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Abstract: An accurate radiative transfer model (RTM) is essential for the retrieval of soil moisture 

(SM) from microwave remote sensing data, such as the passive microwave measurements from the 

Soil Moisture Active Passive (SMAP) mission. This mission delivers soil moisture products based 

upon L-band brightness temperature data, via retrieval algorithms for surface and root-zone soil 

moisture, the latter is retrieved using data assimilation and model support. We found that the RTM 

based on the tau-omega (𝜏-ω) model, can suffer from significant errors over croplands (in average 

between -9.4K and + 12.0K for Single Channel Algorithm SCA; -8K and + 9.7K for Dual-Channel 

Algorithm DCA) if the vegetation scattering albedo (omega) is treated as a constant and the 

temporal variations are not accounted. In order to reduce this uncertainty, we propose a time-

varying parameterization of omega for the widely established zeroth order radiative transfer 𝜏-ω 

model. The main assumption is that omega can be expressed by a functional relationship between 

vegetation optical depth (tau) and the Green Vegetation Fraction (GVF). The validation was 

performed from 14 May to 13 December 2015 over 61 Climate Reference Network sites (SCRN) 

classified as croplands. The application of the proposed time-varying vegetation scattering albedo 

results in a consistent improvement for the unbiased root mean square error of 16% for SCA and 

15% for DCA. The reduction for positive and negative biases was 45% and 5% for SCA and 26% and 

12% for DCA, respectively. This indicates that vegetation dynamics on croplands are better 

represented by a time-dynamic single scattering albedo.  

Keywords: soil moisture; scattering albedo; tau-omega model; allometry; vegetation fraction; 

vegetation water content; passive microwave remote sensing; SMOS; SMAP; AMSR-E 

 

1. Introduction 

The prediction of weather extreme events, such as heat waves and cold surges, is important in 

time spans from one week to several months (S2S: sub-seasonal to seasonal) [1]. However, existing 

weather and climate models still perform very poorly in the prediction for this time scale. This issue 

is known as the weather and climate prediction gap [4]. At this time scale, the initial conditions of 

atmosphere, land and ocean components affect the prediction skill. One of the important missing 

pieces in S2S predictions is the role of the land surface; in particular, soil moisture, which is the main 

variable transferring water and energy to atmosphere. Furthermore, soil moisture plays an important 
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role in cloud and precipitation formation emphasized in the recent modeling and land-atmosphere 

feedback studies [5–7]. Estimation of global soil moisture variability, particularly within the root 

zone, can be realized in a land surface model using data assimilation of remote sensing measurements 
[8]. Assimilation systems opens new possibilities to improve the accuracy and robustness of land 

surface models with microwave brightness temperature assimilated from satellite such as the SMAP 

mission [9–11] and SMOS mission [12–14]. For this purpose, accurate and realistic microwave 

radiative transfer modelling (RTM) is essential as an operator for simulating microwave brightness 

temperature (Tb). One of the uncertainty sources in microwave RTM is modelling of wave-canopy 

interaction, which is commonly represented with a zeroth-order RTM using vegetation optical depth 

(VOD) and single scattering albedo (omega) [15-17].  

Currently, the SMAP baseline soil moisture algorithm (SCA, single channel algorithm) use an 

NDVI climatology-based VOD in its RTM [18]. The wavelength, or frequency, limits the penetration 

of electromagnetic waves through vegetation. At shorter the wavelengths there is less capacity it has 

to penetrate through the vegetation saturating the VOD at lower vegetation density. Longer 

wavelengths have the ability to capture VOD over wider range of the vegetation growth stages [19]. 

Therefore, low-frequency microwave measurements from L-band Radiometers such as SMAP and 

using algorithms such as Dual-Channel Algorithm, DCA [20] and Multi-Temporal DCA, MT-DCA 

[21] allows full penetration of wide variety of vegetation types.  

In this study, we will investigate the improvement of the operational SMAP SCA and DCA 

algorithms by proposing a time-varying parameterization of omega for the two algorithms. 

Currently, both of the SMAP operational algorithms consider the scattering albedo as constant, e.g. 

value of 0.05, for cropland type, while in experimental algorithms such as the MT-DCA omega is 

varying in space but fixed over time domain of the retrieval period for SM and tau. An important 

difference between DCA and MT-DCA is whether omega is estimated by the cost function 

minimization along with tau and soil moisture. The main assumption in the minimization of the cost 

function of MT-DCA is that the temporal variability of scattering albedo is much larger than soil 

moisture and tau. However, the assumption of one fixed omega for each vegetation type domain may 

be invalid over heterogeneous surfaces and for fast growing crops. This heterogeneity issue 

ultimately adds to the uncertainty of soil moisture estimation using SCA, DCA and MT-DCA 

algorithms (e.g. [22]). In this study, we apply time- and space-varying omega that is synchronized 

with VOD and investigate whether a newly parameterized (time-varying vegetation scattering 

albedo) tau-omega (𝜏-ω) radiative transfer model based on SCA and DCA is able to simulate Tb more 

accurately over spatially and temporally heterogeneous croplands. 

