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Abstract: Face recognition is one of the most active research fields of computer vision and pattern 

recognition, with many practical and commercial applications including identification, access 

control, forensics, and human-computer interactions. However, identifying a face in a crowd raises 

serious questions about individual freedoms and poses ethical issues. Significant methods, 

algorithms, approaches, and databases have been proposed over recent years to study constrained 

and unconstrained face recognition. 2D approaches reached some degree of maturity and reported 

very high rates of recognition. This performance is achieved in controlled environments where the 

acquisition parameters are controlled, such as lighting, angle of view, and distance between the 

camera-subject. However, if the ambient conditions (e.g., lighting) or the facial appearance (e.g., 

pose or facial expression) change, this performance will degrade dramatically. 3D approaches were 

proposed as an alternative solution to the problems mentioned above. The advantage of 3D data 

lies in its invariance to pose and lighting conditions, which has enhanced recognition systems 

efficiency. 3D data, however, is somewhat sensitive to changes in facial expressions. This review 

presents the history of face recognition technology, the current state-of-the-art methodologies, and 

future directions. We specifically concentrate on the most recent databases, 2D and 3D face 

recognition methods. Besides, we pay particular attention to deep learning approach as it presents 

the actuality in this field. Open issues are examined and potential directions for research in facial 

recognition are proposed in order to provide the reader with a point of reference for topics that 

deserve consideration.  
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1. Introduction 

Face recognition has gained tremendous attention over the last three decades since it is 

considered a simplified image analysis and pattern recognition application. There are at least two 

reasons for understanding this trend: (1) the large variety of commercial and legal requests, besides 

(2) the availability of the relevant technologies (e.g., smartphones, digital cameras, GPU…). 

Although the existing machine learning/recognition systems have achieved some degree of 

maturity, their performance is limited to the conditions imposed in real-world applications [1]. For 

example, identifying facial images obtained in an unconstrained environment (e.g., changes in 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2020                   doi:10.20944/preprints202007.0479.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Electronics 2020, 9, 1188; doi:10.3390/electronics9081188

mailto:a.benzaoui@univ-bouira.dz
https://doi.org/10.20944/preprints202007.0479.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics9081188


 2 of 56 

 

lighting, posture, or facial expression, in addition to partial occlusion, disguises, or camera 

movement) still poses several challenges ahead. In other words, the existing technologies are still far 

removed from the human visual system capabilities.      

In our daily lives, the face is perhaps the most common and familiar biometric feature. With the 

invention of photography, government departments and private entities have kept facial 

photographs (From personal identity documents, passports, or membership cards). These 

collections have been used in forensic investigations, as referential databases, to match and compare 

a respondent’s facial images (e.g., perpetrator, witness, or victim). Besides, the board use of digital 

cameras and smartphones made facial images easy to produce every day; these images can be easily 

distributed and exchanged by rapidly established social networks such as Facebook and Twitter. 

Face recognition has a long history; it stirs neurologists, psychologists, and computer scientists 

[2]. The human face is not an ideal modality compared to other biometric traits; it is typically less 

precise than other biometric modalities such as iris or fingerprint, and can potentially be influenced 

by cosmetics, disguises, and lighting [3]. However, the face has the advantages which make it one of 

the most favored biometric characteristics for identity recognition, we can note: 

- Natural character: The face is a very realistic biometric feature used by humans in the 

individual’s recognition, making it possibly the most related biometric feature for 

authentication and identification purposes [4]. For example, in access control, it is simple for 

administrators to monitor and evaluate approved persons after authentication, using their 

facial characteristics. The support of ordinary employers (e.g., administrators) may boost the 

efficiency and applicability of recognition systems. On the other hand, identifying fingerprints 

or iris requires an expert with professional competencies to provide accurate confirmation. 

- Nonintrusive: In contrast to fingerprint or iris images, facial images can quickly be obtained 

without physical contact; People feel more relaxed when using the face as a biometric 

identifier. Besides, a face recognition device can collect data in a friendly manner that people 

commonly accept [5].         

- Less cooperation: Face recognition requires less assistance from the user compared with iris 

or fingerprint. For some limited applications such as surveillance, a face recognition device 

may recognize an individual without active subject involvement [5]. 

First attempts at identifying a facial subject by comparing a part of a facial photograph were 

reported at a British court in 1871 [6]. Face recognition is one of the most significant law enforcement 

techniques in cases where video material or pictures on a crime scene are available. Legal specialists 

do a manual facial image test to match that of a suspect. Automated facial recognition technologies 

have increased the efficiency of judicial employees and streamlined the comparison process [7].    

Today facial recognition, associated with artificial intelligence techniques, enables a person to be 

identified from his face or verified as what he claims to be. Facial recognition can analyze facial 

features and other biometric details, such as the eyes, and compare them with photographs or 

videos. With accusations of widespread surveillance, this controversial technology raises many 

concerns among its opponents, who fear breaches of data privacy and individual liberties. Face 

recognition for its defenders enables accurate, fast, and secure authentication to protect against all 

fraud forms. According to a report by the analytical company Mordor-Intelligence [8], the face 

recognition market was estimated at 4.4 billion dollars worldwide in 2019 and would surpass 10.9 

billion in 2025. This technology has already become popular in some countries, such as China. 
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Due to artificial intelligence technologies, significant advances in face recognition have occurred. 

In early times, research interests were mainly focused on face recognition under controlled 

conditions where simple classical approaches provided excellent performance. Today, the focus of 

research is on unconstrained conditions in which deep learning technology [9] has gained more 

popularity as it offers strong robustness against the numerous variations that can alter the 

recognition process.  

In addition, many academics struggle to find robust and reliable data sets for testing and to 

evaluate their proposed method: Finding an appropriate data set is an important challenge 

especially in 3D facial recognition and facial expression recognition. To check the effectiveness of 

these methods, accurate datasets are required that (i) contain a large number of persons and 

photographs, (ii) follow real-world requirements, and (iii) are open to the public.  

Our contributions in this review are: 

- We provide an updated review of automated face recognition systems: the history, present, 

and future challenges. 

- We present 23 well-known face recognition datasets in addition to their assessment protocols. 

- We have reviewed and summarized nearly 180 scientific publications on facial recognition    

and its material problems of data acquisition and pre-processing from 1990 to 2020. These 

publications have been classified according to various approaches: holistic, geometric, local 

texture and deep learning for 2D and 3D facial recognition. We pay particular attention to the 

methods based deep-learning, which are currently considered state-of-the-art in 2D face 

recognition. 

- We analyze and compare several in-depth learning methods according to the architecture 

implemented and their performance assessment metrics. 

- We study the performance of deep learning methods under the most commonly used data set: 

(i) Labeled Face in the Wild (LFW) data set [10] for 2D face recognition, (ii) Bosphorus and 

BU-3DFE for 3D face recognition. 

- We discuss some new directions and future challenges for facial recognition technology by 

paying particular attention to the aspect of 3D recognition.  

2. Face Recognition History 

This section, reviews the most significant historical stages that have contributed to the 

advancement of face recognition technology (outlined in Figure 1): 

- 1964: The American researchers Bledsoe et al. [11] studied facial recognition computer 

programming. They imagine a semi-automatic method, where operators are asked to enter 

twenty computer measures, such as the size of the mouth or the eyes. 

- 1977: The system was improved by adding 21 additional markers (e.g., lip width, hair color). 

- 1988: Artificial intelligence was introduced to develop previously used theoretical tools, 

which showed many weaknesses. Mathematics ("linear algebra") was used to interpret images 

differently and find a way to simplify and manipulate them independently human markers. 

- 1991: Alex Pentland and Matthew Turk of the Massachusetts Institute of Technology (MIT) 

presented the first successful example of facial recognition technology, Eigenfaces [12], which 

uses the statistical Principal Component Analysis (PCA) method. 
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- 1998: To encourage industry and the academy to move forward on this topic, the Defense 

Advanced Research Projects Agency (DARPA) developed the Face Recognition Technology (FERET) 

[13] program, which provided to the world a sizable, challenging database composed of 2,400 

images for 850 persons. 

- 2005: The Face Recognition Grand Challenge (FRGC) [14] competition was launched to 

encourage and develop face recognition technology designed to support existent facial 

recognition initiatives.  

- 2011: Everything accelerates thanks to deep learning, a machine learning method based on 

artificial neural networks [9]. The computer selects the points to be compared: it learns better 

when it supplies more images. 

- 2014: Facebook knows how to recognize faces due to its internal algorithm, Deepface [15]. The 

social network claims that its method approaches the performance of the human eye near to 

97%. 

Figure 1. Primary stages in the history of face recognition. 

Today, facial recognition technology advancement has encouraged multiple investments in 

commercial, industrial, legal, and governmental applications. For example: 

- In its new updates, Apple introduced a facial recognition application where its 

implementation has extended to retail and banking.   

- Mastercard developed the Selfie Pay, a facial recognition framework for online transactions.  

- From 2019, people in China who want to buy a new phone will now consent to have their 

faces checked by the operator. 

- Chinese police used a smart monitoring system based on live facial recognition; using this 

system, they arrested, in 2018, a suspect of “economic crime” at a concert where his face, listed 

in a national database, was identified in a crowd of 50,000 persons.        

3. Face Recognition Systems  

3.1. Main Steps in Face Recognition Systems 

In engineering, the issue of automated face recognition includes three key steps [16] (as 

presented in Figure 2): (1) approximate face detection and normalization, (2) extraction of features 

and accurate face normalization, and (3) classification (verification or identification). 

Face detection is the first step in the automated face recognition system. It usually determines 

whether or not an image includes a face(s). If it does, its function is to trace one or several face 

locations in the picture [17].  

Feature extraction step consists of extracting from the detected face a feature vector named the 

signature, which must be enough to represent a face. The individuality of the face and the property 
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of distinguishing between two separate persons must be checked. It should be noted that the face 

detection stage can accomplish this process.  

Classification involves verification and identification. Verification requires matching one face to 

another to authorize access to a requested identity. However, identification compares a face to 

several other faces that are given with several possibilities to find the face’s identity.  

 

Figure 2. The standard design of an automated face-recognition system. 

Sometimes, some steps are not separated. For example, the facial features (eyes, mouth, and 

nose) used for feature extraction are frequently used during face detection. Detection and extraction 

of features can be performed simultaneously, as shown in Figure 2.  

Depending on the application environment’s complexity, some external factors can cause 

highly intra-face identity distributions (or lowly inter-face identity distributions) and degrade the 

accuracy of recognition. Among these factors, we can cite the database size, low or high lighting, 

presence of noise or blur, disguises, partial occlusion, and certain secondary factors that are often 

common, unavoidable, and very challenging [18]. In a noisy environment, image pre-processing 

may prove necessary [19-21]. 

Although automated face recognition systems must perform the three steps mentioned above, 

each step is considered a critical research issue, not only because the techniques used for each step 

need to be improved and because they are essential in several applications, as shown in Figure 2. 

For example, face detection is necessary to activate facial monitoring, and the extraction of facial 

features is crucial to identify the person’s emotional state, which is, in turn, essential in 

human-machine interaction systems (HMI). The isolation of each step facilities the evaluation and 

state-of-the-art evolution.     

This paper mainly focuses on feature extraction (and possibly feature selection) and 

classification. The face acquisition and detection step is a critical problem analyzed in the case 

of 3D facial recognition.. 

3.2. Assessment Protocols in Face Recognition 
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As stated in the previous sub-section, an automated face recognition system can operate either 

in the mode of verification or identification, depending on each application (as seen in Figure 3).  

In verification mode [22], the system evaluates a person’s identity by comparing his / her 

registered model(s) in the database with the captured face. A one-to-one comparison is performed by 

the system to decide whether the proclaimed identity is true or false. Habitually, verification is used 

for positive recognition to avoid different individuals using the same identity. Face verification 

systems are classically assessed by the Receiver Operating Characteristic (ROC) and the Estimated Mean 

Accuracy (ACC). 

Two types of errors are assessed for ROC analysis: True Accept Rate (TAR) and False Accept Rate 

(FAR). The TAR is defined as the fraction of valid comparisons exceeds the similarity score 

(threshold) correctly: 

𝑇𝐴𝑅 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                          (1) 

TP: True Positive. 

FN: False Negative 

 

Moreover, FAR is defined as the fraction of the impostor comparisons exceeds incorrectly the 

same threshold: 

𝐹𝐴𝑅 =
𝐹𝑃

(𝐹𝑃+𝑇𝑁)
                                         (2) 

    FP: False Positive 

    TN: True Negative 

 

However, ACC is a simplified metric, which shows the percentage of correct classifications: 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                                     (3) 

In identification mode [22], the system identifies an individual by searching for the enrolled 

model representing the best match between all facial models stored in the database. Therefore, a 

one-against-all comparison is performed by the system to determine this individual (or failure if that 

individual does not exist in the database), without providing a prior declaration of identity.  

Identification is an essential task for harmful recognition applications; the purpose of this type 

of recognition is to prevent multiple identities by one single individual. For two different scenarios, 

two test protocols may be used, which are: open-set and closed-set (as shown in Figure 3).  

