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Abstract  

We report the negative effective mass metamaterials based on the electro-mechanical coupling 

exploiting plasma oscillations of a free electron gas. The negative mass appears as a result of 

vibration of a metallic particle with a frequency of ω which is close to the frequency of the plasma 

oscillations of the electron gas 𝑚2 relatively to the ionic lattice 𝑚1. The plasma oscillations are 

represented with the elastic spring 𝑘2 = 𝜔𝑝
2𝑚2, where 𝜔𝑝 is the plasma frequency. Thus, the 

metallic particle vibrated with the external frequency ω is described by the effective mass 𝑚𝑒𝑓𝑓 =

𝑚1 +
𝑚2𝜔𝑝

2

𝜔𝑝
2−𝜔2 , which is negative when the frequency 𝜔 approaches 𝜔𝑝 from above. The idea is 

exemplified with two conducting metals, namely Au and Li embedded into various matrices. The 

one-dimensional lattice built of the identical metallic micro-elements 𝑚𝑒𝑓𝑓 connected by ideal 

springs 𝑘1 representing various media such as polydimethylsiloxane and soda-lime glass is 

treated. The optical and acoustical branches of longitudinal modes propagating through the lattice 

are elucidated for various ratios 
𝜔1

𝜔𝑝
. The 1D lattice built of the thin metallic wires giving rise to 

the low frequency plasmons is treated. The possibility of the anti-resonant propagation, 

strengthening the effect of the negative mass occurring under  = p = 1 is addressed.  

Keywords: metamaterials; negative effective mass; plasma oscillations; low frequency plasmons; 

optical and acoustical branches.  

Introduction 

Metamaterials are artificial materials demonstrating properties that is not found in 

naturally occurring materials [1-3]. In metamaterials the index of refraction and magnetic 

permittivity may be negative at certain frequencies. Moreover, they may be tuned in a broad range 

of values [4]. One of the most rapidly developed fields within the domain of metamaterials is the 

field of photonic band-gap crystals, which are multidimensional periodic structures with a period 
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of the order of the optical wavelength [5-7]. The theory predicted the existence of a photonic 

bandgap (PBG), a frequency band of inhibited optical modes [5-6]. Analogously, acoustical band 

gap materials were predicted and manufactured [8-11]. In particular sonic crystals, based on the 

idea of localized resonant structures, that exhibit spectral gaps with a lattice constant two orders 

of magnitude smaller than the relevant wavelength were reported [10-11].  

Acoustic metamaterials, in which both the effective density and bulk modulus are 

simultaneously negative, in the true and strict sense of an effective medium have been reported 

[12]. Acoustic metamaterials demonstrating the negative Poisson’s ratio [13] and negative elastic 

modulus were discussed [14]. Mechanical metamaterial exhibiting auxetic behavior and negative 

compressibility were suggested [15]. Acoustic metamaterials demonstrate a potential as perfect 

absorbers of mechanical vibrations [16] and also as materials enabling focusing of ultrasound 

[17]. In our recent paper we proposed to exploit the plasma oscillations of the electron gas for the 

development of the metamaterials with the negative effective mass (density) [18]. The notion of 

the negative effective mass (density) acoustic metamaterials was introduced in Refs. 19-21. We 

suggested to exploit the so-called plasma oscillations of the electron gas [22] for the development 

of the metamaterials with the negative effective mass (density) [18]. Now we elucidate the 

structure of the optical and acoustical branches of elastic waves propagating in chain structures 

built of elements possessing the negative effective mass, exploiting the plasma oscillations in 

metal particles connected by ideal springs, representing elastic media.       

1. Results and discussion 

1.1.  Propagation of harmonic waves in the 1D lattice comprising negative effective mass 

plasmonic elements  

The mechanical model giving rise to the negative effective mass effect, introduced in refs. 20, 21, 

23 is depicted in Figure 1. A core with mass 𝑚2 is connected internally through the spring with 

𝑘2 to a shell with mass 𝑚1. The system is exerted by the external sinusoidal force 𝐹 = 𝐹̂𝑠𝑖𝑛𝜔𝑡. 