2. Methods  

2.1. The 𝜏-ω model of vegetated soil emission 

The 𝜏-ω model represents a zeroth order solution of the radiative transfer equation [17] and is a 

common basis of current passive microwave electromagnetic interaction modeling with vegetated 

soils at L-band. This model is also applied in the SMAP soil moisture retrieval algorithms [18]. It 

expresses the aggregated brightness temperature in the resolution cell over of view as follows [23]: 

 

𝑇𝑏𝑙𝑎𝑛𝑑 = 𝑒𝑠𝛾𝑇 + (1 − 𝜔)(1 − 𝛾)𝑇 + 𝛾(1 − 𝑒𝑠)(1 − 𝜔)(1 − 𝛾)𝑇    (1) 

 

where, 𝛾 = exp⁡(−𝜏/cos𝜃)  

 

𝑇𝑏𝑙𝑎𝑛𝑑  is the brightness temperature, emitted from land surface; 𝑒𝑠  is the soil emissivity; 𝛾 

indicates the transmissivity of canopy which is determined by vegetation optical thickness 𝜏 at nadir 

incidence 𝜃; T is the physical surface temperature, and 𝜔 is the single-scattering albedo, set to a 

constant of 0.05 (𝜔0.05) for croplands in the SMAP SCA. In this study, this approach is called the 

fixed-omega approach. The basis to estimate the value of 𝜏 (or VOD) has arguably improved from 

the NDVI-based 𝜏 used in SCA. In DCA and MT-DCA, 𝜏 or 𝜏 and 𝜔 are directly determined from 
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the polarimetric microwave L-band Tb, respectively. In this study, we focus on improving the 

scattering parameter 𝜔, which is a constant in space and time for SCA and DCA and a constant in 

time for MT-DCA. In contrast, we by establish a spatially heterogeneous and temporally varying 

𝜔𝑣𝑎𝑟  to account for the heterogeneity of vegetation scattering albedo in croplands and their 

dynamics. Owing to the varying omega, we differentiate this approach from the MT-DCA (multi-

temporal dual channel algorithm) where omega is a time-constant value over the optimization 

period. The latter is retrieved from a model selection during multi-temporal optimization of the 

estimation of 𝜏 and permittivity [24]. 

2.2. New Parameterization of vegetation scattering albedo 𝜔 with GVF  

In order to derive the temporally varying vegetation scattering albedo (ω) within the 𝜏-ω model, 

we assume that omega can be derived based on a proportionality to the sub-grid scale vegetation 

fraction, Green Vegetation Fraction (GVF) [25]. 

 

𝜔𝑣𝑎𝑟 = (1 − 𝐺𝑉𝐹)𝜔0 + 𝐺𝑉𝐹𝜔𝑚𝑎𝑥       (2) 

 

Based on this assumption, the temporal variability of 𝜔𝑣𝑎𝑟  is determined by the temporal variability 

of the vegetation fraction 𝐺𝑉𝐹. With no vegetation scattering condition for the bare soil fraction (1-

GVF), 𝜔0 becomes 0, which leads Eq. (2) to: 

 

𝜔𝑣𝑎𝑟 = 𝐺𝑉𝐹⁡𝜔𝑚𝑎𝑥       (3) 

 

2.3 Combining tau and omega via GVF 

In this study, our hypothesis is that we can parametrize the 2-D (spatial) vegetation cover 

fraction (GVF) with the measured VOD via a power-law function. Firstly, VOD (or 𝜏) can be expressed 

with a parameter b and the vegetation water content VWC [24], 

 

𝜏 = 𝑏⁡𝑉𝑊𝐶            (4) 

 

where b is a parameter related to the wavelength and vegetation structural characteristics. Now, we 

define the vegetation cover fraction with the vegetated area, A, per unit ground area. 

 

𝐺𝑉𝐹 [m2/m2] = A [m2] /1 [m2]       (5) 

 

Studies in the past have established empirical relationships between above ground biomass (AGB) 

and tree height, H. The allometric relationship has been derived as AGB ~ H2 for forest by [26, 27]. As 

vegetation grows, it typically increases in height (H) and covers a larger area (A). The height and area 

of vegetation can be related using allometric functions. Using allometric functions we express the 1-

D height in terms of the 2-D area of the vegetation calculated with tree diameter D [28–30]. However, 

instead of using the ln(H)-ln(D)2 non-linear approach, we apply an H-D linear approach without 

violation of their physical units as shown in Eq (6),  

 

H [m] = c･√A [m2]       (6) 

 

where c is a non-dimensional factor related with environmental variables and model uncertainty 

from the proposed function [28]. In a recent study, total VWC in a SMAP grid was scrutinized in 

terms of volume and height of canopy by [31], 

 

𝑉𝑊𝐶 = 𝜌𝐸𝜌𝑉H⁡      (7) 
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where physical density of plant elements (𝜌𝐸), density of canopy in plant elements (𝜌), volume of 

vegetation (𝑉), height of vegetation layer (𝐻). In this study, we express V as a function of a (area of a 

plant element) and h (the unique thickness the unique thickness of the plant element): 

 

𝑉 = 𝑎⁡ℎ        (8) 

 

If all plant elements are homogeneous in a measured resolution cell, we can compute the vegetation 

area as shown in Eq. (9) 

𝐴 = ∑ 𝑎𝑖
𝑁
𝑖=1 = 𝜌⁡𝑎,        (9) 

 

where 𝜌 is the number density of the plant elements.  

Then we can get the volume of a plan element from A and h.  

