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Abstract: Reduced nutrient mineralization rates under minimum tillage are usually compensated by 

mineral fertilizer application. These cannot be applied in organic farming systems, however. We 

hypothesized that organic minimum tillage based on frequent cover cropping and application of dead 

mulch will improve soil fertility and can compensate for the potential negative effects of minimum 

tillage. Two long-term field experiments were set up in 2010 and 2011 comparing plough versus 

minimum tillage including application of transferred mulch. As second factor, the application of 

compost versus mineral potassium and phosphorus was compared. In 2019, soils were analyzed for 

soil pH, organic carbon, macro-, micronutrients, microbial biomass, microbial activity and total 

nematode abundance. In addition, performance of pea in the same soils was determined under 

greenhouse conditions. Across both experiments, macronutrients (+52%), micronutrients (+11%), 

microbial biomass (+51%), microbial activity (+86%), and bacterivorous nematodes (+112%) increased 

in minimum tillage compared with the plough-based system. In the greenhouse, pea biomass was 45% 

higher in the soil that had been subjected to minimum tillage compared to the plough. In conclusion, 

soil fertility can be improved in organic minimum tillage systems by intensive cover cropping and 

application of dead mulch to levels higher than in a plough-based system. 

Keywords: conservation agriculture; compost; soil quality; bio-test; macro- and micronutrients; free-

living nematodes; microbial respiration; microbial biomass  

 

1. Introduction 

Organic farming systems are generally based on intensive soil tillage for seed bed preparation and 

weed control, which in the long run often leads to reduced soil fertility [1]. Although intensive soil 

tillage increases microbial turnover rates and thus nutrient availability required for plant growth, long-

term intensive soil tillage can cause depletion of the soil organic carbon content and thus reduced soil 

fertility [2]. For a long-term improvement of soil fertility and its maintenance at a sustainable level, 

organic production systems need to reduce the frequency and intensity of soil tillage and increase the 

organic matter supply to the soil. The resulting accumulation of organic carbon will likely increase the 

microbial activity and thus result in accelerated nutrient cycles [3–5]. However, minimum tillage 

generally tends to delay soil warming in spring, and therefore N-mineralization rates are often too low 

to meet the demand of the crops, especially in temperate climates [6]. That’s why applying conservation 

agriculture methods, i.e. the simultaneous application of minimum tillage, crop rotations, and residue 

retention, to organic farming may not necessarily improve soil fertility, even after 10 years of adaptation 

to the system [7]. Similary, Krauss et al. [5] reported that yield of winter wheat, silage maize, and spelt 

in an organic long-term experiment was still 10% lower even more than 10 years after transition to 

reduced tillage compared to standard moldboard ploughing, even though manure compost and slurry 

had been frequently applied Although nutrient levels and biological soil components were generally 

higher under reduced tillage compared to plough tillage in the top 10 cm soil, the massively enhanced 

weed competition under reduced tillage likely reduced crop yields. Thus, organic minimum tillage 
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systems need to be modified in order to provide sufficient levels of nutrients and weed control at the 

same time [8].  

Two options to achieve this might be the use of legume and non-legume cover crops and mulches. 

Cover crops are known among others to conserve the nutrients of the previous crop for the following 

crop, increase the organic matter content, stimulate microbial activity and suppress weeds [1]. 

Especially leguminous cover crops and cover crop mixtures of brassicas with legumes have shown 

positive effects on microbial biomass and activities as well as specific enzyme activities independent of 

the climatic region and weather conditions [9]. Furthermore, the use of cover crops can reduce weed 

seed banks in minimum tillage systems similar to levels in plough systems [10]. Organic mulch 

applications, referred here as the harvest of cover crops and their subsequent application to a specific 

crop or field, have been shown to contribute substantially to soil fertility in organic minimum tillage 

systems [6]. All those measures also protect the soil from a range of environmental impacts, such as 

drought, wind and water erosion or even plant diseases [11].  

In combination with a long-term organic fertilizer strategy, such cropping systems should result in 

more sustainable cropping systems in which nutrient cycles are almost closed. For example, application 

of high quality and certified composts that are free of pathogens, weeds, and toxic compounds can 

contribute to a better plant performance in minimum tillage systems. Besides nutrients, composts 

introduce additional microorganisms to the systems that may contribute to the suppression of soil-

borne diseases and should therefore enhance the overall soil fertility [12]. However, the evidence of 

disease suppression and the resulting soil fertility improvement through the use of composts often 

failed under field conditions in temperate climates due to variable environmental conditions and 

inadequate application rates of composts [13,14]. Thus, long-term field trials are required for a deeper 

understanding of the importance of compost in disease suppression and soil fertility improvement [15]. 

Soil fertility, which in this context is used synonymous for soil quality and soil health, can be 

assessed through chemical and biological indicators, such as organic carbon, pH, micro- and 

macronutrients, microbial biomass, or microbial respiration [16]. Furthermore, free-living nematodes 

are considered important indicators of soil quality [17–20]. Different feeding types of nematodes occupy 

different niches within the soil food web and hence, their classification and enumeration can determine 

certain carbon pathways. In a recent review, Bünemann et al. [16] pointed out that biological indicators 

are rarely used to assess soil health and quality and that most of the commonly used indicators are 

“black box” indicators, such as Cmic and microbial respiration. They further criticize that such 

assessments are rarely linked to specific ecosystem services, which impedes the evaluation of their 

suitability as soil quality and health indicators. 

Here we investigated two long-term experiments that were set up in adjacent fields in 2010 and 

2011 to assess the effects of an organic minimum tillage system on chemical and biological soil 

properties over time. The study specifically addressed the question, whether a crop rotation that 

includes cover crops and mulch applications can maintain or even improve soil fertility and if this can 

even be further improved by the regular application of compost. Furthermore, the study investigated 

which chemical and biological parameters were best linked with biomass production in a pea (Pisum 

sativum L.) bioassay and therefore could serve as indicator for soil fertility. The study compared a typical 

plough‐based system (25 cm) with a minimum tillage system (max. 15 cm), whereas the minimum 

tillage system comprised applications of transferred dead mulch to potatoes (experiment 1: 2014, 2018; 

experiment 2: 2015, 2019) (Figure 1). The second factor analyzed was the application of yard waste 

compost at a rate of ~5 t (ha a)-1 dry matter (DM) compared to equivalent amounts of mineral 

phosphorus (rock phosphate) and potassium (K2SO4) fertilization. Soils of both field experiments were 

evaluated in 2019. This was year 9 of experiment 1 with clover-grass as main crop and year 8 of 

experiment 2 with potatoes as main crop (Table 1). The soil of both field experiments was further 

analyzed in the greenhouse for biomass production in a pea bioassay. We hypothesized that i) minimum 

tillage with mulch to potatoes increases soil fertility compared with a plough-based inversion tillage 

system without mulch, ii) regular compost application improves chemical and biological soil 

parameters compared to mineral fertilization, and iii) soil fertility indicators, including bacterivorous 

nematodes, are positively correlated with pea biomass production and reduced root disease severity in 

the greenhouse bioassay. 
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Figure 1. Differences in potato canopy closure on July 24th 2019 prior to flowering (BBCH 59) due 

to variation in soil fertility. Left: Plough tillage without mulch; right: Minimum tillage with mulch. 

Potatoes were planted end of May. Foto: S. Junge 

2. Materials and Methods  

The two long-term experiments were originally started in 2010 and in 2011 in adjacent fields located 

on the organic experimental farm of the University of Kassel in Neu-Eichenberg (51°22'51"N, 9°54'44"E, 

231 m ASL with an eastern incline of 3%). The soil type is a Haplic Luvisol with 3.3% sand, 83.4% silt 

and 13.3% clay (USDA classification Zc). Liming (CaCO3) was applied to all treatments at 2 t ha-1 in 

August/September 2019.  

The experiments have been described in detail in Schmidt et al. [21] and all crops grown since the 

start are shown in Table 1. In brief, both experiments consist of a split-plot design with four replicates 

and tillage as main factor (12 x 60 m²): 1) minimum tillage by chisel ploughing or shallow rototilling (5-

15 cm) including the application of dead mulch to potatoes under minimum tillage versus 2) 

conventional moldboard plough tillage (20-25 cm). The dead mulch applied to potatoes under minimum 

tillage was typically obtained from rye/pea or triticale/vetch cover crop mixtures that were chopped (< 

10 cm) and applied at 10-15 t ha-1 on average with an adapted manure spreader. The C/N ratio of the 

mulch ranged between 20-25. Each tillage main plot (12 x 60 m²) was split into eight 6 x 15 m² sub-plots 

of which four of the subplots received ~5 t dry matter (ha yr)-1 of a high-quality yard waste compost that 

was applied manually. The remaining four sub-plots received potassium (K2SO4) and phosphorus (rock 

phosphate) fertilizer equivalent to their amounts in the respective composts. For details of the compost 

used between 2012 and 2015, see Schmidt et al. [21]. Composts used thereafter were of similar quality. 