If we solve the equations of motion for the masses 𝑚1 and 𝑚2 and replace the entire system with 

a single effective mass 𝑚𝑒𝑓𝑓 we obtain [20, 21, 23]: 

                                                 𝑚𝑒𝑓𝑓 = 𝑚1 +
𝑚2𝜔0

2

𝜔0
2−𝜔2   ,                                                          (1) 

where 𝜔0 = √
𝑘2

𝑚2
. It is easily recognized that when the frequency 𝜔 approaches 𝜔0 from above 

the effective mass 𝑚𝑒𝑓𝑓 will be negative [20, 21, 23]. In our recent paper we suggested the electro-

mechanical, plasmonic analogy of the aforementioned model, giving rise to the negative effective 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2020                   

Peer-reviewed version available at Materials 2020, 13, 3512; doi:10.3390/ma13163512

https://doi.org/10.3390/ma13163512


mass [18]. Consider a cubic metal particle shown in Figure 1A, seen as atomic lattice 𝑚1 

containing the Drude-Lorenz free electrons gas possessing the total mass of 𝑚2 = 𝑚𝑒𝑛𝑉 , where 

𝑚𝑒 = 9.1 × 10−31kg is the mass of electron, n is the concentration (number density) of the 

electron gas and V is the volume of the particle [22, 24, 25]. Electron gas is free to oscillate with 

the plasma frequency 𝜔𝑝 = √
𝑛𝑒2

𝑚𝑒𝜀0
 [22, 24, 25].  Expose the entire metal particle to the external 

sinusoidal force 𝐹 = 𝐹̂𝑠𝑖𝑛𝜔𝑡. The effective mechanical scheme of the metallic particle is shown 

in Figure 1B and it exactly coincides with that giving rise to the negative effective mass, supplied 

in this case by: 

                                             𝑚𝑒𝑓𝑓 = 𝑚1 +
𝑚2𝜔𝑝

2

𝜔𝑝
2−𝜔2    ,                                           (2) 

where 𝑚1 is the mass of the ionic lattice, 𝑚2  is the total mass of the electron gas; it is seen that 

it may be negative when the frequency 𝜔 approaches 𝜔𝑝 from above [18]. It was demonstrated 

that the effective dimensionless mass 
𝑚𝑒𝑓𝑓

𝑚1+𝑚2
≅

𝑚𝑒𝑓𝑓

𝑚1
 is independent on the metallic particles’ size 

[18].  The results of calculations of the effective negative mass for Li and Au are supplied in Ref. 

18 (the physical parameters of these metals are summarized in Table 1).  

Consider now the one-dimensional lattice built of elements (cells) shown in Figure 1B 

and depicted in Figure 2. The 1D lattice is built of identical elements possessing the effective 

negative masses 𝑚𝑒𝑓𝑓  given by Eq. 2 and connected by ideal springs 𝑘1; the separation between 

the elements a is constant, as shown in Figure 2. Consider propagation of harmonic wave (𝜔, 𝑞): 

                                         𝑢𝑖
𝑘+𝑛(𝑥, 𝑡) = 𝑢̂0𝑒𝑗(𝑞𝑥+𝑛𝑞𝑎−𝜔𝑡),                                          (3) 

where 𝑢𝑖
𝑘+𝑛(𝑥, 𝑡) is the displacement of the mass i (𝑖 = 1,2) in the 𝑘 + 𝑛-cell, 𝑢̂0 is the complex 

wave amplitude,  q is the wave number [21]. The dispersion equation for the 1D lattice depicted 

in Figure 2 was derived in Ref. 21: 

    𝑚1𝑚2 𝜔
4 − [(𝑚1 + 𝑚2)𝑘2 + 2𝑚2𝑘1(1 − 𝑐𝑜𝑠(𝑞𝑎))]𝜔2 + 2𝑘1𝑘2(1 − 𝑐𝑜𝑠(𝑞𝑎)) = 0       (4) 

Dividing Eq. 4 by 𝑚1𝑚2 and considering  
𝑚1

𝑚2
≫ 1  (which is true for plasmonic systems, thus, 

we can neglect 𝑚2 in the sum 𝑚1 + 𝑚2) and 𝑘2 = 𝑚2𝜔𝑝
2  yields Eq. 5: 

                    𝜔4 − [𝜔𝑝
2 + 2

𝑘1

𝑚1
(1 − 𝑐𝑜𝑠(𝑞𝑎))] 𝜔2 + 2

𝑘1

𝑚1
𝜔𝑝

2[1 − 𝑐𝑜𝑠(𝑞𝑎)] = 0                           (5) 

