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Abstract

This paper addresses the fate of extended space-time symmetries, in particular confor-
mal symmetry and supersymmetry, in two-dimensional Rindler space-time appropri-
ate to a uniformly accelerated non-inertial frame in flat 14+1-dimensional space-time.
Generically, in addition to a conformal co-ordinate transformation, the transforma-
tion of fields from Minkowski to Rindler space is accompanied by local conformal and
Lorentz transformations of the components, which also affect the Bogoliubov trans-
formations between the associated Fock spaces. I construct these transformations for
massless scalars and spinors, as well as for the ghost and super-ghost fields necessary
in theories with local conformal and supersymmetries, as arising from coupling to 2-D
gravity or supergravity. Cancellation of the anomalies in Minkowski and in Rindler
space requires theories with the well-known critical spectrum of particles arising in
string theory in the limit of infinite strings, and is relevant for the equivalence of
Minkowski and Rindler frame theories.
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1 Introduction

Conformal field theories have become an important tool in our theories of nature,
both in the context of particle physics and quantum gravity and in the context of
condensed matter [1, 2, 3]. Conformal field theories in two dimensions are espe-
cially relevant in string theory [4], the AdS;-CFT correspondence and condensed
matter [5, 6], and as a model for quantum field theories also in higher dimensions.

Effectively conformal field theories in two space-time dimensions can be for-
mulated as theories of massless fields in a Minkowski background. This is the
point of view used for practical purposes in the present paper. In fact our fo-
cus is on the description of these theories in a non-standard frame: that of a
uniformly accelerated observer [7]. The interest in this frame stems from the
non-inertial effects which manifest themselves in the presence of a horizon and
finite-temperature behaviour: the Unruh effect [8, 9, 10, 11], a counterpart of the
Hawking effect in black-hole space-times [12, 13] and in cosmology [14]. More
generally it has been found that free field theories in Rindler space describe the
near-horizon behaviour of quantum field theories in the presence of black holes,
which is particularly relevant in the context of AdS-CFT correspondence [15].
Extensive reviews of field theories in Rindler space can be found in refs. [16, 17].

In two space-time dimensions local conformal transformations can be used to
cast the line element in the form

ds® = p*(x) n,datda”, (1)

where 7),,, is the flat Minkowski metric and p?(z) is the conformal factor, which is
constrained by the topology. In the present paper we restrict ourselves to inertial
observers in infinite flat Minkowski space for which p*(z) = 1, and to accelerated
observers in the associated Rindler space, a subset of Minkowski space consisting
of two branches: the right and left Rindler wedges R and L, defined by

R: r>0 and —z<t<u

(2)

L: <0 and z<t< —=x.

Each wedge is parametrized by a conformally flat metric in terms of co-ordinates
(7,€) associated with an accelerated observer:

1 1 .
R: z=-e%coshar, t = — e sinhar,
a a

(3)

a a

1 :
L: xz=—-—=e¢%coshar, t=—-e “sinhar.
a a

In this parametrization the line element is of the form (1) with conformal factor
__ ,*ak.
p = e%:
R: ds?= 2% (—dr? + d€?),
(4)
L: ds?=e 28 (—dr? +d€?).
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The parameter a in the co-ordinate transformation represents the proper accela-
ration in the Minkowski frame of a body with Rindler co-ordinate £ = 0 at the
moment it crosses the z-axis. It can be absorbed in a further rescaling of the
Rindler co-ordinates (7, &) by 1/a and a shift of £ by &, = Ina; as a result the line
element reduces to (4) with a = 1. This is our standard choice in the following.
In all of this paper units are chosen such that ¢ = h = 1.

2. Massless fields in 2-D Minkowski space

To fix conventions and for later reference, in this section we briefly review free field
theories of massless scalar fields (bosons) and massless spinor fields (fermions) in
2-D Minkowski space. The theory of a real, free scalar field ¢(x) is defined by
the action

1
5= / 2 [(0,0)" — (9e0)?] - (5)
M
The solutions of the associated Klein-Gordon equation

are superpositions of left- and right-moving fields

p(t, ) = @it +2) + o (t =), (7)

For definiteness in the following we concentrate on left-moving fields p,. Its
conjugate field momentum is 7, = Jyp,, and the time-evolution of all functionals

of the field is governed by the hamiltonian
1 oo
H=j [ dolet+(@00]. ®)

using the equal-time commutation relation

[o4(t,2), mi (t,y)] = i0(x —y). (9)

In a plane-wave basis the field is expanded as

< dk , .
g0+(t + x) = /0 T (ake—zk(t-i-x) + azezk(t-i-x)) , (10)

the domain of momenta k for left-moving fields being [0,00). The plane-wave
mode operators are defined inversely by

7 o0 . - 7 o0 ) -
ap = —— dz e+ 9, 0. a; = ——— / dx e k) 5 . (11
SV /_oo L SNV +or (1)

The commutation relation (9) is equivalent to

[ak, ay] = 2m6(k — q), (12)

2
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and the hamiltonian after normal-ordering is

< dk . .
: Hb L= /0 %kakak. (13)

Finally the ground state of the field is the bosonic Minkowski vacuum |0),:

