

1 Comparative Analysis of Volatile Compounds of

2 Gamma-Irradiated Mutants of Rose (*Rosa hybrida*)

3 Jaihyunk Ryu, Dong-Gun Kim, Jung-Min Kim, Jae Il Lyu, Yeong Deuk Jo, Si-Yong Kang, Jin-Baek
4 Kim, Sang Hoon Kim*

5
6 Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do
7 56212, Republic of Korea; jhryu@kaeri.re.kr (J.R); jaeil@kaeri.re.kr (J.I.L); dgkim@kaeri.re.kr (D.-G.K);
8 jmkim0803@kaeri.re.kr (J.-M.K), jaeil@kaeri.re.kr (J.I.L), jyd@kaeri.re.kr (Y.D.J), sykang@kaeri.re.kr (S.-Y.K),
9 jbkim74@kaeri.re.kr (J.-B.K), shkim80@kaeri.re.kr (S.H.K)

10
11 *Correspondence: shkim80@kaeri.re.kr (S.H.K); Tel.: +82-63-570-3318

12 Received: date; Accepted: date; Published: date

13 **Abstract:** Roses are one of the most important floricultural crops, and their essential oils have long
14 been used for cosmetics and aromatherapy. We investigated the volatile compound compositions of
15 12 flower-color mutant variants and their original cultivars. Twelve rose mutant genotypes were
16 developed by treatment with 70 Gy of ^{60}Co gamma irradiation of six commercial rose cultivars.
17 Essential oils from the flowers of the 18 genotypes were analyzed by gas chromatography–mass
18 spectrometry. Seventy-seven volatile compounds were detected, which were categorized into five
19 classes: hydrocarbons, terpenoids, alcohols, esters, and others. Hydrocarbons, alcohols, and esters
20 were major components in all rose flowers. The mutant genotypes CR-S8 and CR-S9 showed higher
21 contents of hydrocarbons than the original cultivar. In addition, CR-S1, CR-S3, and CR-S4 mutant
22 genotypes showed higher ester contents than their original cultivar. Nonacosane, 2-methylhexacosane,
23 and 2-methyltricosane were major volatile compounds among all genotypes. Hierarchical cluster
24 analysis of the rose genotypes gave four groups according to grouping among the 77 volatile
25 compounds. These findings will be useful for the selection of rose genotypes with improved volatile
26 compounds.

27
28 Keywords: Gamma-ray, Mutant, Rose, Volatile compounds, GC-MS

29 1. Introduction

30 The rose belongs to the Rosaceae family, including about 200 species distributed throughout the
31 world [1,2]. Roses are an important floricultural crop and are the most popular cut flowers because of

their various floral colors and shapes [3]. Flower color is the major horticultural characteristic of rose cultivars [3,4]. A broad range of floral colors are now available in the rose after many years of cultivar development, and many studies have investigated the contributions of rose pigments [5,6,7]. Rose flower colors are caused by the presence of pigments such as anthocyanins (cyanidin, peonidin and pelargonidin), flavonols (quercetin and kaempferol), and carotenoids (xanthophylls) [1,4,5,6,7].

Rose cultivars have developed characteristics such as long vase life, novel flower shape and color, disease tolerance, and fragrance [2,3]. Recently, many countries have made efforts to develop their own rose cultivar to produce high-quality fragrances [1,2,8]. Although wide variability in the flower has been generated through hybridization, the floriculture industry relies on a limited number of mutated traits in accordance with specific consumer expectations [3,8,9,10]. Mutation breeding involves the use of various mutagens to develop plants that exhibit a few mutated characteristics without disturbing the other characteristics of original cultivar [10,11]. Novel rose genotypes generated by radiation mutagenesis and showing improved flower traits have been developed using mutation breeding techniques [10,11,12]. In our previous work, which explored diverse variations in color and number of petals, mutations were generated by gamma-rays in three spray-type ('Lovelydia', 'Yellowbabe', and 'Haetsal') and two standard-type ('Vital' and 'Aqua') rose cultivars [12].

Rose products are in high demand throughout the world. In particular, rose essential oils have wide applications in food, cosmetics, and pharmaceuticals [1,2,13]. Although there are about 18,000 rose cultivars, only a few of them are used for fragrance applications [14,15,16]. Volatile compounds are important contributors to fragrance in roses and other flowers [16]. The chemical characterization of volatile compounds in flowers is of paramount importance for the identification of novel materials that have potential for industrial use [17]. In addition, the volatile compounds of rose are important substances in therapeutic applications because of a range of bioactivities. Rose flowers emit a strong fragrance and various volatile compounds such as hydrocarbons, alcohols, and esters have been identified in rose flower extracts [2,13,15,16,18]. These volatile compounds were found to have diverse biological activities such as antioxidant, antibacterial, antitumor, antiulcer, anti-inflammatory, and anti-parkinsonism activities; they can also decrease blood cholesterol and can be used as emollients and surfactants [16,19,20,21].

The objective of the present study was to investigate and compare the volatile compounds of rose mutant genotypes and those of original cultivars to help determine which cultivars would be suitable for the fragrance industry.

63 .

64 **2. Results**

65 *2.1. Flower morphological characteristics*

66 The evaluation of flower morphological characteristics is presented in Table 1 and Figure 1. Mutant
 67 cultivar CR-S7, which produces white pink petals, was developed from the 'Aqua' cultivar (red-purple
 68 petal). Mutant 'CR-S2' was derived from the black red 'Blackbeauty' cultivar, and showed black pink
 69 petals with white mosaic. Mutant CR-S5 had ivory petals, while its original cultivar had pale pink petals.
 70 The mutants CR-S1, CR-S3, and CR-S4, which showed orange red or red petals, were derived from the
 71 'Vital' cultivar (cherry red). The CR-S6 mutant with orange petals was developed from the 'Yellowbabe'
 72 cultivar. Five mutant genotypes were derived from the 'Lovelydia' cultivar: two showed changes in
 73 petal numbers and three showed changes in petal colors.

74

75 **Figure 1.** Profile of rose mutant genotypes used in this study. 1: Aqua, 2: CR-S7 (Aqua mutant), 3:
 76 Blackbeauty, 4: CR-S2 (Blackbeauty mutant), 5: Haetsal, 6: CR-S5 (Haetsal mutant), 7: Vital, 8: CR-S1
 77 (Vital mutant), 9: CR-S3 (Vital mutant), 10: CR-S4 (Vital mutant), 11: Yellowbabe, 12: CR-S6 (Yellowbabe
 78 mutant), 13: Lovelydia, 14: CR-S8 (Lovelydia mutant), 15: CR-S9 (Lovelydia mutant), 16: CR-S10
 79 (Lovelydia mutant), 17: CR-S11 (Lovelydia mutant), 18: CR-S12 (Lovelydia mutant).