For the former, the training set cannot include test identities. Different metrics are established in 

the open-set face identification scenario to measure the model’s accuracy such as the False Negative 

Identification Rate (FNIR) and the False Positive Identification Rate (FPIR). FNIR measures the ratio of 

cases wrongly classified as false, although they are true cases, while FPIR measures the ratio of cases 

wrongly classified as true despite being false. 

Whereas the latter retrieves images from the same identities for training and testing. Rank-N is 

a fundamental performance metric used in closed-set face identification to measure the model’s 

accuracy, where the valid user identifier is returned within the N-Top matches. The primary 

measuring performance is recorded using correct identification rates on a Cumulative Match 

Characteristics (CMC) curve. 
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Figure 3. Categorization of various assessment protocols in face recognition. 

4. Available datasets & protocols for 2D face recognition 

To evaluate and compare the verification or identification performance of a pattern recognition 

system, in general, and a biometric recognition system in particular, image benchmark datasets of 

adequate subject size must be accessible to the public. In this section, we would like summarize 

appropriate and recent datasets for testing the performance of face verification and identification 

systems, which can also be freely downloaded or certified with an acceptable effort. We concentrate 

primarily on datasets that are only appropriate for testing approaches to 2D face recognition. Figure 

4 summarizes the datasets listed in the chronological order of their appearance. 

 

Figure 4. The developments of 2D face recognition datasets through time. 

4.1. ORL dataset 

Between 1992 and 1994, the ORL (Olivetti Research Laboratory) dataset [23] was developed at the 

Cambridge University Computer Laboratory. It was employed in the framework of a face recognition 

project carried out in cooperation with the Speech, Vision, and Robotics Group of the Cambridge 

University Engineering Department. It contains 400 frontal facial images for 40 persons with different 

facial expressions (open/closed eyes, smiling/not smiling), conditions of illumination, hairstyles with 

or without the beard, mustaches, and glasses. All the samples were acquired against a dark uniform 

background with the subjects in a vertical frontal pose (with a little side movement). Each sample is 

92×112 pixels with 256 grayscale images, with tilting tolerance and up to 20° rotation, as shown in 

Figure 5.  
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Figure 5. Some samples from the ORL database. 

4.2. FERET dataset 

The FERET (Facial Recognition Technology) dataset [13] was created in the Department of Defense 

Counterdrug Technology Development Program Office between 1993 and 1996. The goal was to develop 

face recognition capabilities through machines that could be used to assist authentication, security, 

and forensic applications. The facial images were acquired in 15 sessions in a semi-controlled 

environment. It covers 1564 sets of facial images for 14,126 images that comprise 1199 persons and 

365 duplicate sets of facial images (Figure 6). A duplicate set is another set of facial images of an 

individual already exist in the database and was typically collected on another day. 

The most commonly used evaluation protocol requires algorithms matching a set of 3323 

samples against 3816 samples, performing about 12.6 million matches. Besides, it allows the 

determination of recognition scores for various galleries and probe sets. The following cases can be 

studied: (1) The gallery and probe samples of an individual were acquired on the same day, under 

the same illumination situations (2) The gallery and probe samples of a person were acquired on 

several days (3) The gallery and probe samples of a person were acquired over a year apart, and (4) 

The gallery and probe samples of a person were acquired on the same day, but with diverse 

illumination conditions.  

The protocol offers two types of evaluation: the first provides the samples with the eyes center 

coordinates, and the second provides the samples only without any indication. 

  

Figure 6. Some samples from the FERET database. 

4.3. AR dataset 

A. Martinez and R. Benavente produced the database AR (Alex and Robert) [24] in 1998 at 

the Computer Vision Center, Barcelona (Spain). The database includes more than 3000 colored facial 

images of 116 subjects (53 women & 63 men). This database’s images were taken under different 

illumination conditions, with frontal views, facial expressions, and occlusions (by scarf and 

sun-glasses). All images were acquired under rigorously controlled situations: no wear requirements 

(glasses, clothes), hair-style, and make-up were required for contributors. Each individual took part 

in two separate sessions, spaced up by two weeks. So, there are 26 images from each subject. Both 

sessions acquired the same images. The resulting RGB facial images are 768×576 pixels in size. The 

database provides 13 kinds of images (Figure 7) which are: (1) Neutral expression, (2) Smile, (3) 

Anger, (4) Scream, (5) Left light on, (6) Right light on, (7) Both side-lights on, (8) Wearing sunglasses, 

(9) Wearing sunglasses & left light on, (10) Wearing sunglasses & right light on, (11) Wearing a scarf, 

(12) Wearing scarf & left a light on, and (13)Wearing scarf & right light on. 
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Figure 7. Examples from the AR database. 

4.4. XM2VTS database 

The XM2VTS (Multi Modal Verification for Teleservices and Security applications) database [25] 

contains facial videos from 295 persons. The images were acquired at a one-month interval spaced 

over four different sessions, and the subject is composed of a group of 200 training participants, 25 

evaluation impostors, and 70 check impostors. Figure 8 shows two examples of one shot from each 

session for a dataset person. Both configurations of Lausanne protocol LPI and LPII are fixed for 

XM2VTS to evaluate the verification mode’s performance. The database is decomposed into three 

groups: train, evaluation, and test: The training group assists in model estimation; the evaluation 

group is employed to adjust system parameters and system performance can be measured on the 

test group using parameters of evaluation. The difference between the LPI and LPII configurations is 

the number of facial samples in each group.   

   
Figure 8. Examples of XM2VTS facial images of the same subject under different periods. 

4.5. BANCA dataset 

The BANCA dataset [26] is a tremendous, practical, and challenging multi-modal dataset 

proposed in 2003 for training and testing multi-modal biometric verification systems. It was 

acquired in four European languages, which offer two modalities: voice and face. Both high and 

low-quality cameras and microphones were employed for acquisition. The images/voices were 

acquired in three diverse scenarios (controlled, degraded, and adverse) over 12 different sessions in 

three months. Totalities of 208 persons were acquired: 104 men and 104 women. Figure 9 shows 

some facial examples. 

Seven separate experimental configurations were established for the evaluation protocol to 

determine which material should be employed for training and which one can use for testing. Such 

configurations include: (1) Matched Controlled (MC), (2) Matched Degraded (MD), (3) Matched 

Adverse (MA), (4) Unmatched Degraded (UD), (5) Unmatched Adverse (UA), (6) Pooled test (P) and 

(7) Grand test (G). To note that each person should be trained to employ the face images from the 

controlled scenario’s first recording session. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2020                   doi:10.20944/preprints202007.0479.v1

Peer-reviewed version available at Electronics 2020, 9, 1188; doi:10.3390/electronics9081188

https://doi.org/10.20944/preprints202007.0479.v1
https://doi.org/10.3390/electronics9081188


 10 of 56 

 

Figure 9. Facial examples from the BANCA database: (a) controlled, (b) degraded, and (c) adverse. 

4.6. FRGC dataset 

From 2004 to 2006, the Face Recognition Grand Challenge (FRGC) [14] was produced at the 

University of Notre Dame to achieve performance improvements by pursuing algorithm progress for 

all methods proposed in the literature. The FRGC dataset contains 50,000 images that are 

decomposed into training and validation parts. A subject session in FRGC consists of four controlled 

still images, two uncontrolled images, and one 3D image, as shown in Figure 10. The FRGC is 

distributed with six experimental protocols: 

- In Exp 1, two controlled still images of an individual are used as one for a gallery, and the 

other for a probe.  

- In Exp 2, the four controlled images of a person are distributed among the gallery and 

probe.  

- In Exp 4, a single controlled still image presents the gallery, and a single uncontrolled still 

image presents the probe.  

- Exps 3, 5, and 6 are designed for 3D images.       

 

Figure 10. Samples from one person session: Controlled stills, Uncontrolled stills, and 3D shape. 

4.7. LFW database 

The facial image database: Labeled Faces in the Wild (LFW), created by Huang et al. [10] in 2007, 

desired to study the unconstrained problem of face recognition, such as variation in posture, facial 

expression, race, background, ethnicity, lighting, gender, age, color saturation, clothing, camera 

quality, hairstyles, focus, and other parameters (Figure 11). It contains 13,233 facial images collected 

from the web: 5749 individuals where 1680 have two or more distinct images. Each image is 250×250 

pixels in size. Two protocols are defined for using the training-data: Image-Restricted and Unrestricted 

Training. Under Image-Restricted, the identities of images are ignored in training. The principal 

difference is that the Unrestricted Protocol permits to form as many impostors and genuine pairs as 

possible over the restricted training pairs [10]. Three types of aligned images are proposed: (1) the 

funneled images [27], (2) LFW-A used an unpublished method for alignment, and (3) deep funneled 

images [28]. 

Figure 11. Example of images from the LFW dataset. 

4.8. CMU Multi PIE dataset 
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The CMU Multi-PIE facial dataset [29] was developed between 2000 and 2009 at Carnegie Mellon 

University. It recovers more than 750,000 images of 337 persons acquired in up to four sessions under 

five months. Images were captured under 15 view-points and 19 lighting situations and presenting a 

variety of facial expressions. Also, high-quality frontal images were captured as well. In global, the 

dataset has more than 305 GB of facial data.  

4.9. CASIA-WebFace dataset 

Another large-scale dataset for face recognition task, called CASIA-WebFace, was selected from 

the IMDb website with 10,575 persons and 494,414 facial images. It was built in 2014 by Yi et al. [30] 

at the Institute of Automation, Chinese Academy of Sciences (CASIA). It can be considered as an 

independent training-set for LFW. By this combination, the evaluation protocol of LFW can be 

standardized, and the reproducible research in face recognition in the wild can be advanced.  

4.10. IARPA Janus Benchmark-A 

The IARPA (Intelligence Advanced Research Projects Activity) Janus Benchmark A (IJB-A) 

developed in 2015 by Klare et al. [31] to study face recognition/detection benchmarking. It contains 

videos and images in the wild from 500 subjects: 2,085 videos and 5,712 images with an average of 

4.2 videos and 11.4 images per subject (Figure 12). To get a full pose variation and new situations 

than LFW, the facial images were recognized and restricted manually. The IJB-A established three 

protocols, two supporting both open-set identification and verification, and the third protocol is for 

detection. A separate face recognition protocol is presented. There are ten random training and 

testing subclasses; for each subclass, 333 subjects are randomly placed in the training subclass, and 

the remaining 167 subjects are placed in a testing subclass. The search protocol uses probe templates 

for measuring the accuracy of the closed-set and open-set search on the gallery templates, and the 

protocol defines precisely which impostor and genuine comparisons must be performed for each 

subclass. 

 
Figure 12. Examples of the faces in the IJB-A database. 

4.11. MegaFace database 

Shlizerman et al. [32] in 2016 introduced the MegaFace database, which includes 1,027,060 images 

of 690,572 different subjects. The MegaFace challenge uses a gallery to test the performance of face 

identification/verification algorithms with numerous “distractors”, i.e., faces that are not in the test 

set, by training them from different probe set such as FG-NET [33] (includes 975 images of 82 

persons with various ranges of ages) and FaceScrub [34] (includes 141,130 faces of 695 public 

figures).  

4.12. CFP dataset 

CFP (Celebrities in Frontal-Profile) is a public and challenging dataset, developed in 2016 by 

Sengupta et al. [35] at the University of Maryland. It includes 7000 pictures of 500 subjects (Figure 13). 

There are ten frontal images for each person, and more than four profile images. The evaluation 
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protocol involves frontal-profile (FP) and frontal-frontal (FF) facial verification, each with ten folders 

of 350 pairs of the same person and 350 pairs of different persons. 

 
Figure 13. Example images from the CFP dataset. 

4.13. Ms-Celeb-M1 benchmark 

Microsoft released the Ms-Celeb-M1 [36] large scale training benchmark in 2016, which contains 

around 10 million face images from 100k celebrities collected from the web to improve facial 

recognition technologies.  

4.14. DMFD database 

To evaluate disguised face detection or recognition performance using disguised 

accessories, Wang et al. [37] created in 2016 the Disguise covariate and/or Make-up Facial Database with 

ground truth (goggle, beard, mustache, eye-glasses), acquired under real environments. This 

database contains 2,460 images from 410 different subjects; most of these images are from celebrities 

(Figure 14). Three different protocols are considered: (1) protocol A calculates the corresponding 

scores on the all-to-all basis, (2) Protocol B calculates the corresponding scores for one input image, 

and (3) protocol C uses the first images with the least obstruction (makeup, disguise, and wrong 

angle) for training while the rest of images are employed for testing. 

 
Figure 14. Image pairs with a different type of Makeup/Disguise. 

4.15. VGGFACE database 

VGGFACE (Visual Geometry Group) is a large-scale training database that is assembled from the 

internet by combining automation and humans in the loop. It contains 2.6M images, over 2.6K 

identities (Figure15). It was created from the University of Oxford in 2016 by Parkhi et al. [38]. 

    

Figure 15. Example images from the VGGFACE dataset for six identities. 

