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Abstract: Here we report the effect of substrate, sonication process, and post-annealing on the 

structural, morphological, and optical properties of ZnO thin films grown in presence of isopropyl 

alcohol (IPA) at temperature 30 – 65 ℃ by SILAR method on both soda lime glass (SLG) and Cu foil. 

The X-ray diffraction (XRD) patterns confirmed the preferential growth of ZnO thin films along (002) 

and (101) plane while grown on SLG and Cu foil substrate respectively. Both XRD and Raman 

spectra confirmed the ZnO and Cu-oxide phases of the deposited films. Scanning electron 

microscope (SEM) image of the deposited films shows compact and uniformly distributed grains for 
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samples grown without sonication while using IPA at temperature 50 and 65 ℃. The post-annealing 

treatment improves the crystallinity of the films, further evident by XRD and UV-VIS-NIR results. 

The estimated optical bandgaps are in the range of 3.37-3.48 eV for as-made samples. Results 

revealed that high-quality ZnO thin films could be grown without sonication using IPA dispersant 

at 50 ℃, which is much lower than the reported results using the SILAR method. This study suggests 

that in the presence of IPA, the SLG substrate results in better c-axis oriented ZnO thin films than 

that of DI water, ethylene glycol, propylene glycol at the optimum temperature of 50 ℃. 

Air-annealing of the samples grown on Cu foils induced the formation of CuxO/ZnO junctions 

which is evident from the characteristic I-V curve including the structural and optical data. 

 

Keywords: ZnO thin films, SILAR, IPA dispersant, copper oxide, Post-annealing, c-axis orientation 

 

 

1. Introduction 

    ZnO is amongst the most widely used n-type metal oxide semiconductor materials because of 

its unique structural, optical and electrical properties in conjugation with cheap, non-toxic nature, 

and natural abundance [1-3]. It has distinctive optoelectronic and physical properties such as 

tunable direct wide bandgap of about 3.37 eV, high transparency (>80 %) in the visible region, and 

large exciton binding energy (60 meV) at room temperature [4-12], optimum refractive index (n ≈ 

2.0), notable electron mobility (as large as 155 cm2/V.s) [13,14,15]. Moreover, ZnO are chemically 

and thermodynamically stable and basically crystallizes in the hexagonal wurtzite structure [16]. 
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All the above unique features make ZnO a suitable material for diverse applications including 

anti-reflective coating (ARC), solar cells, and transparent conductive oxide for flat panel displays 

[17,18], photodiodes [19], gas sensors [20,21], light emitting diodes [22], surface acoustic waves [23], 

protective surface coatings [24], piezoelectric transducers [25] etc. These potential applications have 

boosted research related to the development of better quality ZnO thin films over the span of 

ongoing decades.   

Both physical and chemical methods have been used for the synthesis of ZnO thin films for 

instances, successive ionic layer adsorption and reaction (SILAR) [26,27], chemical bath deposition 

(CBD) [28], pulsed laser deposition (PLD) [29], RF magnetron sputtering [30], metal organic 

chemical vapour deposition (MOCVD) [31], sol-gel derived dip coating [32], spray pyrolysis [16], 

hydrothermal [33], molecular beam epitaxy [34], drop casting [35], and different sol-gel derived 

spin coating [36] techniques etc. Among them, SILAR is one of the simplest and economically 

favorable chemical methods because it produces durable and adherent thin films comparatively at 

low processing temperatures and does not need any sophisticated and modern instruments [36,37]. 

Furthermore, this technique consents bulk region deposition on various substrates as soda lime 

glass (SLG) microscopy slides, fluorine doped tin oxides (FTO), and Cu foil substrates etc. [16,38,39]. 

The deposition technique relies on bath temperature, solution pH, complexing and dispersant 

agents and rinsing procedures [40-44] etc.  

To our best knowledge, only a few reports have been published so far regarding the deposition of 

ZnO thin films using Cu foil. Raidou et al. [45] have grown ZnO thin films on three kinds of 

substrates such as Cu, Si, and glass by the SILAR method. They have showed that the structure of 

the film depends strongly on the nature of the substrate for instance, ZnO particles deposited on Cu 
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substrate formed hexagonal structure whereas spindles shape was formed on the Si substrate and 

for glass substrate the film was in the form of small flowers and prisms. 