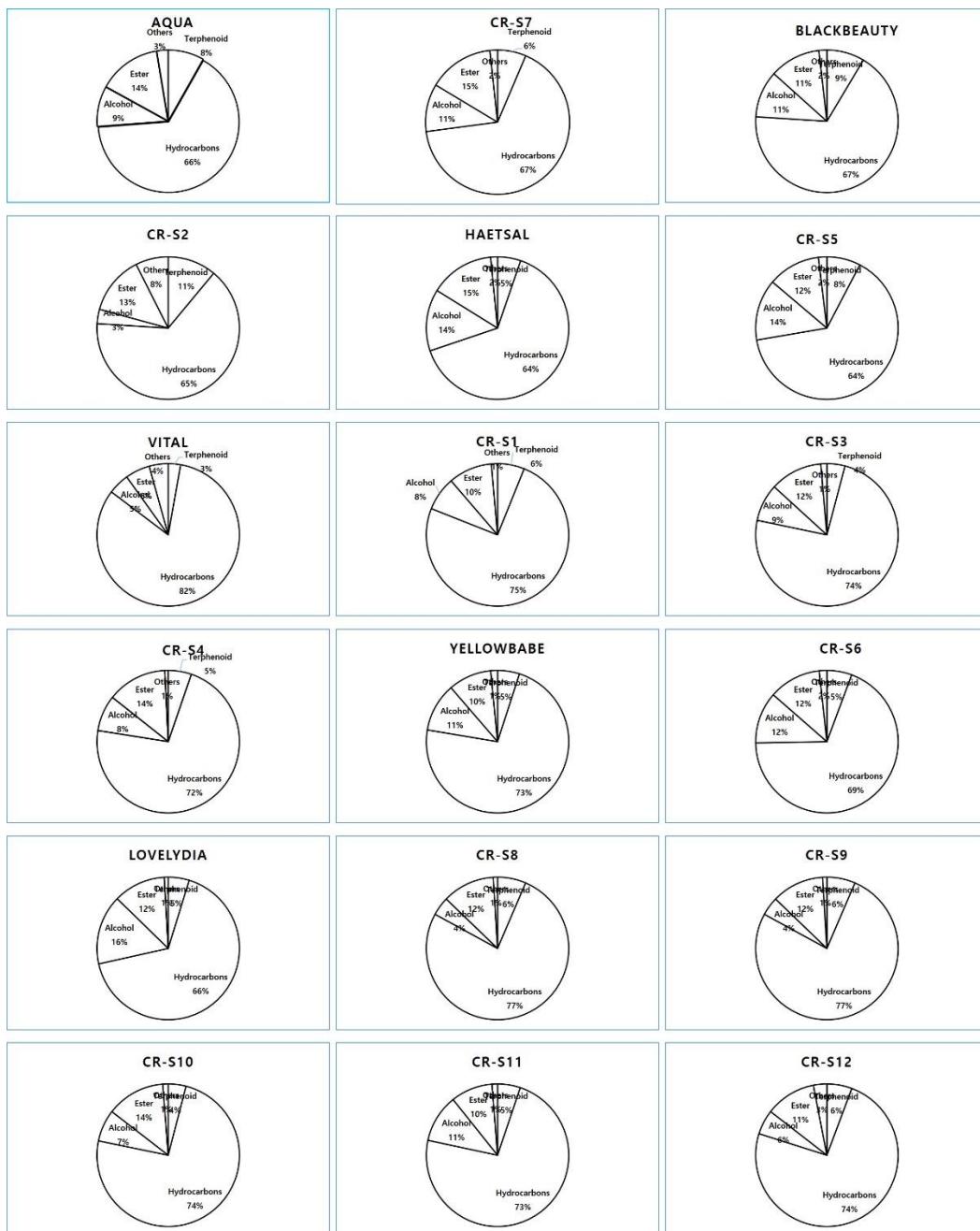
80

81 **Table 1.** Origin and morphological characteristics of Rose genotypes used in this study.

No.	Names	Flower color	Petal numbers	Original cultivars
1	Aqua	Red-purple (N62A*)	Normal**	
2	CR-S7	White pink (N62D)	Low	Aqua
3	Blackbeauty	Black red (N46B)	Normal	
4	CR-S2	Black pink (N46B) with white mosaic	Normal	Blackbeauty
5	Haetsal	Pale pink (N49C)	Normal	
6	CR-S5	Ivory (N11D)	Normal	Haetsal
7	Vital	Cherry red (N41B)	Normal	

8	CR-S1	Orang red (N30C)	Normal	Vital
9	CR-S3	Orang red (N32B)	Normal	Vital
10	CR-S4	Red (N41A)	Normal	Vital
11	Yellowbabe	Yellow (N9A)	Normal	
12	CR-S6	Orange (N25B)	Normal	Yellowbabe
13	Lovelydia	Red purple (N74B)	Normal	
14	CR-S8	Red purple (N74D)	Normal	Lovelydia
15	CR-S9	Red purple (N74B)	High	Lovelydia
16	CR-S10	Light beige (N36C)	Normal	Lovelydia
17	CR-S11	Orange purple (N68C)	Normal	Lovelydia
18	CR-S12	Red purple with white mosaic (N74C)	High	Lovelydia

*The royal horticultural society's colour chart numbers, **Low: Under twenty, Normal: 21~40, High: over forty


84

85 2.2 Analysis of volatile compounds

86 The volatile compound constituents of the 12 rose mutants and the original cultivars were
 87 determined by gas chromatography–mass spectrometry (GC–MS). The distribution of identified
 88 volatile compounds observed from the RTX-5MS column is shown in Table S1. Seventy-seven volatile
 89 compounds were detected in the rose mutants and the original cultivars. For individual cultivars, the
 90 number of volatile compounds ranged from 40 (CR-S10) to 50 (CR-S2 and CR-S12) with an average of
 91 47.6.