4.16. VGGFACE2 database 

In 2017, a large-scale face database called VGGFace2 was created by Cao et al. [39] from 

the University of Oxford. The database was collected from Google Images search with a wide range of 

age, pose, and ethnicity. It has 3.31 million images of 9131 identities, with 362.6 images for each 
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identity on average (Figure 16). The VGGface2 is divided into two subclasses: the first is for 

training-set, including 8631 classes, and the second is for evaluation-set with 500 classes. Besides, 

two template annotations are described to allow assessment over pose and age: (1) pose template: 

with five faces per template representing a consistent pose (frontal, profile, or three-quarter view) 

for 9K facial images of 1.8K templates. (2) Age Template: 400 templates (five faces per template with 

either an apparent age below 34, 34, or above) with 2k facial images. 

 

Figure 16. Example images from the VGGFACE2 dataset. 

4.17. IARPA Janus Benchmark-B 

The IARPA Janus Benchmark-B (IJB-B) database is an enlargement of IJB-A; it was created in 

2017 by Whitelam et al. [40]. IJB-B consists of 1,845 subjects for 21,798 still images (11,754 face & 

10,044 non-face images) plus 55,026 frames from 7,011 face videos. It is designed for detection, 

recognition, and clustering research in unconstrained environments. Different testing protocols were 

developed for IJB-B that representing operational use cases, such as access point identification, 

surveillance video searches, forensic quality media searches, and clustering. 

4.18. MF2 dataset 

The public dataset for face recognition MF2 (MegaFace 2) was created in 2017 by Nech and 

Shlizerman [41] of the University of Washington. It contains 672K persons and 4.7M images. MF2 was 

an attempt to create a benchmark to train algorithms on large-scale datasets and test at million scale 

distractors provided by the MegaFace challenge [36]. 

4.19. DFW dataset 

In 2018, Kushwaha et al. [42] created a novel Disguised Faces in the Wild (DFW) dataset, 

consisting of 1,000 subjects from 11,157 images with both obfuscated and impersonalized faces to 

improve the state-of-the-art for face recognition disguises. DFW defines three verification protocols, 

which are: 

1. Impersonation protocol used only to evaluate the performance of impersonation techniques. 

2. Obfuscation protocol used in the cases of disguises. 

3. Overall performance protocol that is used to evaluate any algorithm on the complete 

dataset. 

4.20. IARPA Janus Benchmark-C 

The IARPA Janus Benchmark-C (IJB-C) database is an extension of IJB-B; it is developed in 2018 

by Maze et al. [43]. It contains 31,334 still images (21,294 faces & 10,040 non-faces), with an average of 

6 images per person, 117,542 frames from 11,779 full-motion videos, with an average of 33 frames 

and 3 videos per person. To advance state of the art in unconstrained facial recognition, IJB-C 

defined different face detection protocols, 1:N identification (supporting closed-set and open-set 
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evaluation), 1:1 verification, clustering, and end-to-end system evaluation which is more 

operationally closed model of facial recognition use cases. 

4.21. LFR dataset 

LFR (Left-Front-Right) is a face recognition dataset presented by Elharrouss et al. [44] from Qatar 

University in 2020 to overcome pose-invariant facial recognition in the wild. Pose variation identifies 

a challenging facial recognition problem in an unconstrained environment. To deal with this issue, a 

CNN model for estimating pose is proposed. This model is trained using a self-collected dataset 

constructed from three standard datasets: LFW, CFP, and CASIA-WebFace, employing three classes 

of facial image capture: Left, Front, and Right side. A dataset of 542 identities is thus generated, 

representing each subject’s images on the left, front, and right face. Each folder of left & right 

includes 10-100 facial images, while the front folder contains 50-260 images.  

4.22. RMFRD and SMFRD: masqued face recognition dataset 

During COVID-19, nearly everyone wears a mask to restrict its spread, making conventional 

facial recognition technology inefficient. Hence, improving the recognition performance of the 

current facial recognition technology on masked faces is very important. For this reason, Wang et al. 

[45] proposed three types of masked face datasets, which are:  

1. Masked Face Detection Dataset (MFDD): it can be utilized to train a masked face detection 

model with precision. 

2. Real-world Masked Face Recognition Dataset (RMFRD): it contains 5,000 images of 525 

persons wearing masks, and 90,000 pictures of the same 525 individuals without masks 

collected from the Internet (Figure 17).  

 
 

Figure 17. Example images from the RMFRD dataset: (a-b) typical images, (c-d) masked images. 

3. Simulated Masked Face Recognition Dataset (SMFRD): in the meantime, the proposers 

utilized alternative means to place masks on the standard large-scale facial datasets, such as 

LFW [10] and CASIA WebFace [30] datasets, expanding thus the volume and variety of the 

masked facial recognition dataset. The SMFRD dataset covers 500,000 facial images of 

10,000 persons, and it can be employed in practice alongside their original unmasked 

counterparts (Figure 18). 

 

Figure 18. Example images from SMFRD dataset: simulated masked images. 

Tables 1 and 2 resume and provide a comparative review of the cited above face recognition 

datasets: Table 1 contains datasets that can be used for training and/or testing, while Table 2 contains 

datasets that can be used only for training deep face recognition systems.  

(a)              (b)              (c)               (d) 
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Table 1. Comparative summary of the most well-known/recent 2D face recognition datasets used for 

training and/or testing face recognition systems. 

Database Apparition’s Date Images Subjects Images /Subject  

ORL [23] 1994 400 40 10 

FERET [13] 1996 14,126 1,199 - 

AR [24] 1998 3,016 116 26 

XM2VTS [25] 1999 - 295 - 

BANCA [26] 2003 - 208 - 

FRGC [14] 2006 50,000 - 7 

LFW [10] 2007 13,233 5,749 ≈2.3 

CMU Multi PIE [29] 2009 > 750,000 337 N/A 

IJB-A [31] 2015 5,712 500 ≈11.4 

CFP [35] 2016 7000 500 >14 

DMFD [37] 2016 2,460 410 6 

IJB-B [40] 2017 21,798 1,845 ≈36.2 

MF2 [41] 2017 4.7M 672,057 ≈7 

DFW [42] 2018 11,157 1,000 ≈5.26 

IJB-C [43) 2018 31,334 3,531 ≈6 

LFR [44] 2020 30,000 542 10-260 

RMFRD [45] 2020 95,000 525 - 

SMFRD [45] 2020 500,000 10,000 - 

Table 2. Comparative summary of the most well-known/recent 2D face recognition datasets used only for 

training deep face recognition systems. 

Database Apparition’s Date Images Subjects Images /Subject  

CASIA WebFace [30] 2014 494,414 10,575 ≈46.8 

MegaFace [32] 2016 1,027,060 690,572 ≈1.4 

MS-Celeb-1M [36] 2016 10M 100,000 100 

VGGFACE [38] 2016 2.6M 2,622 1,000 

VGGFACE2 [39] 2017 3.31M 9,131 ≈362.6 

5. Three-dimensional Face Recognition Approaches  

A classical 2D face recognition system operates on images or videos obtained from surveillance 

systems, commercial/private cameras, CCTV, or similar everyday hardware. In a complete 

automatic configuration, the system must first detect the face in the input image/video and segment 

it from the detected area. Next, the must be aligned to some predefined canonical structure and 

treated to account for potential lighting changes. Features are extracted from the aligned/treated 

image, and last identity recognition is performed using a proper classification approach based on 

the calculated features. 

Depending on the nature of the extraction and classification methods employed, we divide 2D 

face recognition methods into four different subclasses, namely: (1) holistic methods, (2) local 

(geometrical) methods, (3) local texture descriptors-based methods, and (4) deep learning-based 

methods, as illustrated in Figure 19. 
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Figure 19. Taxonomy of 2D face recognition approaches presented in this paper. 

5.1. Holistic Methods 

Holistic or subspace-based algorithms assume that any M-collection of facial images holds 

redundancies that can be removed by applying the tensor's decomposition. These methods generate 

a collection of basis vectors representing a smaller space dimension (i.e., subspace) and preserving 

the original set of images. In the set of basis vectors, each face in the subspace can be reconstructed. 

To facilitate the operation, each facial image N×N is represented by a vector achieved by aligning 

the image rows. To find the non-singular basis vectors, the consequential matrix (N×N) × M is 

decomposed. Classification is frequently done by projecting a newly captured facial image and 

calculating the distance's measure with all classes described in that subspace. Besides, this 

approach's methods may be divided into two groups, namely linear and non-linear strategies, 

depending on representing the subspace. In this subsection, we only present some 

famous/well-known works in this approach because most of the published papers relevant to this 

subclass are too old.    

Principal Component Analysis (PCA), known as Eigenfaces [12], Linear Discriminative 

Analysis (LDA), known as Fisherfaces [46], and Independent Component Analysis (ICA) [47] are 

the most common linear techniques employed for facial recognition systems. 

In this approach, Eigenface is considered as the pioneering and revolutionary method. It is also 

known as Karhunen-Loève expansion, principal component, or eigenvector. The works presented in the 

[48-49] references employed the PCA to efficiently characterize [50] the facial images. They have 

shown that a few weights for each facial image and a standard facial image (Eigenpicture) could 

approximately recreate any facial images. By projecting the facial image into the Eigenpicture, the 

weights that model any face are attained. 

Turk and Pentland [12] (1991) employed Eigenfaces, influenced by Kirby and Sirovich’s research 

[49], for face detection and recognition. Mathematically, the Eigenfaces represent the facial 

distribution’s main components or the eigenvectors of the facial image set covariance matrix. The 

eigenvectors are arranged respectively to model different quantities of the difference between the 

faces. So, a linear mixture of the Eigenfaces can be precisely constituted for each face. It can also be 

calculated employing only the “best” eigenvectors with the greater Eigenvalues. The top M 

Eigenfaces build a space of M dimensions; the facial space. Using a private database containing 

2,500 images for 16 subjects, the authors reached 96%, 85%, and 64% on CCR (Correct Classification 

Rate) under variations in illumination, orientation, and size. 

To overcome the problem of performance degradation due to light variability, Zhao and Yang 

[51] (1999) presented a method for calculating the covariance matrix employing three images, 

- PCA 
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acquired under different illumination conditions to account for random lighting effects when the 

subject is Lambertian.  

Pentland et al. [52] (1994) extended their initial work from EigenFace to EigenFeatures 

concerning the facial elements, such as nose, eyes, and mouth. They employed a modular 

EigenSpace consisting of early EigenFeatures (i.e., EigenNose, EigenEyes, and EigenMouth). 

Compared with the original EigenFace method, this extended method showed less sensitivity to 

appearance variations. On the FERET dataset composed of 7,562 images from about 3,000 

individuals, the authors achieved a CRR of 95%. EigenFace, compared to EigenFeatures, was a 

simple, fast, and practical method. Nevertheless, it does not present stability over changes in the 

conditions of illumination and scale. 

Belhumeur et al. [46] (1997) suggested a system that would be insensitive to different lighting 

and facial expression changes. They regarded each pixel in the facial image as a point in a 

high-dimensional space. They observed that the image of a particular face resides in a 3D linear 

subspace of the high dimensional image space, in the condition where the front is a Lambertian area 

without resentment, in varying lights but under stable pose. If faces are not purely Lambertian 

areas and create self-umbrage, images will diverge from the linear subspace. Instead of directly 

stimulating this divergence, they projected the image linearly into a subspace to reduce specific 

areas of the face with a considerable alteration. The projection technique was based on LDA, which 

generated well-isolated classes in a small-dimensional subspace, even under various changes in 

lighting and facial expressions. The different experimental tests carried out on the Harvard and 

Yale Face databases showed that FisherFace has a lower error rate than EigenFace. 

Barlett et al. [53] (2002) noted that PCA’s baseline images are only dependent on pair-wise 

relationships between pixels in the image dataset. It seems appropriate to assume that superior 

basis images can be managed by methods sensitive to these high-arrange statistics in pattern 

recognition tasks, where vital information can be included in the high-arrange relationships 

between pixels. They employed the Independent Component Analysis (ICA) [47], which is a PCA 

generalization. Besides, they implemented two different architectures with the FERET database to 

test ICA performance; the first process the pictures as random variables and the pixels as results, 

while the second processed the pixels as random variables, and the pictures as results. The first 

version defined for the faces spatially local basis pictures, and the second established a fractional 

facial code. The results of both ICA architectures under facial expression and aging were better than 

PCA. Besides, the best performance was achieved by fusing both ICA architectures.   

Gabor filters (GFs) are spatial sinusoids positioned through a Gaussian window that enables 

images to obtain the characteristics by choosing only their frequency, orientation, and size. Abhishree 

et al. [54] (2015) suggested a method based on GFs to extract features and enhance the performance 

of face recognition systems. GFs are employed for capturing aligned facial characteristics at specific 

angles. Besides, an optimization technique of feature selection is employed to find the optimal 

feature space. The method proposed was tested under multiple databases, such as ORL and FERET, 

and showed good results against variations in posture, lighting, and expression variations.    