Next we discuss spinor fields, using the conventions collected in appendix A. A
general Dirac spinor is a complex 2-component object; however, 2-D Minkowski
space-time allows Majorana-Weyl spinors which are real single-component ob-
jects representing left- or right-moving solutions of the massless Dirac equation.
Indeed, in the Majorana representation making use of the charge conjugation
operator C' the Dirac action takes the diagonal form

l

2. \T o O — 0, 0
S Q/de)\ Cad N, C’@—( 0 at+ax>. (15)

and for a 2-component Majorana spinor

T | A
A=C\ _{A :

the associated Dirac equation splits into independent equations
(O — 0) Ay =0, (Op + 0x) A =0, (16)

representing separate left- and right moving fields. Again, for definiteness we
concentrate on left-moving fields Ay (¢ 4+ x). The time-evolution of functionals of
this field is governed by the hamiltonian

Hf:%/ A AL O\, (17)

and the equal-time anticommutation relation

Defining the plane-wave expansion by
_ OO % —ik(t+x) * _ik(t+x)
Ap(t+ ) (e + aje ), (19)
0 2m
with inverse
i > i < * 4 ~ —1 T =
W= o /oo dee™ ™ 9 dr, af=—gp [ dweT D on, (20)


https://doi.org/10.20944/preprints202007.0676.v1
https://doi.org/10.3390/universe6090144

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 July 2020

the anti-commutation relations translate to
{ow, 0} = 2m6(k — q). (21)

After normal-ordering the hamiltonian (17) becomes

*dk
:Hf::/O %kakak, (22)

with ground state the fermionic Minkowski vacuum |0)
Vk : Oék|0>f =0. (23)

The theory of a combined massless scalar and spinor possesses supersymmetry.
The combined hamiltonian

< dk
H::Hb:—l—:Hf::/ — k (apar + agog) (24)
0 2m
allows a square root
< dk
Q = / %\/E (a}iozk + a,’;ak) y (25)
0

such that Q* = H and [@, H] = 0. The supersymmetry transformations of the
mode operators have the standard form

lar, Q) = Vkay, [0}, Q] = —Vkoj,

(26)
{o, @t = Vkar, {0f,Q} = Vkaj.
The common Minkowski vacuum |0); = |0), ® |0) s is supersymmetric:
Q[0)r = 0. (27)

It is straightforward to generalize the contructions to theories of a larger num-
ber of bosons and fermions. With equal numbers of N bosons and N fermions
there are in general N! supersymmetries, associating every boson with each of
the fermions, as at this point the various boson and fermion fields are indistin-
guishable and related by an O(N) ® O(N) symmetry.

3. Massless fields in 2-D Rindler space

Two-dimensional Rindler space is the space-time described by the metric (1),
with the conformal factor specified for the left and right wedges by (4). It is
therefore obvious, that in Rindler space

V=gg" =n".

d0i:10.20944/preprints202007.0676.v1
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Moreover the scalar field in the Rindler frame is related to the original Minkowski
field by the co-ordinate transformation (3): pgr(7,§) = @[t(,£),z(1,§)]. It fol-
lows that the action for scalar fields in Rindler space is formally identical to that
in Minkowski space:

S = | drds [(0r0)" = (0c0)"] (28)
which holds both in the right and left wedge of Rindler space, independent of
the different conformal factors p = e*®. Concentrating again on the left-moving
solutions of the associated Klein-Gordon equation and following the same proce-
dures as described for bosons in section 2, we can repesent them in terms of the
plane-wave expansion

*  dk . .
T+E) = boe T prein(rre)) | 29
SOR—&-( 5) /O QW\/ﬂ ( ) ( )
where
i o0 A “ 1 e , o
by = —— dee™ ™) 9 Ry, b= ——— de e ") 9 ppy. (30
\/ﬁ /oo 5 PR+ K \/ﬁ . f PR+ ( )

Free-field dynamics is generated by introducing the hamiltonian
< d
Hiy — / O (b + bl (31)
o 4m
together with the commutation relation
by, 05] =270 (k — o). (32)

Standard procedure would replace Hg;, by its normal-ordered form, but normal
ordering is now ambiguous as the result is different in terms of the mode operators
(b, b)) or in terms the original mode operators (ax,a;). Indeed, the Rindler
vacuum |0) g, defined by

bi|0) Ry = 0, (33)

is not the same as the bosonic vacuum |0);, in the original Minkowski space, as
discussed below.

Translating the free fermion theory to Rindler space is somewhat more involved.
Starting from the Dirac-Majorana action on a general space-time manifold M

i 1
S/Vlf - 5 /M dzx \/__gATOZp)\a LD = ’yaecltl (aﬂ o 5 w;bO'ab> ! <34)

where e/ is the inverse 2-bein, w/‘jb the associated spin connection and o, the
generators of 2-D Lorentz transformations in tangent spinor space; as explained
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in appendix A we find that in a conformally flat space-time (1) the Dirac operator
in the Majorana representation takes the form

vEaen =i F % 0, ) v (3)

In addition, the transformation from Minkowski to Rindler co-ordinates also re-
quires a T-dependent Lorentz transformation of the spinor fields; this is also
explained in appendix A. The upshot is, that upon redefining the spinor fields in
the R- and L-wedge of Rindler space by

R: %Zii (7_7 6) = eia(Tié)/Q)\:l: [t(Ta 5)7 ZE(T, 5)]7
(36)
L: ¢u(r,§) = T ORAH(r, §), 2(r, €],

the Dirac-Majorana action in a conformally flat space-time like Rindler space
reduces to
7
Sy =5 [ drd€ (v (0 = 0 v+ v (0, +06) -], (37)
R

The spinor fields ¢4 have the same formal properties in Rindler space as the
spinor fields A+ in Minkowski space; concentrating on the left-moving field we
introduce the plane-wave expansion