𝑉 =
𝐴

𝜌
ℎ        (10) 

 

Hence 

 

𝑉𝑊𝐶 = ⁡𝜌𝐸 ∙ 𝑐 ∙ 𝐴
3/2 ∙ ℎ       (11) 

 

Then, we can express vegetation optical depth (𝜏) by putting Eq. (8) into Eq. (4) and using Eq. (6): 

 

𝜏 = 𝑏𝜌𝐸𝑐ℎ𝐺𝐹𝑉
3/2

        (12) 

 

Then, GVF can be expressed with tau, a vegetation canopy parameter b [m2/kg], a canopy 

environmental parameter including an uncertainty c [-] and unique parameters for a specific plant: 

𝜌𝐸 [kg/m3], and h [m], which are collectively expressed with the non-dimensional parameter 𝛾. [-]: 

 

𝐺𝐹𝑉 = ⁡𝛾𝜏2/3       (13)  

 

This results in a new GVF [cm2/cm2 or %] – ⁡𝜏  [-] relationship. The new relationship is 

differentiated from the exponential function of LAI which can be estimated as tau or VWC via the 

approximated relation (𝜏 = 0.5*LAI) [32] to estimate the vegetation fraction proposed by [33]. Chaubell 

et. al and Fernandez-Moran et. al ([34–36]) suggested that VOD is proportional to grass or crop height 

linearly. But the non-linearity between VOD - vegetation fraction turned out to be the power-law 

function with 2/3 exponent as shown in Eq. (13). Finally, without ancillary input, 𝜔𝑒𝑓𝑓  can be derived 

as power-law function of tau based on Eq. (3) and (10) as following.  

 

𝜔𝑒𝑓𝑓 = 𝜔𝑚𝑎𝑥 · 𝛾 · 𝜏
2
3⁄       (14) 

 

In the various studies [33–39], the constant or average 𝜔 ranged from 0.05 to 0.12. In this study, the 

𝜔𝑚𝑎𝑥  (vegetation scattering albedo with no bare soil exposed in the SMAP grid) is empirically set to 

0.1. 

2.5 Experimental Results and Validation of Parameterization  

     In order to confirm the developed time-dynamic vegetation scattering albedo approach, we 

performed a validation process. The control cases (SCA1 and DCA1) are used for Tb simulation with 

in-situ SM which is the reference input as shown in Fig.1. In this step, the difference between the 

simulated and observed Tb is considered as the modelling mismatch (mainly ω in this study). 
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Fig.1 Simulation of brightness temperatures (Tb) using the a) classical 𝜏-ω model with time-constant 

ω , b) time-varying parameterization of the 𝜏-ω model with variable ω (DMM: dielectric mixing 

model) 

Table.1 Experimental set up to validate the effect of time-varying vegetation scattering albedo ω in 

the 𝜏-ω model. 

Model Simulation 
Vegetation part Soil part 

𝜏 ω DMM SM 

SCA1 𝑇𝑏(𝜏𝑆𝐶𝐴, 𝜔0.05, 𝜀𝑀) SCA 
0.05 

[39] In-situ 
SCA2 𝑇𝑏(𝜏𝑆𝐶𝐴, 𝜔𝑣𝑎𝑟 , 𝜀𝑀) Variational 

DCA1 𝑇𝑏(𝜏𝐷𝐶𝐴, 𝜔0.05, 𝜀𝑀) DCA 
0.05 

DCA2 𝑇𝑏(𝜏𝐷𝐶𝐴, 𝜔𝑣𝑎𝑟 , 𝜀𝑀) Variational 

 

The standard 𝜏-ω is used for Tb simulations with in-situ SM as reference input. In this simulation, the 

difference between Tb simulated and the observed is considered as an error. With the same in-situ 

SM input, we simulate Tb but this time by applying the new parameterization of vegetation scattering 

albedo, 𝜔𝑣𝑎𝑟 . We evaluate the differences between the newly parameterized, time-varying 𝜏-ω model 

(SCA2 & DCA2) with the results obtained using the control runs (SCA1 & DCA1). The amount of 

reduction (SCA2 - SCA1 and DCA2 - DCA1) represents the RTM improvement due to the time-

variation of the vegetation scattering albedo, 𝜔𝑣𝑎𝑟 .  

 

3. Data 

 In-situ soil moisture from the U.S. Surface Climate Observing Reference Networks (USCRN) soil 

moisture network [41] was used as the input for Tb simulations from May to November 2015, which 

are used as the reference for the comparisons. The USCRN sites and soil moisture networks selected 

for the investigation are presented in Fig. 9 in Appendix: A are located on croplands (with 

information of crop type) according to MODIS IGBP land cover classification. The detailed 

description of the study sites is provided in Table 1.  

 In the SCA (𝜏𝑆𝐶𝐴) case, the 𝜏-ω model uses a 𝜏 value estimated from the MODIS NDVI data. In 

the DCA (𝜏𝐷𝐶𝐴) case, 𝜏 is retrieved simultaneously in addition to the SM. In both cases, omega is 

constant 0.05 for the crop surface type following [42]. 

