 27.44 

9 Positive 32.05 
10 Positive 22.50 

11 Positive 31.33 

12 Positive 37.60 

13 Positive 28.78 

14 Positive 36.51 

15 Positive 22.58 

16 Positive 35.46 

17 Positive 34.70 

18 Positive 31.20 

19 Positive 31.26 

20 Positive N/A 
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21 Positive 22.79 

22 Positive 24.37 

23 Positive 23.10 

24 Positive 24.15 

25 Positive 32.84 

26 Positive 26.11 

27 Positive 27.84 

28 Positive 29.04 

 

Table 1. RT-qPCR results following shaker-mill homogenization represented as Cq values from VTM 

containing patient samples that tested positive for COVID-19 when tested with the traditional extraction 

to PCR methodology. Only one sample, sample 20, was not detected as COVID-19 positive after shaker-

mill homogenization processing from a previously confirmed COVID-19 positive patient. The 30 COVID-

19 negative samples are not shown because 0 of the 30 produced a Cq value following RT-qPCR.  

 

Figure 1. RT-qPCR results detecting the SARS-CoV-2 nucleocapsid gene off nasopharyngeal swabs 

processed via shaker-mill homogenization. Blue lines, VTM containing patient samples from COVID-19 

positive patients processed via shaker-mill homogenization. Orange lines, VTM containing patient 

samples from COVID-19 negative patients processed via shaker-mill homogenization.  

   

2.4 Statistical Comparison of COVID-19 Detection Methodologies 
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The positive or negative COVID-19 status of each sample as determined by the traditional processing 

method used by the Emory University laboratory was used as the baseline for our analysis of each 

sample. Following sample processing conducted via our novel methodology, we compared the positive 

or negative status obtained on each sample to the predetermined status in order to analyze the 

sensitivity and specificity when compared to the current extraction to PCR based testing model.  

3. Results 

With the use of shaker-mill homogenization on the Omni Bead Ruptor Elite, we were able to sufficiently 

lyse SARS-CoV-2 out of patient samples stored in VTM with the resulting lysate providing sufficient 

genetic material for RT-qPCR detection of the viral N gene. This data validates our novel two-step, 

direct-to-PCR approach for detecting COVID-19 off nasopharyngeal samples when run using the 

parameters described in this manuscript. With 27 of 28 COVID-19 positive samples being detected as 

positive following our methodology, and 0 of 30 COVID-10 negative samples detecting as positive, this 

detection method provides a 96.43% sensitivity and 100% specificity when compared to traditional 

extraction to PCR based methods (Figure 1, Table 1). 

The 27 COVID-19 positive samples had an average Cq value of 29.94, with a standard deviation of 5.44 

(Table 1). This average Cq, falls 10 cycles below the US CDC cut-off Cq of 40 recommended for a COVID-

19 positive detection using these N gene primers [10,11,12]. The wide standard deviation associated 

with these samples can be attributed to a variety of factors such as the variability of each patient’s viral 

load, the quality of the swabbing procedure when obtaining each sample, and the inhibitors present in 

the VTM when going directly to RT-qPCR reactions [12]. This wide standard deviation in Cq values should 

not be viewed a prominent error in this methodology, but rather a byproduct of using patient samples, 

and should in no way diminish the statistical validity of the sensitivity and specificity reported for this 

novel process [12].   

4. Discussion 

Throughout the course of the COVID-19 pandemic, we have seen the need for efficient, effective, and 

timely viral testing procedures dramatically increase [1,4]. As the demand for these tests rise, the 

market availability of the reagents and consumable plastics required to complete the traditional 

extraction to PCR workflow have become increasingly scarce. This lack of availability in reagents and 

consumables needed for adequate testing is hindering the global efforts in disease surveillance and 

combatting of the SARS-CoV-2 pandemic. Herein, we believe our novel two-step, direct-to-PCR workflow 

is a potential solution to the resource pitfalls currently delaying testing in many parts of the world. 

While we acknowledge that this may not be the perfect solution for all instances, the authors feel that 

through bypassing the traditional extraction steps requiring multiple reagents and consumable plastics 

that this method has the potential to fill critical gaps in testing in resource challenged areas. 

Additionally, with this validation using COVID-19 patient samples, resource challenged areas will be able 

to implement this technology with the reassurance that it has already proven a 100% positive predictive 

value and a 96.77% negative predictive value when compared to traditional extraction to PCR based 

methodologies in the first round of testing.  

Aside from supplementing testing in resource challenged areas, this shaker-mill based detection 

workflow significantly reduces the time required to process each sample through bypassing the 

extraction steps, while increasing throughput of the process in preparing samples for PCR based 
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detection. Using the Omni Bead Ruptor Elite, 24 swabs can be processed in 30 seconds, allowing for a 

full 384 well PCR plate to be prepared in as little as 30 minutes. This is in comparison to the hours of 

processing that a traditional viral RNA extraction kit requires [4,7]. As seen in the United States in July of 

2020 when waiting periods for results after being swabbed have taken up to 8 days, any ability to reduce 

the processing time surrounding COVID-19 testing is currently of critical need in order to provide public 

health officials with the accurate data they need to advise patients and track infections [1,2,4,7].  

While additional, larger scale testing is still needed to gain a more robust statistical interpretation on the 

sensitivity and specificity of this methodology; we feel that after testing 58 sample resulting in a 96.43% 

sensitivity and 100% specificity, this technology is validated and viable for implementation in the arsenal 

of testing strategies currently employed surrounding COVID-19. It is our hope that this efficient and 

cost-effective measure for COVID-19 PCR based testing can work to fill the void in testing in many areas 

of the world or can be implemented for increasing the throughput of current testing sites, while 

reducing the time to obtain results.  
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