SUPPLEMENTARY MATERIAL

Bioguided Fractionation of Hypoglycaemic Component in Methanol Extract of Vernonia amygdalina: An in vivo study

Stanley I.R. Okoduwa ^{a,b*}, Ismaila A. Umar ^a, Dorcas B. James ^a, Hajiya M. Inuwa ^a, James D. Habila ^c, Alessandro Venditti ^d

 ^a Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
 ^b Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria, Nigeria
 ^c Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
 ^d Department of Chemistry, "Sapienza" University of Rome, Rome, Italy

*Correspondence:. Email: siroplc@gmail.com

Abstract

Nine components (C1-C9) were isolated from chloroform fraction of fractionated methanol extracts of *Vernonia amygdalina* leaves (FMEVA) by column chromatography. All the components C1 to C9 were purified and screened for hypoglycaemic activities in type-2 diabetic rats. The most potent hypoglycaemic component was elucidated on the basis of extensive spectroscopic (1D-, 2D-NMR, GC-MS, FTIR) data analysis. The Component C5 was found to be the most potent hypoglycaemic in reducing blood glucose by $12.55 \pm 3.55\%$ at 4 h post-oral administration, when compared to the positive (18.07 \pm 1.20%) and negative (-1.99 \pm 0.43%) controls. The spectroscopic data analysis reveals that the isolated compound has a structure consistent with 11β ,13-dihydrovernolide. The isolated compound is part of the hypoglycaemic components present in *V. amygdalina* leaves that is responsible for the anti-diabetic activities. Further research is needed in the development of this compound or its derivatives for pharmaceutical use.

Keywords: Anti-diabetic; hyperglycaemia; hypoglycaemic; Vernonia amygdalina; Type-2 diabetes

CONTENTS

PAGES

Figure S1:	¹ H-NMR Spectra for Purified Component C-5 from Column Fractionated 3 Chloroform Fraction of <i>V. amygdalina</i> Methanol Leaf Extract		
Figure S2:	¹³ C-NMR Spectra for Purified Component C-5 from Column Fractionated Chloroform Fraction of <i>V. amygdalina</i> Methanol Leaf Extract	4	
Figure S3:	DEPT-NMR Spectra for Purified Component C5 from Column Fractionated Chloroform Fraction of Vernonia amygdalina Methanol Leaf Extract	5	
Figure S4:	Carbons numbering and chemical structure of 11β,13-dihydrovernolide.	6	
Figure S5:	Selected HMBC correlations for 11β,13-dihydrovernolide.	7	
Figure S6:	Observed fragmentation pathway for 11β,13-dihydrovernolide.	8	
Figure S7:	FTIR Spectra for Purified Component C-5 from Column Fractionated Chloroform Fraction of <i>V. amygdalina</i> Methanol Leaf Extract.	9	
Table S1:	Change (%) in Fasting Blood Glucose in Type-2 Diabetic Rats after Treatment with Purified Components from Column Fractionated Chloroform Fraction of V. amygdalina Methanol Leaf Extract	10	
Table S2:	Decrease (%) in Fasting Blood Glucose in Type-2 Diabetic Rats after Treatment with Different Doses of Purified Component C5 from Column Fractionated Chloroform Fraction of V. amygdalina Methanol Leaf Extract	11	
Table S3:	¹³ C- NMR data for Purified Component C5 from <i>V. amygdalina</i> Methanol Leaf Extract	12	
Table S4:	Functional Groups Identified Using FTIR Spectra Analysis for Purified Component C-5 from Column Fractionated Chloroform Fraction of <i>V. amygdalina</i> Methanol Leaf Extract. Wavenumbers (cm ⁻¹)	13	

References

14

Figure S1: ¹H-NMR Spectra for Purified Component C-5 from Column Fractionated Chloroform Fraction of *V. amygdalina* Methanol Leaf Extract

Figure S2: ¹³C-NMR Spectra for Purified Component C-5 from Column Fractionated Chloroform Fraction of *V. amygdalina* Methanol Leaf Extract

Figure S3:DEPT-NMR Spectra for Purified Component C5 from Column Fractionated Chloroform
Fraction of Vernonia amygdalina Methanol Leaf Extract

Figure S4: Carbons numbering and chemical structure of 11β , 13-dihydrovernolide.

Figure S5: Selected HMBC correlations for 11β ,13-dihydrovernolide.

.

Figure S6: Observed fragmentation pathway for 11β , 13-dihydrovernolide.

Figure S7: FTIR Spectra for Purified Component C-5 from Column Fractionated Chloroform Fraction of *V. amygdalina* Methanol Leaf Extract.

