
Citation: Ramirez, J.

Logarithmic-Time Addition for

BIT-Predicate With Applications for a

Simple and Linear Fast Adder And

Data Structures. Journal Not Specified

2022, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Definitions/notspecified-logo-eps-converted-to.pdf

Article

Simple and Linear Fast Adder (Patent Pending)
Juan Ramírez

jramirez@binaryprojx.com
www.binaryprojx.com
Jalisco, México

Abstract: Disclosed herein is a fast adder design based on a novel axiomatization of mathematics, of
natural and real numbers, by the author. Addition is a Finite State Machine that, on an average, takes
log2 n iterations to calculate a n-bit addition. Further, for the proposed fast adder, the probability of a
n-bit addition taking k ≤ n iterations to complete, is equal to the probability of k consecutive heads
in n fair coin tosses. The circuitry is linear and simple, in the sense that adding bits to the inputs
does not complicate the circuit topology. The growth is linear, and the instruction set is constant,
and hardware based. The Figures presented in this sections are numbered 1-11, and should not be
confused with the figures of the previous sections which were numbered 1-6. The figures pertaining
the patent, will be referenced by the abbreviation "FIG.", followed by the number of the figure.

BACKGROUND

[0001] The subject matter of the present invention is related to a general-purpose
fast adder, which is designed in the form of a sequential logic circuit. Particularly, the
present invention proposes a fast adder defined in terms of a finite state machine that
replaces traditional carry-over algorithms of addition, based on a novel axiomatization of
mathematics, by the author. The adder constitutes a direct application of this foundation
of mathematics which serves as supporting material for several aspects, including further
applications, of the Simple and Linear Fast Adder.

[0002] Efficient and inexpensive Central Processing Units (CPUs) or processing units
with low dissipation are an ever growing priority. One of the crucial subunits of the CPUs
is an Arithmetic Logic Unit (ALU). Typically, the ALU is responsible for performing the
actual arithmetic and logical operations in the CPUs. The efficiency and performance of the
ALU generally depends on specific components of the ALU, namely, the adder and the bit
shift component.

[0003] One of the basic problems with an existing adder, such as a Ripple Carry Adder,
is the propagation delay. A traditional solution to overcome this is to use a parallel adder.
Further, other solutions such as a Carry Look-Ahead (CLA), Carry Select, Carry Skip, and
Carry Increment adders face their own problems. For example, in the case of CLA, if the
number of bits is increased, the area and complexity of the circuit increases considerably.
Therefore, the CLA fast adders of more than four bits are generally built using parallel 4-bit
adders. This multi-level structure adds up to the propagation time delays.

[0004] In view of the above limitations in the existing adders, it would be advanta-
geous to have an adder that offers linear growth and complexity irrespective of the increase
in the number of bits.

[0005] The information disclosed in this background of the disclosure section is only
for enhancement of understanding of the general background of the invention and should
not be taken as an acknowledgement or any form of suggestion that this information forms

Journal Not Specified 2022, 1, 0. https://doi.org/10.3390/1010000 https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/article/10.3390/1010000?type=check_update&version=1
https://doi.org/10.3390/1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/notspecified
https://www.mdpi.com
https://orcid.org/0000-0000-0000-000X
https://doi.org/10.3390/1010000
https://www.mdpi.com/journal/notspecified

Journal Not Specified 2022, 1, 0 2 of 54

the prior art already known to a person skilled in the art.

SUMMARY

[0006] It is an objective of the present invention to provide a general-purpose fast
adder having a small count of ‘AND’ and ‘XOR’ logic gates, setting a new standard in
the design and manufacture of ALU by providing efficiency that is comparable to parallel
adders, while having a reduced material, production, and energy costs.

[0007] It is a further objective of the invention to design a fast adder that is imple-
mented based on an arithmetic and real number model and which can be implemented
for operation on signed and rational approximations to real numbers, with a few minor
modifications.

[0008] It is a further objective of the invention to provide a universal fast adder of
linear area, with logarithmic time delay.

[0009] In view of the foregoing, an embodiment of the present disclosure relates a
general purpose fast adder that is in the form of a sequential logic circuit, based on a
finite state machine that is not time constant. On an average, it takes log2 n iterations to
complete addition of two n-bit numbers. The proposed fast adder has the advantages of
linear growth and complexity, in the sense that adding one bit of input requires adding a
subunit consisting of four registers and five logical gates, and the subunits are connected
in series. The instruction set does not increase when the number of bits is increased. The
performance of the adder is potentially comparable to the existing fast adders, while using
five logical gates (one XOR, and four AND) and four registers of memory, per bit of input.
In an implementation according to the present invention, the four bit adder presented
here uses sixteen AND gates, four XOR gates and sixteen one bit registers. This adder has
linear area and complexity, and logarithmic delay. The power dissipation of the adder
is theoretically constant, due to constant gate depth. Instruction set is also constant and
independent of the number of bits of input.

[0010] In an implementation, the proposed invention is flexible and compatible
with different signed representations. The proposed ALU architecture is able to sup-
port operands for integer and rational approximations to real numbers. As an example,
the operations can include, without limiting to, left/right shift (multiplication/division
by 2), addition, signed operations, and other operations derived thereof. Additionally, the
present invention also proposes a three operand adder.

[0011] In an embodiment of the present disclosure, the four-bit adder component is
configured to support a plurality of operands for integer type data and rational approxima-
tions to real number type data.

[0012] In another embodiment of the present disclosure, the four-bit adder component
is configured to perform operations comprising at least one of left shift operation, right
shift operation, addition, signed operations and one or more derived operations. In an
embodiment, performing the operations comprises representing the numbers in a binary
form in corresponding set of natural numbers, such that, each number is a set of smaller
natural numbers, wherein elements of the set of smaller numbers are denoted in powers of
2 in a binary representation.

[0013] In another embodiment of the present disclosure, the linear fast adder com-
prises determining a symmetric difference corresponding to the operations performed at
the four-bit adder component, the determining comprising saving an initial state of the op-

Journal Not Specified 2022, 1, 0 3 of 54

erations in at least one one-bit registers in the four-bit adder component, directing output of
each of the one-bit registers in two disjoint paths and computing the symmetric difference
and intersection in the output of each of the one-bit registers. In an embodiment, the bit
configurations saved in the one-bit registers are passed through at least one XOR gate in
the four-bit adder component for yielding the symmetric difference. The bit configurations
saved in the one-bit registers are passed through at least one AND gate in the four-bit adder
component for determining intersection in the output.

[0014] In another embodiment of the present disclosure, to represent a rational approx-
imation of non-negative real numbers, a fraction of the bits is used for the rational part and
the remaining bits are used for the integer part.

[0015] In another embodiment of the present disclosure, adding a single bit to the
operands requires adding of a sub-unit of four bits and five logic gates in a linear manner
to the four-bit adder component.

[0016] In another embodiment of the present disclosure, the time taken by the linear
fast adder is equal to the sum of the two gate delays, and the reading and writing process.

[0017] In another embodiment of the present disclosure, clock cycles for the linear fast
adder remain shorter depending on the gate depth and constant instructions, such that an
increase in speed of memory writing process results in a compounded reduction of time.

[0018] In another embodiment of the present disclosure, an instruction set associated
with the linear fast adder is constant and is independent of the number of bits of input
provided to the linear fast adder.

[0019] In another embodiment of the present disclosure, the operation of the linear fast
adder is controlled based on an arithmetic model that defines addition operations in terms
of a finite state machine. Here, each state of the finite state machine comprises two columns
and each column represents a finite configuration of energy levels representing one natural
number. In a subsequent state of the finite state machine, the finite configuration on the
left column of the two columns represents the energy levels that are not repeated in the
preceding state and the finite configuration on a right column of the two columns represents
objects that are repeated from the preceding state.

[0020] The foregoing summary is illustrative only and is not intended to be in any
way limiting. In addition to the illustrative aspects, embodiments, and features described
above, further aspects, embodiments, and features will become apparent by reference to
the drawings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] The accompanying drawings, which are incorporated in and constitute a part
of this disclosure, illustrate exemplary embodiments and, together with the description,
explain the disclosed principles. In the figures, the leftmost digit(s) of a reference number
identifies the figure in which the reference number first appears. The same numbers are
used throughout the figures to reference like features and components. Some embodiments
of system and/or methods in accordance with embodiments of the present subject matter
are now described, by way of example only, and regarding the accompanying figures, in
which:

Journal Not Specified 2022, 1, 0 4 of 54

[0022] FIGURE 1 shows a graphical representation of an exemplary operation (15 +
23 = 38), in accordance with some embodiments of the present disclosure.

[0023] FIGURE 2 shows an external view of one-bit data register, in accordance with
some embodiments of the present disclosure.

[0024] FIGURE 3 illustrates use of exemplary registers RA/RA′ and RB/RB′ with
input "i", output "o" and logic gates, in accordance with some embodiments of the present
disclosure.

[0025] FIGURE 4 shows a full view of a four bit adder along with “enable” and “set”
and connections to the control unit, in accordance with some embodiments of the present
disclosure.

[0026] FIGURE 5 shows a flow diagram for the instruction set, where the instruction
set is constant and independent of the bit length of inputs, in accordance with some em-
bodiments of the present disclosure.

[0027] FIGURE 6 shows addition of rational and real numbers as an extension of the
natural number arithmetic proposed, in accordance with some embodiments of the present
disclosure.

[0028] FIGURE 7 shows a complete structure of the fast adder, compatible with multi-
plication and division, in accordance with some embodiments of the present disclosure.

[0029] FIGURE 8 shows an exemplary control unit and its internal parts, in accordance
with some embodiments of the present disclosure.

[0030] FIGURE 9 shows an alternative arrangement of the fast adder including double
edge triggered flip flops, in accordance with some embodiments of the present disclosure.

[0031] FIGURE 10 shows a basic subunit for the fast adder, such that one of these
subunits handles one bit of input and is connected in series to give an n-bit adder, in
accordance with some embodiments of the present disclosure.

[0032] FIGURE 11 shows a modification of the subunit, which is modified to handle
three inputs, in accordance with some embodiments of the present disclosure.

[0033] It should be appreciated by those skilled in the art that any block diagrams
herein represent conceptual views of illustrative systems embodying the principles of the
present subject matter. Similarly, it will be appreciated that any flow charts, flow diagrams,
state transition diagrams, pseudo code, and the like represent various processes which may
be substantially represented in computer readable medium and executed by a computer or
processor, whether such computer or processor is explicitly shown.

DETAILED DESCRIPTION

[0034] In the present document, the word “exemplary” is used herein to mean “serv-
ing as an example, instance, or illustration.” Any embodiment or implementation of the
present subject matter described herein as “exemplary” is not necessarily to be construed
as preferred or advantageous over other embodiments.

[0035] While the disclosure is susceptible to various modifications and alternative
forms, specific embodiment thereof has been shown by way of example in the drawings

Journal Not Specified 2022, 1, 0 5 of 54

and will be described in detail below. It should be understood, however, that it is not
intended to limit the disclosure to the specific forms disclosed, but on the contrary, the
disclosure is to cover all modifications, equivalents, and alternatives falling within the
scope of the disclosure.