 For the newly parameterized approach, the Tb simulations consider the canopy interaction 

heterogeneity in the 𝜏-ω model by applying time- and space-variable 𝜔, which is a function of the 𝜏 

estimated in SCA or DCA. The heterogeneity inclusion in the DCA and SCA will be investigated by 

comparing the SMAPL2 soil moisture product [43–45] in the specific crop sites over USCRN. 

Furthermore, the validation SMAP Level 2 Enhanced Passive Soil Moisture Product [18, 46] will be 
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performed from 2015 to 2019 presented in Table 2. The detailed description of the validation data 

with SMAP level 2 products at USCRN validation sites and SMAP Level2 Enhanced Products in core 

validation sites are provided in Table 6 and Table 7. 

 

4. Results 

4.1 New parameterization of 𝜔 in the 𝜏-ω model 

 The parameter 𝛾 required in Eq. (11) is determined from temporal average of 𝜏𝑆𝐶𝐴 and VIIRS 

GVF measurements over the calibration sites (TERENO, HOBE, REMEDHUS, RISMA) as shown in 

Fig. 2. The determined 𝛾 in this study is 1.12 for the GVF simulation (P-value from Wilcoxon rank sum 

test is 0.6817, which means our hypothesis is reliable enough). 

 

Fig.2 Relationship between vegetation optical depth (VOD-SCA) and the measured vegetation 

fraction (VIIRS) over croplands. 

The computation of the time-varying 𝜔 based on Eq. (11) requires also the maximum 𝜔𝑚𝑎𝑥 . For 

the new parameterization of forward model parameters, the time-varying 𝜔  was tuned via the 

optimal gamma (1.12) and 𝜔𝑚𝑎𝑥. The results of the calibration and validation are presented in Table 

2. 

Table 2. Performance of SCA(S) and DCA(D) over the calibration sites (bolds indicate the best) 

 Bias ubRMSE Correlation 

S1 S2 D1 D2 S1 S2 D1 D2 S1 S2 D1 D2 

TERENO 3.20 -0.75 3.37 0.64 12.06 8.49 9.73 6.25 0.91 0.91 0.87 0.91 

HOBE 8.46 5.90 2.91 3.77 15.61 12.23 10.48 11.05 0.86 0.87 0.72 0.74 

RISMA -8.38 -8.69 -6.13 -4.94 20.03 19.72 14.84 14.28 0.49 0.50 0.82 0.82 

REDMUS -12.04 -10.94 -4.44 -3.70 37.02 36.06 28.93 28.62 0.76 0.76 0.78 0.77 

 

4.2 Quality assessment of the new parameterization in the 𝜏-ω model 

We investigate if the 𝜏-ω model error in the simulation of Tb is reduced by replacing the time-

constant omega (𝜔0.05) with time-varying omega (𝜔var) that depends on the value of 𝜏. Eq. (11) 

indicates that a higher 𝜏 measured in a SMAP resolution cell is likely to have a higher effective value 

of omega;  

Higher 𝜏 → larger vegetation fraction (less bare soil) in a grid → higher effective 𝜔  
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Figure 3a shows the significant overestimation of SMAP that SM RTMs can produce. Particularly, the 

SCA based SM reached the limit value, up to 0.6 m3/m3 during half of the time-series. These errors 

(Fig. 3b) were estimated by deducting in-situ SM and are temporally correlated with the varying 𝜔 

(Fig. 3c). The SM estimation is affected by the required ancillary parameters of vegetation, 𝜏 and 𝜔. 

If one of the ancillaries is not realistic - in this study the time-constant 𝜔 - it will affect the SM 

estimation. In other words, one of the error sources in SM are the vegetation properties within RTM 

and this error is at least to a certain extent addressed with time- and space-varying 𝜔. This result 

confirms the validity of the hypothesis that this 𝜔 can be approximated with 𝜏. The 𝜏-derived 𝜔 

was more than 0.1 and two times larger than the constant 𝜔 applied in SMAP baseline algorithm. 

We investigated the improvement by applying the time- and space-varying 𝜔. The time series of Tb 

in (Fig. 3d) shows that the overestimated Tb (blue) decreases in Tb simulations with DMM (red curve). 

The effect of the new parameterization of 𝜔 in the 𝜏-ω model is displayed in Fig. 3e. The application 

of varying 𝜔 significantly reduces the Tb bias form SCA1 to SCA2. Over cropland as presented in 

Fig.3 a, this type of SM bias seems to be more of a serious issue in SCA than DCA–based soil moisture 

retrievals. We can expect the unrealistically overestimated SM from both approaches will have a 

positive effect by applying varying 𝜔 during the SM estimation process from the measured Tb. The 

SMAP DCA SM estimates in the right panel of (3a) are close to 0.6 cm3/cm3 missing the seasonal SM 

evolution observed in-situ. The time-varying 𝜔 ranges between 0.08 and 0.12, which is a much larger 

value than the default value, 0.05. In addition to the large difference in the absolute value, a 

temporally varying pattern that exhibits a similar pattern of the SM error due to the constant 𝜔. In 

this case, the application of the time-varying 𝜔 also significantly reduced the overestimation of Tb.In  

On the other hand, in the Fig. 4, the overestimation of SM by using the constant 𝜔 in SMAP 

RTM is less severe than Fig. 3 showing the limited SM value in all-time series in SCA approach. But 

in this case SM estimated by SCA is much closer to the in-situ SM than the one by DCA. The SCA 𝜏 

used in the computation of 𝜔 (c) in Fig. 4 are lower than the one in Fig. 3. Still, the DCA 𝜏 of Fig. 4 

range from 0.8 to 0.12, which is similar to the Fig. 3. With given TB and higher 𝜏, the SM is higher in 

the simultaneous optimal estimation. It means that the DCA 𝜏  in Fig. 4c should be lower. 