In total, 32 plots were investigated (2 field experiments x 4 replicates x 2 tillage treatments x 2 fertilizer 

treatments).  
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Table 1. Sequence of crop rotations for the two field experiments including cash and cover crops 

(in brackets) from 2010 until 2020. 

year experiment 1 experiment 2 

   

2010-11 grass-clover 
 

2011-12 grass-clover grass-clover 

2012-13 winter wheat grass-clover 

2013-14 cover crops (summer vetch/clover) 

 – potatoes 

winter wheat 

2014-15 Winter cover crop: rye 

summer: berseem clover 

cover crops (summer vetch/clover) 

 – potatoes 

2015-16 triticale Winter cover crop: rye 

summer: berseem clover 

2016-17 winter wheat triticale 

2017-18 cover crop triticale/winter vetch 

 – potatoes 

winter wheat (crop terminated in June 

due to drought; followed by berseem 

clover 

2018-19 cover crop rye cover crop (triticale/winter vetch)  – 

potatoes 

2019-20 grass-clover cover crop (rye) 

 

Soil samples were collected after the first differential tillage (Experiment 1: Winter 2012/13, 

Experiment 2: Fall 2013), in September after the first potato crop (Experiment 1: 2014, Experiment 2: 

2015), and in October 2019 (Experiment 1: during grass-clover crop, Experiment 2: after potatoes) 

(compare Table 1). Soil samples of the first two sampling dates of each experiment were taken from the 

top soil (0-15 cm) of each plot with a soil corer (2.4 cm diameter). In 2019, about 110 soil cores were taken 

randomly from each plot center (4.5 m x 10 m) with an Edelmann corer (8 cm diameter, 15 cm soil depth). 

Soils were sieved subsequently to 1 cm and stored in plastic bags at 4°C until processing. 

 

2.1. Soil nutrient analyses 

Soil nutrients were analyzed by the Landesbetrieb Hessisches Landeslabor (LHL, 

http://www.lhl.hessen.de) two years after experimental setup, i.e. 2012 in experiment 1 and 2013 in 

experiment 2, and for both experiments in 2019. The former analysis was performed on pooled samples 

of each experimental field and pH and macronutrients were determined (Table 2). In 2019, aliquots of 

500 ml soil of each plot were analyzed for macro- and micronutrients, soil organic carbon (Corg), total 

soil nitrogen (Ntotal), pH, and salt (KCl) according to the “Verband Deutscher Landwirtschaftlicher 

Untersuchungs- und Forschungsanstalten” (VDLUFA) standards [22]: Book 1 A 4.1.3.2: direct 

assessment of Corg by burning at 550°C, Book 1 A 5.1.1: pH in soil-salt (CaCl) solution, Book 1 A 6.2.1.1: 

assessment of phosphorous and potassium in an acidic calcium-acetate-lactate- solution (CAL), Book 1 

A 6.2.4.1: extraction of magnesium with CaCl2-solution and subsequent photometric detection, Book 1 

A 10.1.1: calculation of KCl contents after assessment of electric conductivity, DIN EN ISO 17294-2:2017: 

determination of copper, zinc and boron in water via inductively-coupled plasma mass spectrometry, 

DIN EN ISO 11885:2009: determination of manganese and iron in water via inductively coupled plasma-

optical emission spectrometry, and DIN EN 16168:2012: assessment of Ntoal via dry burning. 
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Table 2. Soil macronutrient, pH, and organic carbon concentrations in the fields used for 

experiment 1 (2012) and 2 (2013) prior to the start of differential tillage and fertilizer 

applications. 

Soil parameter unit Experiment 1 Experiment 2 

pH  6.3 5.9 

P2O5 mg (kg soil)-1 120 90 

K2O mg (kg soil)-1 180 100 

MgO mg (kg soil)-1 140 150 

Corg  % 1.22 1.16 

 

2.2. Biological assessments 

Microbial biomass was determined two years after start of the experiments and directly after the 

first differential tillage (2012 and 2013), four years after start of the experiments (2014 and 2015), and 9 

and 8 years after start of experiment 1 and 2 (2019), respectively. Soil samples were sieved to 2 mm and 

soil moisture was measured gravimetrically after drying at 105°C. After removing plant roots, soil 

microbial biomass was calculated via chloroform-fumigation extraction, following the instructions and 

equations of Vance et al. [23]. The resulting microbial biomass carbon (Cmic) and nitrogen (Nmic) values 

were divided by 0.45 and 0.54, respectively, which are the correction factors of the extractable microbial 

biomass in soils [24,25]. Extracts were stored at -15°C until organic C and total N in extracts were 

measured using an automatic C- and N- analyzer (Multi C/N, Fa Analytik Jena). 

The microbial respiration as indicator for microbial activity, was determined from the sieved soils 

in 2019. Soils were moistened to 50% water-holding capacity for seven days prior to analysis. Two 70 g 

sub-samples of each soil were then filled into glass beakers placed in preserving jars that contained 20 

ml water to prevent drying of the soils. Glass beakers with 15 ml of 0.5 mol NaOH were additionally 

placed in the jars. Six blinds without soil were used as controls. Jars were closed hermetically and 

incubated for seven days at 20°C. After incubation, glass beakers with NaOH were stored in vacuum 

desiccators filled with soda-lime to avoid evaporation of the CO2. The total CO2 concentration in the 

NaOH was assessed via HCl titration. For this, a solution containing 3 ml of the NaOH, 30 ml water, 3 

ml 0.5 mol BaCl2, and two drops of phenolphthalein was stirred and titrated with 0.1 mol HCl until 

color change to rose. This back-titration will titrate the excessive NaOH. The soil respiration was 

calculated according to the formula: 

mg CO2 (g DM d)−1 =
(VB − VS) ∗ F ∗ 2.2 ∗ 100

FM (g) ∗ DM (%) ∗ d
 

VB and VS are the volumes of HCl titrated to the blinds and samples, respectively, F is the dilution 

factor (3 ml aliquot of the 15 ml NaOH samples means F = 5), 2.2 corresponds to the amount of CO2 (mg) 

that refers to 1 ml of the titrated 0.1 mol HCl, FM and DM are the fresh matter (g) and dry matter (%) of 

the soil samples, respectively, and d is the incubation time (days) of the samples at 20°C.  

For nematode analysis, 250 ml soil aliquots were processed with the Oostenbrink elutriator [26]. 

Nematodes collected on three mounted 45 µm sieves were washed into a beaker and transferred onto 

an Oostenbrink dish to get a clean sample. After incubation at room temperature for 48 hours, 

nematodes in the Oostenbrink dish were collected on a 20 µm sieve and transferred to a plastic tube and 

filled up to 30 ml with tap water. Nematode densities were counted from three times 1 ml aliquots at 

40x magnification under a compound microscope. Final nematode densities were given as nematodes 

100 ml soil-1. Nematodes were classified to the family level by morphological identification of 100 

individuals sample-1 using the key of Bongers [27]. Nematode families were summarized into 

bacterivorous, fungivorous, herbivorous, and omnivorous/predatory feeding types by using the 

nematode indicator joint analysis web tool [28]. 

2.3. Greenhouse study for fertility assessments 

The soil fertility of each of the 32 soil samples (2 experiments x 4 replicates x 4 soils) was examined 

in a pea bioassay under greenhouse conditions at 21°C/18°C day/night temperatures. To check if 
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difference in soil fertility might be associated with better plant performance under nematode pressure, 

the soil was artificially inoculated with the root lesion nematode Pratylenchus penetrans. For this, five 

sub-samples with 700 ml soil each were filled in 11x11x12 cm pots and the pots were organized as a 

randomized complete block (160 pots). Five surface-sterilized (70% ethanol for 5 minutes) and pre-

germinated (2 days) pea seeds were planted per pot and reduced to three plants per pot after one week. 

At the day of plant reduction, mixed stages of P. penetrans (males, females, juveniles, and eggs) were 

inoculated in all soils at densities of 1000 nematodes and eggs 100 ml soil-1. The inoculation density was 

based on repeated pre-experiments with inoculation densities of 0, 500, 1000, 2000, and 3000 nematodes 

100 ml soil-1 of the experiment 1 field. The pea biomass reduction was 11% and 12% in the pre-trial 1 and 

2, respectively, after inoculation with 1000 P. penetrans 100 ml soil-1.   

