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Abstract 12 

Debris-covered glaciers are a notable feature in the greater Himalaya, and their ongoing mass 13 

loss under changing climate will affect the water resources of over a billion people. The current 14 

knowledge of the mass balance of Himalayan glaciers is restricted by the paucity of in-situ 15 

measurements of glaciers in both space and time, as well as the resolution of satellite remote 16 

sensing imageries. Recently, the use of Unmanned Aerial System (UAS) imagery has shown the 17 

potential to bridge this gap by enabling very detailed monitoring of inaccessible glacial areas. 18 

UAS imagery-based monitoring of Himalayan glaciers has so far been limited to a single glacier 19 

in the entire Himalaya, providing a limited understanding of spatial variability in glacier mass 20 

balance and driving factors. In the first UAS based glacial mass change estimation in the trans-21 

Himalaya, we conducted two Unmanned Aerial System (UAS) surveys (May and November 22 

2019) over the debris-covered Annapurna III glacier in the Himalaya. We performed Structure-23 

from-Motion (SfM) analysis and utilized differential GPS field observations to derive 24 

geometrically accurate point clouds, ortho-mosaics and digital surface models (DSMs). The 25 

glacial volumetric loss was estimated from DSM differencing, and the magnitude and spatial 26 

variability of glacier surface change was derived from 3-D differencing of point clouds. Results 27 

revealed a heterogeneous glacial melt pattern, with an average elevation loss of 0.89 m during 28 
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the monitored time period. The majority of the glacial tongue exhibited surface lowering except 29 

the area above and around the glacial snout that surprisingly exhibited significant elevation gain. 30 

Both the highest magnitude of mass loss and the highest spatial variability in mass change was 31 

observed in areas with exposed ice-cliffs and supraglacial ponds. Glacial surface velocity derived 32 

from manual feature tracking showed velocity ranging from 0-4.1 m. A detailed evaluation of 33 

specific areas allowed an improved understanding of the complex interplay of factors leading to 34 

observed surface change. Our findings expand the extent of UAS based monitoring of debris-35 

covered glaciers in the Himalaya and conclude that UAS derived 3D topographic products will 36 

become increasingly important for monitoring of thinning debris-covered glaciers. 37 
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1. Introduction 41 

Valley glaciers, particularly in tropical and sub-tropical latitudes are recognized as a strong 42 

indicator of climatic change due to their sensitivity to small changes in climatic variables 43 

(Kaltenborn et al., 2010; Oerlemans, 2001). The High Asian mountain systems, including 44 

Hindukush, Karakoram and Himalaya holds the largest volume of glaciers outside polar areas 45 

(Farinotti et al., 2019). Himalayan glaciers are significant source of meltwater (Kehrwald et al., 46 

2008) and therefore changes in their area, volume and melt regime will significantly alter 47 

downstream hydrology and water supply to ~1.8 billion population in ten major Himalayan river 48 

catchments (Immerzeel et al., 2012; Immerzeel et al., 2010). These changes could have a 49 

profound effect on the human livelihood and ecology in many countries in South Asia 50 

(Kaltenborn et al., 2010; Mishra and Mainali, 2017; Schickhoff and Mal, 2020; Shrestha and 51 

Aryal, 2011; Xu et al., 2009). Being in one of the most rapidly warming region of the world, the 52 

Himalayan glaciers are important to study both for the enormous socio-economic aspect of 53 

climate change impact as well as scientific understanding of the dynamics of glacier response 54 

itself. Large scale monitoring of changes in key glacial parameters in the Himalaya (e.g. glacial 55 

area, mass balance and surface velocity) is therefore critical for understanding how climatic 56 

change impacts glaciers (Cogley, 2011) and in formulating informed decisions and policies 57 

(Bhadwal et al., 2013; Sud et al., 2015).  58 
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Methodological developments in monitoring glaciers has seen substantial changes in the past few 59 

decades. The traditional field-based methods for glacial mass balance and surface velocity 60 

estimation (e.g. by monitoring ablation stakes and accumulation pits) can provide an accurate 61 

measurement of glacial dynamics at a local scale (Hubbard and Glasser, 2005). However, field 62 

methods are limited in scope and extent due to glacier inaccessibility, time requirement and 63 

prohibitive expenses associated with field expeditions. Additionally, many Himalayan glacier 64 

have thick debris-cover, which makes installation and maintaining instruments cumbersome 65 

(Dobhal et al., 2013). More recent methodological developments, which includes use of space 66 

and air-borne multi-temporal remotely sensed datasets, have complimented field-based 67 

glaciological measurements making it possible to routinely monitor changes in the glacial extent, 68 

mass balance and derive surface velocity vectors over large swaths of the cryosphere in a more 69 

time efficient and relatively inexpensive manner (Bishop et al., 2004; Paul et al., 2015). 70 

