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Abstract: It has been suggested that particle size plays an important role in determining the
genotoxicity of gold nanoparticles (GNPs). The purpose of this study was to compare the potential
radio-sensitization effects of two different sized GNPs (3.9 and 37.4 nm) fabricated and examined
in vitro in Lewis Lung carcinoma (LLC) as a model of non-small cell lung cancer through use of
comet and clonogenic assays. After the treatment of 2Gy X-ray irradiation, both particle sizes
demonstrated increased DNA damage when compared to treatment with particles only and
radiation alone. This radio-sensitization was further translated into a reduction in cell survival
demonstrated by clonogenicity. This work indicates that GNPs of both sizes induce DNA damage
in LLC cells at the tested concentrations, whereas the 37.4 nm particle size treatment group
demonstrated greater significance in vitro. The presented data aids in the evaluation of the
radiobiological response of Lewis Lung carcinoma cells treated with gold nanoparticles.
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1. Introduction

Gold nanoparticles (GNPs) offer a means to transport agents to diseased cells or tissues because
of their physical, chemical, and optical properties which are specifically dependent on size,
adaptability, and biocompatibility[1]. They can also act as both cancer therapeutics and diagnostic
tools, and have been demonstrated as novel molecular imaging contrast agents, computed
tomography (CT) imaging, and photothermal cancer therapy[2,3]. The high atomic number of
elemental gold (Z=79) compared to that of soft tissues, permits metal enhanced radiotherapy, where
their presence can amplify delivered ionizing radiation. Current theory suggests that gold
nanoparticle-mediated radio-sensitization is a combination of physical, chemical, and biological
effects. On the physical side, multiple effects occur including the generation of photoelectrons, Auger
electrons, and low energy secondary electrons. These emissions produce ionization effects in the
neighboring tissues[4]. In addition, GNP-mediated radio-enhancement is likely due to modulation in
cell cycle and increased production of reactive oxygen species (ROS), where enhanced localized
absorption of X-rays results in energy deposition in the form of free radicals and electrons, causing
cell damage[5]. However, it is still unclear how significantly a difference in particle size can affect the
degree of radio-enhancement since size can affect cellular uptake. Leung et al.[6] use Monte Carlo
simulation and show that GNPs with greater sizes increase the generation of the secondary electrons.
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Experimentally, Brun et al.[7] conclude that with a constant effective X-ray energy of 49 keV, larger
sized GNPs (92 nm) were more efficient radiosensitizers than those of smaller diameter (8 nm).
However, Butterworth ef al.[8] discuss that for smaller (5 and 20 nm) particles, the chemical yields of
DNA damage in irradiated samples were significantly greater than that for 1.5 um particles. Because
of this discrepancy in the literature in size, in this work two different sized GNPs are assessed as
radio-sensitizers in lung cancer cells.

Here, we exploit GNPs because of their desirable optical and electronic properties which make
them an excellent absorber of X-rays. We sought to assess the in vitro radiobiological response of
Lewis Lung carcinoma (LLC) treated with low dose (2Gy) x-ray irradiation alone and in combination
with two different sized gold nanoparticles to evaluate GNP-mediated effects. The aim of this study
was to determine if GNPs result in greater DNA damage in lung cancer cells in the presence of
irradiation and if modifying particle size resulted in differences in the radiobiological response.

2. Materials and Methods

Synthesis of Gold Nanoparticles (GNPs)

Small GNPs (SGNP) were synthesized according to Duff et al[9] using
Tetrakis(hydroxymethyl)phosphonium chloride (Sigma-Aldrich, 404861) and Hydrogen
tetrachloroaurate(Ill) hydrate (Sigma-Aldrich, 254169). Particles were also observed and measured
on a Bruker Multimode Atomic Force Microscope (AFM) to yield a size of approximately 3.86 + 1.27
nm. Z-potential values of -55.6 + 13.5 mV were obtained, which confirm the layer of absorbed citrate
anions. Citrate stabilizes the particles, minimizing aggregation. These anions can be displaced by wet
chemistry to fabricate highly ordered arrays[10] self-assembled monolayers,[11] or hybrid lipid
bilayers[12].