Denoting 𝜔1
2 =

𝑘1

𝑚1
 supplies in turn: 

                              𝜔4 − [𝜔𝑝
2 + 2𝜔1

2(1 − 𝑐𝑜𝑠(𝑞𝑎))]𝜔2 + 2𝜔1
2𝜔𝑝

2[1 − 𝑐𝑜𝑠(𝑞𝑎)] = 0               (6)        
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Equation 6 yields following exact solutions: 

                                                             𝜔 = 𝜔𝑝                                                                  (7.1) 

                                            𝜔 = 𝜔1√2(1 − 𝑐𝑜𝑠(𝑞𝑎)) = 2𝜔1 sin
𝑞𝑎

2
                                 (7.2) 

The solution of Eq. 6 gives rise to the “acoustic” and “optical” branches of vibrations [26, 27]. 

The solution supplied by Eq. 7.1 inherent for plasma oscillations of the electron gas corresponds 

to the absence of dispersion within the optical branch of vibrations; whereas, the solution supplied 

by Eq. 7.2 corresponds to the well-known dispersion inherent for propagation of longitudinal 

acoustic waves propagating within homogeneous 1D lattice, possessing the lattice constant of a 

[27]. In the limiting case of 𝑞𝑎 → 0 we obtain the non-dispersion propagation 𝜔 = 𝜔1𝑞𝑎 

corresponding to the continuous string, possessing the highest eigenfrequency of 𝜔 = 𝜔1.     

The degenerated double-resonance propagation occurs when  = p = 1 takes place. This 

propagation corresponds to the so-called antiresonance, when the amplitude of vibration of the 

mass 𝑚1 is minimal and in the limiting case even equals zero [28-29]. When the antiresonance  

= p = 1 condition is fulfilled all of the energy is transferred to the mass 𝑚2, thus strengthening 

the effect of the negative mass.   

 “Optical” and “acoustical” branches of longitudinal modes propagation in the 1D lattice, 

depicted in Figure 2 for various 
𝜔1

𝜔𝑝
  ratios are shown in Figures 3A-C [26-27]. It is recognized 

from Figure 3, that the relative location and configuration of the optical and acoustical branches 

depends strongly on the ratio 
𝜔1

𝜔𝑝
 . The optical and acoustical branches may be separated by the 

frequency (energy) gap, as shown in Figure 3A. The configurations of optical and acoustical 

branches at which this gap is zero are also possible, as shown in Figures 3B, C. It is noteworthy 

that the optical and acoustical branches may intersect, as depicted in Figure 3C.  

In order to exemplify the suggested meta-material, we considered the 1D lattice of 

spherical Li and Au particles, dispersed in the polymer (polydimethylsiloxane) and soda-lime 

glass matrices. The values of the spring stiffness [30] and frequencies 𝜔1 calculated for various 

diameters of the metallic particles (𝐷 ≅ 10−7 − 10−6 𝑚) and lattice constants (𝑎 ≅

1.5 × 10−7 − 1.5 × 10−6 𝑚) are summarized in Table 2. It is clearly recognized from the 

numerical data supplied in Tables 1, 2, that for the suggested composite meta-materials the 

interrelation p >> 1 takes place. Thus, the relative location of the acoustic and optical branches 

of modes, resulting in the formation of the band gap, depicted in Figure 3A, necessarily occurs. 
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Exemplification of the situations presented in Figures 3B, C demands an essential decrease in 

the plasma frequency, which is possible in the meta-materials, addressed in the following section.   

1.2.  Propagation of harmonic waves in the metallic meso-structures demonstrating the 

effect of negative effective mass. 