Deriving changes in glacier surface elevation with elevation models and glacier surface 71 

velocities has been achieved using both active (Kääb et al., 2012) as well as passive satellite 72 

sensors (Bolch et al., 2011; Paul et al., 2015). Although satellite remote sensing enables 73 

monitoring large areas, the resolution of derived products is relatively coarse (> 30 m), and the 74 

vertical error range is high (> 15 m) (Fujita et al., 2008). Fine-scale spatial patterns of mass 75 

balance and surface velocity in Himalayan glaciers is regulated by geomorphic properties such as 76 

debris cover and sub-glacial bedrock slope gradients. Debris cover arguably provides an 77 

insulation effect. Studies have found that debris-covered glaciers experience lower glacial down-78 

wasting rate compared to non-debris-covered area (Scherler et al., 2011). However, more recent 79 

studies have found that debris-covered areas showed the same rate of mass loss as debris free 80 

area (Kääb et al., 2012; Pellicciotti et al., 2015). 81 

To understand the role of variable debris cover thickness and englacial features (ice-cliffs, 82 

supraglacial ponds) on spatial patterns of melting and mass loss, studies have emphasized the 83 

need for finer scale monitoring (i.e. pixel size < 0.5 m) of glaciers for which satellite data 84 

showed limited potential (Kirschbaum et al., 2019). More recently, the application of imagery 85 

acquired using Unmanned Aerial System (UAS) has enabled monitoring of the rapidly changing 86 

glacial geomorphic features at finer spatial scales. UAS has the ability to be rapidly deployed for 87 

data collection, provides the flexibility to perform repeated surveys and generally provides much 88 
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finer resolution data (< 0.1 m) (Bhardwaj et al., 2016; Mishra et al., 2018). UAS derived 89 

topographic models have been utilized to study fine-scale glacial changes in various mountain 90 

systems including in the Coriallera Blanca (Wigmore and Mark, 2017), Alps (Rossini et al., 91 

2018), and in the Himalayas (Immerzeel et al., 2014).  92 

Multi-temporal Digital Surface Models (DSMs) derived from UAS have been used to perform 93 

DSM differencing to detect and quantifying highly heterogeneous patterns of ice loss (Immerzeel 94 

et al., 2014) and have shown how ice-cliffs influences the spatial patterns of mass loss on debris-95 

covered glacier (Immerzeel et al., 2014; Ragettli et al., 2016). DSM differencing has been widely 96 

used for quantifying 3D topographic change; however recent studies have reported low accuracy 97 

and higher uncertainty. Transforming data into DSM requires gridding or meshing, leading to 98 

poor representation of steep slope or steep sloping topography (James et al., 2017). Several of 99 

these challenges associated with DSMs are addressed by computing three-dimensional change 100 

directly on pair of point clouds (Smith et al., 2016). Point cloud differencing is better suited for 101 

quantifying statistically significant change in glaciers with ice-cliffs and other supraglacial 102 

features were the geometry changes in 3D (Brun et al., 2016; Watson et al., 2017). While few 103 

studies that perform direct comparisons of multi-temporal point clouds for glacier scale analysis 104 

have been undertaken in the Alps (Rossini et al., 2018), they are yet be extensively tested on 105 

Himalayan glaciers. 106 

The only glacier that has so far been studied using UAS data in the Himalaya is the Lirung 107 

glacier which lies on the southern slope of Himalaya and falls under the monsoonal climatic 108 

regime. To the best of our knowledge, UAS based changes in glacial mass balance have not been 109 

studied on the north-facing slopes in the Himalayas, which typically have drier climatic regime 110 

since it falls in the trans-Himalayan zone outside the monsoonal climatic regime. Our efforts 111 

expand the use of UAS to investigate a trans-Himalayan glacier. While Lirung glacier has been 112 

studied using fixed-wing UAS, here we use a quadcopter UAS. For this study, we performed 113 

repeat UAS surveys combined with dGPS measurements at Annapurna III glacier in the trans-114 

Himalayan Manang valley, Nepal. The objectives are (i) to quantify changes in ice melt, glacier 115 

volume and glacier surface velocity at very fine scale with high accuracy (ii) to compare the 116 

spatial variation of observation changes over the monitored area and (iii) to investigate finer-117 
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scale processes and patterns of glacier changes to understand the role of local topography and 118 

geomorphological features in controlling the spatial variability in changes in glacial mass. 119 

2. Materials and methods 120 

2.1 Study area 121 

The Annapurna III glacier (locally known as Syakung) is located on the northern slopes of 122 

the Annapurna range in the Manang district of the Nepalese Himalaya (28.628466°N , 123 

84.040127°E) (Figure 1). Although the glacier is part of the Annapurna massif but it lies in 124 

the trans-Himalaya outside the monsoon regime and receives very little monsoonal 125 

precipitation. The climate is characterized as dry with annual rainfall totaling 398 mm, most 126 

of which occurs in summer months (June-Sept) (Kansakar et al., 2004). The glacier tongue is 127 

detached from the steep accumulation slopes below Annapurna III peak (7555m) and is fed 128 

by avalanches and seasonal snowfall during winter months. Like other Himalayan glaciers, 129 