Particularly, DCA SM error becomes larger when 𝜏 was high in DOY 220-230 and 240 & 280, which 

leads to DCA-based SM much higher than the in-situ in this period. Probably, the further 

improvement of DCA approach for simultaneous estimation of 𝜏 and SM can be expected in the 

minimization process finding optimal 𝜏 with the temporally varying 𝜔 than the constant 𝜔. 

As a result, SM estimated by SMAPL2 SCA and DCA was overestimated as shown in Fig 3 and 4 (a). 

The difference of the SMAP SM to the in-situ in (b) shows the temporal correlation with the changes 

of the omega in DCA of Fig. 3 and 4. It means that both SCA and DCA approaches suffer from a low 

value of 𝜔; DCA can detect the temporal changes of vegetation better, which is revealed in its SM 

error. The improvement in Tb simulation is mostly originated from the overall larger value of the 

new 𝜔  in both SCA and DCA and less because of the temporal variance. This uncertainty is 

attributed to the scattering properties of the 𝜏-ω model which was the reason we replaced the constant 

𝜔 with the varying 𝜔. The results in Figs. 3 and 4 suggest that the soil moisture estimations using 

the 𝜏-ω model based on the fixed 𝜔 were mostly underestimated and the new 𝜔 is on a higher level 

than the constant one⁡showing reduced bias compared to the measured Tb.  
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Fig. 3 Validation of the improvement by applying time-varying ω within SCA and DCA approaches; 

(a) the soil moisture estimation by SCA (left) and DCA (right), (b) their uncertainty, (c) SCA & DCA 

VOD, (d) the constant adapted by SMAP algorithm and the proposed time-varying ω and (e) the 

brightness temperature simulated by 𝜏-ω model applied with the constant and time-varying ω from 

(d) and the input of the in-situ soil moisture presented in (a) in USCRN Durham-2-N (crop type: corn) 

, (f); ▲: mean SCA&DCA 1,▼: mean SCA&DCA2,● : mean SMAP Tb measurements 
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Fig. 4 Validation of the improvement by applying time-varying ω within SCA and DCA approaches; 

(a) the soil moisture estimation by SCA (left) and DCA (right), (b) their uncertainty, (c) SCA & DCA 

VOD, (d) the constant adapted by SMAP algorithm and the proposed time-varying ω and (e) the 

brightness temperature simulated by 𝜏-ω model applied with the constant and time-varying ω from 

(d) and the input of the in-situ soil moisture presented in (a) in USCRN Gadsden-19-N (crop type: 

soybean), (f); ▲: mean SCA&DCA 1,▼: mean SCA&DCA2,● : mean SMAP Tb measurements 

 During the early growth and senesce period of the crop (soybean), the newly parameterized 

vegetation 𝜔 for cropland in Fig. 5(c) decreases lower than the constant 𝜔 (0.05). This dynamic 

results in reduced SMAP SM estimation. Impacts include: (b) negative bias in SM, (c) low 𝜏  in 

growing and senescence season (d) a lower vegetation 𝜔 estimated from the 𝜏. 
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Fig. 5 Validation of the improvement by applying time-varying ω within SCA and DCA approaches; 

(a) the soil moisture estimation by SCA (left) and DCA (right), (b) their uncertainty, (c) SCA & DCA 

VOD, (d) the constant adapted by SMAP algorithm and the proposed time-varying ω and (e) the 

brightness temperature simulated by 𝜏-ω model applied with the constant and time-varying ω from 

(d) and the input of the in-situ soil moisture presented in (a) in USCRN Northgate-5-ESE (crop type: 

unknown), (f); ▲: mean SCA&DCA 1,▼: mean SCA&DCA2,● : mean SMAP Tb measurements 

Even though the improvement is not really significant as compared to the case presented in Fig. 3 

and 4, the direction of the improvement is promising. The results show an increase of Tb simulation 

when the SMAP SM has a negative bias, which occurs mostly during the growing and ripening 

season, and decrease of Tb simulation when the SMAP SM has a positive bias (similar to the Fig. 3 

and 4), which occurs mostly during the mature crop state. The crop phenology shows in the 

uncertainty (a, b). It appears also in the cause (constant 𝜔) and solution (varying 𝜔) (d) and the 

improvement (e, f), reasonably. This temporal pattern has been shown not only in the case of USCRN 

crop case Fig. 5 but also other intensive field studies using SMAP Level 2 Enhanced Passive Soil 

Moisture [46] over croplands (corn) from 2015 to 2019 in Fig. 6. 
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Fig. 6 Validation of the improvement by applying time-varying ω within SCA and DCA approaches; 

(a) the soil moisture estimation by SCA (left) and DCA (right), (b) their uncertainty, (c) SCA & DCA 

VOD, (d) the constant adapted by SMAP algorithm and the proposed time-varying ω and (e) the 

brightness temperature simulated by 𝜏-ω model applied with the constant and time-varying ω from 

