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Abstract:  In this work, we study the dynamical behaviors of the electromagnetic fields and 

material responses in the hyperbolic metamaterial consisting of periodically arranged metallic and 

dielectric layers. The thickness of each unit cell is assumed to be much smaller than the wavelength 

of the electromagnetic waves, so the effective medium concept can be applied. When electromagnetic 

(EM) fields are present, the responses of the medium in the directions parallel to and perpendicular 

to the layers are like that of Drude and Lorentz media, respectively. We derive the energy density of 

the EM fields and the power loss in the effective medium based on Poynting theorem and the 

dynamical equations of the polarization field. We also show that the Lagrangian density of the system 

can be constructed. The Euler-Lagrangian equations yield the correct dynamical equations of the 

electromagnetic fields and the polarization field in the medium. The canonical momentum conjugates 

to every dynamical field can be derived from the Lagrangian density via differentiation or variation 

with respect to that field. We apply Legendre transformation to this system, and find that the 

resultant Hamitonian density is identical to the energy density, up to an irrelevant divergence term.  

Keywords: Metamaterial; Hyperbolic Metamaterial; Drude Model; Lorentz Model; Lagrangian; 

Hamiltonian 

 

1. Introduction 

Metamaterials usually refer to artificially engineered structures for realizing various unusual 

optical/electromagnetic properties such as negative refraction [1,2], subwavelength imaging [3], 

indefinite permittivity [4], near-perfect absorption [5], or invisibility [6,7]. These unusual properties 

are mainly achieved through the resonance, conductivity, and directionality of the structural 

components such as split-ring resonators (SRRs), metallic rods array, or subwavelength dielectric-

metal multilayers [8]. The resonance and directionality of the constituent components imply that the 

metamaterials are inherently dispersive, absorptive, and anisotropic. A fundamental problem 

concerning dispersive media is how to calculate the stored electromagnetic energy density [9-28]. For 

dispersive media with negligible absorption, the time-averaged energy density as a function of the 

(complex valued) electric and magnetic fields (in the frequency domain) can be derived by 

considering the adiabatically varying electromagnetic field [29]. However, such analysis does not 

work when finite absorption is present. Recently, two different approaches were proposed to resolve 

such non-trivial problem [16,18]. For the wire-SRR metamaterials, time-averaged energy density 

formula can be derived using equivalent circuit (EC) method [10,16,17]. On the other hand, 

instantaneous energy density formula (the time domain formula) can be obtained using the 

electrodynamics (ED) method with Poynting theorem [9,12-15,18-20,24,27,28]. However, quite some 

controversies exist in the literature, and they need to be resolved [16-20]. In our previous studies we 

found that the time domain formula for energy density can be uniquely determined by the ED 

approach provided we know how to identify the power loss [19,20]. Recently, we also developed the 
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Lagrangian field theory description for the wire-SRR and chiral metamaterials [30]. In this framework, 

the Hamiltonian density for the metamaterial can be obtained through the Legendre transformation. 

It is found that the Hamiltonian densities for the dynamical fields in these metamaterials are the same 

as the energy densities we already obtained, up to some irrelevant divergence terms.   

 

Recently, hyperbolic metamaterials belonging to the category of anisotropic media have received 

more and more attention [31-35]. The hyperbolic dispersion of this kind of metamaterials are caused 

by the opposite signs of the two principal values of the permittivity tensor along and perpendicular 

to the optic axis. One of the most important applications of hyperbolic metamaterial is the hyperlens 

[35], which can image subwavelength objects in the far-field region, overcoming the shortcomings of 

the superlens [1,3] that can only image the same objects in the near-field region. The simplest example 

of a hyperbolic metamaterial is a dielectric-metal multilayer structure that operates under the long-

wavelength limit [35]. Although it seems that such metamaterials are much simpler than the wire-

SRR and chiral metamaterials, to the best of our knowledge, the energy density problem and the 

Lagrangian description for this kind of metamaterials have not yet been studied. This is the main 

motivation of our present study. In addition, a better understanding about the energy density, 

Lagrangian description, and Hamiltonain theory for the hyperbolic metamaterial can help 

researchers further explore the dynamical behaviors of EM waves in this kind of media without being 

restricted to the frequency domain phenomena. This may have practical importance in the future. 

The Lagrangian and Hamiltonian descriptions also provide a starting point for the development of 

quantum description of the electrodynamics in the metamaterials [30]. 