Annapurna III glacier has a debris-covered tongue and the glacier snout is located at an 130 

elevation of 3848 m above mean sea level. 131 

 132 
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 133 

Figure 1: (A) Position of Annapurna III glacier in Nepal Himalaya, (B) an on-the ground view of 134 

the Annapurna III glacier from the opposite aspect showing the accumulation zone transitioning 135 

to ablation zone and (C) the monitored glacier area and the off-glacier area used for accessing 136 

accuracy. The background is a PlanetScope imagery of October 11, 2019 137 

 138 

2.2 Unmanned aerial system surveys 139 

Annapurna III glacier was surveyed by UAS twice, first on May 16-17, 2019 and later on 140 

November 20-21, 2019. This time-frame represents the starting and the end of glacial ablation 141 

season. Images were collected using a rotary-wing UAS (Mavic 2 pro from DJI) fitted with a 142 

GPS/GNSS satellite positioning system and a 20 Megapixel Hasselblad camera (i.e. 5472 by 143 

3648 pixels) that capture JPEG format images (Figure 3.c) (DJI, 2019). (Table 1).  144 
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Table 1: UAS and camera specification 145 

UAS and sensor Specifications 
Dimensions Unfolded: 322×242×84 mm (length×width×height) 
Max Flight Time (no wind) 31 minutes (at a consistent 25 kph) 
Max Flight Distance (no wind) 18 km (at a consistent 50 kph) 
Max Wind Speed Resistance 29–38 kph 
Operating Temperature Range -10°C to 40°C 
Takeoff Weight 907 g 
Storage 8 GB (Internal), External Micro SD™ 
Global Navigation Satellite 

 

GPS+GLONASS 
Sensor 1” CMOS 

    
Lens FOV: about 77°, 35 mm Format Equivalent: 28 mm 

Aperture: f/2.8–f/11, Shooting Range: 1 m to ∞ 
ISO range Photo:100-3200 (auto) 
Shutter Speed Electronic Shutter: 8–1/8000s 
Image Resolution 5472×3648 

 146 

Map Pilot for DJI app was used to pre-program mission parameters which were uploaded to the 147 

UAS autopilot to fly a grid pattern at a constant elevation (with respect to ground) (Easy, 2017). 148 

The Map Pilot for DJI app was used to calculate the area and estimate how many batteries/flights 149 

were needed to acquire images over the entire study area. The app features an interface for 150 

mission plan, allowing for setting parameters such as distance, a maximum speed of aircraft, 151 

waypoint altitude, resolution, and duration time for flight planning and a connected display for 152 

aircraft. As the study area had a variable altitude (from approximately 3750 to 4350 m), the UAS 153 

was programmed to adapt its flight altitude to maintain a constant height above the glacier 154 

surface (defined using the “terrain follow” feature in the Map Pilot app which uses a 30 m 155 

ASTER GDEM2 to derive changes in altitude for flight) (Easy, 2017)(Figure 2). 156 
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 157 

 Figure 2: Flight parameters used for UAS missions within the Map Pilot for DJI app 158 

The imagery acquisition was performed in 22 separate flights, 9 of which were conducted in May 159 

2019 and the remaining 13 flights in November 2019 (Table 2). Due to a functioning battery 160 

recharging facility in November 2019, a higher number of flights could be conducted and as a 161 

result, higher elevation reaches of the glacier that could not be mapped in May 2019 expedition 162 

were mapped in November 2019 (Figure 4). For all flights average flight altitude was set to 90 m 163 

above ground, a forward image overlap was set to 80% and sidelap was set to 75%, and flight 164 

speed was set to 4 m/second (Figure 2). 165 

Table 2: Overview of UAS survey conducted in May and November 2019  166 

 Total # of 
flights 

Total # of 
images 
captured 

# of images 
used 

Area mapped Flying 
altitude  

GSD (spatial 
resolution) 
 

May 16 -17, 2019 9 2101 2081 0.62 km2 90 m 2.1 cm/pixel 
Nov 20 -21, 2019 13 3042 3026 1.197 km2 90 m 2.1 cm/pixel 

       
2.3 Ground control points 167 

In May 2019, before the UAS data collection, 27 ground control points (GCPs) were established 168 

and surveyed using a differential GPS setup (Figure 3 and Figure 4). These GCPs were  169 

strategically placed along the lateral moraines of the Annapurna III glacier. The GCPs were 170 
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created using white or red color painted circular targets on sufficiently large and stable rocks and 171 

were utilized for georectification of the photogrammetric point cloud and as check points for 172 

accuracy assessment (Figure 3.b). In November 2019, 4 more GCPs were added in the higher 173 

elevation reached along the western moraine of the glacier. The targets were distributed fairly 174 

evenly across the mapped area. However, reaching the higher elevation of the study area (with 175 

nearly vertical slopes and ice-fall) was extremely difficult and targets could not be established 176 

there (Figure 4). 177 

 178 

Figure 3: (a) A differential GNSS base station setup near the Annapurna-III glacier (location 179 

shown in figure 4), (b) the GNNS rover collecting data over a marked Ground Control Point 180 

(GCP) and (c) the quadcopter AS utilized for data collection over the study area. 181 
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 182 