The plasma oscillations shown in Figure 1 will demonstrate the negative mass in the 

vicinity of the plasma frequency which is on the order of magnitude of 𝜔𝑝 ≅ 1016Hz , which is 

very high. However, this frequency may be strongly decreased for the meso-structures built of 

thin metallic wires, as demonstrated in Ref. 31. Depression of the plasma frequency into the far 

infrared and even GHz band becomes possible due to the mutual inductance appearing in the 

periodic arrays built of thin metallic wires arranged in a simple cubic lattice, joined at the corners 

of the lattice [31], such as depicted in Figure 4. Consider longitudinal acoustic modes propagating 

along such a lattice. For a sake of simplification, we replace the 3D lattice with the 1D lattice, 

shown in Figure 2. The effective (pseudo) density of electrons in the metamaterial lattice shown 

in Figure 4 is given by [31]: 

                                                   𝑛̃ ≅ 𝜋𝑛
𝑟2

𝑙2  ,                                                         (8) 

where l is the lattice constant, r is the radius of the wire, n is the concentration of the free electron 

gas supplied in Table 1 for Li and Au. The pseudo-mass of electrons in such matrices is given by 

[31]: 

                                                         𝑚̃ =
𝜇0𝑟2𝑒2𝑛

2
𝑙𝑛

𝑙

𝑟
  .                                                (9) 

The value expressed by Eq. 9 is called in Ref. 31 as the “effective mass”; however, in our paper 

the notion of the “effective mass” is already ascribed to the mass of the vibrated element, given 

by Eq. 1. Thus, we call the value expressed by Eq. 9 the “pseudo-mass”, and the effective density 

of electrons expressed by Eq. 8 we label as the “pseudo-density”. Assuming 𝑟 =

1.0 × 10−6m; 𝑙 = 5.0 × 10−3m enables calculation of the effective pseudo-plasma frequencies 

𝜔𝑝
∗  for Au and Li according to Eq. 10 (Ref. 31): 

                                                           𝜔𝑝
∗ = √

𝑛̃𝑒2

𝜀0𝑚̃
= √

2𝜋𝑐0
2

𝑙2 ln(𝑙 𝑟)⁄
 ,                                                (9) 

where 𝑐0 ≅ 3.0 × 108 m

s
 is the speed of light in vacuum. Substituting aforementioned numerical 

parameters yields for the effective plasma frequencies of the lattices built from Au and Li wires 

𝜔𝑝
∗𝐴𝑢 = 𝜔𝑝

∗𝐿𝑖 = 8.2 GHz , which are already comparable with the frequencies attainable by the 

modern piezoelectric devices [32-33].   
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The relative location of the optical and acoustical branches of the longitudinal modes’ 

propagation in the 1D meta-lattice, depicted in Figure 4 is similar to that shown in Figure 3. 

However, contrastingly to the situation addressed in the previous section the interrelation  𝜔𝑝 ≅

𝜔1 becomes attainable under the reasonable choice of the geometrical parameters l and r. Thus, 

the anti-resonant propagation, strengthening the effect of the negative mass under   = p = 1 

becomes possible [28-29].  

Again, the configurations of the optical and acoustic branches separated and non-

separated by the frequency (energy) gap are possible, as illustrated in Figure 3. It should be 

emphasized that the ensembles of metallic wires, shown schematically in Figure 4, will not 

demonstrate simultaneously the negative mass (density) and the negative refraction effects [34]. 

This is due to the fact that the negative refraction becomes possible below the plasma frequency 

𝜔𝑝 [34]; contrastingly, the effect of the negative mass in our model emerges when the frequency 

𝜔 approaches 𝜔𝑝 from above; thus, creating of the material, demonstrating simultaneously the 

negative density and dielectric constant remains challenging.  

Conclusions 

We address propagation of harmonic longitudinal acoustic waves through the 1D lattice 

demonstrating the effect of the negative mass arising from the plasma oscillations of the electron 

gas relatively to the atomic lattice. The effect takes place when a metallic particle is vibrated with 

the external frequency 𝜔 approaching the plasma frequency 𝜔𝑝 = √
𝑛𝑒2

𝑚𝑒𝜀0 
 from above. In this case 

the effective mass of the metallic particle 𝑚𝑒𝑓𝑓 = 𝑚1 +
𝑚2𝜔𝑝

2

𝜔𝑝
2−𝜔2

 , where 𝑚1 is the mass of the ionic 

lattice, and 𝑚2 is the mass of the electron gas, becomes negative [12, 13, 15, 18, 21]. The plasma 

oscillations may be phenomenologically represented with the ideal spring 𝑘2 = 𝜔𝑝
2𝑚2. The one-

dimensional lattice built of the identical metallic (say Li and Au) elements 𝑚𝑒𝑓𝑓 connected by 

the ideal springs 𝑘1 enabling electro-mechanical coupling is addressed. Model meta-materials 

built of Li and Au micro-particles embedded into polymer and glass matrices, represented by 

ideal springs 𝑘1 are considered. Exact dispersion relations in the case of  
𝑚1

𝑚2
≫ 1  are elucidated.  