Discrete Cosine Transform (DCT) [55] and Discrete Wavelet Transform (DWT) [56-57] are other 

linear-techniques that have been employed for facial analysis. Both methods are employed mainly in 

image compression [58] and feature selection. Wang et al. [59] (2010) suggested a DWT and 

DCT-based fused feature extraction algorithm for face recognition. The face’s image is decomposed 
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using 2D-DWT, and then 2D-DCT is employed to approximate the low-frequency image received 

from the preceding step. Finally, the DCT coefficients are employed for matching. The experimental 

results of the ORL database showed the superiority of this algorithm compared to the traditional 

PCA.  

To sum up, all holistic methods are prevalent in the implementation of face recognition 

systems. Nonetheless, they are very pone to context changes and misalignments. For this reason, 

the face must be cut manually from the image in the majority of cases. On the other hand, as the 

data set is viewed as a single matrix, it is necessary to enforce geometric consistency in all facial 

instances. Thus, all facial images must be carefully matched within a standard frame of reference. A 

minor error in face orientation can cause substantial facial classification errors. 

5.2. Geometric Approach 

Attention and fixations play a crucial function in human face recognition. Attentive processes 

are usually guided by landmark characteristics localized in the considered space by calculating a 

salience map. The same landmarks may offer useful information when faced with algorithms for 

recognition. The facial regions in the image do not provide the same amount of information. The 

forehead and cheeks, for example, have straightforward structures and fewer distinctive patterns as 

compared to the nose or eyes. The landmarks in the face are used to register facial features, the 

normalization of expressions, and the recognition of defined positions based on the geometric 

distribution and the grey level pattern. Even though the in-depth studies summarized in craniology 

accurately represent a rich set of facial landmarks for face recognition, there is no universal set of 

admitted landmarks. 

Bookstein [60] (1989) described the landmarks as: "points in a form for which biological 

counterparts that occur in a collection of data, which are objectively significant and reproducible, in 

all other forms". The most commonly employed landmarks on the face are the tip of the nose, the 

tips of the eyes, the tips at the corners of the mouth, the eyebrows, the middle of the iris, the top of 

the ear, the nostrils, and the nasal. It should be noted that discriminating regions of the face, such as 

eyes or mouth, are also called "facial features" in the literature. Sometimes that terminology leads to 

ambiguity. Indeed, in pattern recognition, the term "feature" is most often employed to specify a 

particular representation extracted from a pattern at the grey level. For instance, the EigenFace 

vectors are also called "features". Furthermore, the numerical representations collected by the 

multi-channel Gabor implemented to a grey-level picture are named "features". For this intention, 

patterns derived from particular and discriminating positions are here referred to as "landmarks" 

rather than "features". 

The distribution of landmarks is employed in geometric-based methods in the structure of 

heuristic rules involving distances, angles, and regions [61-62]. Geometry is organized into a full 

model of building in structure-based methods. For example, in the Elastic Bunch Graph-Matching 

(EBGM) algorithm [63], a graph models the positions related to the landmarks, wherever every 

node denotes one point on the face, and the arcs are weighted in according to the mark’s 

predictable distances, as shown in Figure 20. A series of models are employed to determine the 

similarity of the local characteristic for each node. Although the possible deformations often 

depend on landmarks (e.g., the mouth corners deform much more than the nose tip), the specific 

landmark information can be joined toward the structural model [64]. With the expansion of the set 
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of jointly optimized constraints, the system works more often with problems of convergence and 

local optimums, which in effect necessitates a successful-and sometimes manual-initialization.  

 
Figure 20. Example of extraction of landmarks using the EBGM algorithm. 

Several methods were proposed to derive facial representations from several components or 

sub-images of the face. Pentland et al. [52] (1994) suggested a PCA version based on components 

whose facial subspace consisted of some subspaces constructed from partial pictures of the initial 

facial images. The selected landmarks were caught between the mouth and the eyes.  

Tistarelli [65] (1995) suggested a system focused on extracting facial references re-sampled by a 

log-polar mapping program. The identification was carried out through the application of 

cross-correlation and normalization between two facial designs. The correlation value has 

determined the resemblance between the two images, and consequently, the two subjects. For the 

classification, the correlation value was employed as a ranking. 

One common form of face recognition based on landmarks is Elastic Graph Matching (EGM) 

[66-67]. EGM is a realistic implementation of dynamic arc construction for object identification. The 

referential object graph was generated with EGM by superimposing a sparse, elastic, and 

rectangular graph on the object’s image and determining the Gabor wavelet bank’s response to 

every node of the graph. The cumulative value represents one jet at each node. Stochastic 

optimization of a loss function that considers the similitudes of the jets and the node deformation 

introduced the process of graph matching. A two-step optimization is necessary to minimize this 

loss function. Lades et al. [66] (1993) reported exciting results on a private dataset of 87 persons under 

different facial expression variations and 15-degree rotation. 

The Elastic Bunch Graph-Matching (EBGM) [68-69] is an expansion of EGM. In the heap graph 

structure, a collection of jets was calculated for various examples of the same face at each node (e.g., 

with the open or closed mouth and eyes). In this form, the heap graph representation can handle 

several changes in facial appearance. 

A further technique close to EGM is Morphological Elastic Graph Matching (MEGM) [70-71]. The 

Gabor characteristics are substituted by multi-scale morphological characteristics achieved by 

filtering facial image with dilation-erosion. 

Kumar et al. [72] (2020) proposed an ensemble face recognition system that employed a novel 

descriptor named Dense Local Graph Structure (D-LGS). Besides, the descriptor employs a bilinear 

interpolation to improve the pixel density when generating the graphic picture from the entered 

image. It did well on both constrained (e.g., ORL database) and unconstrained (e.g., LFW database) 

environments. 

In summary, the major disadvantage of all methods based on geometry is that they involve 

perfectly aligned facial images. All facial images must be aligned to possess all referential points 

(e.g., mouth, nose, and eyes) displayed at the corresponding place’s feature vector. The facial images 

are most often manually arranged for this purpose, and are often put under an anisotropic scale; the 

optimal automatic alignment is usually considered a challenging task. By comparison, EGM does 

not need precise alignment to work well. The EGM’s critical drawback is the time taken to examine 

the facial image in different scales and the matching technique. It is generally known that in this 

perspective, the variations in lighting that contemplate face recognition present one of the significant 

challenges. How computers design human face geometry is considered another issue that 
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researchers are invited upon to resolve to improve the robustness and safety of face recognition 

systems. 

5.3. Local-Texture Approach 

Feature extraction strategies focused on knowledge about the texture play a significant role in 

pattern recognition and computer vision. Texture extraction algorithms suggested in the literature 

can be subdivided into statistical and structural methods [73-77]. Local texture descriptors 

subsequently gained more attention and were introduced in many applications, such as texture 

classification, face recognition, or image indexing. They are distinctive, resilient to monotonic 

gray-scale changes, poor lighting, variance in brightness, and do not need segmentation [78]. The 

local descriptor’s goal is to transform the information at pixel-level into an appropriate form, which 

acquires the most compelling content insensitive to different aspects induced by variations in the 

environment. Contrary to global descriptors that calculate features directly from the entire image, 

local descriptors, which are more efficient under unconstrained situations, model the elements in 

small local image patches [79]. 

Ahonen et al. [80-81] (2004-2006) outlined the groundbreaking work of this approach. The 

authors presented a novel and effective representation of the facial image based on the local texture 

descriptor named: Local Binary Pattern (LBP). The facial image was separated into different blocks, 

where the distributions of the LBP feature were selected and combined into an improved histogram 

used as a facial descriptor, as shown in Figure 21. The texture representation of a single area 

encodes the area’s appearance, and the combination of descriptions of the entire area defines the 

face’s global morphology. The Colorado State University Face Identification Evaluation System protocol 

[82] and the FERET database were used to measure the face recognition issue’s performance. The 

works related to this were used for comparison: Bayesian Intra/Extra-personal Classifier (BIC) [83], 

PCA [12], and EBGM [63]. The first findings of this study were published in the 2004 ECCV 

conference [80]. Besides, the authors presented an in-depth analysis of the suggested method in 

[81]. The weighted LBP (e.g., CRR = 97% with Fb probe-set) yielded higher recognition rates than 

other similar works (CRR = 86% with PCA and 89% with EBGM under the same probe-set). The 

LBP showed robustness to many difficulties provoked by illumination variations or aging of the 

person, but more research was still required to achieve even more reliable performance. 
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Figure 21. Example of facial LBP calculation. 

Rodriguez and Marcel [84] (2006) suggested a generative method to face verification based on 

LBP facial representation as a complementary work. They created a universal facial model as a 

series of LBP-histograms; the histograms extracted from each block were seen as a distribution 

probability rather than a statistical observation. Next, by applying the Maximum A Posteriori (MAP) 

adaptation technique to the generic model under a probabilistic system, they obtained a 

client-specific model. Two primary facial verification datasets, namely XM2VTS and BANCA, were 

employed to assess the suggested method’s performance. The HTER (Half Total Error Rate) 

obtained with LBP/MAP was 1.42% using the XM2VTS database; LBP/MAP performed better 

compared to two other LBP related works. With the BANCA database, they noticed that the 

proposed method performed better under all conditions than two other LBP-based methods. The 

LDA/NC method [85] reported the best results under matched conditions with HTER=4.9%, while 

the alternative solution ranked 3rd with HTER=7.3%. Nevertheless, the LBP/MAP outperformed the 

LBP/JSBoost method [86] when more substantial training data are available. LBP/MAP showed the 

best results for the unconstrained environment, particularly in degrading illumination. 

Following the previous work, Boutella et al. [87] (2014) noted that the histograms extracted 

from blocks are mostly sparse in the original LBP facial representation and its variants; most bins in 

the histogram are near to zero or zero, especially in short blocks. Additionally, large blocks provide 

dense histograms that are not effective in representing local facial changes. The authors applied a 

vector quantization (VQ) on each block to get a useful feature vector; i.e., each block’s patterns are 

grouped into several groups, and the face is described by a codebook containing only valid LBP 

labels and ignoring other inefficient labels. They also developed a reliable face model through 

adaptation to MAP. The databases XM2VTS and BANCA were used to measure the performance of 

this method named: VQ-MAP. The obtained results (e.g., HTER=0.8% with XM2VTS) showed 

promising results which exceeded the original LBP results (Ahonen et al. [81], Rodriguez et al. [84], 

and several related works). In Mc (Match Controlled) and Ua (Unmatched Adverse) protocols, the 

proposed solution produced competitive results for the BANCA database. Average performances 

are obtained for the remaining protocols (Ud (Unmatched Degraded), P (Pooled Test), and G 

(Grand Test)). The suggested solution was characterized by the simplicity and computational 

effectiveness of the baseline LBP, as opposed to the comparative methods. 

Inspired by the original LBP, Benzaoui and Boukrouche [88-90] (2013-2014) proposed a new 

representation of the LBP operator, projected in one-dimensional space 1DLBP, to recognize faces. 

As shown in Figure 22, they decomposed the feature extraction algorithm into five main steps; first, 
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the image entered was decomposed into several blocks of the same size. A vertical projection was 

applied to each decomposed block, in one-dimensional space. Furthermore, the proposed 1DLBP 

descriptor was applied to every projected block. Then, they concatenated the vectors generated 

from each block to create one global vector. Finally, the Principal Component Analysis (PCA) was 

used to regroup the global vectors, reduce the dimensionalities, and keep only each individual’s 

relevant information. Chi-square distance was used to calculate the similarity between the images 

of the face. They performed several experiments on the ORL and AR datasets; they found that the 

projected 1DLBP operator (e.g., CRR=96.9% on AR the database) was very successful than 2D LBP 

(86.4%). The authors also expanded their work by adding the K-NN algorithm classification and the 

combination of vertical and horizontal vectors projected from each block.  

Ahonen et al. [91] (2008) used the newly introduced operator: Local Phase Quantization (LPQ) 

[92] in recognition of blurred faces to solve the facial recognition issue under blurring situations. 

The LPQ operator is based on the quantization in local regions of the Fourier transform phase. The 

phase was considered a blur invariant property following specific conditions that were frequently 

met. In their proposition, LPQ label histograms calculated in local neighborhoods were employed 

as a facial descriptor in the same way as the commonly used facial description LBP methodology. 

Datasets of CMU PIE and FRGC were used in the various tests. The experiments on the CMU PIE 

dataset with synthetically induced Gaussian blur in the probe-set showed that the LPQ descriptor 

(98.6% with max standard deviation σ=2.0) is very robust to blur compared to LBP (93.5%). 

Furthermore, its efficiency was superior to LBP (92.7%), even with no blur (99.2%). The 

performance of the LPQ operator (74.5%) outperformed all comparative methods, LBP (64.3%) and 

LTP [93] (68.4%), for the FRGC dataset where probe-images contain several lighting, facial 

expression, and blur variations. The authors deduced that LPQ is very useful at blurring and in 

unconstrained conditions, such as changes in facial expression and lighting. As an advantage, the 

operator is simple to compute and easy to implement, requiring just image convolutions with little 

independent kernels and rotations of vectors. 

 

Figure 22. Example of 1DLBP facial calculation. 

