

1 **PROOF THAT P \neq NP***2 JAMELL IVAN SAMUELS[†]3 **Abstract.** The question does P = NP has confounded mathematicians and computer scientists
4 alike for over 50 years and although there is an almost unanimous agreement that it in fact does not,
5 there still is no absolute proof. In this paper, I attempt to prove that P does not equal NP.6 **Key words.** NP, P, Computational Complexity7 **AMS subject classifications.** 68Q12, 68Q178 **1. Introduction.**9 In 1971 Stephen Cook [1] proposed a fundamental question to the theory of computer
10 science. The question does NP = P has serious ramifications across a broad range of
11 subjects from cryptography to DNA synthesis and a solution to this problem has been
12 deemed worthy of a Millennium Prize. In this paper I establish the proof through the
13 use of basic fundamentals.14 **2. Counting.**

15 In mathematics the two basic operations are counting and totalling.

16 **DEFINITION 2.1.**17 *Counting is the acting out of a method using a unit measure. Example there are a
18 hive of bees, I count the bees using my unit measure | as |||||.*19 **DEFINITION 2.2.**20 *Totalling is the explicit use of number to sum a count, I sum my count ||||| using my
21 numerical system 1, 2, 3, 4.... as 6.*22 Counting and totalling inhabit a region named the Method Space M , which is an
23 area used to categorise and derive operations.24 **DEFINITION 2.3.** *A Method M is any operation or process used to solve a problem.*25 *In the Method Space, methods are represented as $M(\text{current operation}, \text{next variable})$,
26 where $n \in \mathbb{R}$ and $i \in \mathbb{R}$.*27 **DEFINITION 2.4** (Limit of Counting to 0).28 *The limit of counting to 0 $M(n, i) \lim_{i \rightarrow 0} M(1, 0)$* 29 *The limit of totalling to 0 $M(n + i_i, i_{i+1}) \lim_{i \rightarrow 0} M(n, 0)$* 30 **DEFINITION 2.5** (Limit of Counting to ∞).31 *The limit of counting to infinity $M(n, i) \lim_{i \rightarrow \infty} M(1, 1)$* 32 *The limit of totalling to infinity $M(n + i_i, i_{i+1}) \lim_{i \rightarrow \infty} M(\infty, \infty)$* 33 Using the method of slopes to measure the difference between counting and to-
34 talling .

35 (2.1)
$$\frac{d\Delta T}{d\Delta C} = \frac{M(\infty, \infty) - M(n, 0)}{M(1, 1) - M(1, 0)} = \frac{M(\infty, \infty)}{M(0, 1)} \equiv \frac{(\infty, \infty)}{(0, 1)}$$

36 Dividing to resolve this equation you obtain.

37 (2.2)
$$(1, \infty)$$

*Submitted to the editors 02/07/2020.[†]Imperial College London, London, (jis13@ic.ac.uk, <http://www.researchgate.com/~ddoe/>).

38 Thereby establishing 0 as a non countable number.

39 **3. Checking and Solving.**

40 DEFINITION 3.1. *Checking is the process where you assure that the solution you*
41 *have gained is valid.*

42 DEFINITION 3.2. *Solving is the method used to acquire a solution.*

43 LEMMA 3.3. *Your best solving method can not run faster than your best checking*
44 *method. Solving* $\lim \xrightarrow{\text{Method}}$ *Checking*

45 **4. Probability.**

46 Probability can be stated as the likelihood that an event will occur. It is counted as
47 the number of times an event will occur given the total number of possible events. Any
48 probability outside the boundaries of $[0,1]$ does not exist on the probability plane and
49 therefore can only be interpreted for its meaning rather than stated as an absolute
50 definition of chance.