(d) and the input of the in-situ soil moisture presented in (a) in South Fork (crop type: corn) (latitude: 

42.42, longitude: -93.41), (f); ▲: mean SCA&DCA 1,▼: mean SCA&DCA2,● : mean SMAP Tb 

measurements 

As a result, the vegetation 𝜔 variability in the newly parameterized 𝜏-ω model improves the Tb 

simulation. Bias and ubRMSE tend to decrease. Owing to this, the SM estimation from the SMAP Tb 

will be closer to the in-situ SM. Furthermore, the newly parameterized 𝜏-ω model provides a more 

accurate observation operator for data assimilation, which would result in more accurate soil 

moisture update to NWP. The validation over the crop sites matched with 9km Tb products, showed 

a very little improvement by varying 𝜔 (SCA1→SCA2 and DCA1→DCA2). Further case studies 

have been performed and the results are summarized in Table 4. 
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Table 4. Total validation score over USCRN cropland validation site 

 South Fork Kenaston Carman 

 bias ubR Corr. bias ubR Corr. bias ubR Corr. 

SCA1 -7.5 26.2 0.62 -15.1 36.5 0.76 -10.7 25.6 0.82 

SCA2 -7.5 25.7 0.63 -15.5 36.7 0.76 -10.0 24.3 0.83 

DCA1 -5.41 18.5 0.81 -9.5 22.7 0.85 0.9 8.6 0.93 

DCA2 -4.40 17.3 0.81 -8.7 21.4 0.85 1.9 9.3 0.93 

*ubR (ubRMSE), the stressed values indicate better score. 

Overall, the biases were reduced (SCA1→SCA2 and DCA1→DCA2) and ubRMSE becomes closer to 

zero for croplands as shown in Table 5 and Fig. 7. 

Table 5. Total validation score for USCRN cropland validation site 

 

# 

Bias ubRMSE Correlation 

S1 S2 D1 D2 S1 S2 D1 D2 S1 S2 D1 D2 

total 2.9 0.6 3.7 2.4 23.1 19.5 21.3 18.1 0.725 0.732 0.836 0.832 

win 5 22 9 18 5 22 8 17 9 18 15 12 

 

 

Fig 7. Histogram analysis of bias, ubRMSE and correlation for 𝜏-ω (SCA1&DCA1) and semi-empirical 

𝜏-ω (SCA2&DCA2) 

More details on the validation statistics for the sites used in Fig.8 can be found in Table 8 of the 

supplement results in the end of the manuscript. 

 

5. Summary and discussions 

 In this study, we found that the soil moisture estimated with SCA and DCA from the SMAP 

mission suffers from over- and under-estimations for cropland sites. In order to tackle this bias, we 

derived a varying omega (ωvar) based on the assumption of a power law relationship between GVF 

and VOD instead of a time-constant omega (ω0.05) used in the SMAP baseline algorithms (SCA and 

DCA). The formulation allows us to express a time-varying omega ωvar based on the dynamics of 𝜏. 

Hence, ωvar is able to account at least partly for the temporal variation of the vegetation properties in 

cropland. In this study, we focused on linking the measured VOD and the effective value of omega 

(effective single scattering albedo) mainly via vegetation volumetric traits such as the height and 

area fraction within the measured resolution cell. 

The assessment was performed with the SMAPL2 brightness temperature (Tb). It is matched 

with the forward modelled brightness temperature using in-situ stations of the USCRN (27 croplands 

(11 corn, 7 soybean, 2 cotton, grapes, alfalfa, 1 wheat, citrus, unknown sites)) in 2015 and in the 

SMAPL2 Enhanced H-pol brightness core validation sites (3 cropland) from 2015 to 2019. As a result, 
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we were able to reduce the positive Tb bias for several reference sites over cropland (C1, 3-11, 13-17, 

20, 22, 25, 27 d in Table 8) including Gadsden-19-N (Atlanta) and Durham-2-N (Boston) presented in 

the figures 3 and 4. This bias reduction mitigates the overestimation of Tb (K) by 80% and 35% in the 

SCA and DCA approach, respectively. These results demonstrate that owing to a different phenology 

of the VOD time series over cropland, the time-varying omega parametrized with the VOD can 

implement more realistic 𝜏 - ω model than the one applied with the constant omega. 

In a future study, further experiments will be performed including organic matter (OM) to the 

applied dielectric mixing model [46]. The soil moisture of USCRN used for validation are also 

estimated from dielectric constant measurement [47], where the soil organic matter is not considered. 

We assume that this missing consideration in the reference soil moisture values might affect the 

validation of Tb simulations.  