[0036] The terms “comprises”, “comprising”, “includes”, or any other variations
thereof, are intended to cover a non-exclusive inclusion, such that a setup, device, or
method that comprises a list of components or steps does not include only those compo-
nents or steps but may include other components or steps not expressly listed or inherent
to such setup or device or method. In other words, one or more elements in a system or
apparatus preceded by “comprises... a” does not, without more constraints, preclude the
existence of other elements or additional elements in the system or method.

[0037] In the following detailed description of the embodiments of the disclosure,
reference is made to the accompanying drawings that form a part hereof, and in which
are shown by way of illustration specific embodiments in which the disclosure may be
practiced. These embodiments are described in sufficient detail to enable those skilled in
the art to practice the disclosure, and it is to be understood that other embodiments may be
utilized and that changes may be made without departing from the scope of the present
disclosure. The following description is, therefore, not to be taken in a limiting sense.

[0038] An overview of the proposed invention:

[0039] For a better understanding of the proposed invention, the following paragraphs
provide an introduction to the simple mathematical background of the arithmetic logic and
provide a general overview of the invention. In an embodiment, the numbers are written in
binary form. However, instead of treating numbers as a sequence of binary symbols, they
are treated as sets of natural numbers. For example, the integer seven, 7 = 111 in binary
form, would be represented as the set of natural numbers {0, 1, 2}. The number twelve,
12 = 1100, is represented by the set {2, 3}. The number 21 = 10101 is represented by the
set {0, 2, 4}. Each natural number is a set of smaller natural numbers, and the elements of
the set are the powers of 2 in binary representation.

[0040] Similarly, addition is also treated in terms of sets, and not sequences. For ex-
ample, consider the sum 7 + 13 = (20 + 21 + 22) + (20 + 22 + 23), which is the sum of sets
{0, 1, 2} ⊕ {0, 2, 3}. Here, two new sets are formed - symmetric difference and intersection.
That is, the powers that are not repeated {1, 3}, and the powers that repeat {0, 2}. To add
a power of 2 with itself (i.e., numbers in the intersection), simply add "1" to that power,
2n + 2n = 2n+1. Therefore, the sum can be rewritten as 7 + 13 = (21 + 23) + (20+1 + 22+1).
The first term, 21 + 23, represents the symmetric difference A△B, while the second term
20+1 + 22+1 = (20 + 22) + (20 + 22) represents the intersection. The sum has been reduced
to 7 + 13 = (21 + 23) + (21 + 23). Iterating, there is no symmetric difference. And, adding
“1” to the repeated powers gives 7 + 13 = 21+1 + 23+1 = 22 + 24 = 20.

[0041] If A, B are two finite sets of natural numbers, they can be added using the same
method. Form two new sets A′ = A△B and B = s(A ∩ B), where s is the function that
adds one unit, to the elements of A ∩ B. Then A + B = A′ + B′. It is guaranteed that, in a
finite number of iterations, the intersection A(k) ∩ B(k) = ∅ becomes the empty set. This
yields the final answer A(k+1), because

A + B = A(k+1) + B(k+1)

= A(k+1) + s(∅)

= A(k+1)

Journal Not Specified 2022, 1, 0 6 of 54

[0042] A second example is 15 + 23 = 38 of FIG. 1. The operands in the initial
state are A = {0, 1, 2, 3}, and B = {0, 1, 2, 4} because 15 = 20 + 21 + 22 + 23 and 23 =
20 + 21 + 22 + 24. The second state is A′ = A△B = {3, 4}, and B′ = s(A ∩ B) =
{0 + 1, 1 + 1, 2 + 1} = {1, 2, }. The next state is given by A′′ = A′△B′ = {1, 2, 4} and B′′ =
s(A′ ∩ B′) = {3 + 1} = {4}. Iterating again gives A′′′ = {1, 2} and B′′′ = {4 + 1} = {5}.
Iterating once more, a stable state is reached; A(4) = {1, 2, 5} and B(4) = 0.

[0043] The process described herein is a finite state machine. Each state is composed
of two columns. Each column is a finite configuration of energy-levels representing one
natural number, as is illustrated in FIG. 1. A particle in the basic level "0" is worth 1 unit,
and a particle in level "1" is worth 2 units. A particle in level "2" is worth 4 units, and
in general a particle in level "n" is worth 2n units. A finite configuration of particles in a
column represents a set number, so that each state is a pair of natural numbers. As shown
in FIG. 1, the initial state S(t0) is given by the inputs A, B. The next state, S(t1) is given by
two new columns. The configuration of the left column is given by the energy levels that
were not repeated in state S(t0). The right column in S(t1) is given by the repeated objects,
displaced one level up. The configuration of state S(t2) is defined similarly in terms of state
S(t1). The left column of state S(t2) is given by the energy levels not repeated in state S(t1).
The configuration in the right column of state S(t2) is given by the energy levels repeated
in state S(t1) but displaced one level up. In general, the left column of state S(tk+1) is given
by the energy levels not repeated in state S(tk). The right column of state S(tk+1) is given
by a displacement, one level up, of the energy levels repeated in state S(tk). In a finite
number of steps, a stable state is reached, where no particle occupies the right column. The
result of the sum is given in the left column.

[0044] In an embodiment, the basic idea behind the circuit implementation of this
addition algorithm is to receive two inputs A, B and output two new numbers A′ = (A△B)
and B′ = s(A ∩ B). These two new numbers will satisfy A′ + B′ = A + B. Iterate the
process using A′, B′ as new inputs, to obtain A′′, B′′ which satisfies A′′ + B′′ = A + B. In a
finite number of iterations B(k) becomes zero. For a finite integer k, it is true that B(k) = 0
and the sum is A(k) = A + B. This process will take, on average, log2 n steps, where n is
the number of bits. It takes at most n steps to terminate, and the probability for the process
to end in k ≤ n steps is the probability of k successive heads in n coin tosses.

[0045] In an embodiment, to add two n bit numbers, four n bit registers, RA, RA′ and
RB, RB′ are required. For example, RB′ is the register of bits RB′0, RB′1, . . . , RB′(n − 1).
Registers will have “set” and “enable” connections for read and write functions, respec-
tively. When registers RA and RB are on “set”, registers RA′ and RB′ are on “enable”.
Similarly, when registers RA and RB are on “enable”, registers RA′ and RB′ are on “set”.

[0046] In an embodiment, the initial state S(t0) is saved in the RA and RB registers.
These registers output their stored memory which will go through two different paths.
One path will treat symmetric difference and the other will handle the intersection. The
bit configuration saved in RA, RB is enabled to go through XOR gates, yielding symmetric
differences. The definition of symmetric difference is equivalent to the truth table of the
XOR gate. The output of each XOR gate will be saved in the same significant bit of the RA′

register. On the second path, intersection is determined by AND gates. The output of each
AND gate will be saved in the next significant bit of the RB′ register. The intersection is
displaced one level up, and this is reflected with the bit shift. At this point, state S(t1) is
stored in registers RA′, RB′. This represents the first iteration of our finite state machine.
The bits stored in registers RA′, RB′ will be enabled to move through the XOR and AND
gates. The result will be saved in the RA, RB registers, storing state S(t2) in registers
RA, RB. Continue to move back and forth in this manner until the stopping condition is
met. The stopping condition is that the output of RB/RB′ (whichever is enabled) is equal

Journal Not Specified 2022, 1, 0 7 of 54

to the zero vector.

[0047] The following components are needed. Four n bit registers, RA, RA′, RB, RB′.
A total of n XOR gates, and 4n AND gates with bit shift. The XOR determines symmetric
difference and stores the results in the same significant bit. The AND gates provide the
intersection, and the bit shift represents the rule 2k + 2k = 2k+1 applied to the objects of
the intersection. Additionally, a Zero Flag "Z" checks for the stopping condition. Namely,
that the right column, RB/RB′ is off. The Zero Flag will take the value "Z=1" if any of the
outputs from register RB/RB′ are "1". It will take the value "Z=0" if and only if all of the
outputs of register RB/RB′ are "0". When the Zero Flag turns off, the Sum "S" is the set of
signals S0, S1, S2, S3, which are output from register RA/RA′.

[0048] A bit shift requires three iterations to complete. Multiplication by 2 is the
addition s(A) = A ⊕ A = 2 ⊙ A. Find A′ = A△A = 0 and B′ = s(A ∩ A) = s(A). The
result is a displacement of A, one unit up, saved in register RB′. One more iteration gives
A′′ = A′△B′ = 0△s(A) = s(A) and B′′ = s(A′ ∩ B′) = s(0 ∩ s(A)) = s(0) = 0. In the
third and final iteration, the stopping condition is met, because register RB outputs the
zero vector. The sum is the output "S", of register RA.

[0049] Configuration and operation of the depackaging assembly:

[0050] In an embodiment, the functioning of each individual register is explained
in detail in the following paragraphs. There is one data input "i" and one data output
"o". Additionally, two more input signals are included. A set signal "s" to write, and an
enable signal "e" to read. If "s" is a high signal "1", the data input "i" is stored in memory.
If "e" is high, then the last input saved on memory is the data output "o" of the register.
The external view of the data latch is shown in FIG. 2. The process described here will
never have "e" and "s" on at the same time (nor will "e′" and "s′" be on at the same time).
When one is on the other is off, so that the bits will never read and write simultaneously
to avoid error. Only "s,e′" are on at the same time, as are "e,s′". This same function can be
described using different read and write processes. The first model presented here, for illus-
trative purposes, is a level triggered version. A more efficient alternative is later described
in this document using dual edge triggered flip flops which require a much more simple CU.

[0051] In an embodiment, implementation of the n-bit ALU requires four n bit registers,
RA, RB, RA′, RB′. This is shown in FIG. 3. Registers are arranged so that XOR and AND
gates are placed in between the two columns of registers RA/RA′ on the left and RB/RB′

on the right. The output of the XOR gates is directed into registers RA/RA′, while the
output of the AND gates is directed into registers RB/RB′ with a bit shift. Symmetric
difference of the two columns will be saved in the left column RA/RA′, and the intersection
with a bit shift will be saved in the right column RB/RB′. For every bit of input, a subunit
of two gates and four bits of memory is required.

[0052] The data inputs "i = A0, A1, A2, A3" and "i = B0, B1, B2, B3" are only activated at
the beginning of the instruction set. At the same time, a high set signal "s" is activated. The
result is that the initial state S(t0) is stored in registers RA, RB. The Zero Flag "Z", and Sum
"S" are also shown in FIG. 3. The connections "Z" and "S" are outputs of the registers; inputs
to the CU. The Zero Flag determines if the stopping condition is met, "Z=0". Namely, that
the output from register RB/RB′ is zero, 0000. The "S" connections coming from register
RA/RA′ will represent the resulting sum, when the stopping condition is met. A Carry
Flag "CF" connection is included.

Journal Not Specified 2022, 1, 0 8 of 54

[0053] The Input/Output connections and logic gates are placed on the top layer,
while "Z" and "S" are on a second layer, below the latter. This is shown in FIG. 4. In an
embodiment, the set and enable connections of FIG. 4, "s,e,s′,e′" are each on their own layer
so they do not intersect with each other, nor with the top two layers. The four layers of
set and enable connections are represented by four thin lines that do not intersect. They
function in the following manner. If "s′" (write RA′, RB′) is on, then "e" (read RA, RB) is on
simultaneously. Similarly, if "e′" (read RA′, RB′) is on, then "s" (write RA, RB) is on.