Gao et al. [27] first reported ZnO thin films deposition by incorporating an ultrasonic rinsing step in 

the SILAR method. Subsequently, Shei et al. improved the process and investigated the effects of 

deionized water (DI), ethylene glycol, and propylene glycol between the rinsing steps as well as 

rinsing temperature on the structural and optical properties of ZnO thin films. In those cases, 

ethylene glycol imposes environmental risks [5]. They reported that higher growth temperature is 

necessary to produce highly c-axis oriented ZnO thin films when using ethylene glycol and 

propylene glycol during the rinsing processes [5,46,47]. To address above issues, this study aims to 

investigate the influence of sonication, usage of isopropyl alcohol (IPA) dispersant, and thereafter 

post-annealing effect on the structural, morphological and optical properties of SILAR deposited 

ZnO thin films on SLG and Cu foil substrates. Cu foils were chosen mainly to investigate the copper 

oxide forming conditions near the ZnO nucleation cite, as well as the formation of Cu2O/ZnO or 

CuO/ZnO junctions depending on IPA and post-annealing temperature. The use of IPA has 

pronounced effect as dispersing agent over others and the post-annealing is beneficial for making 

CuxO/ZnO (x = 1 or 2) heterojunction. The experimental results are presented and discussed below. 

 

2. Materials and Methods 

2.1. Materials  

      In this work, zinc chloride (ZnCl2, purity~ 98 %, Scharlau), isopropyl alcohol ((CH3)2CHOH; 

purity ~99.70 %, Active Fine Chemicals) and concentrated ammonia (NH4OH, ~28% solution, Merck 

Millipore) were used. All the reagents were of analytical grade and used without further purification. 
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Both non-conducting SLG (40×25×1 mm3) and conducting thin Cu foil (40×20×0.2 mm3) were used to 

deposit ZnO thin films. 

 

2.2. Synthesis of ZnO Thin Films 

      ZnO thin films were deposited simultaneously both on SLG and Cu foil substrates by using a 

similar SILAR method describe elsewhere [41]. Briefly, the SLG were cleaned with detergent 

followed by successive cleaning in an ultrasonic bath using DI water, toluene, acetone, isopropyl 

alcohol and again DI water each for 15 minutes.  On the other hand, Cu foils were treated with 

cottonwood soaked in 10M HNO3 solution and finally dried in air. Prior to the film deposition, zinc 

complex ([Zn(NH3)4]2+) precursor solution was prepared by mixing 0.1 M ZnCl2 and concentrated 

(~28 %) ammonia solution (NH4OH). NH4OH was added to adjust the solution pH 10 [46,47]. 

Subsequently, both SLG and Cu foil (tied back to back) [41] were immersed together into the 

precursor zinc-complex solution and then dipped into unheated deionized water each for 20 

seconds which results in the formation of Zn(OH)2 precipitate.  

Additionally, counter ion (Cl-) and coarsely adhered Zn(OH)2 grains were removed from the 

substrate by immersing it into ultrasonic-assisted DI water for 30 seconds. Furthermore, the 

substrates were treated with IPA for 20 seconds to form ZnO. IPA acted as a dispersing agent which 

reduced the ZnO agglomeration and enhance the decomposition capability of Zn(OH)2 to ZnO 

when the temperature was increased from room temperature (~30  ℃)  to 65  ℃ . Finally, the 

substrates were dipped into ultrasonic-assisted DI water (see Figure 1). Likewise, the above steps 

were repeated up to 20 times for preparing the sample with IPA at 30, 50 and 65 ℃ labeled the 

as-deposited samples as IPA30, IPA50, and IPA65. The same deposition procedure was repeated by 
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eliminating the sonication step. The most important deposition parameters and processing 

conditions are summarized in Table 1. 

 

Table 1. Sampling details for the deposition of ZnO thin films with IPA at different 

temperature. 

Deposition   

temperature (0C) 

Glass substrate  Copper foil substrate 

Sonication Without sonication Sonication Without sonication 

30 G1  G4 C1 C4 

50 G2   G5 C2 C5 

65 G3  G6 C3 C6 

 

 
Figure 1. Schematic diagram showing the deposition of ZnO thin film on Cu foil using IPA at 

different temperature. 

 

The overall reactions involved in the ZnO film deposition are given below [5]: 

 

 

After deposition, the samples were thoroughly rinsed by DI water, and then dried under laboratory 

atmosphere and safely stored into the sample boxes for characterization. Some of the samples were 
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cut into equal pieces for subsequent characterizations as well as 1 hour air-annealing at 250 ℃ ; 

while one piece of each batch were kept as as-deposited sample for reference. 