Tables

VACF purified					
components	0.5 h	1 h	2 h	3 h	4 h
C1	0.07 ± 0.42^{cd}	$0.84{\pm}0.48^{a}$	1.30±0.37ª	2.10±0.64 ^a	3.75±1.13 ^{ab}
C2	$0.59{\pm}0.23^{ab}$	2.40±1.97 ^a	6.79 ± 1.72^{bcd}	8.96±1.96 ^{cd}	9.50±1.75 ^{cd}
C3	0.22 ± 0.27^{bcd}	$2.20{\pm}1.78^{a}$	$3.77{\pm}0.86^{ab}$	6.15±3.48 ^{bc}	5.79±3.42 ^{abc}
C4	0.91±0.15 ^a	1.50±0.12 ^a	2.42 ± 0.38^{a}	4.63±0.87 ^{ab}	$4.74{\pm}0.58^{ab}$
C5	$0.20{\pm}0.21^{de}$	5.76 ± 3.10^{b}	8.63±2.67 ^{cd}	11.52 ± 2.98^{d}	12.55±3.55 ^d
C6	0.17 ± 0.21^{bcd}	0.55 ± 0.17^{a}	$1.87{\pm}2.01^{a}$	$2.94{\pm}1.71^{ab}$	3.10±2.55 ^{ab}
C7	$1.79\pm0.25^{\rm f}$	5.41±2.79 ^b	6.24±3.95 ^{bc}	6.77 ± 3.94^{bc}	6.96±4.41 ^{bc}
C8	0.49±0.30 ^e	1.42 ± 0.28^{a}	2.62 ± 1.04^{a}	3.40±1.21 ^{ab}	3.58 ± 1.68^{ab}
C9	0.32 ± 0.18^{bc}	1.32±0.55 ^a	$2.48{\pm}0.74^{a}$	3.09±0.41 ^{ab}	3.33±0.64 ^{ab}
DC	0.31 ± 0.10^{bc}	$1.00{\pm}0.70^{a}$	1.15 ± 0.73^{a}	1.90±0.25 ^a	2.11±0.35 ^a
PC	3.09±0.32 ^g	7.41 ± 1.04^{b}	$9.50{\pm}0.08^d$	17.48±0.92 ^e	17.80±0.96 ^e

Table S1:Change (%) in Fasting Blood Glucose in Type-2 Diabetic Rats After Treatment with
Purified Components from Column Fractionated Chloroform Fraction of V. amygdalina
Methanol Leaf Extract (10 mg/kg bw)

Data are presented as mean \pm SD of 3 animals per group. Values with different superscript down the column indicate significant difference (*p*<0.05). VACF: Chloroform fraction of *V. amygdalina* methanol Leaf extract; PC: Positive control; DC: Diabetic control; C1, C2, ... and C9: Purified components from column fractionated VACF.

Table S2:Decrease (%) in Fasting Blood Glucose in Type-2 Diabetic Rats after Treatment with
Different Doses of Purified Component C5 from Column Fractionated Chloroform
Fraction of *V. amygdalina* Methanol Leaf Extract

Group	0.5 h	1 h	2 h	3 h	4 h
G5	$0.51\pm0.21~^{a}$	1.06 ± 1.21^{a}	2.35 ± 1.29^{a}	3.96 ± 0.24^{b}	$4.10 \pm 1.57^{\text{ b}}$
G10	$0.70\pm0.27^{\:a,b}$	4.92 ± 2.23^{b}	$7.84 \pm 1.58^{\text{ b}}$	$10.55\pm1.19^{\rm c}$	11.97 ± 1.64 ^c
G20	$1.23\pm0.24^{\text{ b}}$	5.32 ± 2.27^{b}	$9.38 \pm 1.60^{b,c}$	13.41 ± 2.75^{d}	13.62 ± 1.44 ^c
DC	$0.28\pm0.23^{\text{ a}}$	0.84 ± 0.29^a	1.02 ± 0.13^{a}	1.27 ± 0.16^{a}	1.98 ± 0.12^{a}
РС	$2.81\pm0.82^{\text{ c}}$	6.72 ± 2.53^{b}	$10.40 \pm 1.20^{\circ}$	15.21 ± 2.48^{d}	18.33 ± 1.53^{d}

Data are presented as mean \pm SD of 5 animals per group. Values with different superscript down the column indicate significant difference (*p*<0.05). PC: Positive control; DC: Diabetic control; G₅, G₁₀, ... and G₂₀ are diabetic rat groups treated with three different doses (5, 10 and 20 mg/kg b.w.) respectively of Purified Components C5 from Chloroform fraction of *V. amygdalina* methanol Leaf extract.

	*	Exp	erimental D	ata
Position	¹³ C-NMR,	¹³ C-NMR, HSQC,	DEPT	HMBC
	125 MHz, δ	100 MHz, δ		
1	66.32	66.32	СН	
2	22.74	22.70	CH_2	
3	33.56	33.56	CH_2	
4	142.85	142.94	С	
5	129.23	129.25	CH	C15
6	77.31	78.51	CH	C4, C8, C11
7	57.11	57.06	CH	
8	71.50	71.50	CH	C16
9	40.79	40.78	CH_2	C14
10	58.89	59.02	С	
11	39.93	40.78	CH	C12
12	177.54	177.87	С	
13	16.72	16.75	CH ₃	C7, C11, C12
14	99.47	99.39	CH	
15	64.30	64.29	CH_2	C3, C4, C5,C14
16	167.96	167.93	С	
17	135.62	135.63	С	
18	18.28	18.39	CH ₃	C16, C17, C19,
19	127.44	127.58	CH_2	C16, C17, C18,

 Table S3:
 ¹³C- NMR data for Purified Component C5 from V. amygdalina Methanol Leaf Extract

*Rabe et al, 2002

Table S4: Functional Groups Identified Using FTIR Spectra Analysis for Purified Component C-5 from Column Fractionated Chloroform Fraction of V. amygdalina Methanol Leaf Extract. Wavenumbers (cm⁻¹)

	Absorbance	Absorption Ranges	Functional Group
1	3354.60	3100-3500	O-H
2	2926.00	2500-3300	C-H
3	1777.90	1670-1820	C=O
4	1707.10	1700-1725	C=O
5	1446.2	1440-1480	$=C=H_2$
6	969.1	960-990	$=C=H_2$
7	808.8	790-840	-C=CH-

Functional Group region: 4000 cm⁻¹ - 1400 cm⁻¹; Finger print region: 1400 cm⁻¹ - 400 cm⁻¹

References

Rabe, T., Mullholland, D., Van-Staden, J., 2002. Isolation and identification of antibacterial compounds from *Vernonia colorata* leaves. Journal of Ethnopharmacology, 80(1): 91-94.