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1 PROOF THAT P # NP*

JAMELL IVAN SAMUELS?

[\

3 Abstract. The question does P = NP has confounded mathematicians and computer scientists
4 alike for over 50 years and although there is an almost unanimous agreement that it in fact does not,
5  there still is no absolute proof. In this paper, I attempt to prove to that P does not equal NP.

6 Key words. NP, P, Computational Complexity

7 AMS subject classifications. 68Q12, 68Q17

8 1. Introduction.

9 In 1971 Stephen Cook [1] proposed a fundamental question to the theory of computer
10 science. The question does NP = P has serious ramifications across a broad range of
11 subjects from cryptography to DNA synthesis and a solution to this problem has been
12 deemed worthy of a Millennium Prize. In this paper I establish the proof through the
13 use of basic fundamentals.

14 2. Counting.
15 In mathematics the two basic operations are counting and totalling.

16 DEFINITION 2.1.
17 Counting is the acting out of a method using a unit measure. Example there are a
18 hive of bees, I count the bees using my unit measure | as ||||||.

19 DEFINITION 2.2.
20 Totalling is the explicit use of number to sum a count, I sum my count |||||| using my
21 numerical system 1,2,3,4.... as 6.

22 Counting and totalling inhabit a region named the Method Space M, which is an
23 area used to categorise and derive operations.

24 DEFINITION 2.3. A Method M is any operation or process used to solve a problem.
25 In the Method Space, methods are represented as M(current operation, next variable),
26 wheren VR and i V R.

27 DEFINITION 2.4 (Limit of Counting to 0).

28 The limit of counting to 0 M (n,i)lim;_,o M(1,0)

29 The limit of totalling to 0 M (n + 4;,4;41) lim; 0 M (n,0)

30 DEFINITION 2.5 (Limit of Counting to co).

31 The limit of counting to infinity M(n,i) lim,; o M(1,1)

32 The limit of totalling to infinity M (n + 4;,4;41) lim; oo M (00, 00)

33 Using the method of slopes to measure the difference between counting and to-
34 talling .

dAT  M(0o,00) — M(n,0)  M(oo,00) _ (00,00)

35 (2.1 = = =
(2D dAC —  M(1,1) — M(1,0) M(0,1) (0,1)

36 Dividing to resolve this equation you obtain.

37 (2.2) (1,00)
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2 J. I. SAMUELS

38 Thereby establishing 0 as a non countable number.

39 3. Checking and Solving.

40 DEFINITION 3.1. Checking is the process where you assure that the solution you
41 have gained is valid.

42 DEFINITION 3.2. Solving is the method used to acquire a solution.

43 LEMMA 3.3. Your best solving method can not run faster than your best checking
44 method. Solving lim 2ethod, Checking

45 4. Probability.

16 Probability can be stated as the likelihood that an event will occur. It is counted as
47  the number of times an event will occur given the total number of possible events. Any
48  probability outside the boundaries of [0,1] does not exist on the probability plane and
49  therefore can only be interpreted for it’s meaning rather than stated as an absolute
50  definition of chance.

Probability A Probability B
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Fic. 1. Planes of Probability
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PROOF THAT P # NP 3
51 4.1. Planes and Cylinders of Probability.
52 Probabilities must remain on the same plane and in truth they can only be added or
53 subtracted. The use of multiplication can be considered the resolution of a stack of
54 probabilities (and therefore multiple events) that exist on separate planes which you
55 have resolved to one. Therefore we can define a probability plane or cylinder as.
Probabilities
Stack in a
cylinder with a \
maximum of 1
F1a. 2. Probability Cylinder.
56 e A probability plane is the area in which a probability exists or acts upon.
57 Probabilities may exist on separate planes, but they must be resolved to act
58 on one.
59 e A probability cylinder is a stack of multiple planes, a cylinder must be resolved

to act on one plane to calculate the probability of the single event.

=]
o

Probability A Probability A
+ -
Probability B Probability B

o6

Fia. 3. Example configurations of A and B.
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61 4.2. The Fundamental Probability - Derivation of Given.

62 The most fundamental probability to calculate is the probability that event(B) is not
63 going to happen given that event(A) has or is going to happen. All other probabilities
64 that can be calculated, fundamentally rely on this and although can be calculated in
65 other ways, risk losing the information contained within. Henceforth we are going to
66 state the probabilities in the order that they are calculated.

