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Abstract

We report the negative effective mass metamaterials based on the electro-mechanical coupling
exploiting plasma oscillations of a free electron gas. The negative mass appears as a result of
vibration of a metallic particle with a frequency of w which is close to the frequency of the plasma
oscillations of the electron gas m,, relatively to the ionic lattice m,. The plasma oscillations are
represented with the elastic spring k, = w;m,, where w, is the plasma frequency. Thus, the
metallic particle vibrated with the external frequency o is described by the effective mass m, s =

myw

2
my + w;T(jz , which is negative when the frequency w approaches w, from above. The idea is

exemplified with two conducting metals, namely Au and Li embedded into various matrices. The
one-dimensional lattice built of the identical metallic micro-elements m, ¢, connected by ideal
springs k, representing various media such as polydimethylsiloxane and soda-lime glass is

treated. The optical and acoustical branches of longitudinal modes propagating through the lattice

are elucidated for various ratios % The 1D lattice built of the thin metallic wires giving rise to
P

the low frequency plasmons is treated. The possibility of the anti-resonant propagation,

strengthening the effect of the negative mass occurring under o= @y = w1 is addressed.

Keywords: metamaterials; negative effective mass; plasma oscillations; low frequency plasmons;

optical and acoustical branches.

Introduction

Metamaterials are artificial materials demonstrating properties that is not found in
naturally occurring materials [1-3]. In metamaterials the index of refraction and magnetic
permittivity may be negative at certain frequencies. Moreover, they may be tuned in a broad range
of values [4]. One of the most rapidly developed fields within the domain of metamaterials is the

field of photonic band-gap crystals, which are multidimensional periodic structures with a period

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma13163512

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 July 2020

of the order of the optical wavelength [5-7]. The theory predicted the existence of a photonic
bandgap (PBG), a frequency band of inhibited optical modes [5-6]. Analogously, acoustical band
gap materials were predicted and manufactured [8-11]. In particular sonic crystals, based on the
idea of localized resonant structures, that exhibit spectral gaps with a lattice constant two orders

of magnitude smaller than the relevant wavelength were reported [10-11].

Acoustic metamaterials, in which both the effective density and bulk modulus are
simultaneously negative, in the true and strict sense of an effective medium have been reported
[12]. Acoustic metamaterials demonstrating the negative Poisson’s ratio [13] and negative elastic
modulus were discussed [14]. Mechanical metamaterial exhibiting auxetic behavior and negative
compressibility were suggested [15]. Acoustic metamaterials demonstrate a potential as perfect
absorbers of mechanical vibrations [16] and also as materials enabling focusing of ultrasound
[17]. In our recent paper we proposed to exploit the plasma oscillations of the electron gas for the
development of the metamaterials with the negative effective mass (density) [18]. The notion of
the negative effective mass (density) acoustic metamaterials was introduced in Refs. 19-21. We
suggested to exploit the so-called plasma oscillations of the electron gas [22] for the development
of the metamaterials with the negative effective mass (density) [18]. Now we elucidate the
structure of the optical and acoustical branches of elastic waves propagating in chain structures
built of elements possessing the negative effective mass, exploiting the plasma oscillations in
metal particles connected by ideal springs, representing elastic media.

1. Results and discussion
1.1. Propagation of harmonic waves in the 1D lattice comprising negative effective mass
plasmonic elements
The mechanical model giving rise to the negative effective mass effect, introduced in refs. 20, 21,
23 is depicted in Figure 1. A core with mass m,, is connected internally through the spring with
k, to a shell with mass m,. The system is exerted by the external sinusoidal force F = Fsinwt.
If we solve the equations of motion for the masses m, and m, and replace the entire system with

a single effective mass m, s, we obtain [20, 21, 23]:

_ mywd
Mepy =M1+ 5705 (1)

where w, = f% It is easily recognized that when the frequency w approaches w, from above
2

the effective mass m, -, will be negative [20, 21, 23]. In our recent paper we suggested the electro-

mechanical, plasmonic analogy of the aforementioned model, giving rise to the negative effective
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mass [18]. Consider a cubic metal particle shown in Figure 1A, seen as atomic lattice m,
containing the Drude-Lorenz free electrons gas possessing the total mass of m, = m,nV , where
m, = 9.1 x 10731kg is the mass of electron, n is the concentration (number density) of the

electron gas and V is the volume of the particle [22, 24, 25]. Electron gas is free to oscillate with

the plasma frequency w, = ’,Ze: [22, 24, 25]. Expose the entire metal particle to the external
ec0

sinusoidal force F = Fsinwt. The effective mechanical scheme of the metallic particle is shown
in Figure 1B and it exactly coincides with that giving rise to the negative effective mass, supplied

in this case by:

myw}

, ()

where m, is the mass of the ionic lattice, m, is the total mass of the electron gas; it is seen that

meff =my + _wzz,—wz

it may be negative when the frequency w approaches w,, from above [18]. It was demonstrated

that the effective dimensionless mass ﬁ = mLff is independent on the metallic particles’ size
1 2 1

[18]. The results of calculations of the effective negative mass for Li and Au are supplied in Ref.
18 (the physical parameters of these metals are summarized in Table 1).

Consider now the one-dimensional lattice built of elements (cells) shown in Figure 1B
and depicted in Figure 2. The 1D lattice is built of identical elements possessing the effective
negative masses m.¢, given by Eq. 2 and connected by ideal springs k, ; the separation between
the elements a is constant, as shown in Figure 2. Consider propagation of harmonic wave (w, q):

ul{c+n (x,t) = ﬁoej(qx+nqa—wt)’ (3)
where uf*"(x, t) is the displacement of the mass i (i = 1,2) in the k + n-cell, @, is the complex

wave amplitude, g is the wave number [21]. The dispersion equation for the 1D lattice depicted

in Figure 2 was derived in Ref. 21:
m1m2 (U4 - [(m1 + mz)kz + 2m2k1(1 - COS(qa))]wz + Zklkz(l - COS(qa)) = 0 (4)

Dividing Eq. 4 by m;m, and considering % > 1 (which is true for plasmonic systems, thus,
2

we can neglect m, in the sum m; + m,) and k, = mzwzz, yields Eq. 5:
k k
w* — [wzz, + 2 m_11(1 - cos(qa))] w? + Zm—lla)l%[l —cos(qa)] =0 (5)

. k . .
Denoting w? = —= supplies in turn:
1 m
1

w* — [wZ + 20 (1 — cos(qa))|w? + 2wiw[1 — cos(qa)] = 0 (6)
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Equation 6 yields following exact solutions:

w = Wy (7.1)

w = wl\/Z(l — cos(qa)) = 2w, sinqz—a (7.2)

The solution of Eq. 6 gives rise to the “acoustic” and “optical” branches of vibrations [26, 27].
The solution supplied by Eq. 7.1 inherent for plasma oscillations of the electron gas corresponds
to the absence of dispersion within the optical branch of vibrations; whereas, the solution supplied
by Eq. 7.2 corresponds to the well-known dispersion inherent for propagation of longitudinal
acoustic waves propagating within homogeneous 1D lattice, possessing the lattice constant of a
[27]. In the limiting case of ga — 0 we obtain the non-dispersion propagation w = w;qa
corresponding to the continuous string, possessing the highest eigenfrequency of w = w;.

The degenerated double-resonance propagation occurs when o= ap = w1 takes place. This
propagation corresponds to the so-called antiresonance, when the amplitude of vibration of the
mass m; is minimal and in the limiting case even equals zero [28-29]. When the antiresonance @
= ap = w1 condition is fulfilled all of the energy is transferred to the mass m,, thus strengthening
the effect of the negative mass.

“Optical” and “acoustical” branches of longitudinal modes propagation in the 1D lattice,
1

“L ratios are shown in Figures 3A-C [26-27]. It is recognized

Wp

depicted in Figure 2 for various

from Figure 3, that the relative location and configuration of the optical and acoustical branches

depends strongly on the ratio % . The optical and acoustical branches may be separated by the
P

frequency (energy) gap, as shown in Figure 3A. The configurations of optical and acoustical
branches at which this gap is zero are also possible, as shown in Figures 3B, C. It is noteworthy
that the optical and acoustical branches may intersect, as depicted in Figure 3C.