 

2.3. Characterization techniques 

     The structural properties and phase of the deposited thin films were characterized by XRD 

(Philips PANalytical X’Pert MRD) with a CuKα (λ = 0.15406 nm) radiation source in θ-2θ coupled 

mode and Raman spectroscopy (Horiba HR800) with 488 nm laser excitation (P≤ 5 mW). Surface 

morphologies of the samples were imaged by scanning electron microscope (SEM) (Philips XL30 

EEG SEM).The optical properties were examined by using a double-beam UV-Visible-NIR 

spectrophotometer (Shimadzu UV 2600 ISR plus) in the range of 220-1400 nm. Both diffuse 

reflection and transmission spectra were taken to eliminate substrate contributions [35] where 

necessary. 

 

3. Results and Discussion 

3.1. Structural Characterization  

    The phase and crystal structure of both as-deposited and annealed samples were examined by 

XRD ranging from 2θ = 25-45° and the relating XRD patterns are shown in Figure 2. The deposited 

samples grown on SLG exhibited three intense peaks at 2θ ≈31.74°, 34.40° and 36.21° which 

corresponds respectively to (100), (002) and (101) planes of ZnO hexagonal wurtzite structure [35]. 

No diffraction peaks of Zn(OH)2 are discernible in the XRD patterns (see Figure 2a). In the case of 

samples deposited on Cu foil, thin films are preferably deposited along the (101) plane of ZnO, 

where the diffraction peak at 2θ ≈ 43.5°  corresponds to the Cu (111) plane arising from the 
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underlying substrate (see Figure 2b). All of the Cu foil samples produced CuxO/ZnO (x = 1, 2) 

structure after post-annealing at 250 ℃ irrespective of the growth temperature with IPA and 

sonication process (see top panels in Figure 2). This may be due to the oxidation of Cu foil substrate 

as can be seen from both XRD and Raman spectra depicted in Figure 2b and Figure 3b. These 

results suggest the formation of Cu-oxide/ZnO heterojunction depend only on the post-annealing 

but not on the sonication process and IPA dispersant. Thus, the post-annealing is beneficial for the 

formation of CuxO/ZnO heterojunctions [16,45,48]. It is evident from the Figure 2a, the strong 

preferential growth along (002) plane of ZnO observed for samples grown on SLG suggesting 

highly c-axis oriented films [35] while preferred orientation along (101) plane for samples deposited 

on Cu foil [45] as can be seen in Figure 2b. Thus, the crystal growth is strongly influenced by the 

substrate types. The strong peak along (002) plane for the as-deposited G5(IPA50) and G6(IPA65) 

samples signifies highly oriented c-axis ZnO films [35] which is absent for G4(IPA30) samples, 

suggesting that temperature of IPA promotes crystallinity of the as-deposited ZnO film. The 

intensity of the concerned diffraction peak is seen to increase further after post-annealing. Therefore, 

increasing the IPA temperature and post-annealing improved the crystallinity of the deposited thin 

films [35,46]. The same trend is observed for samples deposited on Cu foil. In both cases, without 

sonication, samples exhibited better crystallinity as shown in Figure 2 and the good quality films 

formed using IPA with a minimum of 50 ℃.  Shei et al. [5,46] have reported no film growth below 

75 and 95 ℃ respectively by using ethylene glycol and propylene glycol. 
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Figure 2. XRD patterns of both as-made and post-annealed samples grown on (a) SLG and (b) Cu 

foil. The diffraction peaks of corresponding materials are shown by arrow sign for clarity. 

It is also evident from Figure 2a that highly textured films can be prepared for samples G5(IPA50) 

and G6(IPA65) without sonication steps. This may be due to the fact that IPA acts as a better 

dispersant compared to ethylene glycol, propylene glycol and DI water reported in refs. [5,46,47] 

and results in depositing better quality ZnO thin films. 

The important structural parameters and mean crystallite sizes (D) of SLG-samples were calculated 

by using Scherrer equation [49] to the 002 diffraction peak of ZnO and summarized in Table 2: 

                                    D = 
𝑘𝜆

𝛽𝑐𝑜𝑠𝜃
                                                (1) 

Where, λ= Wavelength of X-ray (0.15406 nm for CuKα radiation source), k= constant which is 0.94, 

β = Full width at half maxima (FWHM), θ= Diffracted angle (FWHM and 2θ are in degrees). 
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Table 2. Mean crystallite size and lattice strain of as-made and annealed samples  

         deposited on SLG using IPA at different temperatures. 