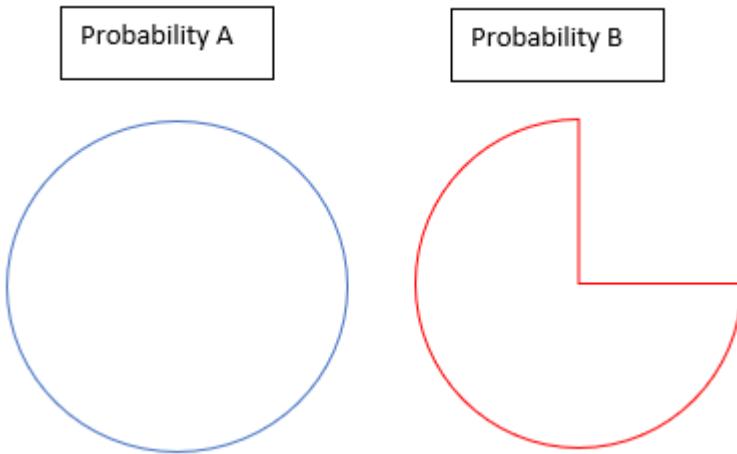
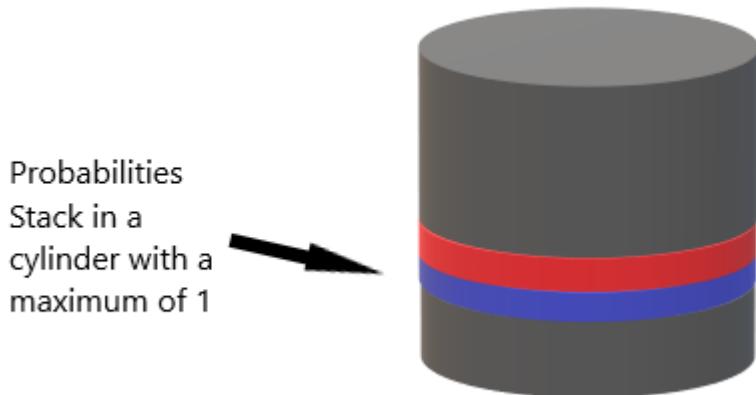


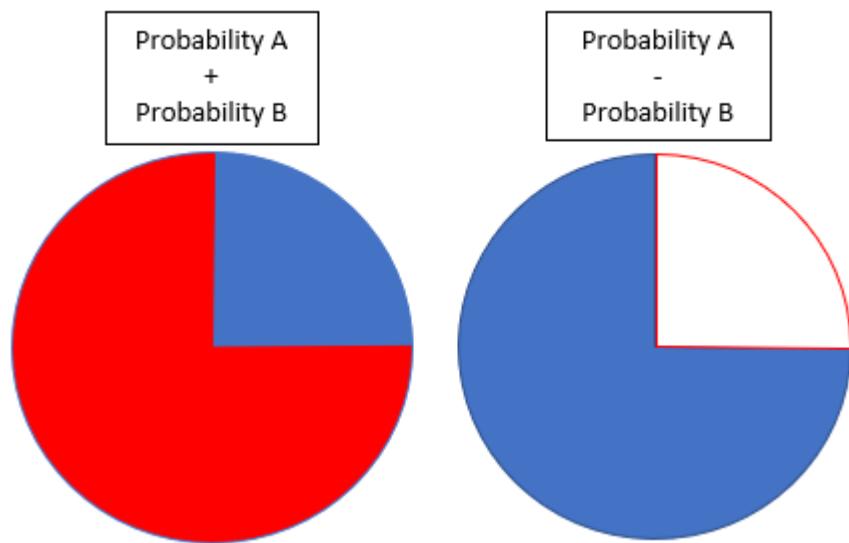
FIG. 1. *Planes of Probability*

51 **4.1. Planes and Cylinders of Probability.**

52 Probabilities must remain on the same plane and in truth they can only be added or
 53 subtracted. The use of multiplication can be considered the resolution of a stack of
 54 probabilities (and therefore multiple events) that exist on separate planes which you
 55 have resolved to one. Therefore we can define a probability plane or cylinder as.

FIG. 2. *Probability Cylinder.*

56 • A probability plane is the area in which a probability exists or acts upon.
 57 Probabilities may exist on separate planes, but they must be resolved to act
 58 on one.
 59 • A probability cylinder is a stack of multiple planes, a cylinder must be resolved
 60 to act on one plane to calculate the probability of the single event.

