

Simulated photovoltaic solar panels alters the seed bank survival of desert annual plant species

Supporting Information

Rebecca R. Hernandez^{1,2*}, Karen E. Tanner³, Sophia Haji³, Ingrid M. Parker³, Bruce M. Pavlik⁴, and Kara A. Moore-O'Leary⁵

- ¹ Department of Land, Air & Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616
- ² Wild Energy Initiative, John Muir Institute of the Environment, University of California, Davis, One Shields Avenue, Davis, CA 95616
- ³ Ecology and Evolutionary Biology Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064
- ⁴ Conservation Department, Red Butte Garden and Arboretum, University of Utah, Salt Lake City, UT 84108
- ⁵ U.S. Fish and Wildlife Service, Pacific Southwest Region, 3020 State University Drive East, Sacramento, CA 95819
- $\ ^{\ast}\ Correspondence: rrhernandez@ucdavis.edu$

Received: date; Accepted: date; Published: date

Supporting Information - Methods

Supporting Methods I - Artificial photovoltaic installation. Thirty-two of these panels were installed in 2011 and were reallocated to this experiment in 2016, when we also installed four additional panels per site, for a total of twenty per site. We covered all panels with clear plastic sheeting (4 mm Coroplast, corrugatedplastics.net, New Jersey, USA) in summer 2016 to emulate the smooth surface of a PV panel and facilitate rainfall runoff. Within sites, plots were selected to minimize heterogeneity of substrate and slope; due to patchy distribution of annual species in shrub interspaces, plot locations were chosen non-randomly to contain threshold numbers of focal species, ensuring habitat conditions suitable for seed germination. All plots were established in areas where they would not be shaded by nearby shrubs or the infrastructure associated with nearby plots.

Supporting Methods II - Staining Assays. Formal assays were carried out during summer on seed recovered from packets collected the previous spring, with one exception: resource constraints delayed assay of the 2016 cohort collected in spring 2017 until the summer of 2018. However, staining results for this cohort do not suggest that additional storage time negatively affected seeds. Specifically, we found no differences in staining rate for E. mohavense cohorts recovered in 2017, and observed a higher staining rate for the 2016 E. wallacei cohort recovered in 2017. Before formal assays, intact seeds were imbibed in deionoized water for 24 hours. We prepared a 1% solution of 2,3,5-triphenyltetrazolium chloride and deionized water, and cut seeds longitudinally using a precision knife (Xacto #11 blade) to expose the embryo and pericarp. E. wallacei seeds were soaked in solution for 24 hours at 17° C, and E. mohavense seeds were soaked for 6 hours at 35° C. Within 1 h following soak, all exposed embryos were examined under a high-power stereoscope (SMZ800, Nikon Inc., Tokyo, Japan). The intensity and completeness of embryo staining varied among individuals as well as across species, so we classified seed according to presence or absence of stain. Individuals with completely white embryos were considered retained dead seed, and those exhibiting any stain were considered retained live seed (Fig. 2b). Effectiveness of seed viability assays may differ across species and thus similar methodological assessments should be performed to evaluate the accuracy of viability-based observations for individual plant species.

Supporting Methods III - Statistical Analysis. We built quasibinomial generalized linear models (GLMs) with logit link functions to evaluate retained seed pools and seed staining rates (version 1.2.5042, Rstudio, Boston, Massachusetts, USA). We used the Anova function in the car package (Fox and Weisberg 2011) to evaluate models and generate Type III p-values, and conducted post-hoc tests on estimated marginal means using the emmeans package (Lenth 2019).

In the GLM evaluating the retained seed pool (Fig. 2a, see C), the proportion of retained seed per packet was the response, and proportions were weighted by the number of seeds recovered from a given microhabitat and plot (combining seed of the same cohort where multiple packets were

collected in the same location). Year, species, microhabitat, seed cohort, and all interactions were included as fixed effects; plot was not included as a blocking effect because blocks were incomplete. Although quasibinomial approaches are recommended to compensate for overdispersion (Carruthers *et al.*, 2008), overdispersion could not be eliminated, so p-values should be regarded as approximate.

The GLM evaluating seed survival (Fig. 2a, see D) used stain presence on individual seeds as the response variable (stain present or absent). Fixed effects included year, species, microhabitat, seed cohort, and all interactions. To test for differences in seed bank survival by burial duration (2017 - one growing season, 2018 - two growing seasons) between the rare and common species (including differences across all treatments and within control plots only), we used a nonparametric Mann-Whitney U test on two medians using ranks of the sample data, as comparative datasets were not normal (e.g., W =0.52317, p-value = 0.00112, Shapiro-Wilk normality test). To test for differences in seed bank survival across microhabitats by burial duration (2017 - one growing season, 2018 - two growing seasons), we used a Kruskal-Wallis test (with Dunn's multiple comparison post hoc test) on the equality of medians, as these datasets were also not normal (Shapiro-Wilk normality test).