Nematode inoculum was obtained from 8-12 weeks old carrot discs cultures, that were chopped 

and extracted with Oostenbrink dishes [29]. The nematodes were stored at 7°C until used in the 

experiment. 

Pots were watered to approximately 50% water-holding capacity every two to three days. The four 

tables with the pots were re-randomized each week to compensate for differences in illumination from 

neighboring cabins. Plants were harvested at BBCH 71 after a growth period of 80 days and 

aboveground dry matter (DM) after heating at 105°C for 24 h, the number of pods, and root fresh weight 

were determined. A root rot disease index (0-100) was calculated based on the assessment of  external 

root lesions and lesion lengths were measured according to Šišić et al. [30] and Pflughöft [31]. 

Pratylenchus penetrans was extracted from pea roots via mist chambers [26]. For this, roots were cut in 1 

cm pieces and placed on sieves that were placed on glass Petri dishes. Roots were kept moist for four 

weeks by spraying with water for 30 sec every 5 min. Once a week, nematodes settled on the ground of 

the Petri dish were transferred into PET bottles and stored at 4°C until the end of the extraction 

procedure. The final suspension was adjusted to 50 ml and 3 ml aliquots were taken to count the number 

of P. penetrans. 

 

2.4. Data processing and statistical analysis 

Statistical analyses were performed with R version 3.6.0 [32], using the packages ‘nlme’ [33] for 

analyses via linear mixed models and ‘emmeans’ [34] for multiple comparison of treatments, back-

transformed means, and standard errors. The package ‘car’ [35] was used to test the applied models for 

their variance homogeneity via Levene-tests. In case of violations of variance homogeneity, linear mixed 

effects models (lme) were adjusted with the weighting function ‘varIdent’ [36]. This function enables 

the model to use individual standard errors for each factor level (combination). If more than one factor 

showed inhomogeneous variances, the model with the lowest Akaike information criterion values was 

used based on log likelihood tests according to the description of Zuur et al. [36]. Fixed factors were 

tillage and fertilizer whilst random factors were experiments, field replicates, and tillage, each nested 

in the preceding factor. Thus, the formula used in R including an example of a weighting function with 

two factors that showed inhomogeneous variances was: 

𝑙𝑚𝑒 (𝑦 ~ 𝑡𝑖𝑙𝑙𝑎𝑔𝑒 ∗  𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟, 𝑟𝑎𝑛𝑑𝑜𝑚 = ~ 1| 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡/ 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒/ 𝑡𝑖𝑙𝑙𝑎𝑔𝑒,

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =  𝑣𝑎𝑟𝐼𝑑𝑒𝑛𝑡(𝑓𝑜𝑟𝑚 =  ~1|𝑡𝑖𝑙𝑙𝑎𝑔𝑒 ∗ 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟), 𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎 ) 

For the data analysis of the greenhouse experiment, the random term was extended to “random = 

~ 1|experiment/ replicate/ (greenhouse replicate/ tillage)”. 

Spearman’s ρ rank correlations were used to study the relationship of chemical and biological 

indicators as well as their correlation with pea biomass production, root disease severity, and the 

number of P. penetrans in roots by using the ‘rcorr’ function of the R-package ‘Hmisc’ [37]. Results were 

visualized for each field experiment separately using the R function ‘corrplot’ of the ‘Hmisc’ package 

based on the P < 0.05 significance level. 

3. Results 

Both field experiments were maintained according to the ceteris paribus principle. However, the 

severe drought in 2018 required some modifications in experiment 2. Due to the drought and also high 

weed infestation, the winter wheat was terminated two months earlier than usual (Table 1). The 
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following summer cover crop (berseem clover) did not germinate because of the drought and therefore, 

a triticale/winter vetch cover crop was sown about two months after termination of the winter wheat.  

Due to the time shift between the two field experiments (e.g. last application of dead mulch in 

experiment 1 and 2 dated back 16 and 4 months, respectively), we first added the experiment as fixed 

factor in the linear model. Hence, interactions of field experiment with tillage and fertilizer could be 

analyzed. In detail, experiments interacted with tillage regarding boron, KCl, Cmic/Corg, bacterivorous, 

and fungivorous nematodes (F1,6 > 8.1, P < 0.03, Table 3) but not with compost for any of the determined 

soil parameters. The interactions were, with the exception of fungivorous nematodes, expressed by a 

lower differentiation of minimum tillage from plough tillage in experiment 2 compared to experiment 

1. As an example, boron concentrations were 51% and 14% higher under minimum tillage compared to 

plough tillage in experiment 1 and 2, respectively. This justified the analysis of treatment effects across 

both field experiments with experiment as random factor (Table 3).  

3.1. Effects of tillage system and fertilizer application on chemical and biological soil properties 

Minimum tillage and in part also compost application increased the amounts of most 

macronutrients in soil. Initial contents of P2O5, K2O, MgO, and Corg in the top 25 cm soil two years after 

start of the field experiments (2012/2013) were on average 105, 140, 145 (all in mg (kg soil)-1), and 1.2%, 

respectively (Table 2). In 2019, these values were lower or similar under plough tillage with mineral 

fertilization (Table 3). In comparison, values were slightly higher under plough tillage with compost 

fertilization, in particular, Corg was increased by 20% (Table 2 and 3). In contrast, minimum tillage with 

compost or mineral fertilization increased P2O5, K2O, Corg by 23%, 129%, and 57% compared to initial 

values, respectively. This translated to 48%, 147%, and 34%, higher P2O5, K2O, and Corg values, 

respectively, under minimum tillage compared to plough tillage in 2019, regardless if mineral or 

compost fertilization was applied (Table 3). Moreover, Ntotal was 25% higher under minimum tillage 

than plough tillage (Table 3).  

In the present study, pH was considerably higher in all treatments in 2019 than when first 

measured in 2012 and 2013 (6.1, Table 2). Differences in pH between treatments were not observed.  

The salt content varied between 486 (plough tillage without compost) and 762 (minimum tillage 

with compost) mg KCl l-1, which translates to electrical conductivities (EC) of 0.9 and 1.4 mS cm-1, 

respectively.  

Soil micronutrients varied in a distinct pattern among treatments. While copper concentrations 

were highest under plough tillage with mineral fertilization, manganese and iron concentrations were 

similar across all treatments (Table 3). In contrast, zinc and boron concentrations were significantly 

higher under minimum than under plough tillage, irrespective of the fertilization strategy.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2020                   doi:10.20944/preprints202007.0677.v1

Peer-reviewed version available at Sustainability 2020, 12, 6730; doi:10.3390/su12176730

https://doi.org/10.20944/preprints202007.0677.v1
https://doi.org/10.3390/su12176730


Table 3. Means (± SE) of chemical and biological soil parameters in 2019, nine (experiment 1) and eight (experiment 2) years after start of the field experiments. 1 
Factors studied were plough and minimum tillage combined with either compost fertilization (< 5 t (ha a)-1) or mineral potassium and phosphorous application 2 
equivalent to contents in the respective composts. Results are averaged across both independent field experiments as only few experiment (Exp) by tillage (T) and 3 
no Exp by fertilizer (not shown) interactions occurred. Pea dry matter was obtained from a separate greenhouse experiment with the same soil used for analyses of 4 
the other parameters. Mean values for each soil parameter that do not share a common letter are significantly different (P < 0.05, dftillage = 7, dffertilizer between tillage = 7, 5 
dffertilizer within tillage = 14) according to linear mixed effects models and estimated marginal means with Tukey corrections for multiple testing.  6 

  plough tillage  minimum tillage   

Soil parameter unit mineral compost mineral compost 

P < F  

(Exp x T) 

           
pH 

 
6.56 ± 0.20 6.74 ± 0.20 6.70 ± 0.20 6.74 ± 0.19 n.s. 

P2O5 mg (kg soil)-1 71 ± 28a 103 ± 29ab 125 ± 28b 133 ± 29b n.s. 

K2O mg (kg soil)-1 124 ± 9.4a 136 ± 11.2a 319 ± 9.1b 324 ± 23.5b n.s. 

MgO mg (kg soil)-1 166 ± 11.9a 174 ± 12.1ab 172 ± 11.8a 189 ± 12.4b n.s. 

Cu mg (kg soil)-1 3.29 ± 0.22b 2.99 ± 0.22a 3.07 ± 0.23ab 3.15 ± 0.26ab n.s. 

Zn mg (kg soil)-1 5.35 ± 0.25a 6.5 ± 0.47b 6.94 ± 0.25b 7.15 ± 0.66ab n.s. 

Mn mg (kg soil)-1 374 ± 34 354 ± 34 394 ± 36 357 ± 34 n.s. 