As satellite remote sensing is the only operational way to determine global soil moisture, an 

accurate radiative transfer model is essential. We propose that the presented parameterization for a 

time-varying vegetation scattering albedo from VOD dynamics implemented within the 𝜏-ω model 

provides more realistic retrievals of soil moisture dynamics. The key feature of the approach is that 

no more variables are added with this new parameterization of the 𝜏-ω model contributing to a more 

accurate but less complex global soil moisture estimation. This is equally important for retrieval and 

data assimilation approaches based on microwave brightness temperature measurements from 

SMOS and AMSR-2. 
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Appendix A: DATA DESCRIPTION 

 

 

Fig.9 Map of ISMN sites [49] for calibration (upper panel) and validation in USCRN sites (lower panel) 

over the IGBP land classification based on MODIS measurements obtained from SMAP L4: (orange (IGBP 

12): Croplands and red (IGBP 14): Cropland/natural vegetation) 
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Table 6. Data used for Tb calibration (upper) and validation (lower) over croplands 

Calibration Sites Crop site 
Clay 

[cm3/cm3] 

Sand 

[cm3/cm3] 

Silt 

[cm3/cm3] 
OM (%) 

HOBE 

[50] 

1.02 0.04 0.87 0.09 27.86 

1.03 0.04 0.87 0.09 27.86 

1.05 0.04 0.87 0.09 27.86 

1.06 0.04 0.87 0.09 27.86 

1.07 0.04 0.87 0.09 27.86 

1.08 0.04 0.87 0.09 27.86 

1.09 0.04 0.87 0.09 27.86 

1.10 0.04 0.87 0.09 27.86 

2.01 0.04 0.87 0.09 28.03 

2.03 0.04 0.87 0.09 28.03 

2.04 0.04 0.87 0.09 28.03 

2.05 0.04 0.87 0.09 28.03 

2.06b 0.04 0.87 0.09 28.03 

2.07 0.04 0.87 0.09 28.03 

2.09 0.04 0.87 0.09 28.03 

2.10 0.04 0.87 0.09 28.03 

2.11 0.04 0.87 0.09 28.03 

3.01 0.04 0.87 0.09 28.03 

3.04 0.04 0.87 0.09 28.03 

3.05 0.04 0.87 0.09 28.03 

3.06 0.04 0.87 0.09 28.03 

3.07 0.04 0.87 0.09 28.03 

3.08 0.1 0.81 0.09 27.62 

3.09 0.1 0.81 0.09 27.62 

REMEDHUS 

[51] 

Canizal 0.49 0.19 0.32 2.95 

Carretoro 0.18 0.34 0.48 3.12 

CasaPeriles 0.21 0.36 0.43 3.12 

ConcejodelMonte 0.21 0.36 0.43 3.62 

ElCoto 0.18 0.34 0.48 3.12 

ElTomillar 0.49 0.19 0.32 3.12 

Guarrati 0.18 0.34 0.48 3.12 

LaAtalaya 0.49 0.19 0.32 2.95 

LaCruzdeElias 0.49 0.19 0.32 3.12 

LasArenas 0.49 0.19 0.32 3.38 

LasBodegas 0.21 0.36 0.43 2.95 

LasBrozas 0.49 0.19 0.32 3.12 

LasEritas 0.49 0.19 0.32 2.95 

LasTresRayas 0.49 0.19 0.32 3.38 

LasVictorias 0.49 0.19 0.32 3.12 

LlanosdelaBoveda 0.21 0.36 0.43 3.12 

Paredinas 0.21 0.36 0.43 3.12 

Zamarron 0.49 0.19 0.32 4.36 

TERENO [52] 
Gevenich 0.22 0.41 0.37 15.13 

Merzenhausen 0.22 0.41 0.37 15.13 

RISMA 

[53] 

MB1 0.41 0.12 0.47 13.59 

MB2 0.41 0.12 0.47 11.25 

MB3 0.41 0.12 0.47 14.28 

MB4 0.41 0.12 0.47 14.28 

MB5 0.41 0.12 0.47 14.28 

MB6 0.41 0.12 0.47 14.28 

MB7 0.41 0.12 0.47 13.59 

MB8 0.41 0.12 0.47 15.68 

MB9 0.41 0.12 0.47 13.58 
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Validation Sites ID 
Clay 

[cm3/cm3] 

Sand 

[cm3/cm3] 

Silt 

[cm3/cm3] 
OM (%) 