Sample 2θ 

(deg.) 

FWHM  

(deg.) 

Crystallite size  

(nm) 

Lattice strain (ε)  

× 𝟏𝟎−𝟑 

G4(IPA30)  34.37 0.73 12 10.3 

G4 Ann. 250 ℃ 34.51 0.63 14 8.9 

G5(IPA50)  34.41 0.37 23 5.2 

G5 Ann. 250 ℃  34.48 0.45 19 6.3 

G6(IPA65)  34.48 0.48 18 6.7 

G6 Ann. 250 ℃  34.51 0.41 21 5.8 

It is evident from the Table 2 that the mean crystallite sizes were 12-23 nm and 18-21 nm 

respectively for as-deposited and annealed samples grown on SLG. The crystallite size shows an 

increasing trend and the lattice strain decreases with post-annealing at 250 ℃ (G4 Ann. 250 ℃ and 

G6 Ann.250 ℃) which signifies the improvement of the crystallinity [5] of the films as can be seen 

from Figure 2a. The sample deposited on SLG at 50 ℃ (G5) in the absence of sonication exhibited 

the highest crystallinity (D = 23 nm) and minimum lattice strain among all samples with (002) 

preferential growth. Therefore, these observations indicated the optimum temperature in presence 

of IPA should be 50 ℃ for growing better quality c-axis oriented ZnO thin films without sonication 

steps. 

 

3.2. Raman Analysis  

   Room temperature Raman measurements of samples deposited on both SLG and Cu foil were 

carried out to identify the phase purity of Zn- and Cu-oxides as well as to investigate the effect of 

processing conditions on their crystalline structure. Raman spectroscopy is an effective tool 

to analyze the small changes as the vibrational signals are very sensitive to the local environment of 
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the molecule, crystal structure, chemical bond, etc. [50]. The Raman spectra of the samples deposited 

on both SLG and Cu foil are shown in Figure 3a and Figure 3b respectively. 

 

Figure 3. Raman spectra of the samples grown on (a) SLG and (b) Cu foil. The reference Raman shift 

values are indicated by different symbols in the figure. 

It is clear from Figure 3a that the post-annealing exhibited a broad Raman signal approximately at 

574 cm-1 which could be attributed to ZnO [51] for samples G1 Ann 250 ℃ and G2 Ann.250 ℃ for 

which XRD peaks were not clear in Figure 2a. In contrast, the samples G5(IPA50) and G6(IPA65) 

(without sonication) showed two distinguishable peaks centering at ~440 and ~574 cm-1 which have 

been attributed to highly crystalline c-axis oriented ZnO films due to a decrease of defects in the 

interior of the crystal [51]. 

In Figure 3b, the films on Cu foil show Raman peaks centering at 97, 98, 405, 407, 410, 428, 434, 494, 

496, 569 and 574 cm-1 correspond to ZnO phase. Moreover, the Raman signals for copper oxide 

(Cu2O + CuO) mixture phases were evidenced for all annealed samples (C1 Ann. 250 ℃ to C6 Ann. 
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250 ℃). In addition, peaks at around 147, 214, 644 cm-1 appeared for samples grown on the Cu foil. 

The new Raman shift appeared close to 145, 216, 284, 493 cm-1 confirmed the existence of Cu2O 

phase while those close to 298, 330, 346, 626 cm-1 are attributed to CuO phase [50-59]. These 

observations are indicating the possibility of the facile CuxO/ZnO formation by post-annealing at 

temperature as low as 250 ℃. These results are also in consistent with the observed XRD pattern 

shown in Figure 2b. From both XRD and Raman analyses, it can be concluded that for depositing 

phase pure highly crystalline c-axis oriented ZnO films, it may be better to deposit on SLG and 

post-annealing at 250 ℃ for 1 hour results the formation of Cu-oxide/ZnO heterojunction for films 

grown on Cu foil.  

3.3. Morphological characterization 

      Figure 4 compares the surface morphologies of thin films grown on both SLG and Cu foil. 