B mg (kg soil)-1 0.65 ± 0.11a 0.71 ± 0.11a 0.89 ± 0.11b 0.91 ± 0.11b 0.001 

Fe mg (kg soil)-1 118 ± 13 117 ± 13 121 ± 13 120 ± 13 n.s. 

Salt (KCl) mg l-1 486 ± 49a 582 ± 67abc 700 ± 49b 762 ± 50c 0.03 

Corg  % 1.27 ± 0.06a 1.52 ± 0.07b 1.79 ± 0.06c 1.95 ± 0.07d n.s. 

Ntotal  % 0.15 ± 0.007a 0.18 ± 0.008b 0.2 ± 0.006c 0.21 ± 0.008c n.s. 

Microbial respiration 

(MR) 

µg CO2 (g dry soil d)-1 33.9 ± 1.3a 41.6 ± 1.2b 66.7 ± 4.4c 73.7 ± 3.7c n.s. 

Cmic/Nmic  5.62 ± 0.27 5.52 ±0.35 4.76 ±0.12 4.84 ±0.19 n.s. 

Cmic/Corg % 2.47 ±0.19ab 2.36 ±0.19a 2.77 ±0.22ab 2.7 ±0.2b 0.02 

MR/Cmic % 11.1 ±1.27a 11.7 ±1.27ab 13.5 ±1.27ab 14.0 ±1.27b n.s. 

Nmic/Ntotal % 3.68 ±0.31a 3.86 ±0.31a 5.27 ±0.31b 5.18 ±0.31b n.s. 

Bacterivorous nematodes individuals 100 ml soil-1 546 ± 471a 662 ± 469a 1263 ± 478b 1295 ± 474b 0.03 

Fungivorous nematodes individuals 100 ml soil-1 326 ± 69 313 ± 69 417 ± 69 335 ± 69 0.008 

Herbivorous nematodes individuals 100 ml soil-1 568 ± 149 675 ± 149 889 ± 149 924 ± 149 n.s. 

Om + Pr nematodes1 individuals 100 ml soil-1 72 ± 21 118 ± 21 96 ± 36 155 ± 36 n.s. 

1Omnivorous (Om) and predatory (Pr) nematodes were pooled due to their overall low abundance.7 
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In general, soil biological properties were enhanced by minimum tillage compared to the plough 

tillage systems. For Cmic, the differences between minimum and plough tillage as well as in part 

between the compost and mineral fertilization increased over time (Figure 2). This is reflected by 

significant interactions of sampling date (year) and tillage in both experiments (F2,30 > 7.7, P ≤ 0.002). 

The status quo analysis was taken after the first differential tillage and compost application (2012, 

2013), two years after the start of the experiment. Initial Cmic values in experiment 1 and 2 were 60% 

and 27% higher under minimum tillage with mineral fertilizer than under plough tillage with mineral 

fertilizer. However, those differences were not statistically significant due to large standard errors 

(Figure 2).  

Four years after the start of the experiment when potatoes had been grown for the first time with 

mulch application, Cmic was already 39% and 62% higher under minimum tillage than under plough 

tillage in experiment 1 (2014) and 2 (2015), respectively (Figure 2). At that time, compost application 

had increased Cmic consistently (6-20%) in comparison to mineral fertilization in both experiments 

under minimum tillage.  

 

   
Figure 2. Mean (± SE) top soil (15 cm) microbial biomass carbon (Cmic) in µg g soil dry matter-1 

affected by plough (CT, blue bars) or minimum tillage (MT, red bars) each combined with either 

yard waste compost application (+, light colored bars) or mineral potassium and phosphorous 

application equivalent to contents in the composts (-, dark colored bars). Cmic was determined 

two, four years, and eight/nine years after start of the experiments (experiment 1: 2010; 

experiment 2: 2011). Mean values of the respective treatments that do not share a common letter 

for each year and experiment are significantly different (P <0.05, dftillage= 3, dffertilizer= 30) according 

to linear mixed effects models and estimated marginal means with Tukey correction for multiple 

testing. 

 

In 2019, Cmic values were 72% and 35% higher under minimum compared to plough tillage in 

experiment 1 and 2, respectively. The Cmic was 15% higher under plough tillage with compost 

compared to plough tillage with mineral fertilization (Figure 2). Compost effects under minimum 

tillage were less pronounced in 2019 than in 2014 and 2015. Similar effects of tillage were observed 

for the microbial respiration and number of free-living nematodes in both years that were on average 

86% and 64% higher, respectively, under minimum than plough tillage (Table 3). In particular, the 

number of bacterivorous nematodes was three-fold and two-fold higher under minimum tillage 

compared to plough tillage in experiment 1 and experiment 2, respectively, which also explains the 

significance of the experiment by tillage interaction (Table 3). The absolute number of herbivorous as 

well as omnivorous/predatory nematodes was 31% to 46% higher under minimum tillage compared 
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to plough tillage. Fungivorous nematodes showed no statistical differences among treatments. 

However, total numbers of fungivorous nematodes showed a different pattern in both years. In the 

first year (experiment 1) the total number of fungivorous nematodes was higher under minimum 

tillage (425 nematodes 100 ml soil-1) compared to plough tillage (173 nematodes 100 ml soil-1), whereas 

in the second year it was the opposite with higher numbers under plough tillage (466 nematodes 100 

ml soil-1) compared to minimum tillage (327 nematodes 100 ml soil-1).  

 

Table 4. Estimated marginal means (± SE) of pea production parameters in both field 

experiments assessed in a greenhouse experiment. Factors studied were plough and minimum 

tillage combined with either compost fertilization (< 5 t (ha a)-1) or mineral potassium and 

phosphorous application equivalent to contents in the respective composts. Mean values for 

each parameter that do not share a common letter are significantly different (P < 0.05, dftillage = 

38, dffertilizer between tillage = 38, dffertilizer within tillage = 76) according to linear mixed effects models and 

estimated marginal means with Tukey corrections for multiple testing. 1Soils were inoculated 

with 7000 mixed stages + eggs of P. penetrans pot-1. 

    plough tillage minimum tillage 

Parameter unit mineral compost mineral compost 

Experiment 1 

Pea dry weight 

(above) 

g pot-1 2.43 ±0.27a 2.55 ±0.24a 3.43 ±0.28b 4.03 ±0.19b 

Pea root fresh 

weight 

g pot-1 1.25 ±0.19ab 1.09 ±0.19a 1.43 ±0.21ab 1.62 ±0.21b 

Pods # pot-1 3.20 ±0.39a 3.05 ±0.39ab 3.35 ±0.39ab 4.00 ±0.39b 

Root lesion severity % 74.5 ±2.4 74.7 ±2.4 75.1 ±2.4 70.8 ±2.4 

Root lesion length mm 32.3 ±2.58 33.0 ±3.15 29.7 ±2.62 28.2 ±2.38 

P. penetrans1 in roots #  

x 1000  

7.40 ±1.58 5.39 ±1.58 6.79 ±1.58 8.35 ±1.58 

Experiment 2 

Pea dry weight 

(above) 

g pot-1 2.31 ±0.28a 2.33 ±0.22a 

67 

3.09 ±0.26b 3.37 ±0.23b 

Pea root fresh 

weight 

g pot-1 1.31 ±0.19ab 1.04 ±0.19a 1.33 ±0.21ab 1.55 ±0.21b 

Pods # pot-1 2.95 ±0.39 2.80 ±0.39 3.30 ±0.39 3.45 ±0.39c 

Root lesion severity % 69.0 ±2.9ab 73.9 ±2.9b 72.6 ±2.9b 61.2 ±2.9a 

Root lesion length mm 27.6 ±2.58ab 32.9 ±3.15b 30.6 ±2.62b 24.7 ±2.38a 

P. penetrans1 in roots #  

x 1000  

1.82 ±1.33ab 1.39 ±1.33a 1.65 ±1.33a 3.10 ±1.33b 

 

3.2. Effects of tillage system and fertilizer application on pea performance under greenhouse conditions 

Overall, pea yield was similar in both experiments. For example, pea aboveground dry weight 

was 50% and 39% higher under minimum tillage compared to plough tillage in experiment 1 and 2, 

respectively. Although this effect was less clear for the pea root fresh weight, the highest root weights 

were generally recorded under minimum tillage (Table 4). Similarly, the number of pods produced 

per pot was always higher under minimum tillage than under plough tillage.  

Root lesion severity and root lesion length were about 5% higher in experiment 1 compared to 

experiment 2. In general, both diseases parameters were similar for the two plough tillage systems 

and the minimum tillage system that had received mineral fertilizer. However, when peas were 
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grown in soil collected from the minimum tillage system that was fertilized with compost root lesion 

severity and root lesion length were reduced. This effect was only significant in experiment 2, though. 