FIG. 3. *Example configurations of A and B.*

4.2. The Fundamental Probability - Derivation of Given.

62 The most fundamental probability to calculate is the probability that event(B) is not
63 going to happen given that event(A) has or is going to happen. All other probabilities
64 that can be calculated, fundamentally rely on this and although can be calculated in
65 other ways, risk losing the information contained within. Henceforth we are going to
66 state the probabilities in the order that they are calculated.

$$67 \quad (4.1) \quad P(!B|A) = P(A) - P(B)$$

$$68 \quad (4.2) \quad P(B|A) = P(A) - P(\neg B|A)$$

4.3. A note on Circular Logic.

70 The statement $P(B|A) = P(A) - P(A|!B)$ is self refuting and is therefore contradictory.
 71 Probabilities as a matter of fact can not be self proving or self refuting as
 72 both are a form of circular logic. It is also not possible to circumvent this by stating
 73 $P(B|A) = P(A) - P(!B|A)$, because a 'not' case, not derived from an initial 'is' case,
 74 technically comes from a separate 'world' of probability. Example

$$75 \quad (4.3) \quad P(A) = 1; \quad P(B) = \frac{1}{2}$$

$$P(A) + P(B) = \frac{3}{2}$$

$$P(\neg A) + P(\neg B) = \frac{1}{2}$$

80 It can be seen that the two sums are distinctly different and therefore they can
81 not be considered to come from the same case.

4.4. Simultaneous Occurrences.

Probabilities must exist on a single plane and as a single event. Any event with more than one possible outcome can be considered a simultaneous event. When resolving multiple events to a single plane or in a single plane, the probabilities must be fully counted to not lose or create inconsistencies in the information contained.

4.4.1. Probability of \wedge .

⁸⁸ If you recall the standard probability definition of "and" is $P(A \wedge B) = P(A) \times P(B)$.

$$P(A) = 1; \ P(B) = \frac{1}{9}$$

$$1 \times \frac{1}{9} = \frac{1}{9}$$

92 Therefore.

$$P(A \wedge B) = P(B)$$

94 And you can henceforth state that the event $P(A \wedge B)$ is not dependent on $P(A)$. The
 95 same argument can also be made for $P(A|B)$. And ergo $P(A \wedge B)$ is fundamentally
 96 contradictory. This can be stated because the use of multiplication is the loss of
 97 information. For example. $[5 + 5 + 5 + 5 + 5]$ contains more information than 5×5 .
 98 It is therefore better to state that $P(A \wedge B) = P(A|B) \times P(B|A)$. And to treat all
 99 "and" statements as a matrix containing the possible events.

100 (4.4)
$$P(A \wedge B) = \begin{bmatrix} P(A|B) \\ P(B|A) \end{bmatrix}$$

102 **4.4.2. Probability of \vee .**

103 Although the probability of $(A \vee B)$ can be considered a fundamental probability as
 104 it can be calculated as $P(A) + P(B)$, it is actually one of the derived probabilities
 105 as it has more than one possible outcome and therefore must be resolved as a single
 106 event.

107 (4.5)
$$P(!A \vee !B) = \begin{bmatrix} P(!A|B) \\ P(!B|A) \end{bmatrix}$$

110 (4.6)
$$P(!A \vee !B) = P(A \wedge B) + P(!A \wedge !B)$$

112 (4.7)
$$P(A \vee B) = 1 - P(!A \vee !B)$$

113 **5. Non-Polynomial Time Problems.**

114 Any Non-Polynomial problem is the result of two distinct and independent variables.
 115 I shall refer to these as the value and the order.

116 • Value v is the property of a variable that makes it distinct.
 117 • Order o is the particular arrangement of properties in manner that is trans-
 118 ferable to a base 1 count.

119 An example of this is Sudoku, where the values are placed in a particular order
 120 to solve the problem. Any problem S which can be described in this manner is what
 121 we shall consider a Non-Polynomial problem for the sake of this argument.

122 **DEFINITION 5.1. Polynomial Problems**

123
$$S = f(v, o)$$

 124
$$o = f(v)$$

 125
$$S = f(v)$$

 126
$$P(S) = P(A)$$

128 **DEFINITION 5.2. Non-Polynomial Problems**

129
$$S = f(v, o)$$

 130
$$o \neq f(v)$$

 131
$$S \neq f(v)$$

 132
$$P(S) = P(A|!B)$$

134 **5.1. Proof the Problem is exponential.**

135 In the previous section, it was stated that non-polynomial problems are dependent
 136 on v and o . When solving a non-polynomial problem it is typical to say a solution
 137 is found when both events A and B occur, $P(A \wedge B)$. However in truth, a solution
 138 is found when given event A, B has occurred which can only be written as $P(B|A)$.
 139 However, when deriving a solution $P(A|!B)$ must be used as $P(A|B)$ as previously
 140 stated is contradictory and so therefore is wrong.