 

In this paper, we study the effective electrodynamics of dielectric-metal multilayer structures under 

the limitation of long wavelengths. Assuming that each metal layer is absorptive, we study energy 

density and power loss of the system. We first discuss the boundary conditions of the dynamic fields 

in each dielectric layer and metal layer, and derive the effective fields. We also derive the effective 

pemittivities in the frequency domain based on our theory of the effective fields. We then study the 

dynamical evolution equations of the effective electric, magnetic, displacement, and polarization 

fields and derive the effective energy density using the ED method. We discuss the loss effect and 

provide a suitable dissipation function [36] so that we can derive the correct equations of motion for 

the dynamic fields from the Euler-Lagrange equation with dissipation. The Hamiltonian density is 

derived by applying the Legendre transformation to this system. The resultant Hamiltonian density 

is found to be the same as the energy density obtained before, up to a divergence term. 

2. The effective fields, energy density and power loss 

2.1. Boundary conditions and the effective fields 

We consider a periodic multilayer structure consisting of dielectric and metal layers. Each unit 

cell has one dielectric and one metal layer (see Fig. 1). The lattice constant (the thickness of the unit 

cell) is dm aaa += , where faam =  is the thickness of the metal layer, afad )1( −= is the thickness 

of the dielectric layer, and f  is the filling fraction of the metal layer in one unit cell satisfying 

10  f . The dielectric is a nondispersive material of permittivity dd  ~
0= , whereas the metal has 

the Drude type permittivity
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00 1~)(  at frequency . Here 0/~  dd =  and 

0/~  mm =  are the relative (dimensionless) permittivities of the dielectric and metal layers. To make 

the effective medium theory reasonable, the operating wavelength should be much longer than the 

lattice constant a . Under this assumption any field quantity through one single layer does not change 

value along the direction normal to the layer. The boundary conditions for the E , D , H , B  fields 

at the dielectric-metal interfaces are the continuity of the tangential component of the E  and H  

( tE , tH )  fields and the continuity of the normal component of the D  and B  ( nD , nB ) fields. These 

boundary conditions are derivable from Maxwell’s equations (without external sources) by applying 
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the Stokes and divergence theorem, respectively. We also assume both the dielectric and metal are 

non-magnetic materials, so the permeability through the whole structure takes the same value 0  

as in empty space, and the B  field is related to the H  field by the simple relation HB 0= . The 

constitutive relation PED += 0  between the displacement field D , the electric field E , and the 

polarization field P  is assumed for a single layer as well as for the effective fields in the medium. 

However, since the boundary conditions for the E  and D  fields are of different types, the 

tangential and normal components of the effective fields will be evaluated separately.  

 

 
(a) 

 
(b) 

Figure 1. The effective medium consisting of periodically arranged dielectric and metal layers. (a) The 

original layer structure. Here the thickness of each layer as well as the lattice constant (the thickness 

of the unit cell) are assumed to be much smaller than the operating wavelength, so the effective 

medium theory can be constructed. (b) The effective medium has different dynamical properties in 

the direction parallel and perpendicular to the layers. 

Hereafter we denote the direction parallel to and normal to the layers as x  and z , respectively.  

The effective polarization field is the averaged dipole density, given by 

( ) md ff PPP +−= 1 ,  (1) 

here the superscript “d” and “m” denote the corresponding medium. Similarly the effective E  field 

is defined by 

( ) md ff EEE +−= 1 .  (2) 

 

The boundary conditions for tE  and nD  lead to the relations 
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In addition, the relation d
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From Eq.(1) to Eq.(4) and the relation PED += 0 , we find 
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Similarly, the z component of the D  field can be derived as 
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We now define two coefficients x , z  and a new field ],[ zx QQ=Q  as 

dx ff  ~)1( −+= ,  
)1(~

~

ff d

d
z

−+
=




 . (7) 

and 

m
xx fPQ = ,  m

zzz fPQ = , (8) 

Using these notations, the effective D  field in Eq.(5) and Eq.(6) can be expressed as 

xxxx QED += 0 ,  ( ) zzz
m
zzzz QEfPED +=+= 00  .  (9) 

 

We have not yet analyzed the dynamical behavior of the m
P  field. The dynamical behavior of 

m
P  field will determine the dynamical behavior of the effective medium. The Drude type 

permittivity 
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0 1)(  of the metal implies the equation of motion for m
P : 

m
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mm
EPP

2
00=+  . (10) 

 

Taking the x component of Eq.(3), Eq.(8), and Eq.(10), we get the dynamical equation for xQ  

xpxxpxx EEfQQ 2
0

2
00  ==+  . (11) 

Here the effective plasma frequency p  of the effective medium is defined by the relation 

x

p
p

f






2
02 = . (12) 

 

Similarly, taking the z component of Eq.(10) we get the following dynamical equation 

m
zpzzz fEQQ 2

00=+  . (13) 

 

However, the right hand side of Eq.(12) must be replaced by the effective fields. This can be done by 

noting that Eq.(2), Eq.(3), and Eq.(10) tell us 

z
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Substituting Eq.(14) into Eq.(13), we get 

zzzzz EFQQQ 2
00

2
0  =++  , (15) 

here the resonance frequency 0  and the factor F  are defined as 
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We are now ready to derive the energy density of the effective medium system. Before doing so, 

let’s check what do these equations tell us about the principal permittivity )( x  and )( z . 