The recognition of faces from low-resolution images is considered a challenging problem. Lei et 

al. [94] (2011) proposed an adequate local frequency descriptor (LFD) to surmount this issue. Like 
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LPQ, the proposed descriptor is based on local frequency information, making it robust to 

low-resolution and blur. Different from LPQ, the descriptor employs both phase and magnitude 

information, thus providing more information. Furthermore, the LFD was determined not to allow 

the positive PSF (Point Spread Function) assumption for the blur kernel. Also, the representation is 

expected to be very useful because more information was exploited in the frequency band’s border. 

Besides, they implemented a statistically uniform scheme of pattern interpretation to improve the 

method’s effectiveness. The proposed LFD descriptor’s performance was compared with two 

related descriptors, LBP and LPQ, using facial images of low-resolution provided by the FERET 

database. Two experiments were designed to produce specific images of low-resolution. For the 

first one, the probe images were adjusted into 88×80, 66×60, 44×40, and 33×30. In the second 

experiment, the motion blur problem was simulated in the probe-set by adding the shift-invariant 

linear blur PSF. The production of LPQ and LFD in Fb set (right conditions) is very similar (the LPQ 

was the highest in all cases). The performance of LFD significantly outperformed LBP and LPQ in 

FC (illumination variation), dup-1, and dup-2 probe sets. The LFD’s high-quality performance with 

various low-resolution images showed that LFD is robust and useful for real-world applications. 

Kannala and Rahtu [95] (2012) proposed a method for building local image descriptors that 

encode texture information efficiently and are proper for the description of image regions based on 

histograms. Based on LBP and LPQ, the suggestion behind the proposed method called BSIF 

(Binarized Statistical Image Features) is to train a fixed collection of filters from a limited number of 

original images automatically as an alternative to employing hand-crafted filters such as LBP and 

LPQ. To get a statistically significant form of the images, BSIF uses learning as a substitute for 

manual tuning, allowing specific information encoding employing uncomplicated element-wise 

quantization. Learning also offers a comfortable and versatile method for adapting the descriptor’s 

size and controlling it to applications with abnormal image properties. They applied the FRGC in 

the experiments; the BSIF method results were in a similar performance to the state-of-the-art 

methods (≈75%). However, some of the probe-images were imperfectly aligned and blurred; BSIF 

ranked comparable output to explicitly developed methods of rotation and blur invariant. The 

authors showed the BSIF method’s tolerance to image degradations commonly found in 

real-applications. 

In summary, this approach’s methods are characterized by the advantage of high efficiency in 

time analysis and the rate of recognition. They are easy to incorporate, which allows examining 

photographs in real-time in a demanding environment. Besides, they are invariant to scale and 

misalignment. However, they are characterized by the complexity of automatic detection of 

relevant features and the inability to discriminate. They also suffer in the following situations: 

variations of posture, low resolution, facial expression, and different illumination conditions. 

5.4. Deep Learning Approach  

5.4.1. Introduction to Deep Learning 

Deep artificial neural networks, known as Deep Learning, have won copious contests in the pattern 

machine learning and recognition over the past few years [96]. Deep learning, belonging to a 

machine learning class, employs successive hidden-layers of information-processing levels, 

hierarchically organized for representation or pattern classification, and feature learning [97]. 

According to Deng and Yu [98] (2014), three principal reasons for the prominence of deep learning: 

starting with the drastic growth of processing abilities (e.g., GPU units), and the dramatically lower 
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computing hardware costs, finally the recent progress in machine learning studies. Many 

researchers proved successful deep learning results in diverse applications of computer vision, 

conversational speech recognition, phonetic recognition, voice search, speech and image feature 

coding, hand-writing recognition, semantic utterance classification, visual object recognition, and 

audio processing, and information retrieval [97]. Deep learning can be categorized into three main 

classes depending on how the technique and architecture are used: 

1. Unsupervised or generative (Auto Encoder (AE) [99], Boltzman Machine (BM) [100], 

Recurrent Neural Network (RNN) [101], and Sum-Product Network (SPN) [102]); 

2. Supervised or discriminative (Convolutional Neural Network (CNN)); 

3. Hybrid (Deep Neural Network (DNN) [97,103]). 

Discriminative deep architectures or supervised learning are supposed to differentiate several 

parts of data for classification. CNN is the best example of supervised learning; it allows exceptional 

architectural proficiency for image recognition [103]. Face recognition is commonly studied n 

computer vision, and CNN has achieved great success, becoming a powerhouse in this topic. This 

sub-section focuses on how the so-called powerhouse was used in its full effectiveness in face 

recognition. 

5.4.2. Convolutional Neural Networks (CNNs) 

CNN’s are a form of Neural Networks that have proved successful in areas such as the 

recognition and classification of images. CNN’s consist of a set of filters /kernels/ neurons with 

learnable parameters or weights and biases which have been added. Each filter takes some inputs, 

makes convolution, and follows it with a non-linearity. The structure of CNN includes layers of 

Convolutional, pooling, Rectified Linear Unit, and Fully Connected. 

- Convolutional Layer: is the CNNs core building blocks that are aimed at extracting 

features from the input data. Each layer uses a convolution operation to obtain a feature 

map. After that, the activation or feature maps are fed to the next layer as input data [9]. 

- Pooling Layer: is a non-linear down-sampling [104-105] form that reduces the 

dimensionality of the feature map but still has the crucial information. There are various 

Non-linear pooling functions in which Max pooling is the most efficient and superior to 

sub-sampling [106].  

- Rectified Linear Unit (ReLU) Layer: is a non-linear operation, involving units that use the 

rectifier. 

- Fully Connected Layer (FC): the High-level reasoning in the neural network is done via 

fully-connected layers after applying various convolutional layers and max-pooling layers 

[107].  

5.4.3. Popular CNN Architectures 

LeNet 

LeNet refers to LeNet-5, proposed in 1998 by Lecun et al. [108]. It is a capable CNN trained with 

the back-propagation algorithm for handwriting digit recognition. LeNet-5 consists of seven trainable 

layers, two convolutional, two pooling, and three fully-connected layers. LeNet is regarded as the 

backbone of modern CNN. 

AlexNet 

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a benchmark for large 

scale of object recognition in annual competitions starting from 2010 to present [109]. Krizhevesky et 
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al. [110] have won ILSVRC-2012 with using a large deep CNN model, named AlexNet, that have 

achieved record-breaking results in computer vision approached against all the traditional machine 

learning. AlexNet comprises five convolutional layers, some of which are followed by max-pooling, 

and three fully connected layers with 1000 way softmax, as shown in Figure 23, and other 

techniques, such as dropout, rectified linear unit (ReLU), and data augmentation. 

 

FC: Fully Connected Layers. conv: Convolution.  

Figure 23. AlexNet Architecture. 

VGGNet 

      At ILSVRC-2014, Simonyan et al. [111] have explored how convolutional network depth affects 

the accuracy of the image recognition setting on a large-scale. Their principal contribution was to use 

an architecture called VGGNet with small (3×3) convolution filters and double the number of feature 

maps after the (2×2) pooling. The network’s depth was increased to 16-19 weight layers, improving 

the deep architecture flexibility to learn continuous nonlinear mappings, as shown in Figure 24. 
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Figure 24. VGGNet Architecture. 

GoogleNet 

The winner of ILSVRC-2014 was the 22-layer GoogleNet, a model proposed by Szegedy et al. 

[112] (2014), to minimize computational complexity compared to the standard CNN model. It has 

introduced an “inception module”, containing variable receptive fields generated by different kernel 

sizes. Several convolutions (1×1, 3×3 and 5×5) and (3×3) max-pooling are effectuated in parallel for 

the previous input and output. All feature maps are also concatenated together as the input of the 

next module, as shown in Figure 25.  

 

Figure 25. GoogleNet Architecture. 

ResNet 

He et al. [113] (2015) introduced a novel architecture named Residual Neural Network (ResNet) 

to facilitate the training of ultra-deep networks compared to networks already in use. ResNet was the 

winner of ILSVRC 2015; it was developed with “shortcut connections” and features batch 

normalization, it was able to train a neural network with various numbers of layers: 34, 50,101, 152, 

and even 1202. Figure 26 illustrates the basic block diagram of the ResNet architecture. 

 

Figure 26. ResNet Architecture. 

SENet 

Hu et al. [114] won first place at ILSVRC-2017 since they proposed the block 

Squeeze-and-Excitation (SE), a novel architecture unit, which recalibrates channel-wise feature 

responses by clearly modeling the inter-dependencies between channels. The SE network (SENet) 

was developed by stacking a set of SE blocks and can be integrated with standard architecture such 

as ResNet, improving their effectiveness in numerous datasets and tasks (Figure 27).  
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X: the input. W×H: Spatial Dimensions. C: Channel Descriptor. r: Reduction Ratio. FC: Fully Connected layers. 𝑿̅ ̂: the output. 

Figure 27. SENet Architecture. 

5.4.4. Deep CNN based Methods for Face Recognition  

In the following, we discuss several deep face recognition methods based on CNN, which are 

typically trained in a supervised manner. There are many significant lines of research to train Deep 

CNNs for face recognition. Those that train a multi-class classifier separate diverse facial identities in 

the training phase, such as using the Softmax classifier. Those that are trained to learn more 

discriminative in-depth face features. Some methods focus on extracting features from various facial 

regions using multi-CNNs or focus on extracting appearance variations features from non-frontal 

facial images. Many works adopted ideas from metric learning and combined different loss 

functions or using effective loss function methods, and others used proper activation function. The 

following works are organized according to their architecture. 

- Investigations based on AlexNet Architecture  

DeepFace, proposed by Taigman et al. [15] (2014), is a multi-stage approach that uses a generic 3D 

shape model to align faces. They have derived a facial representation from a 9-layer deep neural 

network, trained from a multi-class face recognition task on over 4000 identities. The authors also 

experimented with a Siamese network [115] in which the top-layer distance between two facial 

features was directly optimized. DeepFace was one of the first works that achieved very high 

accuracy on the LFW dataset using CNNs. Inspired by this study, the focus of face recognition 

research has moved to deep-learning-based approaches, in just three years, the accuracy was 

dramatically increased. 

DeepFace has been expanded to other works like the DeepID series presented in several papers by 

Sun et al. [116-119], where they steadily increased the performance on LFW. In [116], they suggested 

the Deep Hidden IDentity Features (DeepID) to learn the verification task’s high-level face feature 

representations. The features are obtained from each deep convolutional network’s final hidden 

layer and predict around 10 000 identity classes in the training set. The number of features keeps on 

lessening along the feature extraction hierarchy until the DeepID layer. Those features are extracted 
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from different facial regions to shape over-complete and complementary representations and further 

improve the LFW performance with just weakly aligned faces compared to DeepFace [15]. 

One of the main challenges of face recognition is to develop an efficient feature representation 

for reducing intra-personal variations while increasing inter-personal variations, which can be 

solved with the Deep IDentification Verification Features (DeepID2) [117]. The features were learned 

with variations of deep CNNs under two supervisory signals: (1) The signal of face identification 

raises the inter-personal variations by drawing DeepID2 derived from separate identities apart. (2) 

The signal of face verification decreases the intra-personal by pulling together DeepID2 derived 

from the same identity. The merging of these two supervisory signals results in far better features 

than either. 

The authors presented in [118] a High-Performance Deep Convolutional Neural Network (DeepID2+) 

for face recognition that has improved upon the DeepID2 [117], by augmenting the dimension of 

hidden representations and joining supervision to early convolutional layers.  

Taigman et al. [120] (2015) have applied a Semantic Bootstrapping method to replace the naive 

random sub-sampling [121] of the training set for selecting from an extensive database an efficient 

training-set. Besides, they have also discussed further stable protocols of the LFW dataset, indicating 

a robust representation of the CNN facial features. 

Liu et al. [122] (2015) have proposed a two-stage approach for face recognition, which extracts 

low dimensional yet high discriminative features by merging a multi-patch deep CNN with deep 

metric learning. They have found local patches that are less sensitive to variation, mainly 

expressions, and poses. 

 

 

 

- Investigations based on VGGNet Architecture  

In [119], Sun et al. proposed two deeper neural network architectures for face recognition 

referred to as DeepID3, deeper than DeepID2+. These two architectures are reconstructed from crucial 

elements of GoogLeNet [112] and VGGNet [111] that are: stacked convolution and inception layers. 

Joint facial identification-verification supervisory signals were added during training-set to both 

final feature extraction and intermediate layers. 

Parkhi et al. [38] (2015) have made two contributions: First, they have developed a method for 

assembling a large scale dataset (VGGface dataset), with little label noise. Second, the authors have 

investigated diverse CNN architectures for face recognition based on VGGNet [111], including 

exploring a triplet loss function and face alignment. To allow a direct comparison with previous 

work, they have applied their proposed dataset, VGGFace, for training, and the evaluation was 

performed on the famous benchmark database, LFW. 

Data augmentation aims to increase the dataset by making transformations on the images 

without changing the labels, which have been commonly utilized to improve the CNN performance 

and prevent overfitting. Masi et al. [123] (2016) have augmented their training data by generating 

new facial images with specific appearance variations, including shape, pose, and expression using a 

3D generic face. 
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To investigate the long tail effect in deep facial recognition, Zhang et al. [124] (2016) have 

proposed a new function named Range Loss that uses the harmonic mean value to reduce 

intrapersonal variations yet enlarge inter-personal differences. 