92 Figure 2 shows that the volatile compounds belonged to five classes: hydrocarbons, terpenoids,
 93 alcohols, esters, and others. Hydrocarbons were the dominant volatile compound category present in
 94 all rose flowers. The content of hydrocarbons in the volatiles for all rose genotypes ranged from 64.54%
 95 to 82.50% with an average value of 71.22%; the highest hydrocarbon was found in the 'Vital' cultivar.
 96 The contents of hydrocarbons in the volatiles of the CR-S8 and CR-S9 mutants were significantly higher
 97 than in the original 'Lovely Lydia' cultivar. In contrast, the hydrocarbon contents in the volatiles of CR-
 98 S1, CR-S3, and CR-S4 mutants were lower than those of the original 'Vital' cultivar. The ester contents
 99 of the all the genotypes ranged from 5.60% to 15.78% with the highest composition observed in the CR-
 100 S7 mutant. The highest alcohol content (15.78%) was observed in the 'Lovely Lydia' cultivar and the
 101 lowest alcohol content (3.26%) occurred in the CR-S2 mutant. The CR-S2 mutant had the highest
 102 terpenoid content (11.04%) while the 'Vital' cultivar had the lowest (2.80). The CR-S7 mutant showed
 103 similar constituent contents of volatile compounds when compared with the original 'Aqua' cultivar.
 104 Similar comparisons were observed for mutant CR-S5 and its original 'Haetsal' cultivar and for CR-S6
 105 and its original 'Yellowbabe' cultivar. Mutant CR-S2 showed higher terpenoid content than the original

106 'Blackbeauty' cultivar. Mutants CR-S1, CR-S3, and CR-S4 showed higher alcohol and ester contents
 107 than the original 'Vital' cultivar. Mutants CR-S8, CR-S9, CR-S10, CR-S11, and CR-S12 had higher
 108 hydrocarbon contents and lower alcohol contents in the volatiles than the original 'Lovely Lydia'
 109 cultivar.

110

111 **Figure 1.** Relative composition of volatile compounds released from the flower of rose mutant and those of
 112 original cultivars.
 113

114 Table 2 presents the ten most abundant volatile compounds detected in the GC–MS analysis of the
 115 12 rose mutants and the original cultivars. The results revealed significant differences in the rose

116 genotypes. Nonacosane was a dominant compound in most cultivars; its highest content (18.7%) was
 117 observed in the CR-S12 mutant and the lowest (4.4%) in the 'Haetsal' cultivar. The content of 2-
 118 methylhexacosane for all rose genotypes ranged from 14.0% for 'Aqua' to 22.8% for CR-S9, with average
 119 content of 18.2%. The 2-methyltricosane contents for all rose genotypes ranged from 8.0% for CR-S6
 120 and CR-S8 to 20.3% for the 'Vital' cultivar, with an average value of 11.4%. The tricosane contents for
 121 all genotypes ranged from 4.4% to 19.6% with the highest rate observed in the 'Vital' cultivar.
 122 Hentriacontane was found top ten volatile compounds in all cultivars except for the 'Vital' cultivar,
 123 with contents ranging from 2.8% for 'Yellowbabe' to 8.7% for CR-S8. Tetracosyl pentafluoropropionate
 124 was not observed top ten volatile compounds in mutant CR-S2 and the 'Vital' cultivar, but was found
 125 in the remaining 16 genotypes at levels between 1.8% and 6.8%. Heneicosane was observed top ten
 126 volatile compounds in 14 genotypes at levels between 2.0% and 7.6%, but was not observed in 'Aqua',
 127 CR-S7, CR-S8, and CR-S12. Octacosanol was observed top ten volatile compounds in 16 rose genotypes
 128 at levels ranging from 1.8% for CR-S12 to 6.8% for the 'Blackbeauty' cultivar, with an average content
 129 of 3.7%. Analyses for 'Vital' and CR-S2 did not show octacosanol in the top ten volatile compounds. 2-
 130 Octyl-1-decanol was listed top ten volatile compounds in 6 genotypes. Octacosane was recorded top
 131 ten volatile compounds in 9 genotypes. Hexacosane was observed top ten volatile compounds in the
 132 'Vital' cultivar and the CR-S3 mutant. (Z)-14-Tricosenyl formate was detected in the top tent volatiles
 133 of the 'Aqua' cultivar and in the CR-S2 and CR-S12 mutants at levels of 2.7%, 4.0%, and 2.2%,
 134 respectively. The highest 1-triacontanol contents was 5.8% in CR-S2 mutant, while for the remaining
 135 cultivars, was only listed top ten volatiles for 'Aqua' and 'Blackbeauty' cultivars. Other top 10
 136 compounds included (Z)-9-tricosene, decane, *n*-Tetracosanol, hexadecanal, tetracosane, tritriacontane,
 137 tetracosanal, octacosyl pentafluoropropionate, trifluoro-acetic acid, undecyl ester, heptacosyl
 138 heptafluorobutyrate, and dodecane.