The number of P. penetrans in roots pot-1 was 6,983 and 1,990 in experiment 1 and 2, respectively. 

Hence, the final population density divided by the inoculation density was 1 and 0.29, respectively. 

In both experiments, the number of P. penetrans was lowest under plough tillage fertilized with 

compost and highest under minimum tillage fertilized with compost.   

 

3.3. Biological soil components as indicators of soil fertility 

In our study, soil fertility was measured as the potential of the soils for pea biomass production 

in a greenhouse bioassay after artificial soil inoculation with lesion nematodes (Table 4).  

The growth substrate of pea in the greenhouse and the soil used for the analysis of the soil 

chemical and biological parameters shown in Table 3 were derived from the same composite samples. 

This allows to directly link these with data from the greenhouse experiment that were used as 

ecosystem services (Figure 3). Thus, a number of standard biological “black box” indicators of soil 

quality, such as Cmic, Nmic, microbial respiration, and Corg were positively correlated with the pea 

biomass production in soils of both field experiments (Figure 3). The severity of root lesions further 

affected pea dry matter in both experiments (ρ < -0.51, P < 0.46, Figure 3). 

Besides these indicators, we also used the abundance of free-living nematodes that include free-

living herbivorous, bacterivorous, fungivorous and omnivorous/predatory nematodes. In both 

experiments, the abundance of bacterivorous nematodes was highly correlated with pea dry matter 

(ρ > 0.61, P < 0.012, Figure 3) as well as with Cmic and microbial respiration (ρ > 0.7, P < 0.003, Figure 

3). The pooled abundance of omnivorous/predatory nematodes as well as the number of P. penetrans 

in roots pot-1 were unaffected by any of the applied parameters. Herbivorous nematodes were 

positively correlated with pea dry matter in experiment 1 (ρ > 0.78, P < 0.001, Figure 3) but not in 

experiment 2 (ρ > 0.23, P > 0.05, Figure 3). In experiment 2, fungivorous nematodes correlated 

negatively with microbial biomass, respiration and Corg while the fungivorous:bacterivorous ratio 

correlated with reduced pea dry matter yields (ρ > -0.83, P < 0.001). A minor negative correlation (ρ > 

-0.3, P > 0.17) was observed among root lesion severity at the stem base and on roots of pea and the 

number of P. penetrans in roots, however, this effect was not statistically significant in any of the 

experiments.  
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Figure 3. Spearman’s ρ correlation coefficients of important biological soil indicators (including 

Corg) independent of applied treatments. Correlations within experiment 1 and 2 are shown in 

the upper and lower diagonal, respectively. Positive correlations are displayed in blue and 

negative correlations in red color. Color intensity and the size of the circle are proportional to 

the correlation coefficients. In the right side of the correlogram, the legend color shows the 

correlation coefficients and the corresponding colors. Correlations with P-values > 0.05 (n= 16) 

are considered insignificant and were left blank. Abbreviations: Corg, total organic C; Cmic, 

microbial biomass C; Nmic, microbial biomass N; MR, microbial respiration; BF, bacterivorous 

nematodes; FF, fungivorous nematodes; PPN, herbivorous nematodes; Om+Pr, omnivorous and 

predator nematodes; Pea DM, pea dry matter; Root lesion, pea root rot; Pratylenchus, Pratylenchus 

in pea roots. The latter three indicators were assessed in a separate greenhouse experiment. 

 

4. Discussion 

In general, nutrient availability is one of the major yield limiting factors in organic agriculture 

due to the restrictions on the use of soluble mineral fertilizers. Under these conditions, nutrient 

deficiency can be even worse when accompanied by minimum tillage [7]. The reason is that 

aboveground soil cover delays soil warming and thus, nutrient mineralization, which can severely 

affect early seedling development [2]. The minimum tillage system presented here, combining cover 

crops and dead mulch applications clearly showed the potential to overcome such nutrient 

deficiencies. This is the result of greater soil fertility in the top layer compared to the initial levels as 

well as to the plough-based system. Interestingly, potato yields correlated positively with the 
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numbers of free-living nematodes determined in 2019 [6]. In addition to greater soil fertility in the 

top layer, mulching is an important measure to conserve water further leading to yield increases, a 

phenomenon we have consistently observed with mulched potatoes in the years 2015 and 2016 [38] 

and also in 2018 and 2019 (Junge, Finckh, et al., unpublished data). The improvement in soil fertility 

was similar or even greater compared to a long-term organic study from Frick, Switzerland, where 

phosphorus and potassium were 72% and 40% higher in the top 10 cm soil following six years of 

reduced tillage (15 cm deep two-layer ploughing) compared to 30 cm deep ploughing [39]. In the 

same study, Corg increased from 2.2% to 2.6% under reduced tillage, whereas it remained at 2.1% at 

deep ploughing. After 15 years of minimum tillage in the same experiment, Corg contents were 

increased from 2.2% to 2.9% [5], which is similar to the increase in our study after 8 and 9 years of 

minimum tillage. 

With respect to the similarity of the pH levels across tillage and fertilizer applications, it could 

not be determined if there were no differences per se or if liming of the two field experiments in the 

month before sampling camouflaged tillage or fertilizer effects on pH. However, in a similar 

experiment in Austria, where shallow conservation tillage was compared to 25 cm deep ploughing, 

also no significant differences in pH were found [40]. Likewise, neither tillage nor slurry or 

composted manure had any effect on soil pH in the above described long-term study from Frick, 

Switzerland [5].  

The observed higher salt values under minimum tillage should be seen with caution as elevated 

salt concentrations can cause yield depression of salt intolerant plants, such as described for 

Phaseolus bean and carrots, where threshold levels of about 1 mS cm-1 are given [41]. Comparing the 

fertilization systems in this study, higher salt contents were generally found for organic fertilization 

than for mineral fertilization. This is not surprising as the composts used had high salt contents (EC: 

5-10 mS cm-1) [21].  

The effect of the tillage system on micronutrients has rarely been described. However, it appears 

that this generally follows the same pattern as observed for macronutrients, i.e. an enrichment under 

minimum/zero tillage compared to intensive tillage [42]. Unfortunately, nothing is known about the 

relevance of those differences in micronutrient concentrations for plant performance. It can only be 

speculated that the higher micronutrient levels as well as macronutrient levels observed in this study, 

may have contributed to the greater biomass production in the pea bioassay under both minimum 

tillage systems compared to plough tillage (Table 3). For example, boron (and calcium, but this has 

not been assessed here) is known to be important for N2 fixation in legumes and can massively 

enhance pea aboveground biomass production [43]. However, if boron contributed to pea growth in 

this study remains unsolved.  

With respect to biological soil properties, our results confirm other studies that showed that Cmic 

and microbial activity under minimum tillage are generally higher than under plough tillage 

[5,39,44]. The fact that this was shown in two independent field experiments under two different 

crops and also for the abundance of bacterivorous nematodes in the present study indicates the 

robustness of such measurements. Although soil biological properties can vary greatly across the 

season, Kandeler and Böhm [44] demonstrated that Cmic can already be used as a reliable indicator for 

changes in soil biology four years after the transition to minimum tillage. This is in line with the 

findings of our study, where the first clear differentiations between tillage systems occurred two 

years after differential tillage and four years after minimum tillage (Figure 2, year 2014 and 2015). 

Besides, we found higher microbial quotients (Cmic/Corg) under minimum than under plough tillage. 

These likely indicate a higher C input as well as a higher C quality for Cmic production [45].  

Contrasting to our expectations, the microbial quotient (MR/Cmic), which can be used as indicator 

of changes in organic matter availability [46], was 21% higher under minimum tillage compared to 

plough tillage. This suggests that minimum tillage in combination with dead mulch application 

induced a lower efficiency in C use compared to the plough system. Corg availability was also found 

to be one of the main drivers of microbial quotients in a study that compared 30 different textured 

soils with varying Corg contents [47]. Haynes [46] noted that bacteria are less efficient in utilizing C 

sources than fungi, which may further explain the higher metabolic quotient under minimum tillage 
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compared to plough tillage in our study. The application of dead mulch with a low to moderate C/N 

ratio (~25) was likely responsible for a domination of the break down of crop residues by bacteria. 