Liu et al. [125] (2016) have proposed a generalized Large-Margin Softmax Loss (L-Softmax), which 

combines the most generally used components in deep CNN architectures, that are: a cross-entropy 

loss, a Softmax loss, and the final fully connected layer. The L-Softmax loss defines a flexible learning 

objective with the adjustable margin and can avoid overfitting. The experimental results on different 

datasets have shown that L-Softmax loss boosts performance in verification and classification tasks. 

Chen et al. [126] (2017) proposed a Noisy Softmax to alleviate early individual saturation 

problems by injecting annealed noise in the Softmax, which aims to improve CNNs generalization 

capacity.  

- Investigations based on GoogleNet Architecture  

FaceNet is a model from Google proposed by Schroff et al. [127] (2015) that uses 128-dimensional 

representations from deep convolutional networks, trained on 200-million facial images by utilizing 

a triplet loss function at the final layer. The triplet consists of two matching facial patches and a 

non-matching facial patch, and the loss attended to separate by a distance margin the positive from 

the negative pair. This loss is further suitable for face verification. They discussed two various core 

architectures: NN1 based on the Zeiler and Fergus model networks [128] and NN2 based on the style 

inception networks [112] from GoogLeNet. 

Ben Fredj et al. [129] (2020) used aggressive Data Augmentation with randomly perturbing 

information and complicated facial appearance conditions. One of the main ideas was to use the 

adaptive fusion strategy of softmax loss and center loss, improving performance, and making the 

model more flexible and efficient. 

 

 

- Investigations based on LeNet Architecture  

Wen et al. [130] (2016) were the pioneers to introducing a supervisory signal, namely Center Loss, 

for face recognition research, which learns for each class a center for deep face features while 

simultaneously reducing the distances between the features and matching class centers. Thus, the 

learned face features’ discriminative power is enhanced, and variations in the intra-class feature are 

minimized. 

Wu et al. [131] (2017) proposed a Center Invariant loss function, which aligns each individual’s 

center to enforce the deeply learned facial features to have more general representations for the 

entire people. Thus, better separation of feature space for all classes given highly imbalanced 

training data.  

Yin et al. [132] (2019) have introduced another work that tries to solve the imbalance of training 

data. They have proposed a novel Feature Transfer Learning (FTL) that adapts UR classes’ feature 

distribution, resulting in training less biased deep face recognition. 

- Investigations based on ResNet Architecture  

A related motivation to the feature normalization was proposed by Ranjan et al. [133] (2017), 

which have used an L2- constraint on the Softmax loss for training a facial verification system. The 
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L2-Softmax loss realizes compact feature learning by constraining the deep features to lie on a given 

radius’s unit hypersphere. 

To develop the discriminative power of the deep features, Deng et al. [134] (2017) have proposed 

the Marginal Loss function, which increases the inter-class separations and reduces the intra-class 

variations with the joint supervision of Softmax and marginal loss. 

The NormFace loss was proposed by Wang et al. [135] (2017) for improving the task of face 

verification. It studies and identifies the issue of applying L2 normalization operations on the 

embeddings and the weight vectors of the output layer before Softmax. Two training strategies for 

normalized features are proposed: The first is a reformulated Softmax loss by replacing the 

inner-product with cosine similarity. The second is inspired by metric learning. 

Liu et al. [136] (2017) proposed a metric learning loss that is Congenerous Cosine (COCO) for the 

individual recognition task. Their idea consists of optimizing and comparing the cosine distance 

between deep features to be polymerized and discriminated. COCO loss is expected to have lesser 

maximal intra-class variation than minimal inter-class distance. 

Hasnat et al. [137] (2017) proposed to model deep-feature learning from deep CNN as a mixture 

of Von Mises-Fisher distributions, by integrating Von Mises-Fisher (vMF) Mixture Models with deep 

CNN model. They derived a novel loss function called vMFML that allows for discriminative 

learning. 

Liu et al. [138] (2018) have presented a Deep Hypersphere Embedding method for face recognition 

(SphereFace). In particular, they proposed an Angular Softmax loss (A-Softmax), which allows deep 

CNN to learn discriminative facial features with the angular margin by imposing constraints on a 

hypersphere manifold. 

Zheng et al. [139] (2018) introduced a feature normalization approach for deep CNN, called Ring 

Loss, to normalize all samples of facial features via convex augmentation of the standard loss 

function (like Softmax). Ring loss applies soft feature normalization, where it ultimately learns to 

constrain facial feature vectors on the unit hypersphere. 

To tackle the imbalance of training data, Guo and Zhang [140] (2018) established a multiclass 

classifier by using Multinomial Logistic Regression Learning (MLR). MLR trains the Softmax classifier in 

combination with the Underrepresented classes Promotion (UP) loss term. They called this term as 

Classification vector-centered Cosine Similarity (CCS) loss, which improves one-shot face recognition 

accuracy.  

Wang et al. [141] (2018) have proposed a novel loss function, called Large Margin Cosine Loss 

(LMCL) to conduct deep CNNs to learn more discriminative features for face recognition. They 

reformulated the Softmax loss as a cosine loss by L2 normalizing weights and feature vectors to 

eliminate radial variations. Accordingly, to optimize the decision margin in angular space, a cosine 

margin concept is introduced, maximum inter-class variance and minimum intra-class variance are 

realized. Based on LMCL, the authors have constructed a deep model, namely CosFace. In the 

training set, the discriminative features are learned with a large cosine margin, and the features are 

extracted from deep CNNs in the test set to perform either face identification and face verification. 

Wang et al. [142] (2018) have proposed to impose a novel additive margin intended for the 

Softmax loss. The margin was formulated via a cosine similarity with normalized weights and 

features, resulting in improved learning face representations. 
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Wu et al. [143] (2018) have presented a Light CNN framework that works on the massive datasets 

with noisy labels. The authors have firstly introduced Max-Feature-Map (MFM), a variation of 

maxout activation that uses a competitive relationship. They have also introduced three networks 

that reduce the computational costs and number of parameters. They have finished their work by 

presenting a semantic bootstrapping that predicts which network is more consistent with noisy 

labels. 

To tackle class-imbalanced learning using deep CNN, Hayat et al. [144] (2019) have proposed the 

first hybrid loss function based on an Affinity Measure in Euclid space that aims at realizing a 

generalizable large margin classifier. The proposed loss combines clustering and classification in a 

single formulation that reduces intra-class variations while concurrently achieving maximal 

inter-class distances. Experimental evaluations have shown the effectiveness of the affinity loss 

function for face verification using several datasets that present a natural imbalance. 

In order to ameliorate the discriminative power of deep CNN features for face recognition, Deng 

et al. [145] (2019) have proposed an Additive Angular Margin Loss (ArcFace), which has an optimized 

geometric interpretation that improves the geodesic distance margin by matching the arc and the 

angle in the normalized hypersphere. 

     Many data in face analysis tasks, including face recognition and face-attribute prediction, can 

naturally exhibit imbalanced class distribution, i.e., most data belong to some majority classes. In 

contrast, minority classes often only have a few instances with a high degree of visual facial 

variability. The current techniques of deep representation learning typically implement classic 

schemes of cost-sensitive or re-sampling learning. Huang et al. [146] (2019) studied the effectiveness 

of these strategies schemes on class-imbalanced data by employing the learned feature 

representation. The proposed approach, known as Cluster-based Large Margin Local Embedding 

(CLMLE), keeps inter-cluster angular margins between and within classes, thus carving locally more 

balanced class boundaries. 

    One of the new ideas in deep face recognition is improving occlusions on variable facial areas, as 

introduced by Song et al. [147] (2019). The authors have proposed a Pairwise Differential Siamese 

Network (PDSN) framework to find correspondence between corrupted feature elements and 

occluded facial blocks for deep CNN models resulting in a robust face recognition system under 

occlusions. 

Wei et al. [148] (2020) proposed to solve the problem of margin bias by introducing a minimum 

margin for full pairs of classes. They presented a loss function called Minimum Margin Loss (MML), 

which aims to enlarge the overclose class center pairs’ margin to enhance the discriminative ability 

of deep features. MML supervises the training process in conjunction with Center Loss and Softmax 

Loss to balance all class margins irrespective of their class distributions. 

    Sun et al. [149] (2020) suggested a novel loss function called Inter-class Angular Margin (IAM) 

loss, aimed to enlarge inter-class variation adaptively by penalizing smaller inter-class angles more 

heavily and successfully making the angular margin larger between classes, which can significantly 

increase the facial features discrimination. The IAM loss is intended to act as a regularization term 

for the commonly used Softmax loss and its recent variations. Additionally, the authors provided an 

analysis of the hyper-parameter range of regularization and its effects. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2020                   doi:10.20944/preprints202007.0479.v1

Peer-reviewed version available at Electronics 2020, 9, 1188; doi:10.3390/electronics9081188

https://doi.org/10.20944/preprints202007.0479.v1
https://doi.org/10.3390/electronics9081188


 32 of 56 

 

     Wu et al. [150] (2020) investigated the impact of quantization errors on face recognition and 

proposed Rotation Consistent Margin (RCM) loss for efficient low-bit face recognition training by 

minimizing individual errors, which are necessary to feature discriminative power. 

     In order to learn the global feature relationships of aligned facial images, Ling et al. [151] (2020) 

proposed an attention-based neural network (ACNN) for embedding discriminative facial feature, 

which intends to reduce the information redundancy between channels and concentrate on the most 

informative components of facial feature maps. The proposed attention module composed of two 

blocks called channel attention block and spatial attention block. 

     To eliminate the large intra-class variance of softmax loss, Wu and Wu [152] (2020) introduced 

the constraint of cosine similarity into the training process Two useful loss functions have been 

proposed named Large Margin Cosine (LMC) and Discriminative Large Margin Cosine (DLMC). LMC 

imposes the intraclass cosine similarity between a sample and the corresponding weight vector in 

the last inner-product layer higher than a given margin. DLMC maintains the inter-class separability 

and the intra-class compactness simultaneously in the normalized feature space. The proposed loss 

functions can enhance the deeply learned discriminability. Specifically, as a Specialized Discriminative 

Large Margin Cosine (SDLMC), which has proven to be a variant of triplet loss and presents the 

intrinsic advantage over the facial verification issue. 

Table 3 summarizes all the above works in chronological order evaluated on the LFW dataset, 

including published time information, network design, number of networks, metric learning, 

training set, and accuracy. 

Academic community made great efforts to develop multiple methods and adopt different 

network architectures that significantly enhanced deep face recognition performance accuracy. 

Several promising ideas have been explored to bring advances in CNNs, such as the use of proper 

activation [143] and various loss functions [15, 124-126, 130, 134, 136, 138, 141-142, 145, 148-152], the 

use of metric learning algorithms [127, 38], normalization of features and weights [135, 133, 139], 

extraction of appearance variation features [123, 129, 147], use of multi-CNNs to extract features 

from various facial regions [116-120, 122], and other ideas for the issue of imbalanced training data 

[131-132, 140, 144, 146]. The famous LFW benchmark results continue to climb as more deep face 

methods are introduced; for example, in pasting four years, the accuracy has been increased from 

97.35% with DeepFace (2014) to 99.86% with COCO Loss (2017), as mentioned in Table 3. We can 

deduce that the accuracy of LFW has been got saturated, and all the rivals can reach a high accuracy 

rate. 

In Summary, deep convolutional neural networks have provided tremendous face recognition 

by learning more discriminative features on extensive datasets and outperformed recognition 

performances compared to holistic, geometric, and local-texture approaches. They also showed 

robustness to variations in pose, orientation, partial occlusion, misalignment, and expression. 

Although significant improvements have been made with deep learning-based face recognition, 

there are some challenges: the efficient training of CNN requires large-scale training data, demands 

hardware advancements such as GPUs, and needs lots of high-quality data.  

6. Three-dimensional Face Recognition  

6.1. Factual Background and Acquisition Systems  
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6.1.1. Introduction to 3D Face Recognition 

2D facial recognition systems are limited by constraints such as changes in physical appearance, 

aging factor, pose, changes in light intensity, and more generally by facial expressions, missing 

data, cosmetics and occlusions. To overcome these difficulties, 3D facial recognition systems have 

been developed with the aim of theoretically providing a high level of precision and reliability, and 

greater immunity to variations in the face due to different factors. Such a capacity is due to more 

elaborate acquisition systems and to 3D models taking into account the geometric information 

[157-158]. 

Face recognition acquisition devices can be a 2D, 3D or infrared camera or a combination of 

these modalities. Pre-processing can detect facial landmarks, align facial data, and crop the facial 

area. It can filter irrelevant information such as hair, background and reduce facial variations due to 

the change in pose. In 2D images, landmarks such as eyes, eyebrows, mouth, etc. can be reliably 

detected, while the nose is the most important landmark in 3D facial recognition. The 3D 

information (depth and texture maps) corresponding to the surface of the face can be acquired 

using different alternatives: A multi-camera system (stereoscopy), remote cameras or laser devices 

and 3D scanner. 