> d ) .
¢+(7' + g) — / _/i (BHB—M(T-FS) + 6’:615(74-5)) ’ (38)
0 2m
where
BN = L / dz em(“ri) 87' er? 6: = _L dx e_m(T-i_é) 37’ ¢+- (39)
26 J_o 25k J_ oo
In terms of mode operators the dynamics is defined by the hamiltonian
> dk . .
Hoy= [ r(8i6. — 5.5, (40)
o 4

and the anti-commutator

{Br, 55} = 2m0(k — 0). (41)

Again, in the pure-fermion theory we renounce normal ordering in view of its
ambiguity. However, in the special case of a supersymmetric theory with equal
numbers of bosons and fermions the normal-ordering contributions of bosons and
fermions cancel, and therefore normal ordering becomes unambiguous. In that
case we can take the full hamiltonian to be

* dk
Hpr = Hpy + Hgy :/ %“(b:bm+5:5n)- (42)
0

6
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Clearly it is unique owing to the existence of the supercharge

~d
Qr= | GoVROB+ Bib). (43)

0
with the algebraic properties

Q% = Hp, [Qr, Hg] = 0. (44)

4. Relating Rindler and Minkowski fields

In the Rindler wedges the field theories of section 2 and section 3 are related by the
co-ordinate transformation (3); they describe the same physics in different frames:
with respect to an inertial observer using the Minkowski metric, or with respect
to an accelerated observer using the conformally flat metrics (4). Therefore also
the Hilbert spaces and the observables in the two descriptions are related; the
relation actually is provided by a Bogoliubov transformation between the mode
operators [8, 13, 16, 17, 18, 19].

For the scalar fields the relation is established starting from (30) and inserting
for pgr. its Minkowski space expression, eq. (10). Choosing units to fix a = 1 in
the following and introducing the Minkowski light-cone co-ordinate

r=t4x=c"T (45)

the Rindler mode operators in the R-wedge are expressed in terms of the Minkowski
ones by

< dk [*dz :
bre = 27“/% / ?Z 2 [(k+ kz)are ™ + (k — k2)aje™ ],

e /°° dk * dz
fr = 27V 2K Z

*

27 (k= k2)age ™ + (k + k2)aje™] .

(46)
By appropriate choice of contour the integrals over z can be performed in the
complex plane; this leads to

bri = _27TZ\/E (1 + i) /0 dk k3" (are™"? + aje™/?)
(47)
* i : OO —1iik —TK * TR
bRK:mF(l—Zl{)/O dkk’ 2t ( /2+a /2)
A similar calculation for the L-wedge, in which z = —(t + ) = e~ ("% gives
b = sz\/z (1 —ix) /O dk k™3 (™2 4 afe ™)
(48)

* i . > 1 ik —TK * K
LH:_%ﬁr(Hm)/o dk k™27 (ape ™2 + aje™/?) .
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Applying these operators to the bosonic Minkowski vacuum one establishes that

POy = ¢ 0) = —5 =1 i) [ dkkE ),
(49)

e~ 2h%, 10, = e™/2b;,.|0 1— i / dk k2% a1(0),.

Rl 0)6 = |0} = 27r\/_( )0 kl0)s
It follows that the Minkowski vacuum contains Rindler excitations, and that an-
nihilation of an excitation in the right Rindler wedge has the same effect modulo
a factor e™™ as creation of one in the left Rindler wedge, and vice versa.

To relate the excitations of the fermion field in Minkowski and Rindler space we
proceed along similar lines, but with some slight modifications to keep track of
the conformal and local Lorentz transformations relating the fields in the different
observer frames. The starting point is provided by the equations (39), in which
we replace the Rindler spinor field v, by its Minkowski counterpart (36). In the
R-wedge of Rindler space, using the light-cone variable (45), we get

dZ —+m 1 . . —ikz
R 47m/ dk:/ [(2 K zk:z) ape

1
+ (5 — K + zkz) aZe’kz] ,

(50)
dz 1 .
BER = —m dk)/ i %—m |:<§ + 1k — Zk‘Z) O[ke_lkz
1 . . * _1kz
+ §+m+zkz ape .
Performing the integrations over z in the compex plane this yields
, 1 dk
Brn = e~™T <§ + ili) /0 o Jem2 e (akem/Q + tage _7”"/2) ,
(51)

' 1 < dk
0

Similarly in the L-wedge of Rindler space we get after the appropriate modifica-
tions

1 dk
ﬁL _ ewr/4F (5 o Ki) / 2_ kf§+ui (akewn/Z o Z-azefmiﬂ) ’
0 ™

i (52)
Bz,ﬁ = /AT (5 + i/{) / % ]{;_*_m ( ke_ﬂf'i/Q ZO&Z@WH/Q)
0

8
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From this we derive the following relations for the action on the fermionic Minkowski
vacuum:

< dk

—1 ik x
%k 27"ag|0)y,

: 1
T 0) = —ie o) = e (5 i) [
0

- TR T 1 y OOdk —g ik o x
677”{/26;},{“))]‘:@6 /26[//4|O>f: /4I‘ <§—Z/£)/O %/{; 5t Oék|0>f.

(53)

Again, the fermionic Minkowski vacuum contains fermionic Rindler excitations,

with creation of one in the R-wedge being accompanied by annihilation of a
similar one in the L-wedge, and vice versa.