In order to exemplify the suggested meta-material, we considered the 1D lattice of
spherical Li and Au particles, dispersed in the polymer (polydimethylsiloxane) and soda-lime
glass matrices. The values of the spring stiffness [30] and frequencies w, calculated for various
diameters of the metallic particles (D = 1077 —107®m) and lattice constants (a =
1.5%x 1077 — 1.5 x 10~® m) are summarized in Table 2. It is clearly recognized from the
numerical data supplied in Tables 1, 2, that for the suggested composite meta-materials the
interrelation ap >> @1 takes place. Thus, the relative location of the acoustic and optical branches

of modes, resulting in the formation of the band gap, depicted in Figure 3A, necessarily occurs.
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Exemplification of the situations presented in Figures 3B, C demands an essential decrease in
the plasma frequency, which is possible in the meta-materials, addressed in the following section.
1.2.  Propagation of harmonic waves in the metallic meso-structures demonstrating the
effect of negative effective mass.

The plasma oscillations shown in Figure 1 will demonstrate the negative mass in the
vicinity of the plasma frequency which is on the order of magnitude of w, = 10'®Hz, which is
very high. However, this frequency may be strongly decreased for the meso-structures built of
thin metallic wires, as demonstrated in Ref. 31. Depression of the plasma frequency into the far
infrared and even GHz band becomes possible due to the mutual inductance appearing in the
periodic arrays built of thin metallic wires arranged in a simple cubic lattice, joined at the corners
of the lattice [31], such as depicted in Figure 4. Consider longitudinal acoustic modes propagating
along such a lattice. For a sake of simplification, we replace the 3D lattice with the 1D lattice,
shown in Figure 2. The effective (pseudo) density of electrons in the metamaterial lattice shown
in Figure 4 is given by [31]:

l=nn— (8)
where | is the lattice constant, r is the radius of the wire, n is the concentration of the free electron
gas supplied in Table 1 for Li and Au. The pseudo-mass of electrons in such matrices is given by

[31]:

2,2
UoT?e’n
2 - CIn

~ l
m = - .
2 T

©9)

The value expressed by Eq. 9 is called in Ref. 31 as the “effective mass”; however, in our paper
the notion of the “effective mass” is already ascribed to the mass of the vibrated element, given
by Eq. 1. Thus, we call the value expressed by Eq. 9 the “pseudo-mass”, and the effective density
of electrons expressed by Eg. 8 we label as the “pseudo-density”. Assuming r =
1.0 X 107°m; [ = 5.0 X 10~3m enables calculation of the effective pseudo-plasma frequencies
wy, for Au and Li according to Eq. 10 (Ref. 31):

« _ |e? 2mc
Wp = \/soffl B \/lzln(l/r) ! (9)

where ¢, = 3.0 X 108? is the speed of light in vacuum. Substituting aforementioned numerical

parameters yields for the effective plasma frequencies of the lattices built from Au and Li wires
w;A” = a);” = 8.2 GHz , which are already comparable with the frequencies attainable by the

modern piezoelectric devices [32-33].
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The relative location of the optical and acoustical branches of the longitudinal modes’
propagation in the 1D meta-lattice, depicted in Figure 4 is similar to that shown in Figure 3.
However, contrastingly to the situation addressed in the previous section the interrelation w,, =
w, becomes attainable under the reasonable choice of the geometrical parameters | and r. Thus,
the anti-resonant propagation, strengthening the effect of the negative mass under o= @ = @1

becomes possible [28-29].

Again, the configurations of the optical and acoustic branches separated and non-
separated by the frequency (energy) gap are possible, as illustrated in Figure 3. It should be
emphasized that the ensembles of metallic wires, shown schematically in Figure 4, will not
demonstrate simultaneously the negative mass (density) and the negative refraction effects [34].
This is due to the fact that the negative refraction becomes possible below the plasma frequency
wy, [34]; contrastingly, the effect of the negative mass in our model emerges when the frequency
w approaches w,, from above; thus, creating of the material, demonstrating simultaneously the

negative density and dielectric constant remains challenging.
Conclusions

We address propagation of harmonic longitudinal acoustic waves through the 1D lattice
demonstrating the effect of the negative mass arising from the plasma oscillations of the electron

gas relatively to the atomic lattice. The effect takes place when a metallic particle is vibrated with