141 **5.1.1. $P(!B|A)$.** We are now going to derive the algorithm as given event A has
 142 occurred, event B will not happen. Where A is the probability that the order is
 143 correct B is the probability the value was correct and n is length of the problem i.e.
 144 the number of possible solutions .

145 (5.1) $P(A) = 1$ The order is always assumed correct
 146 $P(B) = \frac{1}{n}$ The value is assumed as typical to be $\frac{1}{n}$
 147 $P(A|!B)_{Algorithm} = P(A) - P(B)$

149 • For an algorithm to be correct the probability of finding a solution must equal
150 1.

$$151 \quad (5.2) \quad P(A|!B)_{Algorithm} = 1.$$

153 • For n^2 required solutions the probability of finding the correct solution is.

$$\frac{154}{155} \quad (5.3) \quad P(A|B)_{Algorithm} = (P(A) - P(B))^{n^2} = 1^{n^2}$$

156 Using the binomial identity

$$\sum_k^{n^2} \binom{n^2}{k} A^{n^2-k} B^k = 1.$$

159 • Where k represents a single step i and is equal to 1
160 • This can be expanded as

$$(5.5) \quad \binom{n^2}{0} A^{n^2} B^0 - \binom{n^2 - k}{k} B^k + \binom{n^2 - 2k}{2k} B^{2k} \dots + \binom{0}{n^2 k} B^{2n^2 k}$$

- As B is applied as a negative, every $(k+1)th$ step is impossible and therefore incalculable. We must therefore increase the total length of the algorithm to $2n^2$

$$(5.6) \quad \binom{2n^2}{0} A^{2n^2} B^0 + \binom{2n^2 - 2k}{2k} B^{2k} \dots + \binom{0}{2n^2 k} B^{2n^2 k}$$

- Substituting $B^k = \frac{1}{n} k$

$$(5.7) \quad \binom{2n^2}{0} A^{n^2} \left(\frac{1}{n} \right)^0 + \binom{2n^2 - 2k}{2k} \left(\frac{1}{n} \right)^{2k} \dots + \binom{0}{2n^2 k} \left(\frac{1}{n} \right)^{2n^2 k}$$

171 • As previously stated, you can not count 0. And therefore the expression for
172 the algorithm becomes

$$(5.8) \quad \binom{2n^2 - 2k}{2k} \left(\frac{1}{n}\right)^{2k} + \binom{2n^2 - 4k}{4k} \left(\frac{1}{n}\right)^{4k} \dots + \binom{0}{2n^2k} \left(\frac{1}{n}\right)^{2n^2k} = 1.$$

5.1.2. Limit Of Probability.

176 If we are to assume that the solution we are checking is correct, the probability that
177 the value and the order are correct are both 1.

$$178 \quad (5.9) \quad P(A)_{Check} = 1$$

$$179 \quad (5.10) \quad P(B)_{Check} = 1$$

$$180 \quad (5.11) \quad P(A \wedge B)_{Check} = 1$$

$$181 \quad (5.12) \quad P(A|B)_{Check} = 1$$

183 A property of a check is that it is self proving. So given the nature of the problem
 184 the probability of the check can be defined as $P(A|B)$. The probability of a check can
 185 also be stated to be $P(A \wedge B)$ as an efficient polynomial checking algorithm will only
 186 total. Removing the co-efficients from the previously stated algorithm and taking
 187 the pure calculation, synonymous to reducing the algorithm from a non-deterministic
 188 algorithm to a deterministic algorithm.

$$(5.13) \quad P(A|B)_{Algorithm} = \left(\frac{1}{n}\right)^2 + \left(\frac{1}{n}\right)^4 + \left(\frac{1}{n}\right)^6 + \dots \left(\frac{1}{n}\right)^{2n^2} = 1$$

191 The limit of the sum is.

$$192 \quad (5.14) \qquad \qquad \qquad \Sigma P(A|!B)_{Algorithm} \rightarrow \lim 1.$$

194 And therefore, for non-polynomial problems, as the probability that any poly-
195 nomial algorithm can correctly solve the problem can never equal 1, there is no
196 deterministic algorithm that can solve the problem in P time.