[0054] A total of six layers of connections are needed. Four bottom layers for set and
enable connections, and the two top layers for "i", "o" and "Z", "S". Three different line
thicknesses are used in FIG. 4 to reflect this. Thin lines are used for the set "s" and enable
"e" connections and they are placed at the bottom. Thick lines are placed on top of the four
layers of thin lines and are used for "Z" and "S". Medium thickness lines are placed at the
top layer and are used for input "i" and output "o".

[0055] The first step in the process is to write the data input signals i = A0, B0, A1,
B1, A2, B2, A3, B3 in the registers RA0, RB0, RA1, RB1, RA2, RB2, RA3, RB3, respectively.
The data connections appear at the bottom of the Control Unit in FIG. 4. This first step is
achieved by activating the data input "i" signals, along with the set "s" signal. The input
signals are on low "0" or high "1" according to the inputs A, B being represented. The input
connections are activated only once at the beginning of the instruction set. Simultaneously,
the set signal "s" is high "1". There is one exception. After the initial data input into RB0,
the bit shift requires a "0" input into RB′0, then it will require low "0" to be input into RB0.
This continues in an alternate manner until the stopping condition is met. This is specified
in the instruction set. A "0" signal is sent to RB′0, the first time "s′" is activated, and every
iteration after that "0" is sent to RB0/RB′0 in an alternate manner as explained.

[0056] In an embodiment, the second step is to output the data signal "o" of the RA, RB
registers. This is achieved with a high enable "e" signal. The data outputs of RA, RB will
go through the XOR and AND gates. At the same time "s′" is also on, so that RA′, RB′

registers write the output of the gates. The result is that the second state of the finite state
machine is saved in the RA′, RB′ registers. The next iteration is to output the bits stored
in RA′, RB′ and write the result on the RA, RB bits. This is achieved by turning on "e′"
and "s" simultaneously. The third state of the system is stored in memory, in the RA, RB
registers. Continuing in this manner for a finite number of iterations leads to a stable state;
the output of register RB/RB′ will be 0000 in a finite number of states. The result is the
Sum "S" output of register RA′.

[0057] FIG. 5 shows a flow diagram for the instruction set, where the instruction set is
constant and independent of the bit length of inputs, in accordance with some embodiments
of the present disclosure. The instruction set for the flow diagram is given below:

1. Load data inputs i = Ai, Bi to registers RAi, RBi, and activate Set "s=1".
2. Activate Enable "e=1" and Set "s′=1". Load data input "i=0" to RB′0 bit.
3. Read Zero Flag "Z"

If "Z=0", Get "S";
Else "Z=1", Activate Enable "e′=1" and Set "s=1". Load data input "i=0" to RB0
bit.

4. Read Zero Flag "Z"

If "Z=0", Get "S";
Else "Z=1", Go to II.

These instructions can be carried out largely by Hardware. This will be explained later
in the document.

Journal Not Specified 2022, 1, 0 9 of 54

[0058] An example is illustrated in the following paragraphs. Let A = 6 = 0110 and
B = 3 = 0011. The corresponding instructions are listed below:

I. First instruction will load inputs A = 0110 and B = 0011 to registers RA, RB. That is,
RA0 = 0, RA1 = 1, RA2 = 1, RA3 = 0, and RB0 = 1, RB1 = 1, RB2 = 0, RB3 = 0.

II. Subsequent instruction will read the contents of registers RA, RB. These contents are
directed to the XOR and AND gates. The output of these is written on the RA′, RB′

registers. In our example, the outputs of RA0, RB0 are "0,1", respectively. These out-
puts will then be directed to the XOR0 gate, and input "1" into RA′0. Simultaneously,
the same "0,1" outputs, from RA0, RB0, will also be directed into the AND0 gate which
will input "0" into RB′1. In an embodiment, the output of registers RA1 = 1, RB1 = 1
will input "0" into RA′1 and "1" into RB′2, after going through gates XOR1 and AND1,
respectively. The outputs of RA2 = 1, RB2 = 0 will write "1" into RA′2 and "0" into
RB′3 after passing through XOR2 and AND2. Also, RA3 = RB3 = 0 will write "0"
into RA′3. The bit-shift requires the CU to input "0" into RB′0. While these outputs go
through the gates and the results are written, the output of the RA, RB registers will be
sent to the CU in the form of "S0 = 0, S1 = 1, S2 = 1, S3 = 0" and "Z=1", respectively.

III. The subsequent instruction will read "Z=1". The action path is to read RA′, RB′ and
write the results on registers RA, RB. The results are RA0 = 1, RB0 = 0, RA1 =
0, RB1 = 0, RA2 = 0, RB2 = 0, RA3 = 0, RB3 = 1. Again, the bit-shift requires a "0"
input into RB0. At the same time, the output of RA and RB has been sent to the CU in
the form of "S0 = 1, S1 = 0, S2 = 1, S3 = 0" and "Z=1", respectively.

IV. The subsequent instruction will read "Z=1". Then, go to Instruction II.
II’. Outputs the memory of RA, RB into RA′, RB′. The result will be RA′0 = 1, RA′1 =

0, RA′2 = 0, RA′3 = 1, and RB′0 = RB′1 = RB′2 = RB′3 = 0. At the same time, the
output of RA and RB has been sent to the CU in the form of "S0 = 1, S1 = 0, S2 =
0, S3 = 0" and "Z=1", respectively.

III’. will read "Z=1". The action path is to read RA′, RB′ and write the results in RA, RB.
At the same time, the output of RA′, RB′ is sent to the CU as "S0 = 1, S1 = 0, S2 =
0, S3 = 1" and "Z=0", respectively. This concludes the program, with "S" being the
result of addition of the original inputs; 6 + 3 = 9.

[0059] To represent a rational approximation of a non-negative real number, a fraction
of the bits is used for the rational part and the remaining bits are used for the integer
part. This gives us operation for fixed point rational numbers. The examples given are
of fixed point nature. However, this ALU architecture is compatible with floating point
representation and operations.

[0060] Negative energy levels are identified with negative powers of 2. Therefore, a
set of negative integers will give a unique number in the unit interval [0, 1]. For example,
the set {−1} is the number 1

2 = 2−1. The set representation of 3
4 = 2−1 + 2−2 is the set

{−1,−2}. Consider the finite state machine of FIG. 1. Notice that changing the labels on
the energy levels gives a new expression. For example, making the bottom level equal
to 3, instead of 0. This means 3 is added to every element of a set number. Instead of
15 + 23 = {0, 1, 2, 3} ⊕ {0, 1, 2, 4}, the new addition is {0 + 3, 1 + 3, 2 + 3, 3 + 3} ⊕ {0 +
3, 1 + 3, 2 + 3, 4 + 3} = {3, 4, 5, 6} ⊕ {3, 4, 5, 7} = 120 + 184. The new result is obtained by
adding 3 to all the elements of the original result, {1 + 3, 2 + 3, 5 + 3} = {4, 5, 8} = 304.

[0061] In an embodiment, if the energy levels are displaced into negative integers, the
results still hold a true expression. In FIG. 6, an example of this is provided. The addition
of sets with negative integers in its elements is the same as before. The addition 1

4 + 1
4 =

{−2} ⊕ {−2} is equal to 1
2 = {−1}. The set addition is ({−2}△{−2})⊕ s({−2} ∩ {−2});

first term is the empty set, and the second term is s({−2}) = {−2 + 1} = {−1}.

[0062] The circuit for adding numbers whose elements include negative integers does
not require any additional components. The circuit of FIG. 4 suffices. However, to divide

Journal Not Specified 2022, 1, 0 10 of 54

numbers by 2, a second bit shift is needed. This is easily achieved by adding two enabling
AND gates to each AND gate of the ALU. One gate will Enable Multiply "EM" and the
other will Enable Divide "ED". Only one of these can be on at a time and must remain on
during the entire time of the operation. Carry flags for multiplication "MCF" and division
"DCF" are also included. This is illustrated in FIG. 7. A connection for input in RB′3 is also
included for division, just as an input connection is included for RB′0.

[0063] One more component should be included in the description of the ALU. Once an
addition is performed and new data inputs are to be loaded, the registers will be receiving
signals from the CU and the XOR gates because when "s" is on, so is "e′". To solve this, an
AND gate is placed after each XOR gate. This enables the symmetric difference just as the
"ED" and "EM" gates enable the intersection. These gates will be called "EXOR", and one
of its inputs is connected to the output of its corresponding XOR gate and the other is a
high signal whenever "EM" or "ED" are a high signal. This is a viable solution because it
also gives a two gate depth to the XOR path, as in the case of the AND path. The XOR and
AND paths have equal gate depth.

[0064] In an embodiment, the control logic is designed simple enough to show in a
diagram. FIG. 8 is an internal view of the Control Unit. Step I requires set connection "s" to
be on. This is achieved with a high signal in "e′/s". Simultaneously, the data inputs are also
sent to the registers. Step II Requires for "s′/e=1" to be turned on. This will read registers
RA and RB and write on registers RA′ and RB′. The output of register RB will, at the same
time, be directed to the Zero Flag "Z". A "Switch Unit" is included to perform the following
function. The first time "Switch Unit" receives high input "Z=1", it will output a low signal
to "s′/e". The next time the switch unit receives a high signal "Z=1", it will output a high
signal. That high signal will go to gate "sw" so that now a low signal is directed to "e′/s".
This continues in alternating manner so that the output of the switch unit moves between
high and low, starting with a low signal. When the switch unit receives a low signal, there
is no output because the stopping condition has been met.

[0065] In an embodiment, the control unit has an input "D/M". If addition is to be
performed, "D/M=1" should be on. Bit shift equivalent to multiplication by 2 is performed
if both inputs are equal. If the signal is low "D/M=0", then "ED=1" and the operation
performed is division by 2 when both inputs are equal. The carry out connections "DCF"
and "MCF" are shown again. The "EXOR" signal is given by gates "B1" and "B2"; it is on
whenever "ED" or "EM" are on. A flag "F" is included for internal use of the CU. The flag is
on when the stopping condition is met; the flag turns on when "Z" turns off. It can be used
to save the Sum "S" in memory once the addition is completed. It is also used to indicate
when new data inputs are loaded to the registers, and it shuts off "ED", "EM" and "EXOR".
The flag is also used for outputting a zero value to RB0/RB′0. In the case of division, the
bits RB3/RB′3 take their place.

[0066] In an embodiment, increasing the number of input bits increases the area lin-
early. This is a box-car architecture, where adding a bit to the operands requires to add a
sub unit of four bits and five logic gates in linear manner (add a box car). A n-bit adder
requires 4n many bits of registers, n many XOR gates, and 4n many AND gates. Compared
to other fast architectures, this represents a significant reduction in material resources and
area. The requirements are the same number of registers, and reduced gate count, area, and
complexity. Furthermore, the instruction set remains the same, for any number of bits.