The configurations of the optical and acoustical branches of the longitudinal modes 

propagating through the 1D lattice arising from the various ratios  
𝜔1

𝜔𝑝
 are explored [26-27]. The 

relative location and configuration of the optical and acoustical branches depends strongly on the 
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ratio 
𝜔1

𝜔𝑝
 . The optical and acoustical branches may be separated by the frequency (energy) gap. 

The possibility of the antiresonant wave propagation arising when 𝜔 = 𝜔𝑝 = 𝜔1 = √
𝑘1

𝑚1
 is 

treated.  

The effects due to the negative effective mass become possible in the nearest vicinity of 

the plasma frequencies, inherent for typical metals which are high, namely 𝜔𝑝~1016Hz. The 

plasma frequency may be decreased markedly for the low frequency plasmons predicted for the 

metallic mesostructures [31], enabling manufacturing metamaterials, demonstrating the negative 

effective density. The configurations of the optical and acoustic branches separated and non-

separated by the frequency (energy) gap are possible. Again, the anti-resonant propagation, 

strengthening the effect of the negative mass under  = p = 1 is feasible [28-29].  
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Table 1. Properties of metals used in the calculations  

Metal ρ,   
kg/m3 

𝑛𝑒, 
m-3 

p , 

Hz 

Li 530 4.7×1028 1.0×1016 

Au  19300 5.9×1028 1.3×1016 

 

Table 2. Dimensions of spherical metallic particles and physical properties of the matrix materials 

used in the calculations.  

 D,  

m 

𝑎, 
m 

m1,  

kg 

m2, 

kg 

k1, 

N/m 

(PDMS) 

k1, 

N/m 

 (glass) 

k2, 

N/m 

(plasma) 

1, 

Hz  

(PDMS) 

1, 

Hz  

(glass) 

Au 1×10-6 1.5×10-6 1.01×10-14 2.81×10-20 1.18 1.1×105 3.65×10-4 1.72×106 5.25×108 

Li 1×10-6 1.5×10-6 2.77×10-16 2.24×10-20 1.18 1.1×105 2.24×10-4 1.04×107 3.17×109 
          

Au 5×10-7 7.5×10-7 1.26×10-15 3.51×10-21 0.59 5.5×104 4.57×10-5 3.44×106 1.05×109 

Li 5×10-7 7.5×10-7 3.46×10-17 2.80×10-21 0.59 5.5×104 2.80×10-5 2.08×107 6.34×109 
          

Au 1×10-7 1.5×10-7 1.01×10-17 2.81×10-23 0.12 1.1×104 3.65×10-7 1.72×107 5.25×109 

Li 1×10-7 1.5×10-7 2.77×10-19 2.24×10-23 0.12 1.1×104 2.24×10-7 1.04×108 3.2×1010 

 

D –diameter of the spherical metallic particle (see Figure 2) 

a  - lattice constant. 
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Figure 1. A. Free electrons gas is embedded into the ionic lattice; 𝜔𝑝 is the electron 

plasma frequency. B. The equivalent mechanical scheme of the system A. Core with mass 

𝑚2 (free electrons gas mass) is connected internally through the spring with 𝑘2 = 𝜔𝑝
2𝑚2 to a 

shell with mass 𝑚1(ionic lattice mass). The system is subjected to the sinusoidal force 𝐹(𝑡) =

𝐹̂𝑠𝑖𝑛𝜔𝑡. 
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Figure 2. The mechanical scheme of the one-dimensional lattice is depicted. 
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Figure 3. Optical and acoustic branches of longitudinal modes calculated for different ratios 
𝜔1

𝜔𝑝
. 

A. 
𝜔1

𝜔𝑝
= 0.25; B.  

𝜔1

𝜔𝑝
= 0.5; C. 

𝜔1

𝜔𝑝
= 1. 
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Figure 4. Metallic wires with the radius of r arranged in a simple cubic lattice with the lattice 

constant of l.  The lattice is subjected to the axial sinusoidal force 𝐹(𝑡) = 𝐹̂𝑠𝑖𝑛𝜔𝑡. 
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