From Figure 4a and 4d, it is clearly seen that the samples deposited using IPA at 30 ℃ exhibits 

cotton-like amorphous morphology (see also XRD patterns in figure 2). In contrast, compact and 

uniformly distributed spherical grains were observed both for IPA50 and IPA65 as-deposited 

samples. Thus, at relatively high temperatures good quality films are produced as it provides 

sufficient energy for complete conversion of Zn(OH)2 to ZnO [5]. The grain sizes of the films grown 

on SLG were larger (~260-300 nm) compared to those grown on Cu foil (~200-230 nm) further 

indicating better quality films which supports the XRD data. Some overgrown clusters for Cu 

foil-samples can be seen which might be detrimental for device applications. Thus, the film growth 

quality is not only affected by the temperature of the IPA but also the types of substrate. Previous 

studies reported that relatively higher temperature (  ≥ 95  ℃ ) was required to decrease 

agglomeration for ethylene glycol and propylene glycol used as dispersing agent [5,46]. Since 
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isopropyl alcohol is a monohydric alcohol, it forms only inter-molecular hydrogen bond [60] and 

affects the deposition process free from releasing thermal energy due to the breaking of 

intra-molecular H-bonding. Consequently, Zn(OH)2 species are easily removed through H-bonding 

which are loosely adsorbed on the ZnO surface. This property makes IPA to act as a better 

dsipersant than ethylene glycol and propylene glycol at relatively low temperatures [61]. The IPA50 

sample grown without sonication exhibited a compact microstructural morphology together with 

appreciable crystallite size (D = 23 nm) and optical band gap (Eg = 3.37 eV). These observations 

assert that the surface morphologies can be controlled by controlling the IPA temperature and by 

selecting a suitable substrate. 
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    Figure 4. SEM micrographs of the samples deposited using IPA dispersant at various 

temperatures on SLG (a) G4(30 ℃), (b) G5(50 ℃),, (c) G6(65 ℃),; and on Cu foil (d) C4(30 ℃),, (e) 

C5(50 ℃),, (f) C6(65 ℃), 

 

3.4. Optical characterization 

      To elucidate the optical characteristics of the as-grown and annealed samples on SLG, both 

transmission and diffuse reflection spectra were taken for eliminating underlying substrate 

contribution [35]. In case of the samples deposited on Cu foil, only the reflection spectra were 

recorded. The diffuse reflection spectra of samples grown without the sonication process at 

different temperatures with IPA have been included in Figure 5. 

   

 

Figure 5. Diffuse reflection spectra of the samples deposited on (a) SLG (b) Cu foil.  Both 

as-deposited and annealed samples have been included in the same graph. The corresponding 

transmission spectra of samples grown on SLG also inserted into Figure 5a for comparison purposes. 

The vertical lines in Figure 5b indicating the approximate absorption edge of ZnO, Cu2O and CuO. 

 

From Figure 5a it is clearly seen that the samples grown on SLG shows 10-20% reflection in the 

visible region and transparency of 75~80% (figure 5a inset). A sharp absorption edge near 
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wavelength, λ ≈ 380 nm can be seen from both transmission and reflection data which corresponds 

to ZnO thin films [35]. Samples grown with IPA at higher temperatures (50 and 65 ℃) exhibit 

enhanced transparency which further confirmed the better crystallinity and film growth with fewer 

defects in the interior crystal [5] and supports the XRD data. In contrast, for the samples grown on 

Cu foil (Figure 5b); sharp absorption edges near λ ≈380, 580 and 780 nm can be clearly seen (see 

fade verticle lines) which could be attribute to ZnO, Cu2O and CuO phase respectively [41,50,62]. 

The presence of mixed (Cu2O + CuO) phases formed on Cu foil were also confirmed from the XRD 

and Raman spectra shown in Figure 2b and Figure 3b.  

The optical bandgap was estimated from the Tauc plot generated by using the reflection data and 

the Kubelka-Munk function (F(𝑅∞) [35] represented by equation:  

                                                        (hυF(𝑅∞))𝑛  = A(hυ - 𝐸𝑔)                                           

(2) 

Where, 𝐸𝑔= Bandgap energy, R∞= Diffuse reflection, h = Planck’s constant and υ = Frequency of the 

incident light. ZnO is a direct bandgap material (n=2) which showed direct forbidden transition at 

wavelength λ ≈380 nm. Therefore, putting n = 2 in the above equation, the 𝐸𝑔 values obtained by 

plotting (hυF(𝑅∞))2 vs hυ, where the quantity (hυF(𝑅∞))2 extrapolated to zero [35,41]. The 

bandgap plots are shown in Figure 6 and 𝐸𝑔 values together with XRD and Raman data are listed 

in Table 3.  
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Figure 6. Tauc plots of the samples grown on (a) SLG (b) Cu foil using diffuse reflection data. The 