Consider harmonic fields of frequency  , and replace all fields with their complex vector 

representations with time factor tie − . Under this consideration, Eq.(11) and Eq.(15) yield 
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Here xQ
~

, zQ
~

, xE
~

, zE
~

 are the complex representations of xQ , zQ , xE , zE . 

 

Substituting Eq.(17) into Eq.(9), and applying the relations xxx ED = , zzz ED = , we find 
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These results are exactly the same as those obtained directly by using the effective permittivity 

formula dmx ff  )1( −+=  and dmz ff  /)1(//1 −+=  at the direction parallel and normal to the 

layers, as can be easily checked. According to Eq.(17) and Eq.(18), the Q  field tends to zero as the 

frequency becomes higher and higher. In fact, the Q  field is the dynamical part of the P  field that 

does not react immediately to the change of the E  field.   

 

2.2. Poynting theorem, energy density, and power loss 

To derive the energy density, we first derive from Maxwell’s equations the following equations 
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Now, if the right-hand side of Eq.(19) can be written as lossP
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the power loss density, then be WWW +=  is the desired energy density of the system, and Eq.(19) 

represents the Poynting theorem (the energy conservation law). Using the simple relation HB 0= , 

we find 
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Using Eq.(8), Eq.(12), and Eq.(16), we find that the final term of Eq. (20) can be re-expressed as a 

quantity proportional to ( )2m
P : 
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Since m
P  is the polarization current density, thus ( )2
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 is the Joule heat rate density in the 

metal layer. It is therefore reasonable to identify the quantity in Eq.(21) as the power loss density of 

the effective medium. With this identification, we can identify the electric energy density eW  as 
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The total energy density is thus given by 
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This result indicates that the total energy density of the system is definitely positive and is 

consisting of two parts: the non-dispersive part  
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and the dispersive part  
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The different dispersion characters are caused by the facts: EHW is the contribution from the 

electricmagnetic fields themselves and the part of the polarization field that follws the change of the 

fields immediately, whereas QW  is originated from the material response that does not follow the 

fields immediately because a conduction electron in the metal has nonzero innertial mass. 

For harmonic fields, the time average of a product )()( tbta  (energy density or Poynting vector) can 

be evaluated by using the formula [37] 
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where  /2=T  is the oscillation periodic, while a~  and b
~

are the complex representations of 

the fields ( )tieata −= ~Re)(  and ( )tiebtb −=
~

Re)( . 

Applying Eq.(26) to the energy density and power loss density, we get 
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The second line of Eq.(28) is consistent with the generally accepted concept that it is the imaginary 

part of the permittivity who corresponds to the energy loss in the absorptive medium. Another 

interesting observation is that when we “turn off” the absorption (i.e., 0→ ), the time averaged 

energy density becomes  
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The second line of Eq.(29) is the prediction to a dispersive medium with negligible absorption, 

which can be derived by considering the adiabatic variation of the field amplitudes [29].  

3. The effective Lagrangian density and Hamiltonian density 

3.1. Lagrangian density and Euler-Lagrangian equations 

In this section we will construct the Lagrangian density for the effective medium system as 

function of the scalar potential  , the vector potential A , the Q  field, and their time and space 

derivatives. It is clear that in Maxwell’s equations the Gauss law 0= B  for the B  field and the 

Faraday’s induction law t−= /BE  are automatically satisfied because AB =  implies 

0= B  and AE −−=   implies t−= /BE . We will show that the other two Maxwell’s 

equations 0= D  and t= /DH  as well as the equations of motion for the Q  fields (Eq.(11) 

and Eq.(15)) can be derived from the Euler-Lagrangian equations (with dissipation)  
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Here ],,,,[ zxzx QQAA =  are the dynamical fields involved in the Lagrangian density, and the 

relations xxxx QED += 0  and zzzz QED += 0  were used. The dissipation function density F  in 

Eq.(30) is defined as 
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which has the value equal to one half of the power loss. 
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Observing Eq.(24) and Eq.(25) it is not difficult to guess the Lagrangian density. It should be a 

sum of three kinds of terms 

CQEH LLLL ++= , (32) 

where EHL  describes the electromagnetic fields 
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QL  describes the Q  field 
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and CL  describes the matter-field coupling  

( ) ( ) zzzxxxzzxxC QAQAQEQE  +−+−=+= L .  (33c) 

As mentioned before, using this Lagrangian density L  and the dissipation function density F  

in Eq.(31), one can derive all the dynamical equations of the effective fields from Eq.(30). It can be 

checked that for   = we get the Gauss law 0= D ; for  A= we get the Ampere’s law 

t= /DH ; and for  Q= we get the equations of motion for the Q  field (i.e., Eq.(11) and 

Eq.(15)). 