[0067] The finite state machine is not time constant. Calculation time is constant for
equal inputs, but differs for different inputs. Let t, the time length for one iteration, then
t · log2 n is the average time to complete an addition, and the longest time is t · n. The circuit
has a fixed gate depth of two logic gates, plus the lengthiest micro steps of reading and

Journal Not Specified 2022, 1, 0 11 of 54

writing memory. This allows easy calculation of the time it takes to perform one iteration.
It is equal to the sum of the two gate delays, plus the reading and writing process.

[0068] In an embodiment, the circuit is designed to have easy synchronization, inde-
pendent of the choice of logic, clock speeds and register type. Particular solutions abound
and are routine. The general principal of modeling the finite state machine through a logical
circuit is being described. In terms of area, the CLA has area of order O(n log2 n), while the
area of the fast adder here proposed is of linear order O(n). The ratio of these two orders
is O(log2 n). Approximately log2 n many fast adders, of the type here proposed, may fit
in the same space of one CLA of equal bits, as n gets bigger. Also, CLA performs in one
clock cycle, while the proposed adder considers a positive number of iterations, on average
log2 n many iterations. It is concluded that performance is expected to be comparable in
terms of area and speed, as the number of bits, n, and the number of operations performed,
grow. This is true if the clock cycles of the compared adders are of equal time length. It
must be considered that the clock cycles for the proposed adder will be shorter because the
gate depth is a small constant and instructions are constant. This effect will potentially give
better performance than other fast parallel adders. This design is likely to operate at higher
than conventional clock speeds. If the memory writing process can be sped up, then the
whole process will have a compounded reduction of time, and possibly outperform other
fast adders, bit for bit.

[0069] Another advantage of the present invention would be power consumption,
because the control logic and gate depths are a small constant number. The design can be
adapted to specific applications such as general purpose, graphics, scientific, etc.

[0070] A second example is provided, illustrating the internal process of the adder and
the control unit. This example will illustrate a bit shift to the right, which is equivalent to
division by 2. In this case, let A = B = 0111. The result of the operation is A + B = 0011,
and the carry flag "DCF" will be activated in the process. Load the data inputs; the set
connection "s" is set to high. Simultaneously, the data inputs of A and B are activated.
On every iteration that follows, the "D/M" input in the CU will be set to low so that the
division gates "ED0-ED3" are enabled in the ALU. Thus, bits are carried to the right, not the
left. Next, the "s′/e" input of the CU is turned on. This will enable reading of the RA, RB
registers, and writing on RA′, RB′ registers. Specifically, registers RA0 = 1, RB0 = 1 will
both input a high signal to gate "AND0", turning it on. Therefore, gate "ED0" will be
turned on and it will be sending a signal to the division carry flag "DCF". This will simply
indicate that a carry over to the right is taking place in the first bit. At the same time, the
corresponding process takes place for the other bits. registers RA1 = 1 and RB1 = 1 turn
gate "AND1" on. This turns gate "ED1" on, sending a high signal to register RB′0. A similar
situation happens with the next bit, RA2 = RB2 = 1. These send a high signal to RB′1. The
last bit, RA3 = RB3 = 0 will send a low signal to RB′2. Also, a low signal is sent to RB′3
as part of the instruction set. At the end of this process the configuration of the registers is
RA′ = 0000 and RB′ = 0011. While this is taking place, the outputs of register RA are also
sent to the Zero Flag. Since at least one of these bits is on, "Z" is on.

[0071] The high signal of "Z" will go into the switch unit which will output a low signal,
initiating the second iteration. Registers RA′ = 0000, and RB′ = 0011 are read and then
pushed through the XOR and AND gates. The output of the gates is written on registers
RA = 0011, and RB = 0000, respectively. The output of the Zero Flag is "1", so a high signal
goes into the switch unit which will output a high signal. This will read registers RA and
RB. The output of register RB is the zero vector, so that the output of the zero flag is a low
signal "Z=0". This signals RA to be saved in memory or operate where it is needed. At the
same time, it will signal for the "ED", "EM", and "EXOR" to be off in the next clock cycle
so that new data can be input to the registers without error. This example suggests that

Journal Not Specified 2022, 1, 0 12 of 54

it could be convenient to have a Zero Flag for register RA, also. This last implementation
would subtract one iteration from the bit shift.

[0072] Two sets of registers RA, RB, RA′, RB′ were used because of the racing problem.
The outputs of the XOR and AND gates are looped back to the registers. That is why a
rudimentary master-slave solution has been illustrated. However, that solution is not the
most efficient. An alternative solution is presented. A variation of the proposed ALU can
be implemented using edge triggered registers. If the registers are replaced for memory
bits capable of handling inputs/outputs independently and without error of feedback, then
the number of memory registers is reduced. A total of two n bit registers will suffice. Edge
triggered registers offer a solution. A register with three connections is used: clock "CLK",
input "D", and output "Q". Each register will have to read on the positive edge and write on
the negative edge of the clock cycle. This is shown in FIG. 9. Enable divide, enable multiply,
and enable EXOR gates are not shown.

[0073] A three operand version is possible and comparable to Carry Save Adder. The
proposed unit should yield better performance when adding positive numbers. The ex-
pected sign difficulties of CSA are still present for signed operations of three operands. A
comparison is given between the gate topology for a two operand unit in FIG. 10, and a
three operand unit in FIG.11.

[0074] In an embodiment, FIG. 10 shows the basic sub unit that allows for the iterative
process on one-bit. It consists of a half adder where the output of AND is connected to the
register RB(i + 1) of the next bit, representing the new configuration in the right column of
the finite state machine. The output of XOR is directed back to the RAi register of the same
bit, representing the left column.

[0075] FIG. 11 is an adaptation of the adder, for three inputs. First, there are XOR
and AND gates "2" and "3". When all three inputs A, B, C are a high signal, then gates
"2" and "3" both output a high signal so that the output of gate "4" is a high signal. This
amounts to a high signal being sent to the RB register of the next bit. That is, a carry over.
Simultaneously, a high signal is sent back to the RA register of the same bit. A unit remains
in the same bit. The case when all the inputs of a bit are "1" result in a carry over and unit
in the same bit. This is the only case in which gate "4" is on, so no more attention is paid to it.

[0076] In an embodiment, if only two of the three inputs are a high signal, then gates
"2" and "3" will both be off. Specifically, the fact that gate "3" is off, implies that gate "5" is
on. Simultaneously, two of the three gates "6, 7, 8" are on. This means gate "9" is receiving
two high signals, so that its output is a high signal "1". There is a carry over and no unit
remains in that bit. The next case is when only one of three inputs is on. Gate "2" is off, and
gate "3" is on; a unit remains in that bit, and no carry over is generated.

[0077] In an embodiment, if all inputs are off then gate "5" will be on, but gates "6,
7, 8" will be off so that gate "9" is also off. No carry overtakes place and there is no unit
remaining, all cases have now been covered. The circuit whose elements are gates "2-9" is a
one bit adder for three operands. Several bits are connected in series, to iterate until the
system stabilizes. The control logic will remain the same.

[0078] The terms “an embodiment”, “embodiment”, “embodiments”, “the embodi-
ment”, “the embodiments”, “one or more embodiments”, “some embodiments”, and “one
embodiment” mean “one or more (but not all) embodiments of the invention(s)” unless
expressly specified otherwise.

Journal Not Specified 2022, 1, 0 13 of 54

[0079] The terms “including”, “comprising”, “having” and variations thereof mean
“including but not limited to”, unless expressly specified otherwise.

[0080] The enumerated listing of items does not imply that any or all the items are
mutually exclusive, unless expressly specified otherwise. The terms “a”, “an” and “the”
mean “one or more”, unless expressly specified otherwise.

[0081] While various aspects and embodiments have been disclosed herein, other
aspects and embodiments will be apparent to those skilled in the art. The various aspects
and embodiments disclosed herein are for purposes of illustration and are not intended to
be limiting, with the true spirit being indicated by the following claims.

WHAT IS CLAIMED IS:

1. A linear fast adder for an Arithmetic Logic Unit (ALU), the adder comprising:

a) a four-bit adder component comprising a plurality of logic gates comprising at
least sixteen AND gates, four XOR gates; and

b) a plurality of one-bit registers; wherein the four-bit adder is configured with a
linear area, linear complexity and a logarithmic delay; and wherein the four-bit
adder has a constant gate depth thereby resulting in constant power dissipation.

2. The linear fast adder of claim 1, wherein the four-bit adder component is configured
to support a plurality of operands for integer type data and rational approximations
to real number type data.

3. The linear fast adder of claim 1, wherein the four-bit adder component is configured to
perform operations comprising at least one of left shift operation, right shift operation,
addition, signed operations and one or more derived operations.

4. The linear fast adder of claim 3, wherein performing the operations comprises: repre-
senting the numbers in a binary form in corresponding set of natural numbers, such
that each number is a set of smaller natural numbers, wherein elements of the set of
smaller numbers are denoted in powers of 2 in a binary representation.

5. The linear fast adder of claim 1 further comprises determining a symmetric difference
corresponding to the operations performed at the four-bit adder component, the
determining comprising:

a) saving an initial state of the operations in at least one one-bit registers in the four-
bit adder component;

b) directing output of each of the one-bit registers in two disjoint paths; and
c) computing the symmetric difference and intersection in the output of each of the

one-bit registers.

6. The linear fast adder of claim 5, wherein the bit configurations saved in the one-bit
registers is passed through at least one XOR gate in the four-bit adder component for
yielding the symmetric difference.

7. The linear fast adder of claim 5, wherein the bit configurations saved in the one-bit
registers is passed through at least one AND gate in the four-bit adder component for
determining an intersection in the output.

8. The linear fast adder of claim 1, wherein to represent a rational approximation of
non- negative real number, a fraction of the bits is used for the rational part and the
remaining bits are used for the integer part.

Journal Not Specified 2022, 1, 0 14 of 54

9. The linear fast adder of claim 1, wherein adding a single bit to the operands requires
adding of a sub-unit of four bits and five logic gates in a linear manner to the four-bit
adder component.

10. The linear fast adder of claim 1, wherein the time taken by the linear fast adder is
equal to sum of the two gate delays, and the reading and writing process.

11. The linear fast adder of claim 1, wherein clock cycles for the linear fast adder remains
shorter depending on the gate depth and constant instructions, such that an increase
in speed of memory writing process results in a compounded reduction of time.

12. The linear fast adder of claim 1, wherein an instruction set associated with the linear
fast adder is constant and is independent of the number of bits of input provided to
the linear fast adder.

13. The linear fast adder of claim 1, wherein the operation of the linear fast adder is
controlled based on an arithmetic model that defines addition operations in terms of
a finite state machine.

14. The linear fast adder of claim 13, wherein each state of the finite state machine com-
prises two columns and each column represents a finite configuration of energy levels
representing one natural number.

15. The linear fast adder of claim 14, wherein in a subsequent set of the finite state
machine, the finite configuration on a left column of the two columns represents the
energy levels that are not repeated in the preceding state and the finite configuration
on a right column of the two columns represents objects that are repeated from the
preceding state.