Big GNPs (BGNP) were synthesized using citric acid (Sigma, C3674) and Gold (III) Chloride
(Sigma, 379948). Briefly, 600 ul of MilliQ was added to an Erlenmeyer flask and placed on a hot plate
until vigorous boiling. After 30s of refluxing, 4.8 ml of 0.039 M aqueous citrate was added to the flask.
Finally, after about one minute, 7 ml of 0.033 M Gold (III) Chloride was rapidly added to the boiling
solution and left on the hot plate for four minutes until the observed color change was complete. The
solution equilibrated to room temperature and was stored for further use. Dynamic Light Scattering
(DLS) was used to rapidly and qualitatively size the particles and obtain a polydispersity index (PDI)
and Zeta Potential was measured (Malvin). The solutions yield Z-potentials of -40.0 = 6.0 mV (5
replicates in 10 mM KCl solution where the result is reported as mean + SD). Particles were also
observed and measured on a FEI Nova NanoSEM 230 and a JOEL 1230 High Contrast TEM, yielding
an average particle diameter of 37.39 + 5.52 nm.

Cell Culture

Murine Lewis Lung cells (LLC) were obtained from ATCC® (Manassas, VA, USA) and
subcultured according to manufacturer’s recommended protocols, where the complete growth
medium consisted of DMEM with 10% FBS and subcultures were prepared by diluting the
suspensions 1:4 to 1:6 using 0.25% trypsin - 0.53 mM EDTA solution (Thermo Fisher Scientific,
Waltham, MA USA). Cells were made to express luciferase by the use of plasmid pLenti PGK V5-
LUC Neo[13] (Addgene, Cambridge, MA, USA) which was packaged in lentiviral particles. The
packaging was performed at the Baylor College of Medicine (BCM) vector core facility. The plasmid
was transfected into Human Embryonic Kidney (HEK-293T) cells, and the conditioned media
collected and used to infect the LLC1 for 24h. After 24h, selection was initiated with G418 (Geneticin,
ThermoFisher Scientificc, Waltham, MA, USA). Dulbecco's Modified Eagle's Medium (DMEM,
ATCC®, Manassas, VA, USA) was made complete by adding 10% fetal bovine serum (FBS, USDA
approved, ATCC®, Manassas, VA, USA) and 1% Geneticin™ (ThermoFisher Scientific, Waltham,
MA, USA) for the luciferase expressing cells to maintain culture. Cells were kept at 37 °C and 5%
humidity in HERAcell 150i CO2 incubator (ThermoFisher Scientific, Waltham, MA, USA).

Comet Assay
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A neutral comet assay was performed using a CometAssay® Kit (Trevigen, Gaithersburg, MD,
USA) as per manufacturer’s instruction to detect DNA damage due to irradiation. Briefly LLC were
incubated with 54.5 pg of either SGNP or BGNP for 48 hrs and irradiated with 2Gy using a Rad
Source RS-2000 Biological Research Irradiator (Buford, GA, USA). Thirty minutes after irradiation
cells were collected, counted, and mixed with 0.5% low melting point (LMP) agarose and spread over
the comet slide. Slides were then immersed in an ice-cold freshly prepared lysis solution for at least
1 h. The slides were taken out of the lysis solution and then placed in a cold 1x neutral electrophoresis
buffer for 30 minutes. Horizontal electrophoresis was performed at 4°C in low light conditions for 45
min at 21 V. Following the electrophoresis protocol, the slides were next immersed in DNA
Precipitation Solution for 30 minutes and 70% ethanol for 30 min at room temperature. Each slide
was dried with air and stained with 1x SYBR® Gold Staining Solution (Trevigen, Gaithersburg, MD,
USA) in the dark. All slides were washed with water and air dried. Samples were visualized using
an EVOS FL Auto microscope (Life Technology). DNA damage was quantified by evaluating both
tail length (defined as the length of DNA migration and is related to DNA fragment size, calculated
from the center of the cell and reported in micrometers) and tail moment (determined by tail length
times the fraction of DNA in the tail). At least 50 random cells were scored per sample. Image was
analyzed by Open Comet plugin in Image] for various comet parameters[14].