 3.2. Canonical momenta, Legendre transformation and Hamiltonian density 

In order to derive the Hamiltonian density, we have to derive all the Canonical momenta first. 

The Canonical momentum   conjugate to the dynamical field   is defined by 
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2
0  FQQDD zzpxxzx

−−= . It is interesting to note 

that the canonical momentum   conjugate to   is equal to zero. This is a common feature of 

electrodynamics systems which reflects the fact that   is a redundant dynamical variable.  

 

The Hamiltonian density H  is given by the Legendre transformation 
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According to this result the Hamiltonian density is almost the same as the energy density we 

obtained in Eq.(23). The only difference is the new term ( ) ( )DDDD  =−= . Here we 

have used the Gauss law 0= D . This additional divergence term can be dropped from Eq.(34) 

because it is only a “surface term” and will not influence the dynamical equations for the effective 

fields. After dropping this surface term the final term in Eq.(34) can be replaced by a term of zero 

value: D− . In the framework of Dirac’s treatment to the constraint systems [38] we can treat   

as a Lagrangian multiplier, and 0= D  is the constraint to the canonical momentum DπA −= . 

4. Discussion 

In this section we discuss some important results we encountered in the previous sections. First 

we want to study the meaning of the factors x  and z appearing in the Eq.(9). A real dielectric 

material usually has 1~ d , so we get 1~)1( −+= dx ff   and 1~/)1( −+= dz ff  . Consider a 

harmonic E  field operating at a frequency   much higher than 0  and p . Then according to 
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Eq.(17) the Q  field vanishes and the D  field can be approximated as ],[],[ 0 zzxxzx EEDD = . In 

one unit cell, the dielectric layer contributes xd Ef )1( −  to the effective displacement field xD , while 

the metal layer contributes xEf 0 , so the sum of them gives   xxxdx EEffD 00 )1(  =−+= . This 

consideration also explains the form m
xx fPQ = , which is the dynamical part of the polarization field 

contributed by the metal layer.  

On the other hand, the z  factor is smaller than 1 . This is a consequence of the fact that the 

applied E  field induces surface charges at the top and bottom surfaces of the dielectric layer, and 

the surface charges build an internal depolarization field inside the layer pointing to the opposite 

direction of the applied field. This depolarization field cancels a part of the applied field so we get a 

reduction factor 1z . Using the constitutive relation m
z

d
zzzzz fPPfEPED +−+=+= )1(00   we 

now can derive the expression of zD  in Eq.(9) more straightforwardly 
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(35) 

This derivation also gives us the form of m
zzz fPQ =  automatically. This indicates that the 

depolarization effect also happens in the metal layer. Besides, the depolarization field plays the role 

of the restoring force acting to the “ zQ  oscillator” and gives a nonzero 0  (see Eq.(15), Eq.(23), 

Eq.(25), and Eq.(33b)). 

 

The energy density can also be obtained by calculating the contributions from the dielectric layer and 

the metal layer separately, and sum them up. For example, the energy density corresponding to xE  

is given by 

( ) 2
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xxxxdX QEx
m
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Here N , m ,  and x  stands for the concentration, mass and displacement of the conduction 

electrons in the metal, and the relations NqxPm
x = , m

xx fPQ =  and 0
22

0 /  mNqp =  have been used. 

The more involved result corresponding zE  can also be derived in a similar way. However, the 

derivation is tedious but not very inspiring, so we stop here and do not discuss this problem further. 

5. Conclusions 

In this paper we have completed the derivations of the effective fields, energy density, 

Lagrangian density, and Hamiltonian density for the electrodynamics in the effective medium that 

consists of dielectric-metal layers. We have also discussed how to obtain the frequency domain 

quantities such the permittivities and time-averaged energy density from our time domain formulas. 

It is found that the Hamiltonian density is the same as the energy density, up to an irrelevant 

divergence term. The Lagrangian field theory is a systematic method which yields the correct 

equations of motion for the polarization field and the vector potential through the Euler-Lagrangian 

equations. Since the system is dissipative, a dissipation function was introduced which takes care of 

the effective related to energy loss. The Lagrangian/Hamiltonian field theory framework can provide 

the essential knowledge for further developing the quantum theory of this kind of media.   
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