The formation of 3D facial images requires particular hardware devices, which can be classified 

according to the strategies employed into active and passive acquisition devices [159-160]. The first 

type is based on the emission/reflection of a non-visible light to illuminate the object and to capture 

its shape features. According to the various forms of lighting techniques, the active acquisition 

devices can be moreover grouped into triangulation and structured light techniques. On the other 

hand, the construction of the 3D facial images with passive acquisition devices is based on the 

placement of several cameras at predefined places and matching a set of canonical points observed  
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Table 3. Comparative summary of different deep face verification approaches on the LFW database. 

  
                

Method Authors Year Architecture Networks Verif. Metric Training set  Accuracy(%) ± SE  

1 DeepFace  Taigman et al. [15] 2014 CNN-9 3 Softmax Facebook (4.4M, 4K) * 97.35 ± 0.25 

2 DeepID  Sun et al. [116] 2014 CNN-9 60 Softmax + JB CelebFaces+ [116] (202k, 10k)*  97.45 ± 0.26 

3 DeepID2  Sun et al. [117] 2014 CNN-9 25 Contrastive Softmax + JB CelebFaces+ (202k, 10k)* 99.15 ± 0.13 

4 DeepID2+  Sun et al. [118] 2014 CNN-9 25 Contrastive Softmax + JB WDRef [153] + CelebFaces+ (290k, 12k)* 99.47 ± 0.12 

5 DeepID3  Sun et al. [119] 2015 VGGNet 25 Contrastive Softmax + JB WDRef + CelebFaces+ (290k,12k) 99.53 ± 0.10 

6 FaceNet  Schroff et al. [127] 2015 GoogleNet 1 Triplet Loss Google (200M, 8M)* 99.63 ± 0.09 

7 Web-Scale  Taigman et al. [120] 2015 CNN-9 4 Contrastive Softmax Private Database (4.5M, 55K)* 98.37 

8 BAIDU  Liu et al. [122] 2015 CNN-9 10 Triplet Loss Private Databse (1.2M, 18K)* 99.77 

9 VGGFace  Parkhi et al. [38] 2015 VGGNet 1 Triplet Loss VGGFace (2.6M, 2.6K) 98.95 

10 Augmentation  Masi et al. [123] 2016 VGGNet-19 1 Softmax CASIA WebFace (494k, 10k ) 98.06 

11 Range Loss  Zhang et al. [124] 2016 VGGNet-16 1 Range Loss CASIA WebFace + MS-Celeb-1M (5M, 100k) 99.52 

12 Center Loss  Wen et al. [130] 2016 LeNet 1 Center Loss CASIA WebFace + CACD2000 [154] + Celebrity+ [155] (0.7M, 17k) 99.28 

13 L-Softmax  Liu et al. [125] 2016 VGGNet-18 1 L-Softmax CASIA-WebFace (490k, 10K) 98.71 

14 L2-Softmax  Ranjan et al. [133] 2017 ResNet-101 1 L2-Softmax MS-Celeb 1M (3.7M, 58k) 99.78 

15 Marginal Loss  Deng et al. [134]  2017 ResNet-27 1 Marginal Loss MS-Celeb 1M (4M, 82k) 99.48  

16 NormFace  Wang et al. [135] 2017 ResNet-28 1 Contrastive Loss CASIA WebFace (494k, 10k ) 99.19 ± 0.008 

17 Noisy Softmax  Chen et al. [126] 2017 VGGNet 1 Noisy Softmax CASIA WebFace (400K, 14k ) 99.18 

18 COCO Loss  Liu et al. [136] 2017 ResNet-128 1 COCO Loss MS-Celeb 1M (3M, 80k) 99.86 

19 Center Invariant Loss  Wu et al. [131] 2017 LeNet 1 Center Invariant Loss CASIA WebFace (0.45M, 10k) 99.12 

20 Von Mises-Fisher  Hasnat et al. [137]  2017 ResNet-27 1 vMF Loss MS-Celeb-1M (4.61M, 61.24K)  99.63 

21 SphereFace  Liu et al. [138] 2018 ResNet-64 1 A-Softmax  CASIA WebFace (494k, 10k ) 99.42 

22 Ring Loss  Zheng et al. [139] 2018 ResNet-64 1 Ring Loss MS-Celeb-1M (3.5M, 31K)  99.50 

23 MLR  Guo and Zhang [140] 2018 ResNet-34 1 CCS Loss MS-Celeb-1M (10M, 100K)  99.71 

24 Cosface  Wang et al. [141]  2018 ResNet-64 1 Large Margin Cosine Loss  CASIA WebFace (494k, 10k) 99.73 

25 AM-Softmax  Wang et al. [142] 2018 ResNet-20 1 AM-Softmax Loss CASIA WebFace (494k, 10k) 99.12 

26 Light-CNN  Wu et al. [143] 2018 ResNet-29 1 Softmax MS-Celeb-1M (5M, 79K) 99,33 
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27 Affinity Loss  Hayat et al. [144] 2019 ResNet-50 1 Affinity Loss VGGFace2 (3.31M , 8K) 99.65 

28 ArcFace  Deng et al. [145]  2019 ResNet-100 1 ArcFace MS-Celeb-1M (5.8M, 85k) 99.83 

29 CLMLE  Huang et al. [146] 2019 ResNet-64  1 CLMLE Loss CASIA WebFace (494k, 10k) 99.62 

30  PDSN  Song et al. [147] 2019 ResNet-50 1 Pairwise Contrastive Loss CASIA WebFace (494k, 10k) 99.20 

31 Feature Transfer  Yin et al. [132]  2019 LeNet 1 Softmax MS-Celeb-1M (4.8M , 76.5K) 99.55 

32 Ben Fredj work Ben Fredj et al. [129] 2020 GoogleNet 1 Softmax with center loss CASIA WebFace (494k, 10k) 99.2 ± 0.04 

33 MML Wei et al. [148] 2020 Inception ResNet-V1[156] 1 MML Loss VGGFace2 (3.05M , 8K) 99.63 

34 IAM     Sun et al. [149 ] 2020 Inception ResNet-V1 1 IAM loss CASIA WebFace (494k, 10k) 99.12 

35 RCM loss Wu et al. [150] 2020 ResNet-18 1 
Rotation Consistent Margin 

loss  
CASIA WebFace (494k, 10k) 98.91 

36 ACNN Ling et al.[151] 2020 ResNet-100 1 ArcFace Loss DeepGlint-MS1M (3.9M, 86K) 99.83 

37 

LMC 

SDLMC 

DLMC 

Wu and Wu [152] 2020 ResNet32 
 

1 

LMC loss 

SDLMC loss 

DLMC loss 

CASIA WebFace (494k, 10k) 

98.13 

99.03 

99.07 

 

JB: Joint Bayesian. 

* : Private Database. 

    DeepGlint-MS1M: is a well-cleaned version of CASIA-WebFace [30] and MS-Celeb-1M [36] provided by DeepGlint corporation. 

The best accuracy is underlined and highlighted in Bold.
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from the installed cameras. Figure 28 shows examples of 3D facial images acquired with 

triangulation, structured light, and passive acquisitions devices, respectively [159-160].      

 

Figure 28. Three widely used 3D scanners  

A. Example of a 3D facial image acquired with a triangulation-based device, known as Depth Image, 

B. Example of a 3D facial image acquired with a structured light-based device, known as Point Cloud, 

C. Example of a 3D facial image acquired with passive acquisition device, known as Mesh. 

 

6.1.2. Microsoft Kinect technology 

Among active acquisition systems based on structured light technology, emerging RGB-D (Red 

Green Blue - Depth) cameras such as the Microsoft Kinect sensor are beginning to be successfully 

applied to 3D facial recognition [161]. The choice of Microsoft Kinect is motivated by its efficiency, 

its low cost, its ease of RGB-D mapping and multimodal detection. 

The original version of Microsoft Kinect sensor consists of a RGB camera, an infrared camera, an 

IR projector, a multi-array microphone and a motorized tilt (see Figure 29). Figure 30 shows the 

acquisition environment for the Kinect face database. And Figure 31 shows two example images 

captured by depth sensors and RGB camera, respectively. Here, RGB camera is able to provide the 

image with the resolution of 640 × 480 pixels at 30 Hz. This RGB camera also has option to produce 

higher resolution images (1280×1024 pixels), running at 10 Hz. Kinect’s 3D depth sensor (infrared 

camera and IR projector) can provide depth images with the resolution of 640 × 480 pixels at 30 Hz. 

 

Figure 29. Microsoft Kinect Sensor. 
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The depth sensor consists of an infrared laser projector combined with a monochrome CMOS 

sensor, which captures video data in 3D under any ambient light conditions. 

 

 

Figure 30. Acquisition environment for the Kinect face database. 

 

 

Figure 31. RGB-D alignment: the depth map (left) is aligned with the RGB image (right) captured 

by Kinect at the same time. 

 

Kinect technology has just been introduced towards the end of 2017 in a revolutionary 

smartphone: Iphone X. 

The iPhone X (pronounced iPhone 10 for the Roman numeral X which represents the tenth 

anniversary of the iPhone1) is a model of the 11th generation of the smartphone from the company 

Apple (see Figure 32). It marks a break with the older generations of iPhone due mostly with its 

design incorporating a “borderless” Super Retina screen (without border and without home button) 

with the highest resolution ever seen on an iPhone and also thanks to its 3D capture technology 

with the “TrueDepth” camera which allows in particular the integration of a “invisible” secure 

unlocking technology: Face ID. The iPhone X projects 30,000 infrared points to create an embossed 

mold on the user's face. This technology is the most advanced means of security on a smartphone, 

with a failure rate (1 / 1,000,000). It is therefore the first smartphone to have 3D facial recognition 

technology. The classic method of facial recognition (used on other smartphones) uses the front 

camera, security that can be deceived with a simple picture. 

 

Figure 32. The iPhone X’s notch is basically a Kinect. 
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6.2. Methods and Datasets   

6.2.1. Challenges of 3D facial recognition 

3D face recognition takes advantage of the 3D geometric details of the human face. It uses 3D 

sensor data to collect details on the shape of a face, and recognition is based on matching metadata 

of the 3D shape of the face. 

 The 3D capture process is becoming cheaper, more accessible and faster, which is why many 

contributions have been made in the last ten years to improve facial recognition based on a 3D 

facial model. The community of researchers in this field has intensively explored 3D face 

recognition in order to solve three main unsolved problems in 2D face recognition such as 

sensitivity to light conditions (Figure 33), pose (Figure 34) and use of makeup or beautification 

(Figure 35). Although 3D facial representations are theoretically insensitive to lighting variations, 

they must still be processed correctly before the matching process.  

In real life, it is very likely that certain parts of the face are obstructed by sunglasses, a hat, a 

scarf, mask, hands moving over the mouth, a mustache or hair, etc. This is called partial occlusion 

presented in the face or simply occlusion. Figure 36 shows an example of occlusion from the Kinect 

face database [161]. Occlusion can significantly alter the visual appearance of the face and therefore 

seriously degrade the performance of facial recognition systems. In addition, the problem of 

influences of facial expressions such as anger, disgust, fear, happiness, sadness and surprise (Figure 

37), and more generally emotions (Figure 38) is an open challenge due to the complexity of the 3D 

model.   

 

Figure 33. Lighting variation. The original image is on the left. 

 

 

Figure 34. Change of pose. The original image is on the left. 
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Figure 35. Plastic surgery (a) and (b). Facial cosmetics (c). 

Occlusion and pose variation issues have been the subject of work since using the GavabDB, 

Bosphorus and FRGCv2 databases (see Table 4) where the estimation of missing facial parts uses 

PCA on tangent spaces and by calculating mean shapes [162]. 

 

Figure 36. Occlusions by sunglasses, by hand and by paper. Upper: the RGB images. Lower: the 

depth maps aligned with above RGB images. 

 

Figure 37. Facial expressions 
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For the problems of 3D facial expression recognition, we recommend to refer to Alexandre's 

systematic review [163] which reveals that after pre-processing and machine learning the 

expressions of happiness and surprise are the most regularly distinguished, while fear and sadness 

turn out to be the most difficult expressions, thus representing an opportunity for future dedicated 

work. 

 

Figure 38. Facial emotion images 

6.2.2. Traditional methods of machine learning 

Three-dimensional facial recognition can be performed using one of the following two strategies: 

- Traditional methods of machine learning  

- Deep learning based methods. 

Traditional methods are generally divided into three categories: holistic, local and hybrid 

approaches. In the holistic approach, the focus is on the similarity of faces. The entire 3D face is 

described by defining a set of global features. Principal component analysis and deformation 

modeling are the most popular holistic methods. The local approach examines the geometric 

features of the face, mainly the eyes and the nose. The hybrid solution integrates holistic as well as 

local characteristics or data (2D and 3D images). 

Although several studies have been carried out using holistic methods, it seems that local 

methods are more suitable for recognizing faces in 3D. Compared to holistic methods, local 

methods are more robust in terms of occlusion and can give better experimental results [159]. 
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However, if the face is frontal, and there is no variation in expression, the hybrid solution is very 

effective. 

Figure 39 illustrates the 3-dimensional facial recognition process using traditional machine 

learning methods. 