Clonogenic Assay

LLC cells were treated with 54.5 ug of either SGNP or BGNP for 48 hrs followed by 2Gy radiation
alone and combined with NP treatment using a Rad Source RS-2000 Biological Research Irradiator
(Buford, GA, USA). Thirty minutes after irradiation cells were trypsinized and approximately 200-
500 cells from each sample were plated in triplicate in 6-well plates. After 10-15 days, the colonies
were stained with 0.5% crystal violet solution in 50% methanol. Clonogenic efficiency was measured
by % area and/or % intensity through colony area plugin (Image])[15].

Statistical Analysis

GraphPad Prism 5 software was used for all statistical analyses. Data are expressed as the
median with interquartile range for comet assay and mean + SD in clonogenic assay. Asterisks denote
P-values in the figures and sample sizes are included in each figure legend. One-way ANOVA was
used to determine statistical significance.

3. Results and discussion

3.1. Characterization and physicochemical properties of the SGNPs and BGNPs

Two different sized gold nanoparticles small (SGNP) and big (BGNP) were synthesized (Fig. 1)
and investigated for radio-sensitization effects in vitro. While particles of both sizes displayed similar
optical absorption spectra (Fig. 1A), they appeared different in color to the visible eye (Fig. 1C, 1D)
and measured a ten-fold difference in diameter (Fig. 1B, 1E-H). At this size range, the NPs can be
internalized by LLC cells via endocytosis into cells (Fig. 11, 1]). The particle clusters remain within
vacuoles within the cell (highlighted by red arrows). Even without a targeting moiety,
macropinocytosis of the SGNP can be clearly seen in the top right of Fig. 11. This is one of four types
of endocytosis pathways and is a non-specific process to internalized fluids and particles together
into the cells[16]. This observed efficiency in penetrating cells is one of the unique properties of
GNPs[17] which we choose to exploit here for radiotherapy.
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Figure 1. (A) Absorbance spectra of the small (SGNP) and big (BGNP) gold nanoparticles with an
absorbance maxima occurring around 534 and 519 nm, respectively. (B) Size distributions of SGNP
(average particle size of 3.86 + 1.27 nm) and BGNP (average particle size 37.39 + 5.52 nm) for over 300
particles. Optical photo of (C) SGNP and (D) BGNP. TEM images of (E) SGNP and (F) BGNP. (G)
AFM image of the SGNP and (H) SEM image of the BGNP. (I) SGNP and (J) BGNP internalized in
LLC cells.

3.2. Effects of gold nanoparticles (SGNP and BGNP) with radiation on DNA damage in LLC cells

The comet assay offers a robust technique to evaluate DNA damage in cells and has been broadly
used to measure both DNA damage and repair in vitro after genotoxic stress.[18] Once an electric
field is applied, denatured and cleaved DNA fragments migrate out of the nucleoid with more
damaged DNA migrating faster yielding a “comet” tail shape. For a neutral comet assay, damage is
assessed through double-stranded breaks in DNA. Figure 2A shows the visualization of a neutral
comet assay by epifluorescence microscopy performed on untreated (UT) LLC cells and cells treated
with SGNPs and BGNPs only, irradiated (XRT-2Gy) cells, and combined treatment of radiation with
SGNPs or BGNPs. It should be noted that the amount of gold incubated with the cells for both the
SGNP and BGNP treatment groups was kept constant (54.5 pg/well in a 6-well plate with a surface
area of 9 cm? per well). Undamaged DNA remains in the head of the “comet”, and the tail represents
the amount of damaged DNA (or charged DNA) that migrates in an electric field. A dose of 2Gy was
chosen as it is not only a typical dose used in the literature[19-21] but also showed significance in
modifying the tail moment when compared to the untreated cells with evidence of a synergistic effect
when GNPs were present.