Figure 4:  Overview of the imaged area using UAS, check points and ground control 183 

point locations for May 2019 and Nov 2019 survey missions for Annapurna III glacier. 184 

 185 

Two differential GPS devices, a base station and a rover were utilized. A Trimble Net R5 base 186 

with Zypher Geodetic antenna was installed on a tripod near the western lateral moraine in 187 

proximity to the camping site (Figure 3.a). The base station was set up to collect data every 10-188 

second for a 15 hour period (i.e. entire duration of the rover data collection). Two Trimble 189 

GeoXH 6000 units were used as rovers (Figure 3.b). To avoid error due to changes in antenna 190 

pole inclination, the GCPs were recorded every second for a duration of 1-minute. These datasets 191 

were later post-processed with Trimble Pathfinder office software (Trimble, 2000). 192 
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2.4 SfM processing-Point cloud, DSM and Ortho-mosaic generation 193 

The images collected during May and November were analyzed to generate 3-D point clouds and 194 

2-D otho-mosiacs of the Annapurna III glacier and surrounding area following SfM workflows 195 

(Lucieer et al., 2014). We performed SfM analysis in Pix4Dmapper Pro software (Switzerland, 196 

2018). Specific detailed of algorithms implemented in Pix4D package are not available due to 197 

the proprietary nature of the software but some details regarding the parameters utilized within 198 

the software can be found in (Pix4D, 2019). The first step of SfM processing starts by selecting 199 

quality photos with sufficient overlap from multiple angles and positions. These high quality 200 

photos are aligned using an scale invariant feature recognition method (Lowe, 1999) to find and 201 

match unique image features (called ‘key points’) that are stable and are found in relation to their 202 

neighboring pixels. In the following step, a bundle block adjustment is made on the matched 203 

features to generate a sparse 3D point cloud (Snavely et al., 2008; Triggs et al., 1999). The GCPs 204 

were manually identified facilitated by this sparse point cloud whereby the dGNSS coordinates 205 

of each GCP was manually imported and precisely marked in multiple corresponding images to 206 

improve the accuracy of the 3D point cloud. Finally a densification technique is applied using 207 

multi-view stereo (MVS) to increase the density of the point cloud (approximately 102,000,000 208 

and 183,000,000 points respectively for May and November 2019) (Table 3) and also produce 209 

Digital Surface Models (DSMs) and ortho-mosaics.  210 

Table 3: Estimated pixel matching and model construction errors from SfM processing 211 

workflow. 212 

 May 2019 Nov 2019 
2D keypoints for bundle 
adjustment 

26,723,614 43,438,291 

3D keypoints for bundle 
adjustment 

9,217,775 14,971662 

Mean reprojection error 0.134 0.140 
Mean GCP X error/sigma 
RMSE 

-0.003758 m ± 0.028974 m 
0.029216 m 

0.000149 m ± 0.012517 m 
0.012518 m 

Mean GCP Y error/sigma 
RMSE 

0.006088 m ± 0.029652 m 
0.030270 m 

0.000611 m ± 0.008463 m 
0.008485 m  

Mean GCP Z error/sigma 
RMSE 

-0.024147 m ± 0.066237 m 
0.070502 m 

-0.000719 m ± 0.015976 m 
0.015992 m 

Maximum DSM resolution 0.0217 m 0.0212 m 
Average Point cloud density 274 per m3 298 per m3 

 213 

2.5 Accuracy assessment 214 
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The accuracy of the DSMs were accessed in multiple ways. Firstly, the SfM processing provided 215 

horizontal and vertical residuals (i.e. the differences between actual and estimated coordinates 216 

during the bundle adjustment and model generation process) for the 18 GCPs used in the two 217 

surveys (Table 3). Error is provided as mean and sigma of x-y-z differences, which describes 218 

how well the point cloud fits the in-scene ground targets. Secondly, the horizontal and vertical 219 

residuals calculated by overlaying 9 independent validation check points and comparing them 220 

against the x-y-z values extracted from DSM surface provide a more unbiased and precise error 221 

estimate. Additionally, the vertical uncertainty was also evaluated by calculating differences 222 

between the May and November DSMs for off-glacier terrain areas that were not subject to any 223 

change during the study period.  224 

2.6 Tracking of glacier surface velocity   225 

After confirming the precise geo-registration of the May and November 2D and 3D model 226 

outputs, glacial dynamics during the study period were examined using multiple approaches. The 227 

surface velocity and displacement of the glacier between May and November 2019 was 228 

estimated following a manual feature tracking method similar to Immerzeel et. al (2014). A total 229 

of 93 clearly distinguishable surface features points were digitized on the ortho-mosaic and their 230 

horizontal displacement between the two dates were precisely measured. The resulting velocity 231 

vectors at point locations were interpolated using ordinary kriging method to create a continuous 232 

surface.  233 

2.7 Comparison between May and November DSMs and point clouds 234 

To be able to make accurate comparisons for deriving melt water patterns and changes in volume 235 

across the glacier, it was necessary to remove any horizontal moment before comparison. For 236 