Crop 

type 

Blackville-3-W C1 0.23 0.47 0.3 16.33 Cotton 

Goodridge-12-NNW C2 0.22 0.38 0.4 18.42 Soybean 

Shabbona-5-NNE C3 0.24 0.35 0.41 8.47 Corn 

Ithaca-13-E C4 0.2 0.41 0.39 40.15 Corn 

Kingston-1-NW C5 0.05 0.85 0.1 55.06 Corn 

Aberdeen-35-WNW C6 0.23 0.36 0.41 5.76 Corn 

Bedford-5-WNW C7 0.24 0.49 0.27 14.41 Soybean* 

Bodega-6-WSW C8 0.23 0.39 0.38 0.00 Grapes 

Chillicothe-22-ENE C9 0.24 0.35 0.41 7.37 Soybean 

Coshocton-8-NNE C10 0.2 0.41 0.39 18.11 Corn 

Crossville-7-NW C11 0.24 0.49 0.27 16.69 Corn 

Denio-52-WSW C12 0.23 0.36 0.41 3.39 Alfalfa 

Durham-2-N C13 0.13 0.49 0.38 52.60 Corn 

Gadsden-19-N C14 0.24 0.49 0.27 12.76 Soybean 

Jamestown-38-WSW C15 0.09 0.72 0.19 7.88 Soybean 

Joplin-24-N C16 0.24 0.35 0.41 13.52 Soybean* 

Lincoln-11-SW C17 0.24 0.35 0.41 3.91 Corn* 

Lincoln-8-ENE C18 0.24 0.35 0.41 2.72 Corn* 

Medora-7-E C19 0.22 0.43 0.35 5.04 Wheat 

Merced-23-WSW C20 0.2 0.39 0.41 7.57 Alfalfa 

Muleshoe-19-S C21 0.21 0.5 0.29 1.13 Cotton 

Necedah-5-WNW C22 0.06 0.83 0.11 19.47 Corn 

Northgate-5-ESE C23 0.23 0.36 0.41 8.80 - 

Santa-Barbara-11-W C24 0.24 0.47 0.29 0.00 Grapes 

Sebring-23-SSE C25 0.08 0.82 0.1 27.59 citrus 

Sioux-Falls-14-NNE C26 0.23 0.39 0.38 3.82 Corn* 

Versailles-3-NNW C27 0.24 0.47 0.29 14.43 Soybean 

The crop type information was extracted from the 30m resolution Cropland Data Layer database [54] 

within SMAP’s 36km grid boundaries for the year 2015 (*: both corn and soybean are dominated within 

the SMAP grid). 

 

 

 

 

Appendix B: VALIDATION RESULTS 

Table 7. Data used for Tb validation with SMAPL2 Enhanced H-pol brightness temperature 

Site name State, Country PI(s) Land cover # of 

senseors 

References 

South Fork IA, USA Cosh Cropland (corn) 20 [55] 

Kenaston Saskatchewan , Canada Berg, Rowlandson cropland 28 [56] 

Carman Manitoba, Canada McNairn, Pacheco cropland 9 [53] 
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Table 8. Validation scores over USCRN cropland 

 

# 

Bias ubRMSE Correlation 

S1 S2 D1 D2 S1 S2 D1 D2 S1 S2 D1 D2 

C1 11.5 7.1 13.8 9.3 23.34 14.63 27.72 q 0.972 0.971 0.985 0.967 

C2 -6.5 -6.2 -3.6 -2.6 25.25 24.47 10.20 8.76 0.065 0.099 0.932 0.932 

C3 13.6 11.8 -7.2 -6.5 31.54 28.92 21.88 20.35 0.568 0.496 0.546 0.579 

C4 4.5 -0.6 5.5 1.8 9.6 3.5 11.45 4.47 0.932 0.933 0.960 0.972 

C5 2.3 -0.9 8.8 -2.8 19.53 5.63 17.99 6.46 0.58 0.79 0.806 0.801 

C6 9.9 9.9 7.3 8.6 22.72 22.51 17.28 19.46 0.768 0.782 0.890 0.888 

C7 5.3 0.4 7.7 3.9 11.52 4.44 15.71 8.60 0.908 0.915 0.957 0.959 

C8 0.0 -5.4 -3.2 -2.6 19.88 22.66 20.39 20.24 0.340 0.333 Z 0.348 

C9 5.9 3.9 -0.5 0.5 14.29 10.73 8.55 8.13 0.883 0.896 0.885 0.889 

C10 4.8 0.3 9.2 5.4 10.86 5.37 19.08 11.88 0.871 0.832 0.891 0.893 

C11 5.1 -2.4 9.2 -0.1 10.67 5.55 18.53 2.41 0.948 0.947 0.962 0.968 

C12 -10.7 -10.0 2.4 2.7 25.45 24.28 13.18 13.28 0.682 0.684 0.738 0.746 

C13 14.9 3.9 6.5 2.3 30.71 10.69 15.14 8.97 0.724 0.725 0.738 0.723 

C14 7.2 4.0 13.2 7.0 15.12 9.15 26.50 14.48 0.918 0.915 0.980 0.955 

C15 15.2 15.2 14.4 15.5 32.49 32.23 29.89 32.00 0.744 0.757 0.904 0.900 

C16 1.4 0.8 -1.7 -0.8 8.82 8.38 10.75 9.92 0.913 0.920 0.900 0.899 

C17 0.4 -0.0 -5.8 -4.5 12.65 12.19 17.67 16.37 0.812 0.815 0.872 0.871 

C18 -1.2 -2.1 -12.7 -11.4 15.00 15.03 27.10 24.67 0.691 0.695 0.900 0.902 

C19 -5.4 -4.4 5.8 7.2 16.12 14.84 14.51 16.87 0.582 0.589 0.787 0.788 

C20 17.3 18.0 20.6 21.9 36.27 37.64 42.48 44.95 0.853 0.853 0.884 0.887 

C21 -37.7 -36.6 -21.5 -20.8 76.97 74.80 45.03 43.72 0.761 0.760 0.825 0.825 

C22 13.6 8.4 13.1 8.8 27.71 17.50 26.63 18.32 0.855 0.847 0.895 0.838 

C23 -7.8 -7.7 0.9 2.2 22.70 21.82 6.85 7.83 0.680 0.683 0.875 0.876 

C24 -6.5 -6.5 3.8 4.9 15.72 15.82 10.36 12.13 0.349 0.354 0.551 0.545 

C25 26.2 23.9 22.6 23.2 53.64 49.25 46.73 47.82 0.549 0.553 0.709 0.687 

C26 -9.0 -10.2 -16.1 -15.0 26.59 27.40 34.56 32.60 0.730 0.724 0.865 0.864 

C27 2.8 0.4 8.7 6.4 8.41 6.36 18.02 13.52 0.889 0.883 0.937 0.952 
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