When plotted as a function of tail moment, no significant difference was observed between the
UT and SGNP groups however a significant (*p<0.033) increase in DNA damage was found in the
BGNP group when compared to UT cells. Researchers have noticed size dependent toxicity of gold
nanoparticles,15 but it is dependent on assay type, cell line, and nanoparticle properties, leading to
conflicting results. As evident, a significant difference in DNA damage was observed (**p<0.002)
between the UT and radiation only (XRT-2Gy) treated group. Further, synergistic increase of DNA
damage (***p<0.001) was observed in combinatorial treatment of radiation with either of SGNPs and
BGNPs (SGNP XRT-2Gy or BGNP XRT-2Gy). When both particles are compared to each other, the
significant difference was seen in both irradiated and non-irradiated groups. It is not surprising that
exposure to radiation resulted in evidence of a higher tail moment compared to the untreated group,
since ionizing radiation is known to produce double-stranded breaks due to the physico-chemical
interaction with cellular DNA.[18] However, overall, the greater tail moment for the cells irradiated
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in the presence of gold nanoparticles indicates that for these two treatment groups, DNA damage
was more significant with respect to radiation alone.
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Figure 2. Neutral comet assay for LLC cells. Cells were untreated (UT), treated with small gold
nanoparticles (SGNP) or big gold nanoparticles (BGNP), 2Gy x-ray irradiation (XRT-2Gy), or a
combination of 2Gy and either small or big gold nanoparticles. (A) Scale bar represents 400 um. (B)
The horizontal line shows the median and the vertical line shows the interquartile range. At least 50

random cells were scored per sample. A one-way ANOVA was performed to determine statistical
significance (*p<0.033, **p<0.002, and ***p<0.001).

3.2. Effects of gold nanoparticles (SGNP and BGNP) with radiation on LLC cell survival

The clonogenic assessment (Fig. 3) showed that the ability of cells to replicate decreased
significantly after treatment with BGNPs and radiation. In contrast, combinatorial treatment of
radiation with both particles further significantly reduced the cell survival. However, we did not
observe any significant difference between SGNPs and BGNPs. While the presence of GNPs did not
visibly alter the proliferation of the cells into colonies, a reduction in the number of cells can be seen
when treated with irradiation alone and combination of GNPs and irradiation (Fig. 3A).

When the data is represented as a function of the normalized percent area (Fig. 3B), statistical
significance can be evaluated for the different groups. The three control groups, UT, SGNP, and
BGNPs, all show a normalized percent area within error of each other. In the presence of irradiation,
however, significance (**p<0.001) is observed between the UT and XRT-2Gy groups as well as
significance (***p<0.001) between the SGNP and XRT-2Gy and BGNP and XRT-2Gy groups is
observed. In combinatorial treatment of radiation with either of SGNPs and BGNPs (SGNP XRT-2Gy
or BGNP XRT-2Gy) a significance of (**p<0.001) is found when compared with the XRT-2Gy
radiation alone again demonstrating a synergistic effect when combined. When combined with
irradiation, the presence of the particles decreased the % area by 36% and 39% for the SGNP and
BGNP, respectively as compared to the radiation alone (XRT-2Gy) group.
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Figure 3. (A) Clonogenic assay performed in vitro with LLC to measure the survival potential after
the various treatment paradigms. (B) Normalized % area for the different treatment groups. Cells
from each sample were plated in triplicate. A one-way ANOVA was performed to determine
statistical significance (*p<0.033, **p<0.002, and ***p<0.001).

4. Conclusions

In summary, GNPs of two different dimensions were fabricated to examine if GNPs could act as

effective radio-sensitizers in vitro in a non-small cell lung cancer model. Comet and clonogenic assays
performed with Lewis Lung carcinoma cells demonstrated that both sizes of the GNPs showed
significant radio-sensitization and reduce cell survival after treatment. Greater significance was
observed in vitro with the BGNP treatment group. Further in vivo evaluation of the effects of GNPs
on radiation enhancement may help with the translation of these particles toward use in a clinical
setting.
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