67 (4.1) P(!BJ|A) = P(A) — P(B)
68 (4.2) P(B|A) = P(A) — P(!B|A)
69 4.3. A note on Circular Logic.

70 The statement P(B|A) = P(A) — P(A|!B) is self refuting and is therefore contra-
71 dictory. Probabilities as a matter of fact can not be self proving or self refuting as
72 both are a form of circular logic. It is also not possible to circumvent this by stating
73 P(B|A) = P(A) — P(IB|A), because a 'not’ case, not derived from an initial ’is’ case,
74 technically comes from a separate 'world’ of probability. Example

1
75 (4.3) P(A)=1; P(B)= 3
76 3
77 P(A)+ P(B) =
78 2
1
79 P(1A)+ P(!B) = B
80 It can be seen that the two sums are distinctly different and therefore they can

81 mnot be considered to come from the same case.

82 4.4. Simultaneous Occurrences.

83 Probabilities must exist on a single plane and as a single event. Any event with more
84 than one possible outcome can be considered a simultaneous event. When resolving
85 multiple events to a single plane or in a single plane, the probabilities must be fully
86 counted to not lose or create inconsistencies in the information contained.

87 4.4.1. Probability of A.
88 If you recall the standard probability definition of ”and” is P(AA B) = P(A) x P(B).
1
89 P(A)=1; P(B)= g
90 1 1
91 1x ===
9 9

92 Therefore.

93 P(ANB)=P(B)

94 And you can henceforth state that the event P(AA B) is not dependent on P(A). The
95 same argument can also be made for P(A|B). And ergo P(A A B) is fundamentally
96 contradictory. This can be stated because the use of multiplication is the loss of
97 information. For example. [5+ 5+ 5+ 5 + 5] contains more information than 5 x 5.
98 Tt is therefore better to state that P(A A B) = P(A|B) x P(B|A). And to treat all
99 ”and” statements as a matrix containing the possible events.
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o P(AIB)}
100 (4.4 P(AAB) =
oo (44) (A7B) {P<B|A>

102 4.4.2. Probability of V.

103 Although the probability of (A V B) can be considered a fundamental probability as
104 it can be calculated as P(A) + P(B), it is actually one of the derived probabilities
105 as it has more than one possible outcome and therefore must be resolved as a single

106 event.
P(!A|B)}
107 (4.5 P('AVIB) =
o 45 (tAViB) [P(!B|A)
109 (4.6) P(!AV!B) = P(AAB) + P(!AAIB)
113 (47) P(Av B)=1-P(lAV!B)
113 5. Non-Polynomial Time Problems.

114 Any Non-Polynomial problem is the result of two distinct and independent variables.
115 I shall refer to these as the value and the order.

116 e Value v is the property of a variable that makes it distinct.

117 e Order o is the particular arrangement of properties in manner that is trans-
118 ferable to a base 1 count.

119 An example of this is Sudoku, where the values are placed in a particular order

120 to solve the problem. Any problem S which can be described in this manner is what
121 we shall consider a Non-Polynomial problem for the sake of this argument.

122 DEFINITION 5.1. Polynomial Problems

123 5= f(v,0)
124 o= f(v)
125 S = f(v)
136 P(S)=P(A)
128 DEFINITION 5.2. Non-Polynomial Problems
129 S = f(v,0)
130 o# f(v)
131 S # f(v)
132 P(S) = P(A|'B)
134 5.1. Proof the Problem is exponential.

135 In the previous section, it was stated that non-polynomial problems are dependent
136 on v and o. When solving a non-polynomial problem it is typical to say a solution
137 is found when both events A and B occur, P(A A B). However in truth, a solution
138 is found when given event A, B has occurred which can only be written as P(B|A).
139  However, when deriving a solution P(A|!B) must be used as P(A|B) as previously
140 stated is contradictory and so therefore is wrong.
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141 5.1.1. P(!B|A). We are now going to derive the algorithm as given event A has
142 occurred, event B will not happen. Where A is the probability that the order is
143 correct B is the probability the value was correct and n is length of the problem i.e.
144 the number of possible solutions .

145 (5.1) P(A) =1 The order is always assumed correct

1 1
146 P(B) = — The value is assumed as typical to be —

n n
14% P(A|'B) aigorithm = P(A) — P(B)
149 e For an algorithm to be correct the probability of finding a solution must equal
150 1.
}%é (52) P(A|'B)Alqorzthm =1.
153 e For n? required solutions the probability of finding the correct solution is.