Eg values are calculated by extrapolating the quantity  (hυF(R∞))2 = 0   

 

Table 3. Optical Bandgap energy and phase identification evidenced from XRD and Raman spectra 

for as-made and annealed samples deposited at different temperature using IPA 

*Crystallite sizes of the samples grown on SLG substrate are shown in Table 2 

From Table 3, it is clear that the Eg values are in the range of 3.37-3.47 eV for as-made samples and 

2.98-3.28 eV those for post-annealing samples which could be attributed to the ZnO. However, 

post-annealing treatment in case of Cu foil samples exhibited additional Eg in the range of 1.65 – 

2.00 eV(see dotted line in Figure 6b) which could be attributed to the CuxO phase[50].  Notice that 

samples deposited on SLG exhibited a reduction in bandgap with increasing IPA temperatures due 

to improve crystallinity of the ZnO and corroborates the calculated crystallite sizes given in Table 2. 

Glass Samples Band gap, 

Eg(eV) ± 0.01 

Cu foil samples Bandgap, 

Eg(eV) ± 0.01 

Phase composition 

(XRD and Raman) 

G4(IPA30) 3.48 C4(IPA30) 3.47 ZnO 

G5(IPA50) 3.37 C5(IPA50) 3.43 ZnO 

G6(IPA65) 3.40 C6(IPA65) 3.45 ZnO 

G4 Ann. 250 ℃ 3.28 C4 Ann. 250 ℃ 1.65 & 3.21 CuxO/ZnO 

G5 Ann. 250 ℃ 3.21 C5 Ann. 250 ℃ 1.65 & 2.98 CuxO/ZnO 

G6 Ann. 250 ℃ 3.15 C6 Ann. 250 ℃ 2.00 & 3.00 CuxO/ZnO 
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However, post-annealing treatment induced a significant reduction of Eg from roughly 3.4 eV to 3.2 

eV is due to the improvement of crystallinity [5] with decline of lattice strain (see Table 2). These 

observations imply that post-annealing treatment at 250 ℃ affected deposited films largely 

compared to IPA temperatures. It is worth noting that samples grown on Cu foil indicating the 

possibility of CuxO/ZnO junction formation by post-annealing (see Table 3). As a proof-of-concept, 

I-V characteristics curve of a preliminarily fabricated heterojunction by SILAR method with 

FTO/CuxO/ZnO/Al structure is shown in Figure 7, where the diode-like I-V curve confirms that 

CuxO/ZnO is successfully formed. However, further experimental investigations are in progress to 

assess photovoltaic performance of SILAR grown CuxO/ZnO junctions.  

 

Figure 7. I-V characteristic curve of a SILAR grown heterojunction showing diode-like behaviour 

confirming the successful formation of CuxO/ZnO junction. 
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4. Conclusion  

ZnO thin films have been synthesized on both SLG and Cu foil and the effect of substrate, 

sonication process, and post-annealing on the properties of the deposited films were systematically 

investigated. XRD analysis revealed the growth of highly crystalline c-axis oriented ZnO thin films 

deposited on SLG with (002) preferred orientation while (101) preferential growth on Cu foil. XRD 

and Raman spectroscopy confirmed all of the post-annealing samples produce CuxO/ZnO 

heterojunctions irrespective to the growth temperature using IPA and sonication process. Samples 

excluding sonication steps exhibited compact and uniformly distributed grain surface 

morphologies in the presence of IPA at 50 and 65 ℃ observed from SEM micrographs. The 

estimated Eg values were 3.47-3.37 eV for as-made samples and bandgaps were found to be 

decreased significantly with increasing annealing temperature due to crystallinity improvement of 

the ZnO thin films. The sample grown at 50 ℃ revealed the best quality film grown in this work 

with the Eg value of 3.37 eV. This studies proposed that for highly c-axis oriented ZnO thin films, it 

may be better to deposit the films on SLG in presence of IPA as a dispersing agent. We hope that 

this study will open up a new approach for growing ZnO thin film with less processing steps as 

well as solution processable Cu-oxide/ZnO heterojunctions for diverse applications. 
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