2
the external frequency w approaching the plasma frequency w, = /% from above. In this case
e<0

2
myWp
+ —_—

the effective mass of the metallic particle m. s = m, where m is the mass of the ionic

wh-w?’
lattice, and m, is the mass of the electron gas, becomes negative [12, 13, 15, 18, 21]. The plasma

oscillations may be phenomenologically represented with the ideal spring k, = w;m,. The one-
dimensional lattice built of the identical metallic (say Li and Au) elements m, ¢, connected by

the ideal springs k, enabling electro-mechanical coupling is addressed. Model meta-materials

built of Li and Au micro-particles embedded into polymer and glass matrices, represented by

ideal springs k; are considered. Exact dispersion relations in the case of % > 1 are elucidated.
2

The configurations of the optical and acoustical branches of the longitudinal modes

propagating through the 1D lattice arising from the various ratios % are explored [26-27]. The
p

relative location and configuration of the optical and acoustical branches depends strongly on the
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ratio % . The optical and acoustical branches may be separated by the frequency (energy) gap.
4]

The possibility of the antiresonant wave propagation arising when w = w, = w1 = % IS

1

treated.

The effects due to the negative effective mass become possible in the nearest vicinity of
the plasma frequencies, inherent for typical metals which are high, namely w,~10'°Hz. The
plasma frequency may be decreased markedly for the low frequency plasmons predicted for the
metallic mesostructures [31], enabling manufacturing metamaterials, demonstrating the negative
effective density. The configurations of the optical and acoustic branches separated and non-
separated by the frequency (energy) gap are possible. Again, the anti-resonant propagation,

strengthening the effect of the negative mass under w= @y = w1 is feasible [28-29].
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Table 1. Properties of metals used in the calculations

Metal 2 e, W,
kg/m® | m3 Hz
Li 530 |4.7x10%| 1.0x10%°
Au 19300 |5.9x10%8| 1.3x10'®

Table 2. Dimensions of spherical metallic particles and physical properties of the matrix materials

used in the calculations.

ki, ki, ka, 1, i,

% ; rEl’ rl'(“’ N/m | N/m | N/m Hz Hz

g g (PDMS) | (glass) | (plasma) | (PDMS) | (glass)
Au|1x10°[1.5x10% 1.01x104 |2.81x10%°| 1.18 |1.1x10°| 3.65x10* |1.72x10°|5.25x108
Li |1x10°|1.5%10% 2.77x10716 [2.24x10%°| 1.18 |[1.1x10°| 2.24x10™ |1.04x10"|3.17x10°
Au|5x107[7.5x107| 1.26x101° |3.51x10%| 0.59 |5.5%10%| 4.57x10° |3.44x10°%|1.05x10°
Li |5x107|7.5%107| 3.46x10%" |2.80x10?'| 0.59 [5.5x10%| 2.80x10° |2.08x107|6.34x10°
Au|1x107(1.5x107| 1.01x10%7 | 2.81x102%| 0.12 |1.1x10%| 3.65x107 |1.72x107|5.25%10°
Li [1x107|1.5x107| 2.77x101° | 2.24x102%| 0.12 |1.1x10%| 2.24x107 |1.04x108| 3.2x10%°

D —diameter of the spherical metallic particle (see Figure 2)

a - lattice constant.
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«——> X
F(t)

Figure 1. A. Free electrons gas is embedded into the ionic lattice; w,, is the electron
plasma frequency. B. The equivalent mechanical scheme of the system A. Core with mass
m, (free electrons gas mass) is connected internally through the spring with k, = wjm, to a
shell with mass m, (ionic lattice mass). The system is subjected to the sinusoidal force F(t) =

Fsinwt.
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Figure 2. The mechanical scheme of the one-dimensional lattice is depicted.
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Figure 3. Optical and acoustic branches of longitudinal modes calculated for different ratios %
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F(t) 0 *p

Figure 4. Metallic wires with the radius of r arranged in a simple cubic lattice with the lattice

constant of I. The lattice is subjected to the axial sinusoidal force F(t) = Fsinwt.
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