As concerns correlation functions, in free field theories the only non-trivial

correlators are two-point functions. In Minkowski space the elementary ones are

b(0arag|0)y = ;(0larag|0); = 2m6(k — q). (54)

Using the results (49) and (53) in a recursive way [17] one establishes that the
correlators of the Rindler fields in the Minkowski vacuum are

216 (k — o) 218 (k — o)
0|bribR,|0)y = ————, 0|Brefrs10)f = ————, 55
0{01bRebRs 000 = ——— =50 {0 BRsBr10) ¢ e (55)
with identical results for the correlators in the L-wedge. These relations imply

the complementary identities

216 (k — o)

. . 218 (k — o)
OB b0 = TR0 015, ), = TR0

627”{_’_1 ’ <56)

stating that the occupation numbers of Rindler excitations in the Minkowski
vacuum are of thermal Bose-Einstein and Fermi-Dirac type, corresponding to a
state with temperature T'= 1/27; upon restoring the acceleration parameter by
rescaling of the Rindler co-ordinates and momenta the temperature of Minkowski
space observed in a Rindler frame with proper acceleration a is T = a/2w. Details
of the derivation are presented in appendix B.

5. Supersymmetry

As we have seen the supersymmetric theory has a unique Rindler hamiltonian
(42), which is the square of the supercharge (43). In view of the results (56) it is
easily seen to have a divergent Minkowski vacuum expectation value. It follows
automatically that the Rindler supercharge does not annihilate the Minkowski
vacuum: Rindler supersymmetry is broken by finite temperature effects in the
Minkowski vacuum. In contrast, Minkowski supersymmetry generated by the
supercharge (25) does annihilate the Minkowski vacuum as stated by (27).

d0i:10.20944/preprints202007.0676.v1
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One way to deal with this situation it is to regularize the Rindler supercharge
using a symmetric regulator function g(k, o) = g(o, k) and define

:/0 / 2 95,0 (B + B3b) (57)

A straightforward calculations shows that

(;)2 = 2 b*b + 13 5] H 58
Rg /0 / ( 0) Rg> ( )
where

27

This properly regularizes the Rindler supercharge and hamiltonian if ¢ is taken
from a class of functions having a limit

g(k,0) = VEd(Kk — 0), 7 (k,0) = k(K — o). (60)
With such a regulator one easily finds that

m(0|Q%,10) ar = ar (0| Hrg|O)ar

_/‘X’dka 21 1) 1 N 1 _/Ood/i (K, K)
—Jo oI\ e2mv —1 e 1) f, 27 2sinh 27k’

which is a positive number for any acceptable regulator g(x, o).

9*(k,0) :/0 ﬁg(ﬁ mg(n, o). (59)

(61)

6. Conformal symmetries

In addition to the hamiltonian and the supercharge, which are conserved for the
theories in the Minkowski frame, one can construct an infinite set of conformal
charges annihilating the vacuum state which define a continuum generalization
of the Virasoro and super-Virasoro algebra.

The charges, which can be decomposed in contributions from bosons and from
fermions, are labeled by the momentum variable k; for £ > 0 they annihilate the
Minkowski vacuum, being defined for a single boson and fermion field by

dq k dq
LZ :/0 o q(k+q)a; ak+q+/ e q(k —q) QAqQk—q,

0

dg kN . * dgq
L£ :/0 oy (q+ 2) O, Olketq —/0 Eqaqak_q,

whilst those labeled by a negative momentum —£k are the hermitean conjugates
L_j = Lj. Introducing the general notation a_, = aj,, a_j = af, it is possible to

(62)

10
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write these expressions in a short-hand notation using normal ordering:

LY :/ Z_zwqq(q— k)| agak—q :, L£ :/ Z—z (—q—i— g) DO Q—g -
(63)
But apart from the fact that the natural domain of the momentum labels k, ¢ is
[0,00), the normal ordering in Rindler space is ambiguous due to the mixing of
creation an annhihilation operators by the Bogoliubov tranformations, as pointed
out before. This is especially relevant as we intend to compute correlation func-
tions of Rindler operators in the Minkowski vacuum. Therefore we prefer to write
out the explicit expansions (62) rather than using the normal-ordered ones.
The operators (62) satisfy the commutation relations of the Virasoro algebra
with a central charge:

1
(64)

1
LLof] = —orf, + S 0k +1).

The expressions for the central charges are easily verified by the standard proce-
dure of evaluating the vacuum expectation value of the commutator

1 1
501 (L, L 100 = 5 (O] [ LL LT | 00 = 5 K 8k +0).

In supersymmetric Minkowski-frame theories the Virasoro algebra can be ex-
tended by supercharges Gy, defined for a single boson plus fermion field and for
k > 0 by

Gy = / 2_q (\/5 agQhiq +VEk+q azakw) + / _q\/gaq‘lqu? (65)
. T 0 2T

again for negative index G_j;, = GJ. In a theory with a single boson and fermion
the complete set of (anti-)commutation relations with

Ly=L)+ L,
is found to have the standard super-Virasoro form

1
(L, Li) = (k = 1) Ly + 3 k6 (k +1),

[Li, Gi] = (g — l) Gt (66)

1
{Gr, Gi} = 2Lisa + 5 k20 (k +1).

11
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Note that Ly = H is the hamiltonian (24), and Gy = @ is the supercharge (25).
They define a closed anomaly-free subalgebra of the super-Virasoro algebra (66).
Note also that their vacuum expectations vanish:

VhE>0: Lpl0y =0 = 3(0|Li|0)as = ar(0|L_g|0)as = O,
(67)

The same construction also works in the Rindler frame, where in the R-wedge of
Rindler space

*d "d
Lh = / %va(/{ +0) br,brkio + / ﬁ\/()’(li — 0)brobR k-0,
0 0

* do K " do
Lf - - ( —> ; k+o / - o K—0)
Rk /0 o o+ 9 5R0'BR —+ o A UﬁR 6R

> do . . " do
Gre = / G (\/E broBRrto + VE+ UﬂRgmera) + %\/gbRaﬁRﬁ—U;
0 0
(68)
with analogous definitions in the L-wedge. The essential difference with the
Minkowski charges, is that the Rindler operators (68) admit a non-vanishing
expectation value in the Minkowski frame:

b B o o _ 1
Ol 0 = 8() [ do T = ()
(69)
o 1
L - 7 _
M<0| Rli‘())M 5('%)/0 dO' 627ra'+1 48 6('%)7

whilst in the superconformal case
1 {0|GRx|0)ar = 0.