This is supported by a 3-fold greater bacterivorous:fungivorous nematode ratio under minimum 

tillage 4 months after dead mulch application (experiment 2) compared to 16 months after dead 

mulch application (experiment 1) (data not shown). Specifically, the number of bacterivorous r-

strategist Rhabditidae and Panagrolaimidae were enhanced under minimum tillage by 44% in 

experiment 1 and 88% in experiment 2 when compared to plough tillage (unpublished data). In 

contrast to experiment 1, the recent  disturbances in the minimum tillage system in experiment 2 

due to potato production, i.e. tillage for planting, fertilization with nitrogen rich mulch and 

harvesting tillage likely fostered enrichment opportunists, i.e. bacterivorous nematodes of 

Rhabditidae and Panagrolaimidae [18,19]. This is confirmed by a study from Canada, where 

conservation tillage resulted in 17.5% to 119% higher numbers of bacterivorous nematodes  

(Rhabditidae and Diplogasteridae) compared to conventional tillage after potato cropping [48]. The 

lower Cmic/Nmic ratios under minimum compared to plough tillage (Table 3) also suggest a dominance 

of bacteria over fungi. This is in contrast to lower bacteria:fungi ratios observed under minimum 

tillage compared to plough tillage systems under similar climatic conditions [49]. The fact that in the 

study of Kuntz et al. [49] the assessment had been performed eight months after the last tillage 

operation could have led to a general succession from bacterial to fungal break down of residues. 

According to Bongers and Bongers [18] the number of Rhabditidae and Panagrolaimidae in soil will 

decline with decreasing nutrient availability and microbial activity, while the general opportunistic 

Cephalobidae will become dominant. This occurred in the minimum tillage system in experiment 1, 

16 months after the last mulch application. Further succession under minimum tillage will likely 

result in fungal breakdown of crop residues and thus in an increase of opportunistic fungivorous 

nematode families (Aphelenchoididae, Aphelenchidae) [18,20]. A similar situation likely occurred in 

the plough tillage system without mulch fertilization in experiment 1, where the number of 

fungivorous nematodes was twice as high as bacterivorous nematodes (234 nematodes 100 ml soil-1, 

unpublished). The greater relative abundance of fungivorous as well as omnivorous/predatory 

nematodes under plough tillage compared to minimum tillage was also observed in a study that 

compared a no-till with a plough system in a maize-soy bean rotation [50]. 

The massively enhanced pea biomass production under minimum tillage in the greenhouse 

assay could be expected based on the generally higher macro- and micronutrient levels compared to 

the plough-based system. The strongly positive effects of compost fertilization under minimum 

tillage could neither be related to differences in nutrient composition nor to biological properties. 

Suppression of P. penetrans did not play a role in this context as its numbers were generally highest 

under minimum tillage with compost. It is likely that the nematode benefitted from higher root 

masses and plant nourishment in this treatment. At Corg contents of <1.4%, the application of 4 t ha-1 

of composted pig manure reduced P. penetrans by on average 87% in two pot experiments cropped 

with sugar beets [51]. Conditions were similar in the plough system in our study but the reduction of 

P. penetrans in the compost treated soil was only 25%. In contrast, the root lesion severity was only 

reduced under minimum tillage with compost. These lesions were likely caused by soil inhabiting 

and pea pathogenic fungi that were commonly found in soils of the study site [14,30]. The negative 

correlation of root lesion severity and pea biomass production in this study suggests that soil health 

under minimum tillage with compost fertilization is overall increased. This was also directly 

translated into a greater soil fertility in terms of pea biomass production. As pointed out above, under 

field conditions when there is a lack of rainfall, effects of the mulch and increased soil organic matter 

contents on water retention may lead to further advantages in practice.  

Especially bacterivorous and fungivorous nematodes contribute to soil fertility as decomposers 

that release nitrogen to the soil [52,53]. Both feeding types accounted for 50% and 65% of the total 

nematode community in experiment 1 and 2, respectively, which highlighted their importance for 

nutrient turnover and thus pea production in our study. Across the globe, organic carbon that is 

commonly used as indicator of soil fertility was found as one of the main drivers of nematode 

abundance [15,54]. This was also observed for bacterivorous nematodes in both field experiments in 
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our study. However, the fungivorous:bacterivorous nematode ratio was negatively correlated with 

pea dry matter yields in experiment 2, which emphasizes that bacterivorous nematodes were more 

reliable indicators of soil fertility than fungivorous nematodes. This is further expressed by the strong 

positive correlations of bacterivorous nematodes and pea biomass production in both field 

experiments (Figure 3). Also, the strong correlations of bacterivorous nematodes with microbial 

biomass and microbial respiration in both field experiments highlights their usefulness as indicators 

of a microbially active soil. The fact that predominantly bacterivorous nematodes are categorized into 

the group of enrichment opportunists [18,55] further strengthen our hypothesis that these are 

important indicators of soil fertility. 

5. Conclusions 

We conclude that minimum tillage accompanied by regular mulch applications in a system with 

frequent and diverse use of cover crops in the rotation provides a promising management strategy 

for sustainable organic crop production. Soil fertility can be improved when converting to minimum 

tillage, even under organic conditions, if the system is properly adapted. Clearly, organic inputs are 

crucial for success. Soil fertility could be related to a number of chemical and biological soil indicators 

that, in turn, were positively correlated with pea biomass. This was achieved through a complete 

revision and adaptation of the organic farming system when converting to minimum tillage. Such a 

process is comparable to the conversion from conventional to organic farming. Considering the still 

increasing Cmic under minimum tillage and its strong correlation with pea biomass production, 

further soil fertility improvements can be expected if the system is maintained further. The results 

suggest an accumulation of an increasing pool of active organic matter, i.e. the pool of soil fauna 

excluding their resting stages and dead organisms, under minimum tillage that not only explains the 

higher microbial respiration in soil but also the higher pea biomass production compared to the 

plough tillage system. We therefore hypothesize that this particular minimum tillage system based 

on maximum use of cover crops and additional transferred mulch to potatoes fosters microbial 

nutrient turnover from the labile C pool and thus, improves plant nutrition and plant growth.  

In general, the use of compost as organic fertilizer should be preferred over mineral fertilization 

as together with compost relevant micronutrients are supplied to the system. However, compost 

improved only few chemical and biological soil properties in the plough and almost none in the 

minimum tillage systems. The latter was quite surprising as compost application to the minimum 

tillage system resulted in the highest pea biomass under controlled conditions. Indeed, compost 

reduced the disease severity of root and stem root of the peas and, in soils with low organic carbon 

contents, likely improved the resilience towards the resident pest P. penetrans. Additional physical, 

chemical, and biological soil properties besides those investigated in our study may also play a role 

and need to be investigated to fully understand the management-soil-plant interactions studied here. 

In addition, the overall resilience of the management systems towards important biotic (fungal 

pathogens) and abiotic (drought, heat) stressors need to be investigated in order to fully understand 

the ecosystem services provided by the system. 

The simple assessment of free-living nematodes and their classification into feeding types 

provides a useful indicator for soil fertility. Thus, the bacterivorous nematodes were equivalent 

indicators of soil fertility than other typically used parameters such as Corg, Cmic, microbial respiration, 

and macronutrients. Of course, such analyses could be considerably strengthened by more detailed 

nematological investigations. The low laboratory equipment cost for simple free-living nematode 

assessments, e.g. nematodes can easily be obtained from Oostenbrink dishes, Baermann funnels, or 

Cobb’s sieves and counted and classified into feeding types under a microscope at 40x magnification 

[26], is an additional advantage of using nematodes as bioindicators. Nematode specific indices, such 

as maturity, channel, and structure indices as well as metabolic footprints will provide more details 

about the faunal composition that influences the fertility and resilience status of a soil [19,52,56]. The 

nematodes’ key positions in the soil food web will thus allow to track the different carbon pathways 

in the soil without the use of expensive and specialized equipment, such as needed for phospholipid 

fatty acid, chloroform fumigation, ergosterol, and other extractions. However, detailed taxonomic 
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knowledge is required to identify the free-living nematodes to the family and genus levels. In 

addition, identification to the species level by using molecular methods will give a detailed overview 

of the contribution of single species to a certain ecosystem service, such as plant production, disease 

suppression or resilience. In accordance with many other studies, our results clearly demonstrate that 

nematodes harbor a great potential for characterization of management effects. 

Author Contributions: Conceptualization, J.H.S., M.R.F., J.H.; methodology, M.R.F., J.H., J.H.S.; investigation, 

J.H.S.; formal analysis, J.H.S.; writing –original draft, J.H.S.; writing –review & editing, J.H., M.R.F., J.H.S.; 

funding acquisition, J.H.S., M.R.F.; resources, M.R.F. and J.H. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German 

Research Foundation) – Project no. 420414676: “The self-regulatory potential of agro-ecosystems: 

Using nematodes as indicators for legume disease suppressive soils”, by the European Union FP7 

Project n.289277: OSCAR (Optimising Subsidiary Crop Applications in Rotations), and by the 

German BMBF Project no: 031A350C: INSUSFAR (Innovative approaches to optimize genetic 

diversity for sustainable farming systems of the future). 