this purpose, the direction and magnitude of the vectors derived above were utilized to 237 

orthorectify the November 2019 DSM to exactly match the May 2019 DSM. The two DSMs 238 

were clipped to an interpreted glacial boundary. Furthermore, to reduce the probability of any 239 

spatial mismatch, the DSMs were resampled to 0.1 m pixel resolution and then the May DSM 240 

was subtracted from the November DSM to create a DSM of difference (DoD) (i.e. negative 241 

values indicate elevation lowing or ice loss) which was used to determine the overall height 242 

change on the monitored glacial area for each pixel of the model. DoD analysis was performed 243 

using the Geomorphic Change Detection (GCD) software (Wheaton, 2015). Both May and 244 
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November DSMs had different levels of vertical errors associated (i.e. ± 11 cm and ± 16 cm 245 

vertical RMSE respectively); it was necessary to use a threshold value as a minimum level of 246 

detection (minLOD). The minLOD value of ± 19.41 cm was determined using the following 247 

formula which calculated minLOD threshold as the sum of individual DSM errors in quadrature: 248 

                                       (i) 249 

Results were reported as volumetric and aerial changes per-pixel and for the entire monitored 250 

area of the Annapurna III glacier for the minLOD threshold value (Table 4).  251 

To improve upon the limitations of DSM differencing, a three-dimensional change calculation 252 

was performed by doing point cloud differencing using the Multiscale Model to Model Cloud 253 

Compare (M3C2) method (Lague et al., 2013) in the CloudCompare software. M3C2 algorithm 254 

first selects a set of points (also called ‘core points’) on which it computes best-fitting normal 255 

direction. In the second step, the distance between two point clouds is computed along with a 256 

cylinder with a given radius (D/2) projected into the normal direction. The two required user-257 

defined parameters for M3C2 are normal scale D, which is used to calculate the surface normal 258 

for each point and projection scale d over which the cloud to cloud distance calculation is 259 

averaged. The optimal values for both of these parameters depends on the properties of the cloud 260 

themselves. The normal direction will vary with the value of D due to the local roughness of 261 

point cloud, and if D is too small M3C2 distance can be overestimated. It is recommended that D 262 

should be > 20-25 times local roughness and d should be enough to have more than four points 263 

within the cylinder (Lague et al., 2013). Following Bash et. al, (2018), in this study we chose the 264 

optimal value of D and d by performing roughness calculation on the May 2019 point cloud at a 265 

variety of scales. The final values for D and d were 0.62 m and 0.3 m, respectively. 266 

The propagated RMSE calculated as the quadrature of two UAS surveys was used as the 267 

registration error in the point cloud differencing analysis. The M3C2 output includes a point 268 

cloud containing M3C2 distance, significant change and distance uncertainty. Distance 269 

uncertainty is given as the confidence interval, also called Level of Detection (LOD) given as:   270 

 271 
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Where σ1 and σ2 represent that roughness of individual point cloud in subset of clouds of 272 

diameter d and size of n1 and n2 and reg is the registration error. The distribution of registration 273 

error is expected to be spatially uniform and isotropic (Lague et al., 2013). If the |M3C2 274 

distance|> C95% the significance value is 1 or otherwise 0. The significance values were used to 275 

filter and select only the significant M3C2 values on which mean and standard deviation were 276 

calculated. The significant M3C2 distance values were analyzed for the entire monitored area of 277 

the glacier as well as selected smaller regions of the glacier to better understand the glacier 278 

dynamics and associated driving factors. 279 

3. Results and discussion 280 

3.1 GNSS and DSM Accuracy 281 

The co-ordinates of the dGPS base station were positioned with an estimated 282 

(vertical+horizontal) error of 0.046 m during May 2019 and error of 0.066 m during the 283 

November 2019 campaign. After post-processing the GCPs and check points with Trimble 284 

Pathfinder Office, their positional errors were estimated to be under 0.03 m (May 2019) and 285 

0.039 m (Nov 2019). Thus maximum expected positional error for the two surveys was 0.069 m. 286 

The accuracy of the DSMs generated by Pix4D was accessed based on the residuals of the GCPs. 287 

The distribution of the GCP residual for May 2019 shows that at the GCP locations, the DSM 288 

had accuracy with 0.20 m for both vertical and horizontal directions. For the November 2019 289 

DSM, the errors were within 0.30 m. However, for the majority of the measurements error was 290 

less than 0.15 m. 291 

The error statistic provided above tends to overestimate model accuracy. SfM processing in its 292 

various stages (i.e. aligning images, DSM generation and Orthorectification) introduces some 293 

error. DSM accuracy should therefore be evaluated by comparing survey points not used in 294 

model generation (i.e. check points) and comparing DSM difference over the off-glacier terrain 295 

area that is expected to experience no vertical change. Comparison of DSM with check points for 296 

May 2019 showed a mean difference of -0.0019325  m with a standard deviation of 0.11978 m. 297 