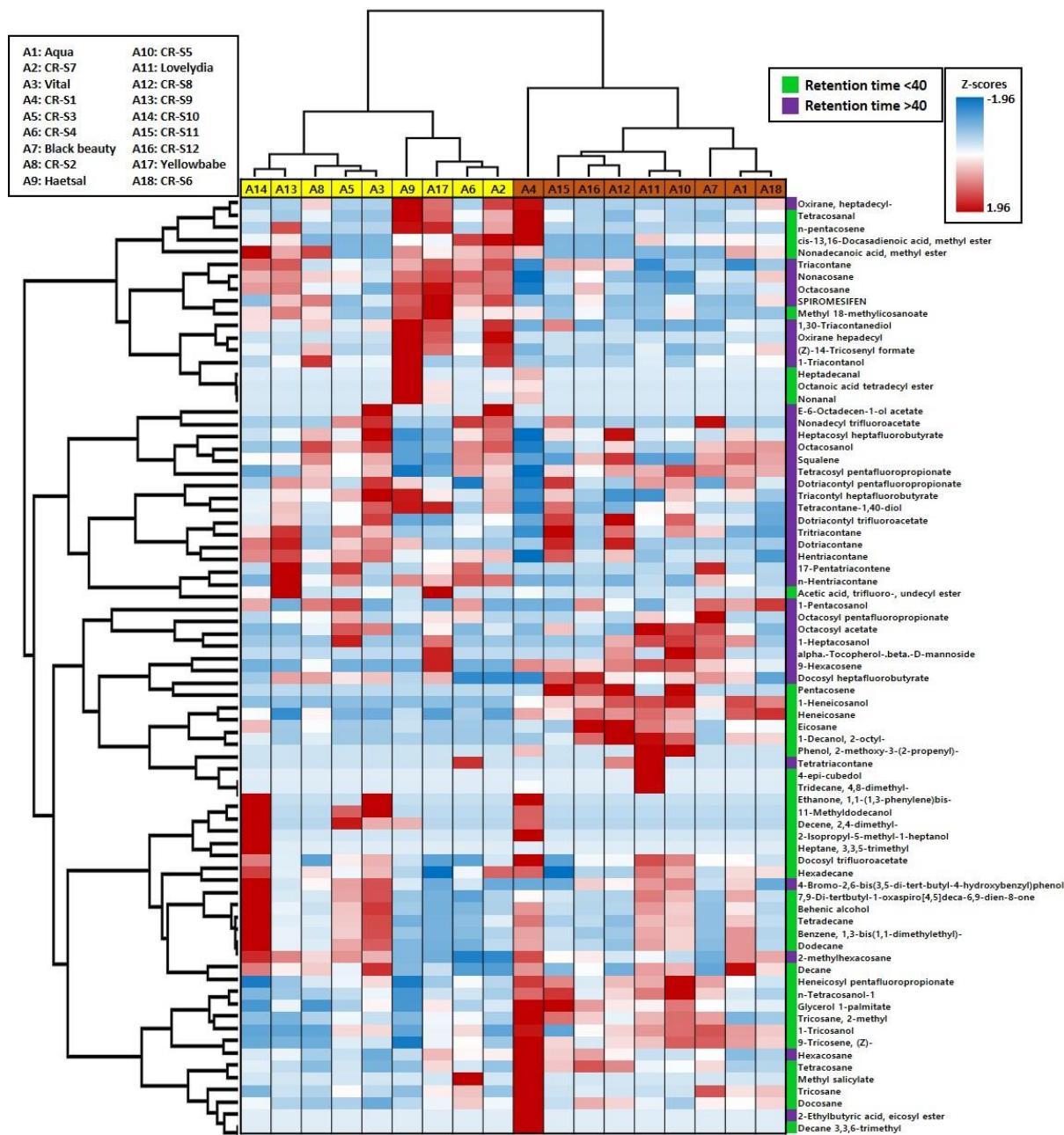
139

140 Table 2. Top 10 volatile compounds identified from the rose mutant and those of original cultivars.

141

No	Aqua	%	CR-S7 (Aqua mutant)	Blackbeauty	CR-S2 (Blackbeauty mutant)			
1	2-methylhexacosane	14.0	2-methylhexacosane	19.6	2-methylhexacosane	18.7	2-methylhexacosane	17.6
2	Nonacosane	13.5	Nonacosane	10.4	Nonacosane	14.6	Nonacosane	16.9
3	2-methyltricosane	10.2	2-methyltricosane	9.9	2-methyltricosane	9.3	2-methyltricosane	8.2
4	Hentriacontane	7.7	Hentriacontane	8.0	Octacosanol	6.8	1-Triacontanol	5.8
5	Octacosanol	6.5	Octacosanol	6.4	Hentriacontane	5.9	Hentriacontane	5.3
6	Tricosane	6.1	Tricosane	6.1	Tricosane	5.8	Tricosane	4.8
7	Tetracosyl pentafluoropropionate	4.7	Tetracosyl pentafluoropropionate	5.0	Tetracosyl pentafluoropropionate	4.9	Octanoic acid tetradecyl ester	4.6
8	1-Triacontanol	3.6	Heptacosyl heptafluorobutyrate	2.0	Heneicosane	4.4	(Z)-14-Tricosenyl formate	4.0

9	Octacosane	3.1	Tritriacontane	1.9	1-Triacontanol	3.6	Octacosane	3.4
10	(Z)-14-Tricosenyl formate	2.7	Dedecane	1.9	Octacosane	1.8	Heneicosane	3.3
No .	Haetsal		CR-S5 mutant)	(Haetsal	Vital	S1 (Vital mutant)		
1	2-methylhexacosane	16.4	2-methylhexacosane	17.5	2-methylhexacosane	22.0	2-methylhexacosane	20.3
2	2-methyltricosane	14.8	2-methyltricosane	13.0	2-methyltricosane	20.3	Nonacosane	13.7
3	Tetracosyl pentafluoropropionate	6.8	2-Octyl-1-decanol	6.7	Tricosane	19.6	2-methyltricosane	10.9
4	Tricosane	6.6	Heneicosane	6.6	Heneicosane	5.6	Tricosane	8.0
5	Heneicosane	5.7	Tricosane	6.4	Hexacosane	3.4	Hentriacontane	7.0
6	2-Octyl-1-decanol	5.0	Nonacosane	5.6	(Z)-9-Tricosene,	3.1	Tetracosyl pentafluoropropionate	4.8
7	Hentriacontane	4.9	Tetracosyl pentafluoropropionate	4.9	Tetracosanal	2.8	Octacosanol	4.1
8	Nonacosane	4.4	Hentriacontane	3.8	n-Tetracosanol-1	2.6	Tritriacontane	2.3
9	n-Tetracosanol-1	3.9	n-Tetracosanol-1	2.5	Tetracosane	2.4	Heneicosane	2.0
10	Octacosanol	2.3	Octacosanol	2.4	Tetradecane	1.5	Octacosane	1.7
No .	S3 (Vital mutant)		S4 (Vital mutant)		Yellowbabe	S6 (Yellowbabe mutant)		
1	Nonacosane	16.5	2-methylhexacosane	14.5	2-methylhexacosane	19.8	2-methylhexacosane	20.3
2	2-methylhexacosane	14.6	2-methyltricosane	13.5	Nonacosane	14.8	Nonacosane	9.9
3	2-methyltricosane	12.0	Tricosane	12.6	Tricosane	9.6	Tricosane	8.7
4	Tricosane	9.6	Nonacosane	11.0	2-methyltricosane	9.0	2-methyltricosane	8.0
5	Hentriacontane	6.3	Tetracosyl pentafluoropropionate	5.9	Heneicosane	7.6	Heneicosane	6.9
6	Octacosanol	5.7	Hentriacontane	4.8	Octacosanol	5.4	Octacosanol	5.1
7	Tetracosyl pentafluoropropionate	5.5	Octacosanol	4.1	Tetracosyl pentafluoropropionate	5.3	Tetracosyl pentafluoropropionate	4.8
8	Octacosane	2.9	Heneicosane	3.7	Hentriacontane	2.8	Hentriacontane	4.7
9	Heneicosane	2.8	(Z)-9-Tricosene,	2.3	2-Octyl-1-decanol	2.7	2-Octyl-1-decanol	3.0
10	Hexacosane	1.5	Tetracosyl pentafluoropropionate	2.2	(Z)-9-Tricosene,	1.7	(Z)-9-Tricosene	2.1
No .	Lovelydia		CR-S8 (Lovelydia mutant)		CR-S9 (Lovelydia mutant)	CR-S10 (Lovelydia mutant)		
1	2-methylhexacosane	16.8	2-methylhexacosane	20.7	2-methylhexacosane	22.8	2-methylhexacosane	17.9
2	2-methyltricosane	10.7	Nonacosane	17.5	Nonacosane	15.9	2-methyltricosane	14.7
3	1-Decanol, 2-octyl-	7.9	Hentriacontane	8.7	2-methyltricosane	8.4	Nonacosane	9.2
4	Nonacosane	7.8	2-methyltricosane	8.0	Hentriacontane	7.6	Hentriacontane	8.4
5	Tricosane	6.7	Tricosane	6.5	Tricosane	4.4	Tricosane	6.6
6	Hentriacontane	6.6	Octacosane	3.0	Heneicosane	4.1	Tetracosyl pentafluoropropionate	4.7
7	Heneicosane	6.0	Tritriacontane	2.9	Octacosane	2.7	Heneicosane	4.6
8	Tetracosyl pentafluoropropionate	4.9	Tetracosyl pentafluoropropionate	2.3	Octacosanol	2.1	Tritriacontane	3.3
9	Octacosanol	4.2	Acetic acid, trifluorouroundecyl ester	2.2	Dodecane	2.0	n-Tetracosanol-1	3.0
10	Tritriacontane	2.4	Octacosanol	2.0	Tetracosyl pentafluoropropionate	1.8	Octacosanol	2.0
No .	CR-S11 (Lovelydia mutant)		CR-S12 (Lovelydia mutant)					