Journal Not Specified 2022, 1, 0 15 of 54

FIG. 1

FIG. 2

Journal Not Specified 2022, 1, 0 16 of 54

FIG. 3

Journal Not Specified 2022, 1, 0 17 of 54

FIG. 4

Journal Not Specified 2022, 1, 0 18 of 54

FIG. 5

FIG. 6

Journal Not Specified 2022, 1, 0 19 of 54

FIG. 7

Journal Not Specified 2022, 1, 0 20 of 54

FIG. 8

Journal Not Specified 2022, 1, 0 21 of 54

FIG. 9

Journal Not Specified 2022, 1, 0 22 of 54

FIG. 10

FIG. 11

Journal Not Specified 2022, 1, 0 23 of 54

Appendix .1 |G| = 5

If G is a group with five objects, then all non trivial objects satisfy |g| 5. This implies
|g| = 5, for all non trivial g ∈ G. Without loss of generality, choose any object g1. Then, g2

1
is a non trivial object, g2. Also, g1 ∗ g2 = g3

1 is a new non trivial object, g3, etc.

e g1 g2 g3 g4
g1 g2
g2 g3
g3 g4
g4 e

Now, use the associative property to find the operation function of g2, and it will
be placed in the second column. It is true g2 = g1 ∗ g1, so that it must also be true that
∗g2 = ∗g1 ◦ ∗g1. This means ∗g2(g1) is found by g1 →∗g1 g2 →∗g1 g3. Also, ∗g2(∗g2)
because g2 →∗g1 g3 →∗g1 g4, etc.

e g1 g2 g3 g4
g1 g2 g3
g2 g3 g4
g3 g4 g5
g4 e g1

Do the same with the column of g3 = g1 ∗ g2 and g4 = g1 ∗ g3, so that ∗g3 = ∗g1 ◦ ∗g2
and ∗g4 = ∗g1 ◦ ∗g3. For example, g3 ∗ g1 = ∗g3(g1) is given by the arrows g1 →∗g2

g3 →∗g1 g4, etc.
e g1 g2 g3 g4

g1 g2 g3 g4 e
g2 g3 g4 e g1
g3 g4 e g1 g2
g4 e g1 g2 g3

The group is defined by the number of objects, so that there exists only one group, Z5,
of five objects. To find the canonical naming functions, make e = 4 and a = 3 for some
object a ∈ Z5 such that |a| = 5. However, all non trivial objects have order 5, so that a
can be any non trivial object. To maximize the representation, the object b = a2 has to be
assigned the numerical value 2.

4 3 2 1 0
3 2
2
1
0

The new object c = a ∗ b = a3 is assigned value 1, and d = a4 is assigned value 0.

4 3 2 1 0
3 2
2 1
1 0
0 4

Journal Not Specified 2022, 1, 0 24 of 54

The rest of the table can be found, using the associative property.

4 3 2 1 0
3 2 1 0 4
2 1 0 4 3
1 0 4 3 2
0 4 3 2 1

This numerical table is given by four different naming functions. Consider the naming
function that has e = 4 and g4 = 3. Then g2

4 = g3 = 2, and g3
4 = g2 = 1, and g4

4 = g1 = 0.
This naming functions is represented by the sequence (e, g4, g3, g2, g1). The four canonical
naming functions are

(e, g1, g2, g3, g4)
(e, g2, g4, g1, g3)
(e, g3, g1, g4, g2)
(e, g4, g3, g2, g1).

These four canonical naming functions are actually the automorphisms of Z5, in
disguise. Fix any one of these naming functions, say A = (e, g3, g1, g4, g2). Let B any other
canonical naming function, say B = (e, g2, g4, g1, g3). The bijective function defined below
is an automorphism.

e 7→ e
g1 7→ g4
g2 7→ g3
g3 7→ g2
g4 7→ g1

Let B any other canonical naming functions, say B = (e, g4, g3, g2, g1). A second
automorphism has been determined,

e 7→ e
g1 7→ g3
g2 7→ g1
g3 7→ g4
g4 7→ g2.

Four automorphisms of Z5 are determined using the four canonical naming functions.
The canonical representation is

NZ5 = 229+2
2
(

2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)
+ 227+2

2
(

2(2
9+28)+2(2

7+26)+2(2
5+24)+2(2

3+22)+2(2
1+210)+1

)

+225+2
2
(

2(2
9+26)+2(2

7+24)+2(2
5+22)+2(2

3+210)+2(2
1+28)+1

)
+ 223+2

2
(

2(2
9+24)+2(2

7+22)+2(2
5+210)+2(2

3+28)+2(2
1+26)+1

)

+221+2
2
(

2(2
9+22)+2(2

7+210)+2(2
5+28)+2(2

3+26)+2(2
1+24)+1

)
.

Journal Not Specified 2022, 1, 0 25 of 54

Appendix .2 |G| = 6

Direct Product Z2 ⊕Z3. Begin as usual, with the list of objects.

e g1 g2 g3 g4 g5
g1
g2
g3
g4
g5

There exists at least one element of order equal to the smallest prime divisor of 6; there
is at least one object of order 2. Since 3 is a prime divisor of 6, the group has at least one
object of order 3, as well. In fact, there has to be a multiple of ϕ(3) = 2 many objects of
order 3. Therefore, any group of six objects will have either two, or four, objects of order 3.
First, consider the case with two objects of order 3, and three objects of order 2. Suppose,
without loss of generality, g2

1 = g2 and g1 ∗ g2 = e.

e g1 g2 g3 g4 g5
g1 g2 e
g2 e g1
g3 e
g4 e
g5 e

The object g1 ∗ g3 is a new object, g4, and the column of g1 is determined. Then, find
the column of g2 by means of the composition ∗g1 ◦ ∗g1.

e g1 g2 g3 g4 g5
g1 g2 e
g2 e g1
g3 g4 g5 e
g4 g5 g3 e
g5 g3 g4 e

Then, use |g3| = 2 to find

e g1 g2 g3 g4 g5
g1 g2 e
g2 e g1
g3 g4 g5 e
g4 g5 g3 g2
g5 g3 g4 g1

.

Use |g3| = 2 again, now to find

e g1 g2 g3 g4 g5
g1 g2 e g5
g2 e g1 g4
g3 g4 g5 e
g4 g5 g3 g2
g5 g3 g4 g1

.

Journal Not Specified 2022, 1, 0 26 of 54

It is trivial to find the columns of g4, g5 in terms of the rest of the columns, using
associativity as usual.

e g1 g2 g3 g4 g5
g1 g2 e g5 g3 g4
g2 e g1 g4 g5 g3
g3 g4 g5 e g1 g2
g4 g5 g3 g2 e g1
g5 g3 g4 g1 g2 e

(A1)

This is the direct product Z2 ⊕Z3. It is determined by the equations

g2
1 = g2

g1 ∗ g2 = g2
3 = g2

4 = g2
5 = e.

Letters a, b, c, . . . and x1, x2, x3, . . . are auxiliary variables in finding the canonical
naming of groups. The first numerical value assigned is e = 5. Recall, the strategy is
to assign the larger numbers first, by giving priority to the left-most columns. Within a
column, priority is given to the objects of upper rows. Observe there are three objects
of second order. One of these three objects, call it a, will be assigned the value 4. Then,
whatever object may be chosen for b, there is a fourth object a ∗ b = x1. And, since |a| = 2
it is also true a ∗ x1 = b.

e a b x1
a e
b x1
x1 b

To maximize the representation, name b = 3 and a ∗ b = x1 = 2. That yields the
numeric table

5 4 3 2
4 5
3 2
2 3

.

So far, the only thing known about the canonical naming functions, is that a = 4 is
one of the second order objects. If there were an object that commutes with a, it would be
used as the object b. But, from (A1) it is clear there is no choice of b that commutes with a.
That is to say, the second order objects of ∆3 do not commute with any non trivial object.
Therefore, new objects c = b ∗ a and x2 = a ∗ c, are added to the table as shown below

e a b x1 c x2
a e c
b x1
x1 b
c x2

x2 c

.

Make |b| = 2, to maximize the representation. Now it is known a canonical naming
function of this group must have a = 4 and b = 3 for two second order objects a, b. Also
make c = 1 and x2 = 0, to maximize the representation. Use |b| = 2 to find the rest of the
column of b. The rest of the table is determined using associativity.

5 4 3 2 1 0
4 5 1 0 3 2
3 2 5 4 0 1
2 3 0 1 5 4
1 0 4 5 2 3
0 1 2 3 4 5

Journal Not Specified 2022, 1, 0 27 of 54

To obtain a canonical naming function make a = 4, b = 3 for two objects of order
2. Obviously, g3, g4, g5 are equivalent objects; two of these have to be chosen to take the
values of 4 and 3. This implies g3, g4, g5 are equivalent. The object a ∗ b is assigned the
value x1 = 2. Then b ∗ a = c = 1 and a ∗ c = x2 = 0. The objects g2, g3 are equivalent.
There is a total of six possible canonical naming functions.

(e, g3, g4, g2, g1, g5) (e, g4, g3, g1, g2, g5) (e, g5, g3, g2, g1, g4)
(e, g3, g5, g1, g2, g4) (e, g4, g5, g2, g1, g3) (e, g5, g4, g1, g2, g3)

The group has a total of six automorphisms, given by the six canonical naming
functions. The group is shown in block form, but the blocks are not cosets of a normal
subgroup (even though ∆6 has a normal subgroup). The canonical block form is composed
of four 3 × 3 blocks, and there are two types of blocks. The first type of block has objects
in A = {1, 2, 3, 4, 5} while the second type of block has objects in B = {0, 1, 2, 3, 4}. Blocks
A1 and A2 are located in the upper left corner and lower right corner, respectively. Blocks
B1 and B2 are in the upper right hand and lower left hand, respectively. This group has
canonical representation

N∆3 = 2211+2
2
(

2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+229+2
2
(

2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+227+2
2
(

2(2
11+28)+2(2

9+24)+2(2
7+212)+2(2

5+22)+2(2
3+210)+2(2

1+26)+1
)

+225+2
2
(

2(2
11+26)+2(2

9+22)+2(2
7+210)+2(2

5+24)+2(2
3+212)+2(2

1+28)+1
)

+223+2
2
(

2(2
11+24)+2(2

9+28)+2(2
7+22)+2(2

5+212)+2(2
3+26)+2(2

1+210)+1
)

+221+2
2
(

2(2
11+22)+2(2

9+26)+2(2
7+24)+2(2

5+210)+2(2
3+28)+2(2

1+212)+1
)

.

Cyclic Group Z6. Now consider the case with four objects of order 4, and one object
of order 2.

e g1 g2 g3 g4 g5
g1 e
g2 g3 e
g3 e g2
g4
g5

Without loss of generality, make g1 ∗ g2 = g4.

e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e
g3 g5 e g2
g4
g5

Journal Not Specified 2022, 1, 0 28 of 54

Using |g1| = 2, one finds

e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e
g3 g5 e g2
g4 g2
g5 g3

.

Now use |g2| = |g3| = 3 to find

e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e g5 g1
g3 g5 e g2 g1 g4
g4 g2
g5 g3

.