2 2
{34 (53) P(A|'B) atgorithm = (P(A) = P(B))™ =1"
156 Using the binomial identity
- n? 2k pk
157 (5.4 A" TFBY =1.
57 (54 }j(k)
158 k
159 e Where k represents a single step i and is equal to 1
160 e This can be expanded as
n? 2 n?—k n? — 2k 0 2
61 (5.5 A" B — B* B* .. Bk
162 (55) <0) < k ) +< 2k ) w2
163 e As B is applied as a negative, every (k+ 1)th step is impossible and therefore
164 incalculable. We must therefore increase the total length of the algorithm to
165 2n?
166 (5.6) 2n° A2 B0 2n° — 2k B4 (0 Yk
o 0 2k T\ 2n2k
B s k_ 1F
168 e Substituting B = -
o2\ o 1\° (202 —2k\ (1)* 0\ /1)**

169 (5.7 A" — - .. —
goen () G) ()G ) G)
171 e As previously stated, you can not count 0. And therefore the expression for
172 the algorithm becomes

om? —2k\ (1N /202 — 4\ /1\ Y 0 1\ 27k
173 (5. - 2 - 1.
68 ( 2k )(n) +< 4k )(n) +<2n2k>(n>
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175 5.1.2. Limit Of Probability.
176 If we are to assume that the solution we are checking is correct, the probability that
177 the value and the order are correct are both 1.

178 (59) P(A)Check =1
179 (5.10) P(B)check = 1
180 (5.11) P(AAB)cheer =1
1@5 (5]‘2) P(A|B)Check =1
183 A property of a check is that it is self proving. So given the nature of the problem

184 the probability of the check can be defined as P(A|B). The probability of a check can
185 also be stated to be P(A A B) as an efficient polynomial checking algorithm will only
186 total. Removing the co-efficients from the previously stated algorithm and taking
187 the pure calculation, synonymous to reducing the algorithm from a non-deterministic
188 algorithm to a deterministic algorithm.

1N 1\ 1\° 1\
189 (5.13) P(A|'B) atgorithm = () + () + () T () =1
190 " ! ! b

191  The limit of the sum is.
192 (5.14) Y P(A|'B) aigorithm — lim 1.

194 And therefore, for non-polynomial problems, as the probability that any poly-
195 mnomial algorithm cam correctly solve the problem can never equal 1, there is no
196 deterministic algorithm that can solve the problem in P time.

197 5.1.3. Proof of Exponential Nature.
198 Proof. Recalling that the relationship between P(A),P(B) and n is
199
2

200 2 P(A)™ ~FP(B)* = 12" where k = |}
201 As the left side is checking, let it be said that P(4) = P(B) =1

n2
202 1= (%)Zl 2w
203 In|]l| = - Z’fz 2kin|n|

2

204 0=—>7 2kin|n|
e oyt .
205 0= —=—derivative

n2
206 0 = =t

- 2?2 2k

207 l=e"7n—

208 Thereby proving that the problem is naturally exponential. This expression can be
209 calculated as,

210 1=-1

211 And as the modulus of 1 = | — 1| we can conclude the problem is correctly solved,
212 however, as —1 # 1 we can also conclude that NP # P.

213

This manuscript is for review purposes only.


https://doi.org/10.20944/preprints202007.0588.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2020 d0i:10.20944/preprints202007.0588.v1

8 J. 1. SAMUELS

214 5.2. The Argument of Intent.

215 P(!B|A) represents an algorithm with the intention of getting it wrong/’can be said
216 to be not knowing’. However, by some miracle it manages to get it right, if only once,
217 as it’s limit approaches 1. However, P(B|A) which is equal to (1 — 3) can never get
218 it right. As the algorithm that intends to get it right, can not get it right, and the
219 algorithm that intends to get it wrong can, we can therefore state that there is no
220 single intentional method that can solve this problem and we can therefore conclude

221 that no efficient polynomial solution exists.

222
223 5.3. Upper Bound.
224 As previously stated in Lemma 3.3, the limit for solving is checking.
335 (5.15) Solving lim Method, Checking
2

X1 2k Method
227 e » lim—— 1
228 )

—n o
229 e lim Athod, o2

230 And therefore we can state that the Upper Bound is equal to

2
72? 2k
231 2nZem

Polynomial Exponential

(" N ( )

J . J

FiG. 4. ’Method Space’ for polynomial and non-polynomial problems.
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