For November 2019 DSM, the observed mean difference was -0.0408125 m with a standard 298 

deviation of 0.109626 m. Figure 6 shows the histogram of the elevation difference for the off-299 

glacier area outlined in Figure 1 which shows that the average deviation between the two DSM 300 
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was 0.01 m ± 0.13 m. This result highlights that the point clouds and DSMs used in the 301 

following analyses were aligned accurately. 302 

 303 

 304 

Figure 5: Histograms of differences (errors) between check points and GCP surveyed elevations 305 

and DSM elevation for May 2019 and November 2019. (a) May 2019 check points, (b) 306 

November 2019 check points, (c) May 2019 GCP and (d) November 2019 GCP.  307 

 308 

Figure 6:  Histogram of elevation differences between May and November 2019 for the off-309 

glacier area shown in Figure 1. 310 

3.2 Measured changes over the compared glaciated area 311 

Results of DSM differencing showed that the pattern in surface elevation changes (loss or gain) 312 

was highly heterogeneous across the monitored glacial area. An overall loss of surface elevation 313 

was observed (represented by negative change) during the observed ablation season (Figure 7). 314 

The mean surface elevation change for the entire monitored area was -0.89 m with a standard 315 

deviation of 1.19 m (for ± 19.41 cm LoD). This is equivalent to 255,882 ± 48,681 m3 of ice loss 316 
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(Table 4). The maximum observed down-wasting rate was -11.55 m and the maximum surface 317 

raising was +4.2 m. Vast majority (~96%) of the values were within -3.9 m to + 0.87 m (Figure 318 

7.a). The mean surface elevation change observed in this study for Annapurna III glacier is lower 319 

than those observed by Immerzeel et al. (2014) for the Lirung glacier (i.e. -1.09 m with a SD of 320 

1.4 m) during roughly the same monitoring months of ablation season. 321 

 322 

Figure 7: (A) DSM difference derived vertical changes in elevation from May to November 2019 323 

and (B) distribution of changes in elevation calculated by 10 m elevation bands with the gray 324 

bars indicating mean change with ± one standard deviation. 325 

Table 4: Changes in elevation and volume between May and November on Annapurna III glacier 326 

 LoD = 0.1941 m 

Total  Area of Interest (m²) 348,343 

Total Area of Detectable Change (m²) 288,983 

Total Area of Surface Lowering (m²) 238,006 

Total Area of Surface Raising (m²) 50,977 

Total Volume of Surface Lowering (m³) 289,381 ± 47,601 

Total Volume of Surface Raising (m³) 33,499 ± 10,195 

Total Net Volume Difference (m³) -255,882 ± 48,681 
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Percentages by volume:  

Percent Elevation Lowering 90% 

Percent Elevation Raising 10% 

 327 

Figure 7.B shows mean and standard deviation of elevation change as measured within 10 m 328 

elevation bands over the glacier measured area, which further highlights nuances into the spatial 329 

variation of the distribution of elevation change. Mean elevation change for the highest-altitude 330 

band (>4320 m) is the highest at -1.59 m due to the expansion and collapse of ice-cliffs. 331 

Variability (standard deviation) in mean elevation change is also found to be higher in the 332 

surrounding area (between 4260 m - 4270 m). The mean ice loss pattern does not show a clear 333 

elevation dependence as areas with higher mean elevation loss ( >4250 m) are followed by a 334 

decreasing mean elevation loss (between 4220 m – 4120 m), which is again followed by a higher 335 

mean elevation loss bands at the lower elevations (between 3990 m – 4040 m). Interestingly, the 336 

lowest elevation areas occupied by the glacier (i.e. glacier snout and adjoin glacier reaches) show 337 

a positive rather than negative mass balance with some observed elevation gain. Here a mean 338 

elevation increase of 0.48 m (between 3829 and 3880 m) is observed (Figure 7.B). 339 

Throughout the monitored area, zones of elevation decrease were followed by zones of elevation 340 

increase. This is likely due to the downslope movement of the glacial ice as the vertical 341 

emergence velocity pushes the ice forward. This is also evident from the flow direction of the 342 

velocity vectors. The upper reaches of the glacier (area above 4100 m elevation) is in direct 343 

contact with the ice fall area with a very steep slope. The mass in the ice-fall region pushes mass 344 

in the upper reaches of the monitored area (between 4100 and 4325 m), with a comparatively 345 

lesser steep slope, ice is compressed and pushed downslope, resulting in the formation of ice-346 

cliffs and adjacent depressions. 347 

Results obtained from the point cloud differencing (using M3C2 algorithm) showed similar 348 

difference in elevation change and spatial distribution. Figure 8.a shows the spatial distribution 349 

of 3D cloud-to-cloud difference (where negative value represents elevation loss), and the 350 

distribution of M3C2 distance values are also summarized as a histogram in Figure 9. Around 351 

63.3% of points in the resultant point cloud had statistically significant M3C2 distance values. 352 

These points with significant M3C2 distance had a mean of -1.34 m and a standard deviation of 353 

±1.32 m. The spatial distribution of M3C2 distance closely matched the DSM differencing 354 