It is the case that |g4| = |g5| ̸= 2, so the only option is g2
4 = g3 and g2

5 = g2.

e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e g5 g1
g3 g5 e g2 g1 g4
g4 g2 g3
g5 g3 g2

It is easy to see that |g4| = |g5| = 6. It is concluded there is no group |G| = 4 with
four objects of order 2. The table is determined and the cyclic group is obtained.

e g1 g2 g3 g4 g5
g1 e g4 g5 g2 g3
g2 g4 g3 e g5 g1
g3 g5 e g2 g1 g4
g4 g2 g5 g1 g3 e
g5 g3 g1 g4 e g2

(A2)

The cyclic group Z6 is determined by |G| = 6 and

g2
1 = e

g2
2 = g2

3 = g4

g1 ∗ g2 = g3

g2
4 = g2.

To find the canonical naming functions, use a, b, c, . . . and x1, x2, x3, . . . as auxiliary
variables. Start naming e = 5. There is only one second order object, so g1 = a = 4.
Add an object b ̸= g1. Whatever object is chosen for b, there is another object a ∗ b = x1.
The group is commutative, so b ∗ a = x1. Since |a| = 2, it can be verified that a ∗ x1 = b.
Commutativity gives x1 ∗ a = b.

e a b x1
a e x1 b
b x1
x1 b

Journal Not Specified 2022, 1, 0 29 of 54

In order to maximize the representation, name b = 3 and a ∗ b = x1 = 2. But, it is
still not known what object of the group will be assigned to b = 3. The possible naming
functions are

(e, g1, g2, g4, g3, g5) (e, g1, g3, g5, g2, g4) (e, g1, g4, g2, g3, g5) (e, g1, g5, g3, g2, g4)
(e, g1, g2, g4, g5, g3) (e, g1, g3, g5, g4, g2) (e, g1, g4, g2, g5, g3) (e, g1, g5, g3, g4, g2).

Whatever object b may be, b2 is a new object c. Then, the operation a ∗ c is a new object
x2. Consequently, b ∗ x1 = x1 ∗ b = x2 and x2

1 = c. To maximize the representation, make
c = 1 and x2 = 0.

e a b x1 c x2
a e x1 b x2 c
b x1 c x2
x1 b x2 c
c x2

x2 c

Some of the naming functions can be eliminated. Keep only those such that the square
of the third component is equal to the fifth component (b2 = c). Notice, only the objects
g2, g3 are the square of some other object. The naming functions that satisfy these conditions
are reduced to four.

(e, g1, g2, g4, g3, g5)
(e, g1, g3, g5, g2, g4)
(e, g1, g4, g2, g3, g5)
(e, g1, g5, g3, g2, g4)

Any of the naming functions above, gives the table below.

e a b x1 c x2
a e x1 b x2 c
b x1 c x2
x1 b x2 c
c x2

x2 c

No more operations can be determined with the information available. A choice must
be made for b, c, so that b ∗ c = e or b ∗ c = a. Choosing them so b ∗ c = e maximizes the
representation. The four candidate naming functions above satisfy this condition, so the
candidate naming functions have not been reduced by this. However, the table is now

e a b x1 c x2
a e x1 b x2 c
b x1 c x2 e a
x1 b x2 c a e
c x2 e a

x2 c a e

.

Next, focus on c2. Notice that two of the four naming functions satisfy c2 = x1. The
other two naming functions satisfy c2 = b. The latter two maximize the representation.
The two canonical naming functions are (e, g1, g2, g4, g3, g5) and (e, g1, g3, g5, g2, g4). The
cyclic group Z6 has a total of two automorphisms. Take A = (e, g1, g3, g5, g2, g4). The non
trivial automorphism is the function ϕ with components e 7→ e, g1 7→ g1, g2 7→ g3, g3 7→ g2,

Journal Not Specified 2022, 1, 0 30 of 54

g4 7→ g5, g5 7→ g4. Taking A = (e, g1, g2, g4, g3, g5) and B = (e, g1, g3, g5, g2, g4), gives the
same non trivial automorphism ϕ. The numeric table givrn by these naming functions is

5 4 3 2 1 0
4 5 2 3 0 1
3 2 1 0 5 4
2 3 0 1 4 5
1 0 5 4 3 2
0 1 4 5 2 3

.

The 2 × 2 block on the upper left hand corner is the normal subgroup N = Z2. The
table is made up of nine 2 × 2 blocks that are the cosets N, bN and b2N, for b ∈ {g2, g3}.
These coset blocks form the group Z3. The canonical table above is written as

N bN b2N
bN b2N N
b2N N bN

.

The canonical naming table gives the additional information that Z6/Z2 = Z3. The
canonical representation of the cyclic group is

NZ6 = 2211+2
2
(

2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+229+2
2
(

2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+227+2
2
(

2(2
11+28)+2(2

9+26)+2(2
7+24)+2(2

5+22)+2(2
3+212)+2(2

1+210)+1
)

+225+2
2
(

2(2
11+26)+2(2

9+28)+2(2
7+22)+2(2

5+24)+2(2
3+210)+2(2

1+212)+1
)

+223+2
2
(

2(2
11+24)+2(2

9+22)+2(2
7+212)+2(2

5+210)+2(2
3+28)+2(2

1+26)+1
)

+221+2
2
(

2(2
11+22)+2(2

9+24)+2(2
7+210)+2(2

5+212)+2(2
3+26)+2(2

1+28)+1
)

.

Up to this point, there has not been any difficulty in finding the canonical naming and
representation of groups. The first groups are ordered

G0 = Z1

G1 = Z2

G2 = Z3

G3 = Z4

G4 = Z2 ⊕Z2

G5 = Z5

G6 = Z6

G7 = Z2 ⊕Z3.

The first step in finding the canonical naming function is to identify the objects of
smallest order. By now it is easy to find the canonical table and representation of Z7 (see
Z5). This is the next group in order, G8 = Z7.

Journal Not Specified 2022, 1, 0 31 of 54

Appendix .3 |G| = 8

To find groups of eight objects, observe the possible orders of the objects are the
divisors of 8. Particularly, there exists at least one object of order 2. There can be a multiple
of two, 2i, objects of order 4, and a multiple of four, 4j, many objects of order 8. All four
groups of eight objects will be found. Each group has a canonical naming function, obtained
from the numeric table, a minimal independent set of equations that defines the group, and
canonical representation. Then, the canonical representations of these groups are compared
to find the order G9 < G10 < G11 < G12 < G13.

Direct Product Z2 ⊕Z2 ⊕Z2. Take the simplest case first, and then it will be clear how
things can be complicated little by little. The simplest case is to consider all objects of order
2 (make i = j = 0). Additionally, suppose the group is commutative. With maximization in
mind, this gives the table

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 e g1
g3 g2 g1 e
g4 g5 e g1
g5 g4 g1 e
g6 g7 e g1
g7 g6 g1 e

.

It is easy to see g2 ∗ g4 /∈ {e, g1, g2, g3, g4, g5}. Suppose, without loss of generality,
g2 ∗ g4 = g6. This determines the rest of the column of g2. Then, use g2 ∗ g4 = g4 ∗ g2
and g2 ∗ g6 = g6 ∗ g2 to find the third row. Then it is possible to find the fourth column
and fourth row, using the associative property. For example, use g6 ∗ g2 = g4 to find
g4 ∗ g3 = g6 ∗ (g2 ∗ g3) = g6 ∗ g1 = g7. Finally, use g3 ∗ g5 = g6 to find g6 ∗ g4 =
g3 ∗ (g5 ∗ g4) = g3 ∗ g1 = g2.

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 e g1 g6 g7 g4 g5
g3 g2 g1 e g7 g6 g5 g4
g4 g5 g6 g7 e g1 g2 g3
g5 g4 g7 g6 g1 e g3 g2
g6 g7 g4 g5 g2 g3 e g1
g7 g6 g5 g4 g3 g2 g1 e

(A3)

This determines the group Z3
2 = Z2 ⊕Z2 ⊕Z2. This group table is already in canonical

block form. Again, the special block form of cosets of N1 = Z2 is seen. The expression
Z8/N = Z4 is given in the table, because there are sixteen 2× 2 blocks, N1, g2N1, g4N1, g6N1,
that form Z4.

N1 g2N1 g4N1 g6N1
g2N1 N1 g6N1 g4N1
g4N1 g6N1 N1 g2N1
g6N1 g4N1 g2N1 N1

The group Z4 has normal subgroup N2 = Z2, and Z4/Z2 = Z2. A third expression of
group quotients can be observed. Table (A3) also gives the expression Z8/Z4 = Z2 because
there are four 4 × 4 blocks forming the group Z2; these blocks are the cosets of N3 = Z4,

N3 cN3
cN3 N3

.

Journal Not Specified 2022, 1, 0 32 of 54

To determine this group, seven objects of order 2 are required. Additionally, a commu-
tative object, g1, is needed. The following equations determine the group.

e = g2
1 = g2

2 = g2
3 = g2

4 = g2
5 = g2

6 = g2
7

g1 ∗ g = g ∗ g1, g ∈ Z3
2.

There is a total of one hundred and sixty eight distinct automorphisms of Z3
2, given

by the canonical naming functions. Assign e = 7 for the identity element, and a = 6 for
any non trivial element of the group. Then, assign b = 5 to a second non trivial element.
To maximize representation, assign a ∗ b = x1 = 4. Next, choose a third object to assign to
c = 3, and a ∗ c = x2 = 2.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 e a

x2 c a e
d x3 e a
x3 d a e

Finally, make b ∗ c = d = 1 and a ∗ d = x3 = 0. This determines the rest of the table.
The first object, a, is chosen from seven different possible choices. The object b is chosen
from a total of six options. Finally, c is taken from a total of four different options. The
numeric table, given by these canonical naming functions is

7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 7 6 1 0 3 2
4 5 6 7 0 1 2 3
3 2 1 0 7 6 5 4
2 3 0 1 6 7 4 5
1 0 3 2 5 4 7 6
0 1 2 3 4 5 6 7

and the canonical representation is

NZ3
2

= 2215+2
2
(

2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+2213+2
2
(

2(2
15+214)+2(2

13+216)+2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+2211+2
2
(

2(2
15+212)+2(2

13+210)+2(2
11+216)+2(2

9+214)+2(2
7+24)+2(2

5+22)+2(2
3+28)+2(2

1+26)+1
)

+229+2
2
(

2(2
15+210)+2(2

13+212)+2(2
11+214)+2(2

9+216)+2(2
7+22)+2(2

5+24)+2(2
3+26)+2(2

1+28)+1
)

+227+2
2
(

2(2
15+28)+2(2

13+26)+2(2
11+24)+2(2

9+22)+2(2
7+216)+2(2

5+214)+2(2
3+212)+2(2

1+210)+1
)

+225+2
2
(

2(2
15+26)+2(2

13+28)+2(2
11+22)+2(2

9+24)+2(2
7+214)+2(2

5+216)+2(2
3+210)+2(2

1+212)+1
)

+223+2
2
(

2(2
15+24)+2(2

13+22)+2(2
11+28)+2(2

9+26)+2(2
7+212)+2(2

5+210)+2(2
3+216)+2(2

1+214)+1
)

+221+2
2
(

2(2
15+22)+2(2

13+24)+2(2
11+26)+2(2

9+28)+2(2
7+210)+2(2

5+212)+2(2
3+214)+2(2

1+216)+1
)

.