Although one could remove these vacuum expectation values by shifting the
ground-state energy, this would introduce an extra contribution to the central
charge, which is generally not desirable. The singular nature of the expecta-
tion value of the hamiltonian H = Ly in practice requires regularization, as we
discussed in section 5.

7. Ghosts and local conformal symmetry

As is well-known, the line element in any topologically trivial 2-D space-time
can be cast in the form (1) by appropriate co-ordinate transformations. As 2-D
gravity is conformally invariant, but non-dynamical, one can therefore interpret
the boson and fermion field theories discussed above as the gauge-fixed version
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of a gravitational theory with local conformal symmetry. This is the key to
a consistent quantum-theory of strings and superstrings [4]. Local conformal
symmetry turns the generators of the Virasoro algebra into operators imposing

first-class constraints:
Vk>0: Lg|phys) = 0. (70)

These conditions are consistent only if the anomaly vanishes, but the anomaly
now includes a contribution from the Faddeev-Popov ghosts introduced by quan-
tization of the gravitational background as well [20].

In the sector of left-moving fields the dynamics of the anti-commuting gravity
ghosts (C, D) follows from the action

S, =i / d*x D (0, — 0,) C. (71)
M
Following standard procedures one derives the hamiltonian
H, =i / dz DO,C, (72)

supplemented by the equal-time anti-commutation relations

{C(t,z),D(t,y)} = 0(z —y). (73)

From the mode expansions

> dk . .
C(t, CC) = / % (cke_Zk(t+x) + C]:elk(t-‘r:l?)) 7
0

(74)
> dk , ,
D(t,ZL‘) _ / 2_ (dke—zk(t-‘rﬂc) + dzezk(t+$)) 7
0 ™

we derive the anti-commutators of the mode operators:

{ck, di} =2m6(k — q), {di,ct} =2m6(k — q). (75)

The corresponding Virasoro generators for £ > 0 are

> dq . . " dq
Li = / 2— [(q — k) qukJrq + (q -+ 2]€) qukJrq] — / - (q -+ k) quk,q, (76)
0 ™ 0 2
with LY, = L{". The ghost Virasoro algebra then becomes
13
L4 L) = (b= D) L — o K00k + 1), (77

For a theory with IV, massless scalars and Ny massless chiral Majorana fermions
the full first-class contraints then are

Ny Ny
Vk>0: Lilphys) =0,  Ly=Y L¥+> LI +Lf, (78)
i=1 j=1

13
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with the algebra
(2N, + Ny — 52)

Ly, L] = (k= 1) Ly, + o1 E*6(k+1). (79)
Thus the central charge vanishes provided
2Ny + Ny = 52. (80)

The analysis in the right-moving sector proceeds entirely analogously.

In the case of a supersymmetric theory of massless scalars and femions the
local conformal symmetry can be extended to local superconformal symmetry.
Such a theory is effectively a gauge-fixed 2-D supergravity theory and requires
an additional set of commuting supersymmetry ghosts (S, U) with action

Sy = / d*x U (0; — 0,) S. (81)
M
The associated hamiltonian and equal-time commutation relations are
H,, = / deU0,S,  [S(ta), Ut y)] = id(x — ). (82)
In this case we take the plane-wave expansions to be

> dk , .
S(t, {L‘) = / — (Ske_Zk(t"‘z) + SZGZk(t+x)) :
0

2T
(83)
 dk A A
U(t, ZL’) — —4 / hatddt (Uke—zk(t-i-a:) _ uzezk(t—kx)) ’
0 2m
which results in mode commutation relations
[sk,uﬂ =2mdo(k —q), [uk,s,ﬂ =2md0(k — q). (84)

The super-Virasoro operators of the full set of ghosts (C, D) and superghosts
(S,U) then is defined by (76) and for k£ > 0:

s * dq LA 3k
Ly = /0 o [(q - 5) SqUk+q T (q + 7) uq3k+q]
/k dg N k
— - — | SqUKL—
, 2n \1T g ) fdthee

s * dq * * * *
Gkg = / % [quk+q + bq8k+q + (q + Bk)uqck+q + (q - 2k)cquk+fJ
0

+ Gy [$qbr—q — (¢ + 2k) cqun—q] ,
0 2m
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with L*, = L;?" and G%, = G;?". The complete super-Virasoro algebra of the
ghosts is given by (77) and

sg s s 11
(L, L) = (k= 1) L%, + 5 E*6(k+1),
(86)
{GY.G"Yy = 2(Liy + Ly,) — 5K*0(k + 1).

With these results a 2-D supersymmetric theory of N massless scalars and fermions
has local superconformal symmetry if

Vk > 0: Li|phys) = Gg|phys) =0, (87)
where
N ' N
L= (LE+ L) + L{+ LY, Gi= Gi+ Gy, (88)
=1 =1

with the algebra
(N —10)

[Lis L) = (k = 1) Lss + ~————=K0(k + 1),
k
[L,Gi] = (5 — l) Gt (89)
(N —10) ,
{Gr,Gi} =20 + ————k*0(k +1).