Literature Cited

Baskin JM, Baskin CC. 1976. High Temperature Requirement for after ripening in Seeds of Winter Annuals. *New Phytologist* **77**: 619- 624.

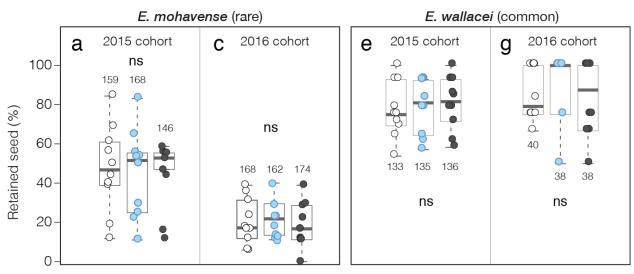
Carruthers E, Lewis K, McCue T, Westley P. 2008. Generalized linear models: model selection, diagnostics, and overdispersion. *Memorial University of Newfoundland*. Chávez RO, Moreira-Muñoz A, Galleguillos M, Olea M, Aguayo J, Latin A, Aguilera-Betti I, Muñoz AA, Manriquez H. 2019. GIMMS NDVI time series reveal the extent, duration, and intensity of "blooming desert" events in the hyper-arid Atacama Desert, Northern Chile. *International Journal of Applied Earth Observation and Geoinformation* **76**: 193- 203.

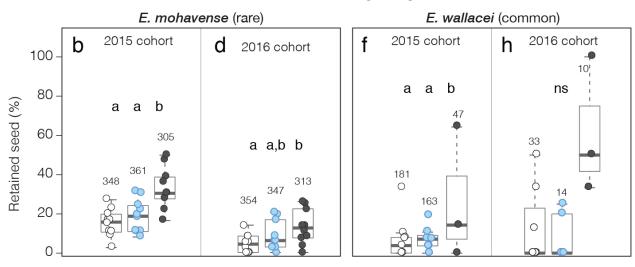
Colville L, Pritchard HW. 2019. Seed life span and food security. *New Phytologist* **222** (2): 557-562.

Hilton JR. 1984). The influence of dry storage temperature on the response of *Bromus sterilis* L. seeds to light. *New Phytologist* **98**(1): 129-134.

Lenth R. 2019. emmeans: Estimated marginal means, aka least-squares means. R package version 1.4. <u>https://CRAN.R-project.org/package=emmeans</u>

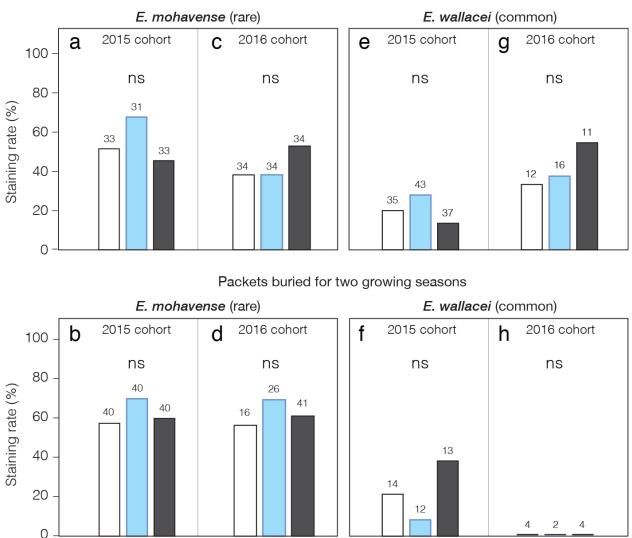
A Caliche Pan Site	Seed Banl Character	Lauche Pan Sile	Gravelly Bajada Site
	Geography	18 km east of Boron, CA Elevation: 721 m Experimental arrays installed on low, south-facing knolls of alluvium	 18 km southeast of Barstow CA Elevation: 925 m Experimental arrays installed on a gentle east-facing slope
	Vegetation	Creosote bush scrub with species-rich winter annuals 31 species total; two rare, endemic plants: Eriophyllum mohavense, Chorizanthe spinosa	 Creosote bush scrub with species-rich winter annuals 34 species total
Gravelly Bajada Site	Climate	Temperature: 16 °C (yearly mean) Rainfall: 126 mm (hydrologic year mean)	Temperature: 19.6 °C (yearly mean) Rainfall: 93.9 mm (hydrologic year mean)
	Soils	 Sandy clay loam (60, 18, 22, %sand/silt/clay) Est. water holding capacity (34.3%) Cation exchange capacity: 24.2 (meq/100g), pH = 7.7 	 Loamy sand, (80, 14, 6%, %sand/silt/clay) Est. water holding capacity (10.0%) Cation exchange capacity: 12.1 (meq/100g), pH = 7.9
e e e e e e e e e e e e e e e e e e e	Solar Energy	 <10 km from Solar Energy Generating Facility (SEGS) III-VII, Mojave Solar, and SEGS VIII-IX 	 < 26 km from Longboat Solar, Solar One, and Solar Two (now decommissioned)
B Caliche Pan Site		avelly a Site	Barstow