1	2-methylhexacosane	18.3	Nonacosane	18.7	
2	2-methyltricosane	12.4	2-methylhexacosane	16.5	
3	Nonacosane	12.4	2-methyltricosane	10.9	
4	Tricosane	7.0	Tricosane	8.4	
5	Heneicosane	6.7	Hentriacontane	5.7	
6	Hentriacontane	5.0	Octacosane	3.9	
7	2-Octyl-1-decanol	4.9	(Z)-14-Tricosenyl formate	2.2	
8	Tetracosyl pentafluoropropionate	3.6	Tetracosyl pentafluoropropionate	2.0	
9	Octacosanol	3.0	Tetracosanal	2.0	
10	Octacosane	2.4	Octacosanol	1.8	

142

143 *2.3. Chemical hierarchical cluster analysis*

144 The results of the hierarchical cluster analysis are presented in Fig. 3. The 18 rose genotypes
 145 clustered into four groups, which formed two independent supergroups (Groups I and II, and Groups
 146 III, IV, 'CR-S1'). Group I contained 4 mutants ('CR-S2', 'CR-S3', 'CR-S9' and 'CR-S10') and 'Vital'
 147 cultivar. Group II contained two mutants ('CR-S4' and 'CR-S7') and two ('Haetsal' and 'Yellowbabe')
 148 original cultivars. Group III contained 4 mutants ('CR-S5', 'CR-S8', 'CR-S11' and CR-S12) and
 149 'Lovelydia' cultivar. Group IV contained CR-S6 mutant and two ('Blackbeauty' and 'Aqua') original
 150 cultivars. The 'CR-S1' mutant was found to belong to an independent group.

151 The chemical hierarchical cluster analysis divided the nine chemical compounds into four clusters.
 152 Cluster I contained 17 compounds, of which 5 compounds (tetracosanal, nonacosane, octacosane, (Z)-
 153 14-tricosenyl formate and 1-triacontanol) are listed in top ten major compounds. Cluster II contained
 154 16 compounds, of which 5 compounds (octacosanol, tetracosyl pentafluoropropionate, tritriacontane,
 155 heneicosane and acetic acid, trifluoroundecyl ester) are listed in top ten major compounds. Cluster III
 156 contained 16 compounds, of which 3 compounds (octacosyl pentafluoropropionate, heneicosane and
 157 2-octyl-1-decanol) are listed in top ten major compounds. Cluster IV contained 28 compounds, of which
 158 8 compounds (dodecane, 2-methylhexacosane, decane, n-tetracosanol-1, 2-methyltricosane, (Z)-9-
 159 tricosene, hexacosane, tricosane) are listed in top ten major compounds.

160

161 **Figure 2.** Hierarchical cluster analysis of 12 rose mutant and those of 6 original cultivars.

162

163 **3. Discussion**

164 Rose is a very popular ornamental crop, and there is always demand for new characteristics in
 165 horticulture and the cosmetic industry. These industries prosper on the back of new traits such as
 166 flower color and fragrance [1,8,22]. In this study, the 12 rose mutants, which were derived through
 167 gamma irradiation (70 Gy), had changed petal colors and numbers. Previous work has shown 70-Gy
 168 gamma irradiation of root cuttings to be an effective means of inducing mutations in rose plants [12,23].

169 Research on the pigmented components of rose has already been conducted in many studies. The
170 dominant pigment in rose petals are carotenoids and anthocyanins, which provide yellow and pink
171 color, respectively. Typically, orange petals result as a mixture of anthocyanins and carotenoids [4,5,6,7].

172 The composition of volatile compound in rose essential oils is an important determinant of oil
173 quality [18,24]. When rose breeding is undertaken for the production of oil materials, an efficient
174 procedure must be established for regular estimation of oil composition [1,8]. Typically, the
175 development of new cultivars in ornamental crops is conducted through hybridization. However,
176 hybridization can result in drastic changes in volatile compound composition [8,25]. In this study,
177 hybridization was not used to develop aroma and oil compositions in rose cultivars. Rather, mutation
178 breeding was performed on elite cultivars so that relatively few morphological traits were altered and
179 oil composition could be tuned [10]. Mutagenesis using radiation has been found to be effective for
180 introducing variability of oil composition in various crops [10,26,27].