Thus all superconformal anomalies vanish for N = 10. Of course all results
derived here are in agreement with corresponding string and superstring theories
in the limit of infinite strings.

8. Conformal and superconformal ghosts in Rindler space

The local conformal and superconformal symmetries arising in a gauge-fixed 2-D
gravity or supergravity theory with scalar and spinor matter can be extended to
the Rindler frame. It requires solving the ghost and superghost field equations
in Rindler space, and finding the appropriate Bogoliubov tranformations.

Consider a theory in an arbitrary 2-D space-time with reparametrization and
locally Lorentz-invariant action

an+1

S[F, G] _ /deeFaL..anJrleN DyGal...an- (90)

Here (F, @) is a system of commuting or anti-commuting local Lorentz tensors or
(chiral) spinor-tensors of rank (n,n+1), e/ is the inverse 2-bein field as explained
in appendix A; D, is the Lorentz-covariant derivative with spin connection w7
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defined in (117) and e = dete; = /—g. Consider only purely left- or right-
handed components associated with purely self-dual or anti-self-dual tensors:

Garoan = £apGloy. 0, = . = £E44G b (91)

aj...an—1"?

and similarly for F* -+ Fixing the Minkowski gauge, the action (90) can be
decomposed into actions of the type (71) or (81) for single pairs of components

(F 18; ) Gg(})) with gauge-fixed action (considering left-movers for definiteness)
S = / Pz FO (0, — 0,) G, (92)
M

When transforming the action from the Minkowski to the Rindler frame by the
transformations (3) with a = 1 and following the same arguments as described for
spinor components in appendix A, we get a Rindler-frame action in the R-wedge
of Rindler space

s = [ arde [P 0. - 09 6] (93)
R

where the field components have been transformed from the Minkowski to the
Rindler frame by an extension of (36):

Ft(r,6) = e VO i(r, ), 2(7.€)),
(94)
Ga(r,€) = e TOG (T, €), 2(7,€)].
Actually n can be integer or half-integer, depending on whether (F, G) are tensors

or spinor-tensors. The aim is now to connect the Rindler plane-wave expansions
in the R-wedge

F = / ar (Frne ™0H) 4 g, ein7)
0

2T
(95)
> d,{ —ik(T * k(T
Gy =/ o (gree™ ") + g O
0 T
with the Minkowski ones
n > dk —1 x * 1K x
By = / 5 (fue ™+ fremr)
0 T

(96)

n > dk ,
GS\/ _ / . (gkefk(tJra:) +g:€zk(t+x)) '
0 2m
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Inverting the equations (95) using the light-cone variable z defined in (45):

) ° . < n
fRK - % / d{ eZH(T—’{) 37 F](2 +1)(7—7 é)

ey ' §
= i 52’”’1“"( ik+n+1+20,) F T (2).
0
(97)
4 > k(T < n
gre = 5 | AT G G0
1 *dz ; . n
= 5 ~ 2" (—ik — i+ 20,) Gg\/[)(z),
0

Substitutions of the Minkowski-frame plane-wave solutions yields

> dk -
fRn — Z(nJrl)F(n + 14+ ZH)/ % kfnflfuc ((_1)n+167m/2fk + eiﬂ-ﬁ/zflr) 7
0

1 . OO dk n—ikKk TR n_—mK *
Jrx = 1 F(—n—l—m)/ %k (e™ gy, + (=1)"e ™/ 2g}) |
0

(98)
with conjugates

fh. = i(”+1)F(n—|—1—m>/ dr

By e ((_1>n+16—7m/2fk _'_67r/i/2.]c;)7
0 27

g}k%n _ ’LnF(—n . Zl‘i)/ ;ik kn—i—m( —7m/29k +( 1)n 71'5/29:)
0 7-(_
(99)
In the L-wedge of Rindler space one finds by analogous calculations for the left-
moving fields
< dk

fre = i("H)F(n +1— m)/ o R (enn/2fk + (_1)n+167ﬂ'l€/2f}:) ’
0

N . e dk n—+ik n_mk —TK *
gre = i F(—n—m)/ %k T ((=1)"e™ gy + e g )
0

(100)
and conjugates

fi. = z'<”+1>r(n+1+m)/ dk

Y fn—1- m( —ﬂn/2fk+ (_1)n+1€7r/€/2fl;k)’
0 2

n . Oodk n—ik n,_—mK K *
g, = i F(—n+m)/ %k ((—1) g + ™2 )
0
(101)
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Upon application to the Minkowski vacuum it follows that
eﬂn/QfRH’0>M _ (_1)n+1€77m/2fzn’0>M7 efm@/Qf;%K‘O)M — (_1)n+le7m/2an’0>M7

(=) ™ 2gra|0)ar = € ™ 267, |0)ar,  (=1)"e ™ g7, |0) 0 = €™ g14]0)ar.
(102)
Applying these results to the ghost system (71), which fits the system with n = 1
[4, 20, 21], and obeying the anti-commutation rules

{CRm d*Ra} = {CLm dZJ} = {dRm C*Ra} = {dLm CEJ} = 27‘-5(’% - 0)7 (103)

we can compute the two-point correlations of the Rindler ghosts in the Minkowski
vacuum:

2mo(k — o
{0065 Chel0) 30 = se Olcisbipel0)s = ZOEZ D)
(104)
2m0(k — 0o
M {0lcRybrs|0) 1 = 21 (0lbRyCRo|0) 1 = _ﬁ'

Note that these results are independent of the value of n, but do reflect the ghost
statistics leading to the minus sign in the last expression.