18 
 

results and confirm the spatial distribution of elevation change over the monitored area. Figure 355 

8.b shows if the distance was found to be statistically significant. No significant change was 356 

observed for the boulders and debris in the periglacial area, confirming the accurate alignment of 357 

the two DSMs.  358 

 359 

Figure 8: (a) M3C2 algorithm derived distance between two point clouds and (b) significance 360 

(95% confidence level) of the estimated change. Four areas of interests marked as boxes A-D in 361 

(a) are shown in the next four plots. 362 

3.3 Interpretation of point cloud differencing results for selected areas 363 

Previous studies report that glacier surface melt contributes only a small proportion to the mass 364 

change of debris-covered glacier, whereas the interplay of englacial voids, supraglacial ponds 365 

and cliffs responsible for majority of the mass loss (Brun et al., 2016; Steiner et al., 2015). To 366 

examine these interactions, we selected four specific areas on the glacier tongue (highlighted as 367 
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boxes A, B, C and Din figure 8.a). Results from the analysis of 3-D point cloud differencing for 368 

these four areas are shown in detail in figures 9-12. 369 

Both, the largest absolute elevation change (i.e. > 5 m of ice loss) and highest spatial variability 370 

in elevation change were observed in the vicinity of ice-cliffs and adjacent areas.  Figure 9 shows 371 

an example of the movement and expansion of a selected ice-cliff. Here, substantial mass 372 

wasting is observed as a large ice-cliff with exposed ice evolved between May and November. 373 

Visualization of May point cloud confirmed the existence of supraglacial ponds at the base of the 374 

ice-cliff. The 2-D profile (shown in Figure 9e) of a selected transect (transect a-b shown in 375 

Figure 9d) revealed that the spatial pattern of mass wasting. The cliff collapse resulted in up to 9 376 

m elevation loss and also led to the development of a glacial moulin between May and 377 

November. The ice-cliff expansion and collapse is likely driven by a under cutting of the cliff 378 

base due to increased ablation rate due to supraglacial pond contact (Steiner et al., 2015). Several 379 

previous studies have emphasized the significant role ice-cliffs play in the overall melt of the 380 

debris-covered parts of Himalayan glaciers (Brun et al., 2016; Buri et al., 2016; Sakai et al., 381 

2002). Ice-cliffs, often characterized by steep slopes, are exposed such that it receive higher 382 

longwave radiation, which increases their melt rate (Buri et al., 2016; Steiner et al., 2015). 383 

 384 

Figure 9: Changes in surface features around a selected ice cliff highlighted in area of interest 385 

“A” of Figure 8a. The first and second columns shows the perspective view of densified point 386 

clouds of May and November 2019 respectively, the third column shows respective M3C2 387 

distances. The figure in second row shows the nadir view of November point cloud with a 388 
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transect. The last panel shows elevational change along the transect by taking all points within 389 

0.1 m on either side of the transect. 390 

Figure 10 shows the same set of results as figure 9 for area of interest “B” shown in figure 8a.  391 

This is another area with the existence of the ice-cliffs and supra-glacial pond. This area 392 

experienced a slightly lower magnitude of elevation change. In May, the supra glacial pond is 393 

~10 m wide, but gets completely drained in November. Higher amount of mass wasting (−6 m to 394 

−10 m elevation loss) was observed at steeper portion of the surrounding ice cliff (left of the 395 

pond)   compared to less steeper cliffs (−2 to −4 m elevation loss). Large parts of the cliff that 396 

were exposed ice in May, were covered with debris and some recent snow in November. The 397 

translocation of boulders and the resultant increase in debris cover could be confirmed by 398 

visually comparing the May and November point clouds (Figure 10a and 10b). 399 

 400 

Figure 10. Changes in surface features around a selected ice-cliff highlighted in area of interest 401 

“B” shown in figure 8a. Panel descriptions as in figure 9. 402 

Figure 11 shows another dynamic area of englacial depression (possibly a moulin covered by 403 

debris), where both mass gain and loss can be observed. The slight mass gain upslope from the 404 

depression is most likely due to the slumping and redistribution of debris as well as glacier’s 405 

emergence and compressive flow. The dominant mass loss here could be due to sub-debris melt 406 

through the process outlined for figure 9. 407 
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 408 

Figure 11. Changes in surface features around the area highlighted in area of interest “C” in 409 

figure 8a. Panel descriptions as in figure 9. 410 

 411 

Figure 12. Changes in surface features around the area highlighted in area of interest “D” in 412 

figure 8a. Panel descriptions as in figure 9. 413 

Figure 12 shows an area near/just above the glacial snout, which shows moderate elevation gain 414 

(+0.5 m to +2.0 m). We hypothesize that the mass gain is due to glacier’s emergence velocity 415 

(also observed by Watson et al. (2017) on the Khumbu glacier) and well as translocation of 416 

debris from upslope areas and the adjoining lateral moraines. Sub-glacial meltwater coming from 417 
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crevasses, ice-cliffs, supra glacial ponds, and surface melting, tends to increase the basal flow at 418 

lower end (see the velocity at point C). The subglacial surface frictional resistance at the snout 419 

position does not allow the basal flow at the snout position and beyond (low velocity at point D). 420 