181 To date, about 400 different volatile compounds have been reported in rose plants and these
182 compounds have been categorized into to chemical groups, such as hydrocarbons, alcohols, esters, and
183 others [15,28]. This study revealed hydrocarbons, esters, and alcohols were major volatiles in all rose
184 genotypes. Hydrocarbons are used for industrial applications such as fragrances, paraffin, and wax
185 [15,28]. The main rose oil paraffin contents range from 13% to 23% according to the ISO9842 rose oil
186 standard [29]. Compared with previous reports, there were some differences in the chemical
187 composition rates of rose oil. Oktavianawati et al. reported that they detected only hydrocarbons (100%)
188 in three rose cultivars [13]. However, Babu et al. reported that long-chain hydrocarbons including
189 nonadecane, heptadecane, 9-eicosene, and docosane accounted for about 21.23% of the volatiles, while
190 alcohols made up as much as 68.13% of the total oil in the Himalayas rose [30]. Kazaz et al. reported
191 that the main compound groups of rose oil are monoterpene alcohols and hydrocarbons [14]. The
192 hydrocarbon contents in the CR-S8 and CR-S9 mutants were about 10% higher than that in the original
193 cultivar. In contrast, the hydrocarbon contents in the CR-S1, CR-S3, and CR-S4 mutants were lower
194 than that of the original cultivar. Esters and alcohols are important compounds in food, cosmetics, and
195 medicinal products; examples include fragrances in shampoo, perfumes, soaps and creams,
196 aromatherapy oil, and food supplements [16,31]. In addition, ester and alcohol compounds can also
197 have bioactive properties, and can be used as emollients, surfactants, and antioxidants [14,16,17,19].
198 The ester contents of CR-S1, CR-S3, and CR-S4 mutants were higher than that of the original cultivar.
199 Variation in alcohol contents was not found in the mutant genotypes. The compositions of
200 hydrocarbons, esters, and alcohols in rose essential oil are the major compounds used to evaluate the
201 quality of the oil [31]. It is normal that the compositions of volatile compounds are influenced by factors
202 such as genotype, climate, and harvest times [1,2,26,30,31]. However, all of the rose genotypes were

203 grown under the same conditions, and any differences in volatile compounds were likely caused by
204 genotype. This ability to control volatile compound content through genotype may have applications
205 in rose breeding programs for oil materials [1,2,14]. Therefore, color changes of rose mutant genotypes
206 may also be mediated by the accumulation of flower volatile compounds. This finding is similar to that
207 of a previous study, which changed the volatile compound compositions in *Chrysanthemum* mutant
208 cultivars generated by gamma irradiation [26].

209 The results of this study revealed that the flower extracts contained 77 compounds, of which
210 nonacosane, 2-methylhexacosane, tricosane, hentriacontane, tetracosyl pentafluoropropionate,
211 heneicosane, and octacosanol were the major volatile compounds among the rose genotypes. The major
212 volatile compounds (nonacosane, heneicosane, and tricosane) were similar to those previously reported
213 in eight rose accessions [Rusanov]. Moreover, many studies have reported that rose oil contains long-
214 chain hydrocarbons, including nonadecane, heptadecane, 9-eicosene, and docosane. Nonacosane and
215 tricosane are known to exhibit antibacterial activity [32]. 2-Methylhexacosane is reported to have
216 antimicrobial activity and the ability to decrease blood cholesterol [33]. Hentriacontane exhibits
217 antitumor activity and has anti-inflammatory effects through the ability to suppress NF- κ B and
218 caspase-1 activation [34]. Octacosanol is found in many plant oils and is reported to have medicinal
219 properties. Octacosanol has important biological activities, including antioxidant, antiulcer, and anti-
220 inflammatory activities, and is a known anti-parkinsonism agent [35]. In the CR-S3 mutant, the content
221 of octacosanol was slightly higher than that of the original cultivar. This study showed that the flowers
222 of the novel rose genotypes can be a rich source of various bioactive phytochemicals.

223 Hierarchical cluster analysis categorized the 12 rose mutant genotypes and six original cultivars
224 according to their volatile compound similarities. The chemical hierarchical cluster analysis produced
225 information that can be applied to select for chemotype in breeding programs and other useful
226 information [26,36]. In this study, we found high levels of chemical diversity among the rose genotypes.
227 Rose accessions could be divided into four major groups, where Group I mainly contained high levels
228 of dodecane and lacked 2-methyltricosane, and Group II included four genotypes with high levels of
229 nonacosane, octacosane, and tricontane and lacked 2-methyltricosane. The highest heneicosane
230 contents were found in Group III. Group V, mainly contained high 1-pentacosanol, 1-tricosanol, and
231 (Z)-9-tricosane and lacked heneicosane. These trends suggest that the hydrocarbon and alcohol
232 contents of rose flowers could be used as a marker to assess chemotypes. These results could be applied
233 to breeding programs to develop rose cultivars with improved volatile compounds.

234

235 **4. Materials and Methods**

236 4.1. *Plant material*

237 The mutant genotypes of rose were generated by the treatment of root cuttings of each original
238 cultivar with 70 Gy of gamma irradiation (^{60}Co): CR-S7 mutant was derived from 'Aqua'; CR-S2 mutant
239 was derived from 'Blackbeauty'; CR-S5 was derived from 'Haetsal'; CR-S1, CR-S3, and CR-S4 mutants
240 were derived from 'Vital'; CR-S6 mutant was derived from 'Yellowbabe'; and CR-S8, CR-S9, CR-S10,
241 CR-S11, and CR-S12 mutants were derived from 'Lovely Lydia'. These mutants were selected from
242 flower-color variants and exhibited stable inheritance of the phenotype for V₄ generations. The
243 radiation mutant genotypes were grown by the Radiation Breeding Research Team at the Advanced
244 Radiation Technology Institute, Korea Atomic Energy Research Institute. The flowers were randomly
245 collected when fully open from the same plantation. Fresh flowers of 18 rose genotypes were subjected
246 to hydro-distillation for 4 hours with hexane as the collecting solvent. The extracts were dried over
247 anhydrous sodium sulfate to eliminate moisture and filtered through a polyvinylidene fluoride syringe
248 filter (0.45 μm) for GC-MS analysis. Three replicates were used for each sample.

249

250 4.2. *GC-MS analysis of volatile compounds*

251 The volatile compound compositions were analyzed using a GC-MS equipped with an Rtx-5MS
252 column. The carrier gas was 99.99% high-purity helium with a column flow rate of 1.37 mL/min. Sample
253 injection was performed in splitless mode. The oven temperature was initially set at 40 °C, and was
254 gradually increased to 300 °C at 5 °C/min with a final hold for 5 min. The mass spectrometry parameters
255 included: electron-impact ionization, 70 eV; ion source temperature, 230 °C; scan range, 40–500. The
256 identification of each compound was performed using mass spectral libraries and Kovats retention
257 indexes (RI). The GC-MS analysis detected volatile compounds in the rose mutants and those of the
258 original cultivars, and compounds were tentatively identified based on a NIST library similarity index
259 greater than 90%. The retention indices of all GC peaks were calculated with retention times of C7–C40
260 saturated alkane standards under the same chromatographic conditions. The RI of each compound on
261 each column was calculated using the formula; y and z are carbon numbers of alkane standards, $T_{(x)}$ is
262 the retention time of the compound, n and $n+1$ represent the retention times of the alkane standards.

$$263 RI = 100y + 100(z - y) \times \left(\frac{T_{(x)} - T_{(n)}}{T_{n+1} - T_n} \right)$$

264

265 4.3. *Statistical analysis*

266 The chemical analysis data were subjected to analysis of variance using a multiple comparisons
267 method with the SPSS version 12 statistical software package. Differences were considered significant
268 at the 5% level. When the treatment effect was significant, means were separated using Duncan's
269 Multiple Range Test.