Acknowledgments: The authors would like to thank Matthias von Ahn and Leonard Theisgen for 

their excellent assistance in nematode extraction and count, as well as Elsa Zwicker and Keo Sasha 

Rigorth for their excellent support in microbial biomass and activity assessments. Furthermore, the 

authors would like to thank Stephan Junge for provision of potato yield data and field pictures.  

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design 

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or 

in the decision to publish the results”.  

References 

1.  Vincent-Caboud, L.; Casagrande, M.; David, C.; Ryan, M.R.; Silva, E.M.; Peigne, J. Using mulch 

from cover crops to facilitate organic no-till soybean and maize production. A review. Agron. 

Sustain. Dev. 2019, 39, 45, doi:10.1007/s13593-019-0590-2. 

2.  Finckh, M.R.; van Bruggen, A.H.C. Organic production of annual crops. In Plant Diseases and 

their Management in Organic Agriculture; Finckh, M.R., van Bruggen, A.H.C., Tamm, L., Eds.; 

American Phytopathological Society: St. Paul, MN, 2015; pp. 25–32 ISBN 978-0-89054-476-1. 

3.  Cooper, J.; Baranski, M.; Stewart, G.; Lange, M.N.; Bàrberi, P.; Fließbach, A.; Peigné, J.; Berner, 

A.; Brock, C.; Casagrande, M.; et al. Shallow non-inversion tillage in organic farming maintains 

crop yields and increases soil C stocks: a meta-analysis. Agron. Sustain. Dev. 2016, 36, 1–20, 

doi:10.1007/s13593-016-0354-1. 

4.  Vann, R.A.; Reberg-Horton, S.C.; Poffenbarger, H.J.; Zinati, G.M.; Moyer, J.B.; Mirsky, S.B. 

Starter fertilizer for managing cover crop-based organic corn. Agron J 2017, 109, 2214–2222, 

doi:10.2134/agronj2016.09.0506. 

5.  Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced soil quality with 

reduced tillage and solid manures in organic farming – a synthesis of 15 years. Sci Rep 2020, 10, 

4403, doi:10.1038/s41598-020-61320-8. 

6.  Junge, S.M.; Storch, J.; Finckh, M.R.; Schmidt, J.H. Developing organic minimum tillage farming 

systems for Central and Northern European conditions. In No-till Farming Systems for Sustainable 

Agriculture: Challenges and Opportunities; Dang, Y.P., Dalal, R.C., Menzies, N.W., Eds.; Springer-

Nature (in press): Amsterdam, 2020; p. 11 ISBN 978-3-030-46408-0. 

7.  Peigné, J.; Vian, J.-F.; Payet, V.; Saby, N.P.A. Soil fertility after 10 years of conservation tillage 

in organic farming. Soil Tillage Res 2018, 175, 194–204, doi:10.1016/j.still.2017.09.008. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2020                   doi:10.20944/preprints202007.0677.v1

Peer-reviewed version available at Sustainability 2020, 12, 6730; doi:10.3390/su12176730

https://doi.org/10.20944/preprints202007.0677.v1
https://doi.org/10.3390/su12176730


Sustainability 2020, 12, x FOR PEER REVIEW 17 of 20 

8.  Mirsky, S.B.; Ryan, M.R.; Curran, W.S.; Teasdale, J.R.; Maul, J.; Spargo, J.T.; Moyer, J.; 

Grantham, A.M.; Weber, D.; Way, T.R.; et al. Conservation tillage issues: Cover crop-based 

organic rotational no-till grain production in the mid-Atlantic region, USA. Renew. Agr. Food 

Syst 2012, 27, 31–40, doi:10.1017/S1742170511000457. 

9.  Papp, R.; Marinari, S.; Moscatelli, M.C.; van der Heijden, M.G.A.; Wittwer, R.; Campiglia, E.; 

Radicetti, E.; Mancinelli, R.; Fradgley, N.; Pearce, B.; et al. Short-term changes in soil 

biochemical properties as affected by subsidiary crop cultivation in four European pedo-

climatic zones. Soil Tillage Res 2018, 180, 126–136, doi:10.1016/j.still.2018.02.019. 

10.  Schmidt, J.H.; Junge, S.; Finckh, M.R. Cover crops and compost prevent weed seed bank 

buildup in herbicide-free wheat–potato rotations under conservation tillage. Ecol. Evol. 2019, 9, 

2715–2724, doi:10.1002/ece3.4942. 

11.  Döring, T.F.; Lynch, D.H. Organic potato cultivation. In Achieving sustainable cultivation of 

potatoes; Wang-Pruski, G., Ed.; Burleigh Dodds series in agricultural science; Burleigh Dodds 

Science Publishing: Cambridge, UK, 2018; pp. 89–118 ISBN 978-1-78676-100-2. 

12.  Finckh, M.R.; Yli-Mattila, T.; Nykänen, A.; Kurki, P.; Hannukkala, A. Organic temperate legume 

disease management. In Plant Diseases and their Management in Organic Agriculture; Finckh, M.R., 

van Bruggen, A.H.C., Tamm, L., Eds.; American Phytopathological Society: St. Paul, Minn, 

2015; pp. 293–310 ISBN 978-0-89054-476-1. 

13.  Litterick, A.M.; Harrier, L.; Wallace, P.; Watson, C.A.; Wood, M. The role of uncomposted 

materials, composts, manures, and compost extracts in reducing pest and disease incidence and 

severity in sustainable temperate agricultural and horticultural crop production—a review. 

CRC Crit Rev Plant Sci 2004, 23, 453–479, doi:10.1080/07352680490886815. 

14.  Baćanović-Šišić, J.; Šišić, A.; Schmidt, J.H.; Finckh, M.R. Identification and characterization of 

pathogens associated with root rot of winter peas grown under organic management in 

Germany. Eur. J. Plant Pathol. 2018, 151, 745–755, doi:10.1007/s10658-017-1409-0. 

15.  Stirling, G.R. Biological control of plant-parasitic nematodes: An ecological perspective, a 

review of progress and opportunities for further research. In Biological Control of Plant-Parasitic 

Nematodes; Davies, K., Spiegel, Y., Eds.; Progress in Biological Control; Springer: Dordrecht, 

Heidelberg, London, New York, 2011; pp. 1–38 ISBN 978-1-4020-9648-8. 

16.  Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; 

Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality – A critical review. Soil Biol. Biochem. 

2018, 120, 105–125, doi:10.1016/j.soilbio.2018.01.030. 

17.  Bongers, T. The maturity index: an ecological measure of environmental disturbance based on 

nematode species composition. Oecologia 1990, 83, 14–19, doi:10.1007/BF00324627. 

18.  Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251, 

doi:10.1016/S0929-1393(98)00123-1. 

19.  Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental 

monitoring. Trends Ecol. Evol. 1999, 14, 224–228, doi:10.1016/S0169-5347(98)01583-3. 

20.  Neher, D.A. Ecology of plant and free-living nematodes in natural and agricultural soil. Annu 

Rev Phytopathol 2010, 48, 371–394, doi:10.1146/annurev-phyto-073009-114439. 

21.  Schmidt, J.H.; Finckh, M.R.; Hallmann, J. Oilseed radish/black oat subsidiary crops can help 

regulate plant-parasitic nematodes under non-inversion tillage in an organic wheat-potato 

rotation. Nematology 2017, 19, 1135–1146, doi:10.1163/15685411-00003113. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2020                   doi:10.20944/preprints202007.0677.v1

Peer-reviewed version available at Sustainability 2020, 12, 6730; doi:10.3390/su12176730

https://doi.org/10.20944/preprints202007.0677.v1
https://doi.org/10.3390/su12176730


Sustainability 2020, 12, x FOR PEER REVIEW 18 of 20 

22.  VDLUFA Methodenbuch Band I Böden; 4th ed.; VDLUFA: Darmstadt, 1991; ISBN 978-3-941273-

13-9. 

23.  Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial 

biomass C. Soil Biol. Biochem. 1987, 19, 703–707, doi:10.1016/0038-0717(87)90052-6. 

24.  Joergensen, R.G. The fumigation-extraction method to estimate soil microbial biomass: 

Calibration of the kEC value. Soil Biol. Biochem. 1996, 28, 25–31, doi:10.1016/0038-0717(95)00102-

6. 

25.  Joergensen, R.G.; Mueller, T. The fumigation-extraction method to estimate soil microbial 

biomass: Calibration of the kEN value. Soil Biol. Biochem. 1996, 28, 33–37, doi:10.1016/0038-

0717(95)00101-8. 