 

Figure 39. Summary of the usual pipeline in 3D Face Recognition 

6.2.2. Deep learning based methods 

The various methods based on Deep Learning (see section 5.4) in 3D facial recognition represent 

less than 10% of work in this area over the past 5 years. 

In theory these methods are efficient and do not require the definition of a region of interest (ROI), 

nor the extraction and selection of features. 

However, some artisanal facial representation operations can precede the deep learning 

network. This makes real-time and immediate 3D facial recognition somewhat laborious. In 

practice, Deep Learning requires a learning process on a large volume of data, this is the concept of 

big data. However, the number of 3D facial scans available is very limited, which makes recognition 

performance in terms of accuracy (recognition rate) very critical and unreliable. 

To clarify this point, for example, the FaceNet dataset [164] used in 2D facial recognition by deep 

learning is very large of the order of 200M for training a Deep CNN, while in 3D facial recognition, 

the best datasets contain 2 to 15k. For example, the famous Bosphorus dataset contains around 4k 

images and BU-3DFE contains around 2.5k (see Table 4). It is therefore clear that the performance of 

3D facial recognition is below the expectations of its promoters even if some authors [165-168] 

obtain relatively acceptable performance but at the cost of complications and rather confused 

preprocessing. 

6.2.3. Three-dimensional face recognition databases 

2D facial recognition methods based on Deep CNN extractors trained on a massive dataset 

outperform conventional methods using classical feature extractors, such as Support Vector 
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Machines, Hidden Markov Models, Random Forests, K-nearest neighbors, Fisher’s Linear 

Discriminant Analysis, Artificial Neural Networks … 

Although 3D facial recognition based on deep learning is very difficult due to the lack of large 

scale 3D facial datasets, 3D models have the potential address changes in texture, expression, pose 

and face scaling, which is not the case with 2D Data. 

Besides, some problems are not yet solved well, mainly when the subject is non-cooperative 

during the acquisition process, which can cause a difference in the posture, facial expression, and 

generates occlusions, by foreign bodies on the facial surface [159-160]. 

Also, interpretation of the 3D facial expression, identification under variations in age, and 

transfer learning are three open challenges that are still in their beginning and requires further 

researches. 

In the database side, we can note that the academic community has plenty of large-scale 2D 

facial databases. These databases provide an official forum for assessing and comparing face 

recognition algorithms in 2D. However, databases with 3D faces are less frequent and smaller in 

size because building 2D facial data can be obtained easily by searching the Internet, while 3D facial 

data involves physical collection from real subjects, restricting its use and evolution. Some of the 

well-known available 3D face recognition datasets are described in Table 4, which compares 

various types of data formats, the number of images, the number of subjects, and the date of the 

apparition. 

Table 4. Comparative summary of some accessible 3D face recognition databases  

Database Apparition’s Date Images Subjects Data Type  

BU-3DFE 2006 2500 100 Mesh 

FRGC v1.0 [14] 2006 943 273 Depth image 

FRGC v2.0 [14] 2006 4007 466 Depth image 

CASIA 2006 4623 123 Depth image 

ND2006 2007 888 13,450 Depth image 

Bosphorus 2008 4666 105 Point Cloud 

BJUT-3D 2009 1200 500 Mesh 

Texas 3DFRD 2010 1140 118 Depth image 

UMB-DB     2011 1473 143 Depth image 

BU-4DFE 2008 606 sequences = 60,600 (frames) 101 3D video 

The BU-3DFE and Bosphorus databases are currently the stars of 3D facial recognition studies. 

As summarized in Table 4, BU-3DFE database consists of 2,500 scans acquired from 100 subjects 

where each subject offers a neutral pose and six basic emotions with 4 nuances or degrees (Figures 37 

and 38 show several degrees of happiness, anger ...). 

Bosphorus is a 3D facial recognition database (and even 3D facial expression recognition) 

widely used in validation. Table 4 shows that Bosphorus contains 105 subjects, of which only 65 

have facial expressions.  

It is clear that the databases mentioned in Table 3 are not consistent in terms of the number of 

scans and pose problems when methods based on Deep Learning try to be applied. 

The importance of creating face recognition datasets is essential, firstly for security-related 

applications, and secondly, to allow the development and validation of methods based on Deep 

Learning in 3D facial recognition. Thus, even in specific fields such as autonomous vehicles, a 
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multimodal database has recently been proposed [169] and can be supplemented by 3D facial 

expression recognition.  

7. Open Challenges  

As in most biometric applications, appearance variations caused by unconstrained 

environments tend to present open face recognition challenges. In the following paragraphs, we will 

cite some challenges to be met in the near future: 

7.1. Face Recognition and Occlusion   

The face can be captured in an arbitrary pose in a specific environment and without any user 

support, so it is possible that the image contains only a partial face. Facial occlusions can be, for 

example, shades, scarf, hat and veil, facial artifacts (for example, hand, food and cell phone), bright 

light (for example, shadow), self-occlusion (for example, non-frontal pose) or poor image quality (for 

example, blurring), as shown in Figure 40.For example, in forensic face identification, a suspect must 

be identified in the crowd by matching a partially occluded face based on a recorded image. There is 

a twofold difficulty in recognizing facial occlusion. First, the occlusion distorts the discriminating 

facial features and increases the distance in the feature space between two images of the same object. 

The intra-class variations are larger than the inter-class variations, contributing to low results in 

recognition. Second, significant alignment errors typically occur when facial landmarks are occluded 

and degrade recognition rates [170]. 

 

Figure 40. Some examples of occlusion by hat, glass, mask, hand, shadow, and self-occlusion. 

7.2. Hetegerenous Face Recognition  

Recognition of heterogeneous faces involves the correlation between two facial representations 

from different imaging methods; this is very useful in legal situations. For example, infrared imaging 

[171-172] (Figure 41 on the right) may be the only way to acquire a suspect‘s useful image in night 

environments, but the police recorded files are visible images. A further example is a 

correspondence with sketch photographs (In the center of Figure 41); when no suspect image is 

available, a legal sketch is created based on an eyewitness description. Correspondence from 

sketches against facial photographs is essential in legal inquiries.           

 

       Simple Photographs               Sketch Images                    Infrared Images 

Figure 41. Some modalities of imaging display heterogeneous faces.  
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7.3. Face Recognition and Ageing  

Facial aging is a complex process that affects a face’s form and texture (e.g., skin tone or 

wrinkles). The typical scenario for applying face recognition systems against the effect of aging is to 

detect the presence of a particular person in a previously registered database (e.g., the identification 

of missing children or control of suspects on a watch list). As the age between a query image and a 

reference image of the same person increases, it generally decreases the accuracy of recognition 

systems (Figure 42) [173]. 

 

Figure 42. Example of facial aging.  

7.4. Single Sample Face Recognition  

One of the most exclusive and realistic situations of applying face recognition is the Single Sample 

Per Person (SSPP), or merely Single Sample Face Recognition (SSFR) [9] (Figure 43). It is one of the most 

challenging facial recognition issues, where there is only one facial representation per individual for 

training-set. It is well known that:  

- In real-world applications (e.g., passports, immigration systems), only one model of each 

individual is registered in the database and accessible for the recognition task [174]. 

- Pattern recognition systems require vast training data to ensure the generalization of the 

learning systems. 

- Deep learning-based approach is considered a powerful technique in face recognition. 

Nonetheless, they need a significant amount of training data to perform well [9]. 

In summary, we may conclude that SSFR remains an unresolved issue and is among the most 

common subjects in academia or industry. 

 

Figure 43. Example of Face Recognition by Single Sample per Person.  
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7.5. Face Recognition in Video Surveillance   

Face-based recognition systems are becoming frequently common and find very varied 

applications, especially in video surveillance [175]. In this setting, facial recognition systems' 

performance is mostly reliant on image acquisition conditions, mainly when the posture changes, 

and because the acquisition techniques themselves may include artifacts. So, we are mainly talking 

about camera focus problems that can lead to image blurring, low-resolution, or 

compression-related errors and block effects. The challenge of face recognition systems, in this case, 

is to distinguish individuals from photographs captured employing video surveillance cameras, 

presenting blurred, low-resolution, block artifacts, or faces with variable poses (Figure 44). This 

challenge remains an unsolved problem and requires further research. 

 

Figure 44. Examples of Face Recognition in video surveillance. 

7.6. Face Recognition and Soft Biometrics   

Soft biometrics is a human characteristic providing specific information that can be used to 

determine, for example, age, gender, eye & hair color, height, weight, skin color, or ethnicity of the 

person from facial images. Unlike Hard biometrics, which consists of determining the person’s 

identity based on distinct and permanent personal features from facial images [16], soft biometrics 

offers ambiguous information that is not necessarily permanent or distinguishable. These soft 

features are usually more natural to capture remotely and do not require object co-operation. While 

they cannot provide reliable authentication, they can be used as additional information to reduce 

matching operations, which will improve the recognition performance of hard face recognition 

systems [176]. Despite the vast potential applications that have been made in this context, soft 

biometrics research is still in its infancy and needs further research. 

Figure 45 shows an example of soft biometrics: Facial marks (e. g. freckles, scars, moles, tattoos, 

chipped teeth, lip creases…) used to improve face recognition. 

 Although these micro-features cannot uniquely identify an individual, they can restrict the 

search for an identity. 
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Figure 45. Soft biometrics: Facial marks (freckles, mole and scar) 

7.6. Face Recognition and Smartphones   

Adopting face recognition on mobile devices offers many advantages. In addition to the 

employment facility, the users do not have to remember either the PIN or password; it can be 

conveniently implemented on tablets and smartphones because only the frontal camera is required. 

Face recognition systems have been used in recent years to secure the devices and control access to 

many different services through smartphones, such as a purchase or online payments on the Store, 

as shown in Figure 46. 

While the adoption of face recognition systems on smartphones provides many advantages, 

many challenges need to be addressed. The facial image of the user should be captured in a 

comfortable or constrained environment. Many factors, such as pose and ambient lighting due to 

various ways of interacting with mobile technology and imaging distance, can restrict facial image 

quality [177]. 

 
Figure 46. Examples of face recognition applications using smartphones. 

7.7. Face Recognition and Internet of Things (IoT)   

While there are several risks with facial recognition, it also offers numerous solutions for future 

and upcoming technologies. Currently the Internet of Things (IoT) technology is booming as well as 

the way to connect domestic or urban devices to the Internet to make them "smart" [178]. 

By integrating facial recognition into the IoT, various simplifications of life will be available. For 

example, the door of an apartment could recognize the resident and open automatically. A more 

common example is the simple activation of the smartphone by facial recognition via its front 

camera (Figure 47, left). Similarly, this technology can help us to find lost relatives when visiting an 

unknown city (Figure 47, right). A program will search for correspondence to the person’s profile 

photo in a predefined database by uploading a photo to a website. Finally, facial recognition can 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2020                   doi:10.20944/preprints202007.0479.v1

Peer-reviewed version available at Electronics 2020, 9, 1188; doi:10.3390/electronics9081188

https://doi.org/10.20944/preprints202007.0479.v1
https://doi.org/10.3390/electronics9081188


 12 of 56 

 

increase security by identifying criminals, assuming that this technology’s accuracy rate is nearly 

100%. 

 

Figure 47. Examples of IoT using face recognition: Door Unlock (left) and Smart City (right). 

 8. Conclusion  

This systematic review provides the new state of the art in facial recognition research in a 

comprehensive manner. Recent advances in this field are clearly stated and prospects for 

improvement are proposed. 

The outcomes of this review show that a substantial boost in this domain’s research occurred over 

the last five years, particularly with the advent of deep learning approach that has outperformed the 

most popular computer vision methods. In addition, numerous facial databases (public and private) 

are available for research and commercial purposes and their main characteristics and evaluation 

protocols are presented. A focus on the Labeled Faces in the Wild (LFW) database in terms of 

methodology, architecture, metrics, precision and protocols was necessary to allow researchers to 

compare their results to this referential database. 

The main lessons learnt from this study show that 2D facial recognition is still open to future 

technical and material developments for the acquisition of images to be analyzed. On the other hand, 

the attention of researchers is increasingly attracted by 3D facial recognition. The recent 

development of 3D sensors reveals a new direction for facial recognition that could overcome the 

main limitations of 2D technologies, e.g. changes in physical appearance, aging factor, pose, changes 

in light intensity, and more generally by facial expressions, missing data, cosmetics and occlusions. 

The geometric information provided by 3D facial data could significantly improve the accuracy of 

facial recognition in the presence of adverse acquisition conditions. However, the lack of a 3D facial 

recognition database hinders the exploitation of methods based on Deep Learning. Also, 

interpretation of the 3D facial expression, identification under variations in age, and transfer 

learning are three open challenges that are still in their beginning and requires further researches. 

Multimodality (voice, iris, fingerprint...), soft facial biometrics, infrared imaging, sketches, and 

deep learning without neglecting conventional machine learning methods are tracks to be 

considered in the near future. 

Naturally, these new developments in facial recognition must meet four objectives: always 

faster (immediate response seen from the user's point of view), accuracy close to 100%, optimal 

security, miniaturized and portable equipment. 
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