270 The clustering analysis of samples from the flowers of the 18 rose genotypes was performed using
271 the complete linkage method in the SPSS software. The volatile compounds were visualized as z-values
272 in the heatmap.

273 5. Conclusions

274 GC-MS analysis of 12 mutated rose genotypes obtained through gamma-irradiation and their six
275 original cultivars identified 77 volatile compounds that were grouped into five functional compound
276 categories: hydrocarbons, terpenoids, alcohols, esters, and others. Three mutant genotypes derived
277 from the 'Vital' cultivar showed increased ester content and decreased hydrocarbon content. Chemical
278 hierarchical cluster analysis revealed that the hydrocarbon and alcohol content of rose flowers could
279 be used as key markers to assess chemotypes. Thus, we construe that these volatile compounds are
280 useful for classification and identification of rose mutant genotypes. Also, our research suggests that
281 the generation of novel rose genotypes by radiation breeding to give enhanced content of various
282 bioactive phytochemicals may be an effective route to resources for use in the food and cosmetics
283 industries, horticulture, and aromatherapy.

284

285 **Supplementary Materials:** The following are available online at www.mdpi.com/xxx/s1, Table S1: Volatile
286 constituents in flower of rose genotypes by GC-MS. Figure S1: GC-MS chromatograms of the alkane standards. 1:
287 Decane, 2: Dodecane, 3: Tetradecane, 4: Hexadecane, 5: Octadecane, 6: Eicosane, 7: Docosane, 8: Tetracosane, 9:
288 Hexacosane, 10: Octacosane, 11: Triacontane, 12: Dotriacontane, 13: Tetratriacontane, 14: Hexatriacontane. Figure
289 S2: GC-MS chromatograms of the top 10 constituents identified in volatile compounds of the rose genotypes. Peak
290 numbers listed in table S1.

291

292 **Author Contributions:** Conceptualization, S.H.K. and S.-Y.K.; methodology, J.R., D.-G.K. and J.-M.K.;
293 validation, J.R. and D.-G.K. and J.-M.K.; formal analysis, J.R. and Y.D.J.; investigation, J.R., J.I.L. and J.-B.K.;
294 resources, S.H.K.; data curation, J.R. and J.I.L.; writing—original draft preparation, J.R.; writing—review and
295 editing, J.B.K., S.-Y.K and S.H.K.; visualization, J.R. and J.I.L; project administration, J.-B.K.; funding acquisition,
296 J.-B.K. All authors have read and agreed to the published version of the manuscript.

297 **Funding:** This work was supported by the research program of KAERI, Republic of Korea and the Radiation
298 Technology R&D Program through the National Research Foundation of Korea funded by the Ministry of Science
299 and ICT.

300

301 Conflicts of interest: The authors declare no conflict of interest.

302 References

303 1. Datta, S.K. Breeding of new ornamental varieties: Rose. *Current Sci.* **2018**, *114*, 1194–1206.

304 2. Gudin, S. Rose: genetics and breeding. *Plant Breed. Rev.*, **2000**, *17*, 159–189.

305 3. Bendahmane, M.; Dubios, A.; Raymond, O.; Bris, M.L. Genetics and genomics of flower initiation and

306 development in roses. *J. Exp. Bot.*, **2013**, *64*(4), 847–857.

307 4. Luo, H.; Deng, S.; Fu, W.; Zhang, X.; Zhang, X.; Zhang, Z. et al. Characterization of active anthocyanin

308 degradation in the petals of *rosa chinensis* and *brunfelsia calycina* reveals the effect of gallated catechins on

309 pigment maintenance. *Int. J. Mol. Sci.*, **2017**, *18*:699.

310 5. Ogata, J.; Kanno, Y.; Itoh, Y.; Tsugawa, H.; Suzuki, M. Plant biochemistry: anthocyanin biosynthesis in roses.

311 *Nature*, **2005**, *435*, 757–758.

312 6. Eugster, C.H.; Märki-Fischer, E. The chemistry of rose pigments. *Angew. Chem. Int. Ed. Engl.*, **1991**, *30*, 654–

313 672.

314 7. Schmitzer, V.; Veberic, R.; Osterc, G.; Stampar, F. Color and phenolic content changes during flower

315 development in groundcover rose. *J. Am. Soc. Hortic. Sci.*, **2010**, *135*, 195–202.

316 8. Rusanov, K.; Kovacheva N.; Atanassov, I. Comparative GC/MS analysis of rose flower and distilled oil

317 volatiles of the oil bearing rose *Rosa damascena*. *Biotechnol. Biotechnol. EG.* **2011**, *25*, 2210–2216.

318 9. Rusanov, K.; Kovacheva, N.; Rusanova, M.; Atanassov, I. Traditional *Rosa damascena* flower harvesting

319 practices evaluated through GC/MS metabolite profiling of flower volatiles. *Food Chem.*, **2011**, *129*, 1851–1859.

320 10. Spencer-Lopes, M.M.; Forster, B.P.; Jankuloski, L. Manual on mutation. Third edition. *Food and Agriculture*

321 *Organization of the United Nations; FAO/IAEA: Rome, Italy*, **2018**, pp. 165–167.

322 11. Okamura, M.; Yasuno, N.; Ohtsuka, M.; Tanaka, A.; Shikazono, N.; Hase, Y. Wide variety of flower-color and-

323 shape mutants regenerated from leaf cultures irradiated with ion beams. *Nucl. Instr. and Meth. In Phys. Res.*

324 *B.* **2003**, *206*, 574–578.

325 12. Kim, S.W.; Lee, H.J.; Kim, Y.S.; Jo, Y.D.; Ryu, J.H.; Kang, S.Y.; Kim, S.H. Effect of gamma-ray on survival and

326 mutation rates of root cuttings and unrooted cuttings in rose. **2017**, *Kor. J. Breed. Sci.* **49**, 150–156.