Journal Not Specified 2022, 1, 0 33 of 54

A non abelian group with all objects of order 2 does not exist. If c ∗ a = d, then d ∗ a = c
because |a| = 2. Since |d| = 2 it is also true d ∗ c = a. On the other hand, a ∗ c = x2 and
|c| = 2 imply x2 ∗ c = a. This is a contradiction with the definition of group.

e a b x1 c x2 d x3
a e x1 b d x3 c x2
b x1 e a
x1 b a e
c x2 e a a

x2 c e
d x3 e
x3 d e

The contradiction does not depend on the first four objects e, a, b, x1. This means that
any non abelian group of eight objects, must also have objects of order 4 or 8. In particular,
the group Z3

2, above, is the only group of eight objects with all non trivial elements of order
2. The commutative condition determined the group. Commutativity of one non trivial
element implies commutativity on all the elements of the group.

Dihedral Group D8. Now consider groups with elements of orders 2 and 4. Only a
multiple of 2 = ϕ(4), many objects of order 4 are possible. First, consider the case with two
objects of order 4, and five objects of second order. Let a, b, x1, c, x2 be the objects of order 2,
and let d, x3 the objects of order 4.

e a b x1 c x2 d x3
a e
b x1 e
x1 b e
c x2 e

x2 c e
d x3 a e
x3 d e a

Since |b| = |x1| = |c| = |x2| = 2, then x1 ∗ b = b ∗ x1 = x2 ∗ c = c ∗ x2 = a.

e a b x1 c x2 d x3
a e
b x1 e a
x1 b a e
c x2 e a

x2 c a e
d x3 a e
x3 d e a

Now, |b| = |x1| = |c| = |x2| = 2 implies b ∗ a = x1, x1 ∗ a = b, c ∗ a = x2, x2 ∗ a = c,
respectively. Then, d ∗ a = x3 and x3 ∗ a = d. Notice a block form is starting to appear in
the table for K(4). There are 2 × 2 blocks forming the Klein group. Suppose, without loss
of generality, b ∗ c = d.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3 e a

x2 c x3 d a e
d x3 a e
x3 d e a

Journal Not Specified 2022, 1, 0 34 of 54

The rest of the table is determined. Find b ∗ d = c, and d ∗ c = b.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3 e a b x1

x2 c x3 d a e x1 b
d x3 c x2 a e
x3 d x2 c e a

Next use c = b ∗ d to find c ∗ d = b ∗ (d ∗ d) = b ∗ a = x1.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3 e a b x1

x2 c x3 d a e x1 b
d x3 c x2 x1 b a e
x3 d x2 c b x1 e a

The rest of the table is determined similarly. For example, |c| = 2 implies c ∗ b = x3.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a x3 d c x2
x1 b a e d x3 x2 c
c x2 d x3 e a b x1

x2 c x3 d a e x1 b
d x3 c x2 x1 b a e
x3 d x2 c b x1 e a

This is the Dihedral group, D8, defined by |G| = 8 and the set of equations

e = a2 = b2 = x2
1 = c2 = x2

2

d2 = a.

It is the only group |G| = 8, with exactly two objects of order 4, and five objects of
order 2. Notice that the set of equations only mentions seven different objects. The eighth
object is a ∗ d, and it is of order 4. To find the canonical naming function of this group, write
the group with non generic symbols.

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 g1 e g7 g6 g4 g5
g3 g2 e g1 g6 g7 g5 g4
g4 g5 g6 g7 e g1 g2 g3
g5 g4 g7 g6 g1 e g3 g2
g6 g7 g5 g4 g3 g2 e g1
g7 g6 g4 g5 g2 g3 g1 e

(A4)

Now, use the letters a, b, . . . , x1, x2, . . . as auxiliary variables to find the canonical
naming. Avoid confusion with the fact that the same symbols a, b, . . . , x1, x2, . . . have just
been used as auxiliary variables to find the group. Table (A4) will be the reference for
D8. Start with e = 7, and an arbitrary object, a = 6, of order 2. Add an object b = 5. To

Journal Not Specified 2022, 1, 0 35 of 54

maximize the representation, make x1 = a ∗ b = b ∗ a = 4. Put simply, one must choose
two objects, a, b, that satisfy e = a2 and a ∗ b = b ∗ a. There are ten options of ordered pairs
of D8 that satisfy these relations. For example, g7 is a second order object and it commutes
with g6. Also, g1 is a second order object and it commutes with g2. Furthermore, an element
b can be found such that |b| = 2, maximizing the representation. There are six options to
do this. The objects g4, g5 commute, as do g6, g7 and they are all second order objects. Also,
notice g1 commutes with each of them. Therefore, any of these objects can take the place
of a, for now. Add another object to the table, say c = 3, and consequently x2 = a ∗ c = 2.
Then, add another object d = 1, for the product b ∗ c = d, and x3 = a ∗ d = 0.

e a b x1 c x2 d x3
a e x1 b
b x1 e a
x1 b a e
c x2 d x3

x2 c x3 d
d x3 c x2
x3 d x2 c

In order to maximize the representation, find c that commutes with a. This implies a
also commutes with x2 = a ∗ c. The only object that commutes with at least four objects is
g1. Therefore, a = g1. The possible canonical naming functions have been reduced to a total
of sixteen possible naming functions. Choose b from four different objects, {g4, g5, g6, g7},
and then c can be chosen from four different objects.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3

x2 c x3 d
d x3 c x2
x3 d x2 c

None of the choices of naming functions will have b ∗ c = c ∗ b. This is because the
four options for assigning b, which are g4, g5, g6, g7, only commute with g1 and a ∗ b = x1.
For example, g4 only commutes with g1 and g5 = g1 ∗ g4, etc. So far, the canonical block
form is

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a x3 d
x1 b a e d x3
c x2 d x3

x2 c x3 d
d x3 c x2
x3 d x2 c

Journal Not Specified 2022, 1, 0 36 of 54

Notice that in eight of the sixteen possible naming functions, there are eight that satisfy
c2 = e. The other eight functions assign c to g2 or g3. To maximize the representation
choose the first eight naming functions; assign c to a second order object.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a x3 d
x1 b a e d x3
c x2 d x3 e a

x2 c x3 d a e
d x3
x3 d

The rest of the table is determined. There is a total of eight canonical naming functions.
Choose b from the list {g4, g5, g6, g7}, and make x1 = g1 ∗ b. Then choose c from the
remaining two objects of that list. The objects g4, g5 are equivalent, and g6, g7 are equivalent.
The order 4 objects g2, g3 are equivalent. The canonical naming functions are

(e, g1, g4, g5, g6, g7, g3, g2) (e, g1, g5, g4, g6, g7, g2, g3) (e, g1, g6, g7, g4, g5, g2, g3) (e, g1, g7, g6, g4, g5, g3, g2)
(e, g1, g4, g5, g7, g6, g2, g3) (e, g1, g5, g4, g7, g6, g3, g2) (e, g1, g6, g7, g5, g4, g3, g2) (e, g1, g7, g6, g5, g4, g2, g3)

The numeric table is
7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 7 6 0 1 2 3
4 5 6 7 1 0 3 2
3 2 1 0 7 6 5 4
2 3 0 1 6 7 4 5
1 0 3 2 4 5 6 7
0 1 2 3 5 4 7 6

and the canonical representation is

ND8 = 2215+2
2
(

2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+2213+2
2
(

2(2
15+214)+2(2

13+216)+2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+2211+2
2
(

2(2
15+212)+2(2

13+210)+2(2
11+216)+2(2

9+214)+2(2
7+24)+2(2

5+22)+2(2
3+28)+2(2

1+26)+1
)

+229+2
2
(

2(2
15+210)+2(2

13+212)+2(2
11+214)+2(2

9+216)+2(2
7+22)+2(2

5+24)+2(2
3+26)+2(2

1+28)+1
)

+227+2
2
(

2(2
15+28)+2(2

13+26)+2(2
11+22)+2(2

9+24)+2(2
7+216)+2(2

5+214)+2(2
3+210)+2(2

1+212)+1
)

+225+2
2
(

2(2
15+26)+2(2

13+28)+2(2
11+24)+2(2

9+22)+2(2
7+214)+2(2

5+216)+2(2
3+212)+2(2

1+210)+1
)

+223+2
2
(

2(2
15+24)+2(2

13+22)+2(2
11+26)+2(2

9+28)+2(2
7+212)+2(2

5+210)+2(2
3+214)+2(2

1+216)+1
)

+221+2
2
(

2(2
15+22)+2(2

13+24)+2(2
11+28)+2(2

9+26)+2(2
7+210)+2(2

5+212)+2(2
3+216)+2(2

1+214)+1
)

.

Journal Not Specified 2022, 1, 0 37 of 54

Direct Product Z2 ⊕Z4. Now consider groups with four objects of order 4, and three
objects of order 2. Let a any object of order 4, so that a2 = b is a new object, as is a3 = c.

e a x1 x2 b x3 x4 x5
a x1 x2 e
x1 x2 e a
x2 e a x1
b
x3
x4
x5

The column of a can be completed. Let b an object not in {e, a, x1, x2}. The expression
a ∗ b = x3 holds for an element x3 that is not in {e, a, x1, x2, b}. The columns of x1 and x2
can be completed.

e a x1 x2 b x3 x4 x5
a x1 x2 e
x1 x2 e a
x2 e a x1
b x3 x4 x5
x3 x4 x5 b
x4 x5 b x3
x5 b x3 x4

Choose b such that it has order |b| = 2. This gives the row of b.

e a x1 x2 b x3 x4 x5
a x1 x2 e
x1 x2 e a
x2 e a x1
b x3 x4 x5 e a x1 x2
x3 x4 x5 b
x4 x5 b x3
x5 b x3 x4

Consider two different cases; the cases where b, x3 commute or not. Supposing they
do not commute leads to contradiction. It is a good exercise to find the contradiction in the
least number of steps. For the commutative case, the table is determined.

e a x1 x2 b x3 x4 x5
a x1 x2 e x3 x4 x5 b
x1 x2 e a x4 x5 b x3
x2 e a x1 x5 b x3 x4
b x3 x4 x5 e a x1 x2
x3 x4 x5 b a x1 x2 e
x4 x5 b x3 x1 x2 e a
x5 b x3 x4 x2 e a x1

Journal Not Specified 2022, 1, 0 38 of 54

This is the direct product group Z2 ⊕Z4. To define this group, an object of order 4 is
required, as given by the equations a2 = x1, a ∗ x1 = x2, a ∗ x2 = e. Then, a second order
object, b, that commutes with x3 = a ∗ b. These conditions form the system of equations

a2 = x1

a3 = x2

a ∗ x2 = b2 = e

a ∗ b = x3

b ∗ x3 = x3 ∗ b

To find the canonical naming functions, write the table in terms of gi.

e g1 g2 g3 g4 g5 g6 g7
g1 g2 g3 e g5 g6 g7 g4
g2 g3 e g1 g6 g7 g4 g5
g3 e g1 g2 g7 g4 g5 g6
g4 g5 g6 g7 e g1 g2 g3
g5 g6 g7 g4 g1 g2 g3 e
g6 g7 g4 g5 g2 g3 e g1
g7 g4 g5 g6 g3 e g1 g2

(A5)

Begin by assigning e = 7, and a = 6 for some second order object a. Choose an
arbitrary object b = 5, and make a ∗ b = x1 = 4. The group is commutative. Choose b of
second order. This gives the table of K(4). Maximization of the representation is guaranteed
thus far.

e a b x1
a e x1 b
b x1 e a
x1 b a e

.