5.1.3. Proof of Exponential Nature.

198 *Proof.* Recalling that the relationship between $P(A), P(B)$ and n is

$$\Pi_{k=1}^{n^2} P(A)^{n^2-k} P(B)^k = \frac{1}{n} \sum 2^k \text{ where } k = \begin{bmatrix} n^2 \\ 1 \end{bmatrix}$$

As the left side is checking, let it be said that $P(A) = P(B) = 1$

$$1 = \left(\frac{1}{n}\right)^{\sum_1^{n^2} 2k}$$

$$203 \quad \ln|1| = -\sum_1^{n^2} 2k \ln|n|$$

$$0 = -\sum_1^{n^2} 2k \ln |n|$$

$$0 = -\sum_1^{n^2} 2k \quad \text{derivative}$$

$$e^0 = e^{-\frac{\sum_1^{n^2} 2k}{n^2}}$$

$$207 \quad 1 = e^{\frac{-\sum_{k=1}^n 2k}{n}}$$

208 Thereby proving that the problem is naturally exponential. This expression can be
209 calculated as,

$$210 - 1 = -1.$$

211 And as the modulus of $1 = |-1|$ we can conclude the problem is correctly solved,
 212 however, as $-1 \neq 1$ we can also conclude that $NP \neq P$.

214 **5.2. The Argument of Intent.**

215 $P(!B|A)$ represents an algorithm with the intention of getting it wrong/’can be said
 216 to be not knowing’. However, by some miracle it manages to get it right, if only once,
 217 as it’s limit approaches 1. However, $P(B|A)$ which is equal to $(1 - \frac{8}{9})$ can never get
 218 it right. As the algorithm that intends to get it right, can not get it right, and the
 219 algorithm that intends to get it wrong can, we can therefore state that there is no
 220 single intentional method that can solve this problem and we can therefore conclude
 221 that no efficient polynomial solution exists.

222

223 **5.3. Upper Bound.**

224 As previously stated in *Lemma 3.3*, the limit for solving is checking.

225 (5.15) Solving $\lim \xrightarrow{\text{Method}} \text{Checking}$

$$227 e^{\frac{-\sum_1^{n^2} 2k}{n}} \lim \xrightarrow{\text{Method}} 1$$

$$229 2n^2 e^{\frac{-\sum_1^{n^2} 2k}{n}} \lim \xrightarrow{\text{Method}} 2n^2$$

230 And therefore we can state that the Upper Bound is equal to

$$231 2n^2 e^{\frac{-\sum_1^{n^2} 2k}{n}}.$$

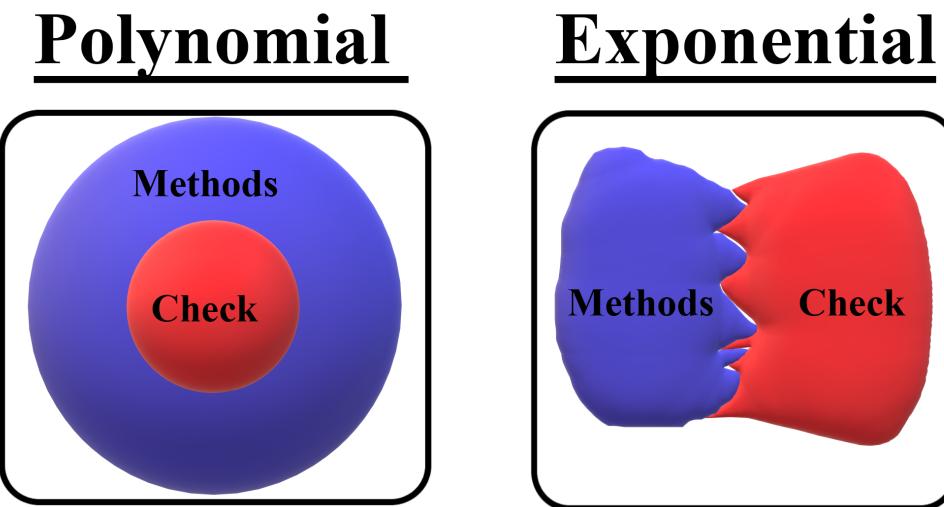


FIG. 4. ‘Method Space’ for polynomial and non-polynomial problems.

232 **Acknowledgements.** Thank you to Sergei Chernyshenko for dissecting an ear-
 233 lier copy of my work.

234

REFERENCES

235 [1] Cook. A.S, ”The P versus NP Problem” *Clay Mathematics*,