327 13. Oktavianawati, I.; Letisya, N.; Citra, P.; Utari, D.P.I.; Winata I.N.A.W.; Handayani W. et al. Essential oil

328 composition of rose flower from karangpring village jember district extracted by distillation and enfleurage.

329 *Jurnal ILMU DASAR.*, **2019**, *20*, 67–74.

330 14. Kazaz S.; Erbas, S.; Baydar, H. Breaking seed dormancy in oil rose (*Rosa damascena* Mill) by microbial

331 inculcation. *African J. Biotechnol.* **2010**, *27*, 6503–6508.

332 15. Moein, M.; Karami, F.; Tavallali, H.; Ghasemi, Y. Composition of the Essential oil of *Rosa damascena* Mill. from

333 South of Iran. *Iranian J. Pharmaceutical Sci.* **2010**, *6*, 59–62.

334 16. Mohebitabar, S.; Shirazi, M.; Bioos, S.; Rahimi, R.; Malekshahi, M.; Nejatbakhsh, F. Therapeutic efficacy of

335 rose oil: A comprehensive review of clinical evidence. *Avicenna j. Phytomed.* **2017**, *7*, 206–213.

336 17. Bauer, K.; Garbe, D.; Surburg, H. Common fragrance and flavor materials. **2001**, *Wiley-VCH Verlagsgesellschaft*

337 *mbH, Weinheim, Germany*, pp.44

338 18. Flament I.; Debonneville C.; Furrer A. Volatile constituents of roses. 1993, *American Chemical Society*,

339 *Washington, DC, USA*. pp. 269–281.

340 19. Umezawa, T.; Ito, H.; Nagano, K.; Yamakoshi, M.; Ouchi, H.; Sakaniwa, M.; Morita, M. Anticonflict effects of

341 rose oil and identification of its active constituents. 2002, *Life Sci.* **72**, 91–102.

342 20. Ozkan, G.; Sagdiç, O.; Baydar, N.G.; Baydar, H. Antioxidant and antibacterial activities of *Rosa damascena*

343 flower extracts. *Food Sci. Technol. Int.* **2004**, *10*, 277–281.

344 21. Ulusoy, S.; Boşgelmez-Tınaz, G.; Seçilmiş-Canbay, H. Tocopherol, carotene, phenolic, contents and

345 antibacterial properties of rose essential oil, hydrosol and absolute. *Curr. Microbiol.* **2009**, *59*, 554–558.

346 22. Narayana Gowda, J.V.; Recent advances in rose breeding. *Indian Rose Annu.*, **1999**, *XV*, 42–43.

347 23. Koh, G.C.; Kim, M.Z.; Kang, S.Y. Induction of petal color mutants through gamma ray irradiation in rooted

348 cuttings of rose. *Kor. J. Hort. Sci. Technol.* **2010**, *28*: 796–801.

349 24. Xiao, Z.; Luo, J.; Niu, Y.; Wu, M. Characterization of key aroma compounds from different rose essential oils

350 using gas chromatography-mass spectrometry, gas chromatography-olfactometry and partial least squares

351 regression. *Nat. Prod. Res.* **2017**, *1*–6.

352 25. Rusanov, K.; Atanassov, I. Industrial cultivation of oil bearing rose and rose oil production in Bulgaria during

353 21st century, directions and challenges. *Biotechnol. Biotechnol. EQ.* **2010**, *24*, 1793–1798.

354 26. Ryu, J.; Nam, B.N.; Kim, B.R.; Kim, S.H.; Jo, Y.D.; Ahn, J.W.; Kim, J.B.; Jin, C.H.; Han, A.R. Comparative
355 analysis of phytochemical composition of gamma-irradiated mutant cultivars of *Chrysanthemum morifolium*.
356 *Molecules*, 2019, 24, 3003.

357 27. Kim, S.H.; Ryu, J.; Kim, W.J.; Kang, R.; Seo, E.; Kim, G.; Kang, S.Y.; Lee, J.D.; Ha, B.K. Identification of a new
358 *GmSACP-D-C* allele in high stearic acid mutant Hfa180 derived from gamma-ray irradiation. *Mol. Breed.* 2019.
359 39, 17.

360 28. Koksall, N.; Aslancan, H.; Sadighazadi, S.; Kafkas, E. 2015. Chemical investigation on *Rose damascena* mill.
361 volatiles: effects of storage and drying conditions. *Acta Sci. Pol. Hortorum Cultus* 14, 105–114.

362 29. ISO9842, 2003. Oil of Rose (*Rosa X Damascena* Miller) 2003.

363 30. Babu, K.G.D.; Singh, B.; Joshi, V.P.; Singh, V. Essential oil composition of damask rose (*Rosa damascena* Mill.)
364 distilled under different pressures and temperatures. *Flav. Frag. J.* **2002**, 17, 136–140.

365 31. Weiss, E.A. Essential oil crops. 1997. CAB International, Walingford, England, pp 393–416.

366 32. Mihailovi, V.; Vukovi, N.; Niforovi, N.; Soluji, S.; Mladenovi, M., Mašković, P., et al. Studies on the antimicrobial
367 activity and chemical composition of the essential oils and alcoholic extracts of *Gentiana asclepiadea* L. *J. Med.*
368 *Plant Res.* 2011, 5, 1164–1174.

369 33. Khatua, S.; Pandey, A.; Biswas, S.J. Phytochemical evaluation and antimicrobial properties of *Trichosanthes*
370 *dioica* root extract. *J. Pharma. Phytochem.* 2016, 5, 410–413.

371 34. Kim, S.J.; Chung, W.S.; Kim, S.S.; Ko, S.G.; Um, J.Y. Antiinflammatory effect of *Oldenlandia diffusa* and its
372 constituent, hentriacontane, through suppression of caspase-1 activation in mouse peritoneal macrophages.
373 *Phytother. Res.* **2011**, 25, 1537–1546.

374 35. Wang, T.; Liu, Y.Y.; Wang, X.; Yang, N.; Zhu, H.B.; Zuo, P.P. Protective effects of octacosanol on 6-
375 hydroxydopamine-induced Parkinsonism in rats via regulation of ProNGF and NGF signaling. *Acta*
376 *Pharmacol. Sin.* **2010**, 31, 765–774.

377 36. Sheela, V.L.; Sheena, A. Novel trends and achievements in breeding of tropical ornamental crops especially
378 orchids and anthuriums: the mutation breeding approach. Wageningen Academic Publishers, Wageningen,
379 Netherlands. 2014, pp. 141–158.

380

381

382