26.  Hallmann, J.; Subbotin, S.A. Methods for extraction, processing and detection of plant and soil 

nematodes. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 3rd Edition; Sikora, 

R.A., Coyne, D., Hallmann, J., Timper, P., Eds.; CABI: Boston, MA, 2018; pp. 87–119 ISBN 978-

1-78639-124-7. 

27.  Bongers, T. De nematoden van Nederland: een identificatietabel voor de in Nederland aangetroffen 

zoetwater- en bodembewonende nematoden; Natuurhistorische Bibliotheek van de KNNV; 2. druk.; 

Stichting Uitg. KNNV: Utrecht, 1994; ISBN 978-90-5011-015-0. 

28.  Sieriebriennikov, B.; Ferris, H.; de Goede, R.G.M. NINJA: An automated calculation system for 

nematode-based biological monitoring. Eur. J. Soil Biol. 2014, 61, 90–93, 

doi:10.1016/j.ejsobi.2014.02.004. 

29.  Castillo, P.; Trapero-Casas, J.L.; Jiménez-Díaz, R.M. Effect of time, temperature, and inoculum 

density on reproduction of Pratylenchus thornei in carrot disk cultures. J Nematol 1995, 27, 120–

124. 

30.  Šišić, A.; Baćanović-Šišić, J.; Karlovsky, P.; Wittwer, R.; Walder, F.; Campiglia, E.; Radicetti, E.; 

Friberg, H.; Baresel, J.P.; Finckh, M.R. Roots of symptom-free leguminous cover crop and living 

mulch species harbor diverse Fusarium communities that show highly variable aggressiveness 

on pea (Pisum sativum). PLOS ONE 2018, 13, e0191969, doi:10.1371/journal.pone.0191969. 

31.  Pflughöft, O. Pilzkrankheiten in Körnerfuttererbsen (Pisum sativum L.) - Diagnose, 

Epidemiologie, Ertragsrelevanz und Bekämpfung. Doctoral thesis, Georg-August-Universität: 

Göttingen, 2008. 

32.  R Core Team R: A Language and Environment for Statistical Computing; R Foundation for 

Statistical Computing: Vienna, Austria, 2019; 

33.  Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; authors, E.; Heisterkamp, S.; Willigen, B.V.; R-core 

nlme: Linear and nonlinear mixed effects models; 2017; 

34.  Lenth, R. emmeans: Estimated marginal means, aka least-squares means; 2019; 

35.  Fox, J.; Weisberg, S. An R companion to applied regression; 2nd ed.; SAGE Publications: Thousand 

Oaks, Calif, 2011; ISBN 978-1-4129-7514-8. 

36.  Zuur, A.; Leno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed effects models and extensions 

in ecology with R; Statistics for Biology and Health; Springer-Verlag: New York, 2009; ISBN 978-

0-387-87457-9. 

37.  Harrell Jr., F.E. Hmisc: Harrell Miscellaneous; 2020; 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2020                   doi:10.20944/preprints202007.0677.v1

Peer-reviewed version available at Sustainability 2020, 12, 6730; doi:10.3390/su12176730

https://doi.org/10.20944/preprints202007.0677.v1
https://doi.org/10.3390/su12176730


Sustainability 2020, 12, x FOR PEER REVIEW 19 of 20 

38.  Finckh, M.R.; Junge, S.; Schmidt, J.H.; Weedon, O.D. Disease and pest management in organic 

farming: a case for applied agroecology. In Improving Organic Crop Cultivation; Kopke, U., Ed.; 

Burleigh Dodds Science Publishing, 2018 ISBN 978-1-78676-184-2. 

39.  Gadermaier, F.; Berner, A.; Fließbach, A.; Friedel, J.K.; Mäder, P. Impact of reduced tillage on 

soil organic carbon and nutrient budgets under organic farming. Renew. Agr. Food Syst 2012, 27, 

68–80, doi:10.1017/S1742170510000554. 

40.  Neugschwandtner, R.W.; Liebhard, P.; Kaul, H.-P.; Wagentristl, H. Soil chemical properties as 

affected by tillage and crop rotation in a long-term field experiment. Plant Soil Environ. 2014, 60, 

57–62, doi:10.17221/879/2013-PSE. 

41.  George, E.; Horst, W.J.; Neumann, E. Adaptations of plants to adverse chemical soil conditions. 

In Marschner’s Mineral Nutrition of Higher Plants; Marschner, H., Marschner, P., Eds.; 

Elsevier/Academic Press: London ; Waltham, MA, 2012; pp. 409–472 ISBN 978-0-12-384905-2. 

42.  Carr, P.; Gramig, G.; Liebig, M.A. Impacts of organic zero tillage systems on crops, weeds, and 

soil quality. Sustainability 2013, 5, 3172–3201, doi:10.3390/su5073172. 

43.  Redondo‐Nieto, M.; Wilmot, A.R.; El‐Hamdaoui, A.; Bonilla, I.; Bolaños, L. Relationship 

between boron and calcium in the N2-fixing legume–rhizobia symbiosis. Plant Cell Environ. 

2003, 26, 1905–1915, doi:10.1046/j.1365-3040.2003.01107.x. 

44.  Kandeler, E.; Böhm, K.E. Temporal dynamics of microbial biomass, xylanase activity, N-

mineralisation and potential nitrification in different tillage systems. Appl. Soil Ecol. 1996, 4, 181–

191, doi:10.1016/S0929-1393(96)00117-5. 

45.  Sparling, G. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of 

changes in soil organic matter. Aust J Soil Res 1992, 30, doi:10.1071/SR9920195. 

46.  Haynes, R.J. Size and activity of the soil microbial biomass under grass and arable management. 

Biol Fertil Soils 1999, 30, 210–216, doi:10.1007/s003740050610. 

47.  Wang, W.J.; Dalal, R.C.; Moody, P.W.; Smith, C.J. Relationships of soil respiration to microbial 

biomass, substrate availability and clay content. Soil Biol. Biochem. 2003, 35, 273–284, 

doi:10.1016/S0038-0717(02)00274-2. 

48.  Carter, M.R.; Noronha, C.; Peters, R.D.; Kimpinski, J. Influence of conservation tillage and crop 

rotation on the resilience of an intensive long-term potato cropping system: Restoration of soil 

biological properties after the potato phase. Agric Ecosyst Environ 2009, 133, 32–39, 

doi:10.1016/j.agee.2009.04.017. 

49.  Kuntz, M.; Berner, A.; Gattinger, A.; Scholberg, J.M.; Mäder, P.; Pfiffner, L. Influence of reduced 

tillage on earthworm and microbial communities under organic arable farming. Pedobiologia 

2013, 56, 251–260, doi:10.1016/j.pedobi.2013.08.005. 

50.  Neher, D.A.; Nishanthan, T.; Grabau, Z.J.; Chen, S.Y. Crop rotation and tillage affect nematode 

communities more than biocides in monoculture soybean. Appl. Soil Ecol. 2019, 140, 89–97, 

doi:10.1016/j.apsoil.2019.03.016. 

51.  Renčo, M.; Kováčik, P. Response of plant parasitic and free living soil nematodes to composted 

animal manure soil amendments. J Nematol 2012, 44, 329–336. 

52.  Ferris, H. Contribution of nematodes to the structure and function of the soil food web. J 

Nematol 2010, 42, 63–67. 

53.  Hallmann, J.; Kiewnick, S. Diseases caused by nematodes in organic agriculture. In Plant 

Diseases and their Management in Organic Agriculture; Finckh, M.R., van Bruggen, A.H.C., Tamm, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2020                   doi:10.20944/preprints202007.0677.v1

Peer-reviewed version available at Sustainability 2020, 12, 6730; doi:10.3390/su12176730

https://doi.org/10.20944/preprints202007.0677.v1
https://doi.org/10.3390/su12176730


Sustainability 2020, 12, x FOR PEER REVIEW 20 of 20 

L., Eds.; American Phytopathological Society: St. Paul, MN, 2015; pp. 91–105 ISBN 978-0-89054-

476-1. 

54.  van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; Goede, 

R.G.M. de; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S.; et al. Soil nematode abundance and 

functional group composition at a global scale. Nature 2019, 572, 194–198, doi:10.1038/s41586-

019-1418-6. 

55.  Ferris, H.; Bongers, T.; de Goede, R.G.M. A framework for soil food web diagnostics: extension 

of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29, doi:10.1016/S0929-

1393(01)00152-4. 

56.  Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil 

Biol. 2010, 46, 97–104, doi:10.1016/j.ejsobi.2010.01.003. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2020                   doi:10.20944/preprints202007.0677.v1

Peer-reviewed version available at Sustainability 2020, 12, 6730; doi:10.3390/su12176730

https://doi.org/10.20944/preprints202007.0677.v1
https://doi.org/10.3390/su12176730