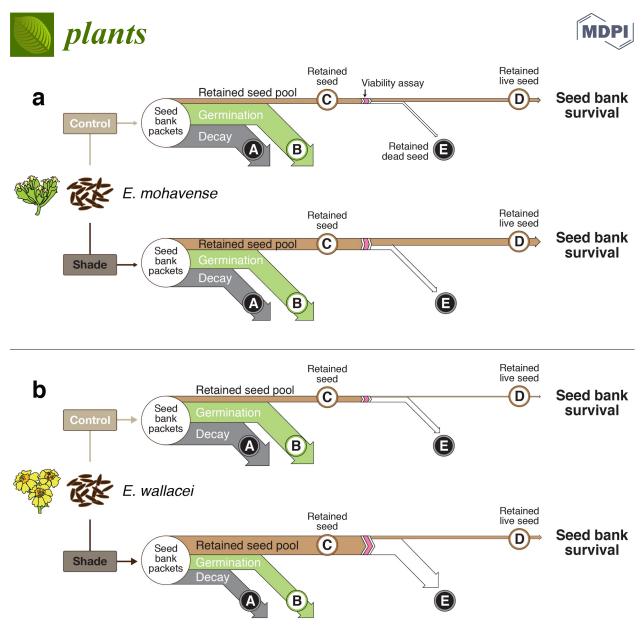

Figure S1. Site-level maps and characteristics of the Caliche Pan and Gravelly Bajada Sites in the Western Mojave Desert, California, USA (A - Google Earth, 222 m alt.; B - Landsat/Copernicus, 721 m alt.).



Packets buried for one growing season

Packets buried for two growing seasons


Figure S2. The retained seed pool from seed bank packets collected in 2017 (top row) and 2018 (bottom row). Percentages of retained, intact *E. mohavense* seed are shown in (a, b) for the 2015 seed cohort, and (c, d) for the 2016 seed cohort. Percentages of retained *E. wallacei* seed are shown in (e, f) for the 2015 seed cohort, and (g, h) for the 2016 seed cohort. Data points overlaid on boxplots show the number of packets collected from each microhabitat, and the numbers above each boxplot show the total number of seeds recovered from collected packets. Where letters above boxplots differ, the percentages of retained seed recovered were significantly different at the p <0.05 level. Retained seed pools broken down by species, cohort, and microhabitat are provided in Table S3.



Packets buried for one growing season

Figure S3. Staining rate (%) for the subsets of retained seed from packets collected in 2017 (top row) and 2018 (bottom row); percentages of stained *E. mohavense* seed are shown in (a, b) for the 2015 seed cohort, and (c, d) for the 2016 seed cohort. Percentages of stained *E. wallacei* seed are shown in (e, f) for the 2015 seed cohort and (g, h) for the 2016 seed cohort. Numbers above bar plots represent the total number of intact seeds subjected to tetrazolium assays. Final seed bank survival (%) is calculated by multiplying the retained seed pool by the proportion (i.e., decimal form of the percent) of the staining rate (see Supplementary Information, Table S5 for full seed bank survival calculations).

Figure S4. The seed bank survival model showing empirical seed bank pools and types in the Control and Shade microhabitats for (a) *E. mohavense* and (b) *E. wallacei* (averaged across cohorts for each species) after two years of burial. We observed higher seed retention in the Shade compared to the other two microhabitats (we show only Shade and Control flows here; flows in the Runoff microhabitat are very similar to Control flows). We cannot confidently partition decayed seed (A) from germinated seed (B) in the expended seed pool (due to the delay between the winter annual germination period and collection of packets in spring), so we visualize these flows as equivalent in size. Flows exiting the staining assay (pink chevron) visualize the percentage of live seed for a subset of the retained seed pools (C) exposed to staining assays.

Table S1. Allocation of 2015 and 2016 seed cohorts to seed bank packets by species.

	Species	Seed cohort	Number of seed bank packets	Number of seeds per packet	Total seeds
a)	E. mohavense	2015	90	18	1620
		2016	180	9	1620
b)	E. wallacei	2015	90	14	1260
		2016	180	2	360

 Table S2. Sample sizes for packets recovered at the (a) caliche pan (*E. mohavense*) and (b) gravelly bajada (*E. wallacei*) site.