Finally we turn to the commuting superghosts (S, U). The analysis proceeds
parallel to the ghost system (C, D), except that the appropriate value Lorentz
and conformal weight is n = 1/2 [4, 22] and the anti-commutation rules are
replaced by commutation rules. The relevant results are

GWH/Q’UJRH|O>M _ (_1)n+1€fﬁn/2uzﬁ|0>M’ eimﬁ/Q,UJE,JO)M _ (_1)n+1€7rﬁ/2uLK|0>M,

(=)™ Pspe|0)ar = e ™27 |0V, (=1)"e ™25, |0) 0 = €™ 2514 0)ar,
(105)
supplemented by the commutation rules

[SRH? UEO'] = [SLHa U’Eo‘] = [uRH? S*RO'] = [uLna S*LO'] = 27“-5("{ - 0)‘ (106)

From these equations one derives the Minkowski two-point functions for the su-
perghosts:

2n0(k — o
M{O[Uurs SR, 0) v = 1 (0|S Rty |0) ar = ﬁ’
(107)
. 2rd(k — o
0150} sr = ael0futi 50}y = 2T

9. Local conformal invariance in Rindler space

With the results (104) and (107) we can now compute the Minkowski expecta-
tion values of the (super-)Virasoro operators including the ghost contributions

18
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required for local conformal and superconformal invariance. First, the results
(68) are supplemented for k > 0 by

oo d K d
L= [ 520 =0 e + (0 4+ 200 dycrsa) = [ 5 (04 W) o
0 2m 0 2

LY /Oo do ( Ii) S Upro + a—l—?m u's
= a_ g — = K+o . K+o
Rk 0 o 2 oYK+ 2 oPK+
u/“:da ( . m)
- 5 \0 5 ) Solk—0o,
0 2m 2

“d
GH. = / —2; 850kt + UiSuio + (04 3K)USCoro + (0 — 2K)Cit 1 o)
0

+ / d_a [Sobr—o — (0 + 2K) Cotly—o]
0 27
(108)
with (L%)-x = L%, (LY)-x = L7 and (G})-x = G Together with the
operators (68) for each scalar and spinor field they define the same algebra (89)
in Rindler space. Thus the first-class constraints requiring the cancellation of the
anomalies are also satisfied for 2V, + Ny = 52 bosons and fermions coupled to
2-D conformal gravity and N, = Ny = 10 bosons and fermions coupled to 2-D
conformal supergravity.
As in the case of global conformal invariance, the Minkowski expectation
values of the conformal charges are modified due to finite temperature effects.
With the help of equations (105) and (107) the results (69) are now extended by

1 , 1
O |00 = =5 800), (01310 = = 0(k). (109)

For the full Virasoro charges, simultaneously requiring cancellation of the anoma-
lies:
3 {O] (NoLlgy + Ny Ly + L) [0)ar = 3(),
. (110)
(O] (No Ll + Ny Ly + L, + Lig.) 100 = 5 6(5)

These expectation values, restricted to k = 0, do not contradict the first-class con-
straints, at the same time showing that the full hamiltonian in Rindler space has a
non-vanishing Minkowski expectation value as a result of finite-temperature cor-
relations (104), (107). As discussed before, a regularization procedure is required
to deal with the d-function singularity of the expectation values in applications.
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10. Conclusions

Two-dimensional conformal field theories can be formulated in an inertial frame
with a Minkowski metric, or in a uniformly accelerated frame with a local con-
formal Rindler metric defined by p = %%, here the sign differentiates between
the right and left wedge of Rindler space. Thus in each wedge one obtains two
different descriptions of the same theory. The switch between the frames not
only changes the co-ordinates, but Fock-space quantization can proceed parallel
in both frames, provided an appropriate conformal transformation is applied to
the field components as well. The Fock spaces in the two frames are related by
Bogoliubov transformations of the mode operators, effectively giving rise to finite-
temperature correlations of the Rindler modes for states build on the Minkowski
vacuum, which is the true ground state of the theory. The temperature is propor-
tional to the acceleration, an effect well-known from the original work of Unruh,
Davies, Wald, Fulling and others for accelerated frames in Minkowski space, and
the work of Hawking in the context of black hole space-times.

The switch to the Rindler frame not only creates an effective finite-temperature
description, but changes the construction and action of symmetry operators like
conformal and supersymmetry charges on the ground state. The naive confor-
mal and supersymmetries in the Rindler frame are broken by finite-temperature
effects in the Minkowski vacuum, but the underlying Minkowski symmetries are
still present even though hidden by the Bogoliubov transformations.

An additional, different issue is the breaking of conformal and supersymme-
tries by anomalies, extensively studied in the context of string theory. In the
field-theory view taken here they break the local conformal and supersymme-
try of arising from coupling conformal matter to conformally invariant gravity
or supergravity. Thus consistent coupling to gravity or supergravity is possible
only in the case of specific critical theories with a strongly limited spectrum of
boson and fermion matter fields, reflecting the critical dimensions of quantum
string theories. This is also relevant as the Minkowski-frame and Rindler-frame
formulations of massless QFT’s are related by a conformal transformation; if this
transformation is jeopardized by the conformal anomaly in theories with a non-
critical spectrum it may require compensating Wess-Zumino type dynamics [23],
e.g. involving a Liouville field.
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Appendix A: 2-D spinor conventions

In this appendix and in the main body of the paper we denote by greek indices
W, v, ... vector en tensor components in an arbitrary space-time manifold with
metric g,,; latin indices a, b, ... refer to vector and tensor components in a tangent
Minkowski space with mertric 7,,. The Majorana representation of the Dirac
algebra in 2-dimensional Minkowski space is defined in terms of the 2 x 2 Pauli
matrices as follows:

VW=ioe, Y=o, =" =os (111)
In 2-dimensional Minkowski space a Dirac spinor is a 2-component object trans-
forming under Lorentz transformations with parameter w® = we® as
/ W, /2 wy3/2 1 1
AN =¥ TablE ) = e¥NBE ) Tab = 7 [Yas 1) = —5 a3 (112)

Dirac-conjugate spinors are defined by A = Afyy. The charge-conjugation opera-
tor is C' = —C7T = ~, with the defining property

Cy*C™t = —°T. (113)

A self-conjugate Majorana spinor A = A* = CAT = X\* is therefore a spinor with
real components:

A:Acz{if}, = (114)
The subscripts £ define the eigenvalues under the chiral operator v3. Evidently
A= \C. (115)

In a general 2-D space-time is the spinors are defined as representations of the lo-
cal Lorentz group, transforming like (112) with a space-time dependent parameter
w(z). At the same time a spinor transforms like a scalar under diffeomorphisms:
N(2') = A(z). To construct the Dirac-operator one uses the 2-bein fields ef.(z)
such that the metric is factorized as

Guv = el‘je;’ Nab- (116)

In terms of the 2-bein fields and their inverse components e/ the spin connec-
tion, acting as the gauge field for local Lorentz transformations, is defined by an
extension of the metric postulate

Ve, =0,e; — FW)‘ef\l = wuabel;, (117)
implying that
a a 1 va b b vb a a
wu b _ _wub = 5 [6 (81/6# — a,uey) — € (8,,% — 8/Ley)

(118)

+eMe”e,. (Ores — Ovey)] .
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In terms of these objects the full space-time and Lorentz covariant derivative of
a spinor field is

1
D\ = (au -3 w;baab> A, (119)

the Dirac operator being defined by Ip = ~%e/D,,.
Next turn to the special class of conformally flat metrics (1). For these metrics
(in a hybrid notation)

1
ey = poy, el = — ok, (120)
p
It follows that the components of the spin connection are
wi® = (6pn™ — 6in™) B, In p. (121)

Specifically in 2-D space-time with conformally flat co-ordinates (7,&):

w' = —w!? = -0 Inp, w£01 = —wglo =—0,Inp. (122)

T

Combining this result with (119) and (112), while noting that
V—g =dete], = 0%,
one derives the result (35):

For- (V5 40 ) v

But this is not yet the final result; starting form the Minkowski 2-bein e+ = 0y,
the Rindler 2-bein is obtained by

a az)‘ a
eql = ﬁ%g Q. (123)

where in the R-wedge of Rindler space

oxy, ¢ [ coshar sinhar
—=c .
ozl sinhar coshar

is the Jacobian of the transformation from Minkowski to Rindler co-ordinates,
and € is a local Lorentz transformation. Clearly the Jacobian is not diagonal,
but this can be restored by taking the local Lorentz transformation

coshar —sinhar
Q= . .
—sinhar  coshar

This puts the 2-bein back to the diagonal form ep; = ea‘fél‘j. For the L-wedge a
similar procedure can be followed. As a result, the use of a diagonal vierbein in
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Rindler space must be accompanied by a corresponding local Lorentz transfor-
mation on spinor fields; in the present case this takes the form

N = et™/2), (124)

This explains why in the R- and L-wedges of Rindler space the redefinition (36)
of the spinor fields by

R Qb:l:(T? 5) - eia(‘rig)ﬂ)‘ﬂ: [t<7—a 5)7 JI(T, 5)]7

L:  u(r,§) = T FPALH(7,€), 2(7, )],
reduces the Rindler Dirac-Majorana action formally to the Minkowski one.

Appendix B: Thermal correlations in Rindler space

The computation of the two-point correlation functions of the Rindler fields in
the Minkowski vacuum start from equations (49) and (53):

bre|0)o = €707 [0)s, Uil 0)6 = €01 |0)s,
(125)
Brel0) = —ie7™B7,0) s, Brel0)s = ie™ Br|0),
and their conjugates:
b{0|b%, = €™ (0lbrk,  (0|bRe = €™ 4(0[07,,
(126)

701y = i€ 10| BLr,  f(0|Brs = —ie™ ;{057

The following chain of commutation relations and substitutions leads to the de-
sired result:

b<0|bR/€bEg|O>b = 271'(5(/{ — 0') + b<0|bE0bRn|O>b

= 2716(k — o) 4+ e ™" (0br, b7, |0)s

(127)
= 27?5(/1 - O’) (1 + 6_27”{) + B_W(R+U)b<0‘bznbLg|O>b
= 271'5(/43 — O') (1 + 6_27m) + 6_2w(n+0)b<0|bRnbEU’O>b.
The solution of this equation is (55) and implies (56):
210(k — o
Ol 03, = 23— 0) + (0] b0y = 2707,
(128)
2m0(k — o
b(0[Rsbr|0)s = ﬁ'
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The derivation of the fermion two-point function proceeds entirely parallel, using
anti-commutation relations instead of commutation relations, which results in a
change of sign in the denominator.

The relations (125), (126) also imply a direct relation between the common
Rindler vacuum state [0)r = |0)rr ® |0)rL:

brk|0) rRr = Brk|0)rRr = 0, brx|0)rr = Brx|0)rr = 0, (129)

and the Minkowski vacuum:

< dk —TK (kL% - ok *
0)ar = exp [ / e (i — iBBh) | 1005 (130)
0

2
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