As a result, there is compression of the glacier ice and supraglacial debris at the snout position 421 

area and hence the slight elevation gain here.   422 

3.4 Surface velocity 423 

The velocity of glacier surface ranged from 4.1 m between May and November in the upper part 424 

of the on the monitored area of the glacier to completely stationary near the lateral moraines on 425 

either sides, and the glacier snout (Figure 11). In general, for the glacier surface velocity 426 

distribution, the monitored area could be divided into two parts: the majority of high-velocity 427 

area lies above the 4160 m contour, and below this, the glacier area has lower overall velocity. 428 

At around 4160 m, there is a sudden break in slope, which generally flattens out at lower 429 

elevations. Beyond this broad generalization, however, with localized variations in slope resulted 430 

in variations in gradient, and areas with comparatively steeper slopes experienced increased 431 

velocity. 432 
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 433 

Figure 11: Interpolated glacier surface velocity (shift in position of surface between May 434 

and Nov) and their tracks (direction of the shift). 435 

 436 

3.5 Comparison to other Himalayan glaciers monitored using UAS 437 

This study presents an application of DSM and 3-D point cloud differencing applied to repeated 438 

UAS survey data for detecting topographic change on the lower ablation area of Annapurna III 439 

glacier. Unlike Immerzeel et al. (2014) who utilized a fixed-wing UAS platform for data 440 

collection, this study utilized a much smaller quadcopter platform. While it is logistically easier 441 

to transport, launch and land smaller UAS, it may take higher amount of time and more number 442 

of flights to cover comparable area (Bhardwaj et al., 2016). Furthermore, fixed-wing UAS are 443 

generally able to carry higher resolution cameras (with global rather than rolling shutter) 444 
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compared to smaller UAS, this limitation is reducing as high resolution sensors are also being 445 

developed and integrated with smaller UAS platforms (Singh and Frazier, 2018).  446 

With an average DSM difference of -0.81 m, the overall melt rate on Annapurna III glacier is 447 

lower compared to Lirung glacier of the Himalaya (155 kms east of our site) for which 448 

Immerzeel et al. (2014) obtained mean surface elevation change of -1.09 m using UAS derived 449 

data. However, the high spatial heterogeneity of melt patterns and surface changes we observed 450 

are similar to the ones previously published by Immerzeel et al. (2014). Importantly, there are 451 

notable differences: (a) situated on the south facing slope of the Himalaya under monsoonal 452 

climatic regime, Lirung glacier receives more than twice the amount of annual precipitation 453 

compared to Annapurna III which lies outside the monsoonal climatic regime (Immerzeel et al., 454 

2014) (b) unlike Lirung glacier where areas experienced elevation gain (because of change in 455 

flow direction resulting in glacier uplift) in a single zone/elevation band, we observed in 456 

Annapurna III areas of elevation gain and loss interspersed throughout the glacier and show more 457 

heterogeneous distribution pattern; (c) we observed a contiguous region of elevation gain at 458 

lower elevation near the snout of the glacier, which is in contrary to the glacier dynamics in 459 

Lirung glacier. 460 

Focusing on four areas of interest, we show various drivers of mass wasting such as ice-cliff 461 

collapse, undercutting by adjacent supraglacial pond, burial of exposed ice under debris, and 462 

draining of ponds over time. Following M3C2 method the mechanism controlling elevation 463 

change can be evaluated in 3-D, understanding the role of specific driver (e.g. undercutting by 464 

supraglacial pond) and also reduces the chances of misinterpreting topographic change from 465 

debris cover, supraglacial ponds and ice-cliffs that occurs in DSM comparison. However, since 466 

the M3C2 method calculates 3-D changes along a normal direction and the alignment of surface 467 

normal varies over space. Hence, M3C2 methods is not suitable for calculating volumetric ice 468 

loss. 469 

4 Conclusions and future research 470 

This study presented the first UAS photogrammetry based volumetric change results for a trans-471 

Himalayan glacier outside the monsoon climatic regime. Our findings from Annapurna III 472 

glacier expands the previously sparse database of UAS based monitoring of debris-covered 473 

glaciers in the high mountain Asia. UAS derived 3-D point cloud data provides a more realistic 474 
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representation of glacial surface area compared to planimetric DSM and improves upon the 475 

errors associated with DSM differencing. Point cloud differencing based on M3C2 algorithm 476 

was shown to be an effective method to quantify the spatial variability in the magnitude of 477 

surface elevation change. Results further our understanding of spatial heterogeneity of mass loss 478 

patters on debris-covered glaciers in the Himalaya. The ortho-mosaic of the upper portion of the 479 

debris cover tongue, captured only during the November mission, confirmed the presence of a 480 

higher density of supraglacial ponds and ice cliffs and ice-falls. Future research benefit by 481 

focusing on recollecting UAS data for the entire monitored area and estimate the changes in 482 

mass balance for the entire area over an inter-annual scale. 483 
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