	Year collected	Seed cohort	Microhabitat Total seeds		Total packets
(a) E. mohavense					
			Control	159	10
		2015	Runoff	168	10
	2017		Shade	146	9
	2017		Control	168	19
		2016	Runoff	162	20
			Shade	174	20
			Control	348	20
		2015	Runoff	361	20
	2018		Shade	305	17
	2010	2016	Control	354	40
			Runoff	347	40
			Shade	313	34
(b) E. wallacei					
			Control	133	10
	2017	2015	Runoff	135	10
			Shade	136	10
		2016	Control	40	21
			Runoff	38	20

		Shade	38	20
		Control	181	14
	2015	Runoff	163	12
2018		Shade	47	4
2016	2016	Control	33	18
		Runoff	14	8
		Shade	10	5

Table S3. Average retained seed pool for each species broken down by year of packet collection, seed cohort, and microhabitat. Rows where packets were collected at less than 10 plots indicate a loss of packets in the field. Rabbits were observed chewing the fabric and were the likely culprits of their disappearance (Tanner, pers. observ.).

	Species	Year packets collected	Seed Cohort	Microhabitat	Number of plots	Number of seeds recovered	Retained seed pool	Retention rate
a)	E. mohavense	2		Control	10	159	74	0.47
			2015	Runoff	10	168	75	0.45
		2017 -		Shade	9	146	65	0.45
		2017		Control	10	168	34	0.20
			2016	Runoff	10	162	35	0.22
				Shade	10	174	32	0.18
				Control	10	348	53	0.15
		2018 -	2015	Runoff	10	361	68	0.19
				Shade	9	305	99	0.32
			2016	Control	10	354	16	0.05
				Runoff	10	347	30	0.09
				Shade	10	313	44	0.14
b)	E. wallacei			Control	10	133	103	0.77
		2017 -	2015	Runoff	10	135	107	0.79
				Shade	10	136	110	0.81
				Control	10	40	34	0.85
			2016	Runoff	10	38	34	0.89
	-			Shade	10	38	32	0.84

		Control	9	181	17	0.09
	2015	Runoff	7	163	13	0.08
2018		Shade	3	47	13	0.28
2010		Control	7	33	5	0.15
	2016	Runoff	5	14	2	0.14
		Shade	3	10	5	0.50

Table S4. Average seed staining rates for each species broken down by year of packet collection, seed cohort, and microhabitat.

	Species	Year packets collected	Seed Cohort	Microhabitat	Number of seeds assayed	Retained live seed pool	Staining rate
a)	E. mohavense			Control	33	17	0.52
			2015	Runoff	31	21	0.68
		2017		Shade	33	15	0.45
		2017		Control	34	13	0.38
			2016	Runoff	34	13	0.38
				Shade	34	18	0.53
				Control	40	23	0.58
			2015	Runoff	40	28	0.70
		2018 -		Shade	40	24	0.60
				Control	16	9	0.56
			2016	Runoff	26	18	0.69
				Shade	41	25	0.61
b)	E. wallacei			Control	35	7	0.20
			2015	Runoff	43	12	0.28
		2017		Shade	37	5	0.14
		2017		Control	12	4	0.33
			2016	Runoff	16	6	0.38
	-			Shade	11	6	0.55
		2018	2015	Control	14	3	0.21
				Runoff	12	1	0.08

	Shade	13	5	0.38
	Control	4	0	0
2016	Runoff	2	0	0
	Shade	4	0	0

Table S5. Retained seed pools, staining rates, and calculated seed bank survival (%) from field data. (a) Empirical values by year and species (averaged across cohorts and microhabitats); (b) empirical values by year and microhabitat (averaged across species and cohorts). Retained seed pools and seed staining rates broken down by species, year, cohort, and microhabitat are provided in Tables S3 and S4.

	Year collected	Retained seed pool	Staining rate	Seed bank survival
a) By species, all microhabitats combined				
E. mohavense	2017	32.7%	49.0%	16.7%
E. wallacei	2017	82.7%	31.1%	26.1%
E. mohavense	2018	15.6%	62.3%	9.8%
E. wallacei	2018	20.7%	11.4%	2.2%
b) By microhabitat, both species combined				
Control	2017	57.3%	35.8%	18.9%
Runoff	2017	58.7%	42.8%	23.5%
Shade	2017	57.0%	41.6%	21.7%
Control	2018	11.1%	33.8%	3.3%
Runoff	2018	12.4%	36.9%	5.0%
Shade	2018	31.0%	39.9%	9.7%