Add another arbitrary object from the remaining elements; c = 3, and a ∗ c = x2 = 2.
The objects that c can be chosen from are g1, g3, g5, g7. Then, the value of 1 is assigned to
the element b ∗ c = c ∗ b = d = 1, and the smallest value is assigned to x3 = a ∗ d = 0.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a d x3 c x2
x1 b a e x3 d x2 c
c x2 d x3

x2 c x3 d
d x3 c x2
x3 d x2 c

To continue maximizing the representation, choose a so that it is the square of some
object, c2 = a. Therefore, g2 = a = 7 because g2 is the only non trivial element that is
square of another group element. This determines the table. To find a canonical naming
function choose b from two possible choices, g4, g6. Then choose c from four possible
choices, g1, g3, g5, g7. There is a total of eight canonical naming functions defining eight
automorphisms of Z2 ⊕Z4.

(e, g2, g4, g6, g1, g3, g5, g7) (e, g2, g4, g6, g3, g1, g7, g5) (e, g2, g4, g6, g5, g7, g1, g3) (e, g2, g4, g6, g7, g5, g3, g1)
(e, g2, g6, g4, g1, g3, g7, g5) (e, g2, g6, g4, g3, g1, g5, g7) (e, g2, g6, g4, g5, g7, g3, g1) (e, g2, g6, g4, g7, g5, g1, g3)

Journal Not Specified 2022, 1, 0 39 of 54

These naming functions give the numeric table

7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 7 6 1 0 3 2
4 5 6 7 0 1 2 3
3 2 1 0 6 7 4 5
2 3 0 1 7 6 5 4
1 0 3 2 4 5 6 7
0 1 2 3 5 4 7 6

with canonical representation

NZ2⊕Z4 = 2215+2
2
(

2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+2213+2
2
(

2(2
15+214)+2(2

13+216)+2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+2211+2
2
(

2(2
15+212)+2(2

13+210)+2(2
11+216)+2(2

9+214)+2(2
7+24)+2(2

5+22)+2(2
3+28)+2(2

1+26)+1
)

+229+2
2
(

2(2
15+210)+2(2

13+212)+2(2
11+214)+2(2

9+216)+2(2
7+22)+2(2

5+24)+2(2
3+26)+2(2

1+28)+1
)

+227+2
2
(

2(2
15+28)+2(2

13+26)+2(2
11+24)+2(2

9+22)+2(2
7+214)+2(2

5+216)+2(2
3+210)+2(2

1+212)+1
)

+225+2
2
(

2(2
15+26)+2(2

13+28)+2(2
11+22)+2(2

9+24)+2(2
7+216)+2(2

5+214)+2(2
3+212)+2(2

1+210)+1
)

+223+2
2
(

2(2
15+24)+2(2

13+22)+2(2
11+28)+2(2

9+26)+2(2
7+210)+2(2

5+212)+2(2
3+214)+2(2

1+216)+1
)

+221+2
2
(

2(2
15+22)+2(2

13+24)+2(2
11+26)+2(2

9+28)+2(2
7+212)+2(2

5+210)+2(2
3+216)+2(2

1+214)+1
)

.

Quaternion Group Q8. Consider G with six objects of order 4. Let a the only object of
second order.

e a b x1 c x2 d x3
a e
b x1 a
x1 b a
c x2 a

x2 c a
d x3 a
x3 d a

Find x1 ∗ b = e and b ∗ x1 = e, using associativity. It can also be verified that b ∗ a =
b3 = a ∗ b. Using associativity it can be found x1 ∗ a = b.

e a b x1 c x2 d x3
a e x1 b
b x1 a e
x1 b e a
c x2 a

x2 c a
d x3 a
x3 d a

Journal Not Specified 2022, 1, 0 40 of 54

Suppose, without loss of generality, b ∗ c = d.

e a b x1 c x2 d x3
a e x1 b
b x1 a e
x1 b e a
c x2 d x3 a

x2 c x3 d a
d x3 x2 c a
x3 d c x2 a

Use associativity, as usual, to find

e a b x1 c x2 d x3
a e x1 b
b x1 a e
x1 b e a
c x2 d x3 a e

x2 c x3 d e a
d x3 x2 c a e
x3 d c x2 e a

.

It is true c ∗ a = c3 = a ∗ c; then, use associativity to find x2 ∗ a. In a similar fashion,
d ∗ a = d3 = a ∗ d and x3 ∗ a = d can be found.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 a e
x1 b e a
c x2 d x3 a e

x2 c x3 d e a
d x3 x2 c a e
x3 d c x2 e a

Next use c = x1 ∗ d to find c ∗ d = x1 ∗ (d ∗ d) = x1 ∗ a = b. The rest of the table is
determined as usual. Written in generic variables g1, g2, g3, g4, g5, g6, g7,

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 g1 e g7 g6 g4 g5
g3 g2 e g1 g6 g7 g5 g4
g4 g5 g6 g7 g1 e g3 g2
g5 g4 g7 g6 e g1 g2 g3
g6 g7 g5 g4 g2 g3 g1 e
g7 g6 g4 g5 g3 g2 e g1

.

This group was determined by the conditions of having one second order object, g1,
and g1 = g2

2 = g2
3 = g2

4 = g2
5 = g2

6. Thus, the system of equations

g2
1 = e

g2
2 = g2

4 = (g1 ∗ g2)
2 = (g1 ∗ g4)

2 = (g2 ∗ g4)
2 = (g4 ∗ g2)

2 = g1.

determines the quaternion group Q8. To find the canonical naming functions, start with
e = 7 and g1 = a = 6 because g1 is the only second order object. Then, choose a fourth order
object to take the numerical value b = 5, and x1 = a ∗ b = 4. This object, b, is chosen from
six possible objects of fourth order. Then, choose another object c = 3, and a ∗ c = x2 = 2,

Journal Not Specified 2022, 1, 0 41 of 54

b ∗ c = d = 1, a ∗ d = x3 = 0. The element c is chosen from four remaining group elements.
All the fourth order objects are equivalent and there is a total of twenty four canonical
naming functions and automorphisms. The numeric table given by the canonical naming
functions is

7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 6 7 0 1 3 2
4 5 7 6 1 0 2 3
3 2 1 0 6 7 4 5
2 3 0 1 7 6 5 4
1 0 2 3 5 4 6 7
0 1 3 2 4 5 7 6

.

The canonical representation is

NQ8 = 2215+2
2
(

2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+2213+2
2
(

2(2
15+214)+2(2

13+216)+2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+2211+2
2
(

2(2
15+212)+2(2

13+210)+2(2
11+214)+2(2

9+216)+2(2
7+24)+2(2

5+22)+2(2
3+26)+2(2

1+28)+1
)

+229+2
2
(

2(2
15+210)+2(2

13+212)+2(2
11+216)+2(2

9+214)+2(2
7+22)+2(2

5+24)+2(2
3+28)+2(2

1+26)+1
)

+227+2
2
(

2(2
15+28)+2(2

13+26)+2(2
11+22)+2(2

9+24)+2(2
7+214)+2(2

5+216)+2(2
3+212)+2(2

1+210)+1
)

+225+2
2
(

2(2
15+26)+2(2

13+28)+2(2
11+24)+2(2

9+22)+2(2
7+216)+2(2

5+214)+2(2
3+210)+2(2

1+212)+1
)

+223+2
2
(

2(2
15+24)+2(2

13+22)+2(2
11+28)+2(2

9+26)+2(2
7+210)+2(2

5+212)+2(2
3+214)+2(2

1+216)+1
)

+221+2
2
(

2(2
15+22)+2(2

13+24)+2(2
11+26)+2(2

9+28)+2(2
7+212)+2(2

5+210)+2(2
3+216)+2(2

1+214)+1
)

.

Cyclic Group Z8. Finding the cyclic group is trivial, and it is defined by the equations
a2 = b, b2 = c, c2 = e. It has numeric table

7 6 5 4 3 2 1 0
6 5 4 3 2 1 0 7
5 4 3 2 1 0 7 6
4 3 2 1 0 7 6 5
3 2 1 0 7 6 5 4
2 1 0 7 6 5 4 3
1 0 7 6 5 4 3 2
0 7 6 5 4 3 2 1

The canonical representation of this group being

Journal Not Specified 2022, 1, 0 42 of 54

NZ8 = 2215+2
2
(

2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+2213+2
2
(

2(2
15+214)+2(2

13+212)+2(2
11+210)+2(2

9+28)+2(2
7+26)+2(2

5+24)+2(2
3+22)+2(2

1+216)+1
)

+2211+2
2
(

2(2
15+212)+2(2

13+210)+2(2
11+28)+2(2

9+26)+2(2
7+24)+2(2

5+22)+2(2
3+216)+2(2

1+214)+1
)

+229+2
2
(

2(2
15+210)+2(2

13+28)+2(2
11+26)+2(2

9+24)+2(2
7+22)+2(2

5+216)+2(2
3+214)+2(2

1+212)+1
)

+227+2
2
(

2(2
15+28)+2(2

13+26)+2(2
11+24)+2(2

9+22)+2(2
7+216)+2(2

5+214)+2(2
3+212)+2(2

1+210)+1
)

+225+2
2
(

2(2
15+26)+2(2

13+24)+2(2
11+22)+2(2

9+216)+2(2
7+214)+2(2

5+212)+2(2
3+210)+2(2

1+28)+1
)

+223+2
2
(

2(2
15+24)+2(2

13+22)+2(2
11+216)+2(2

9+214)+2(2
7+212)+2(2

5+210)+2(2
3+28)+2(2

1+26)+1
)

+221+2
2
(

2(2
15+22)+2(2

13+216)+2(2
11+214)+2(2

9+212)+2(2
7+210)+2(2

5+28)+2(2
3+26)+2(2

1+24)+1
)

.

Groups of eight elements have been ordered; Z8 < Q8 < D8 < Z2 ⊕Z4 < Z3
2.

Appendix .4 |G| = 9

Direct Product Z3 ⊕ Z3. If |G| = 9 then |g| = 3 or |g| = 9 for any g ∈ G. Start by
searching for groups with all objects of order 3. The function ∗x1 is equal to the composition
∗a ◦ ∗a. Since |b| = 3, it is true b2 ̸= a. If b2 = a, then b ∗ a = e which is a contradiction.
Suppose b2 = c, without loss of generality.

e a x1 b x2 x3 c x4 x5
a x1 e
x1 e a
b x2 x3 c
x2 x3 b
x3 b x2
c x4 x5 e

x4 x5 c
x5 c x4

The rest of the rows of b and c are found using associativity.

e a x1 b x2 x3 c x4 x5
a x1 e
x1 e a
b x2 x3 c x4 x5 e a x1
x2 x3 b
x3 b x2
c x4 x5 e a x1 b x2 x3

x4 x5 c
x5 c x4

Check for a non abelian group. The first option for this is b ∗ a = x3, which implies
x2 ∗ a = b. There is a contradiction because |x2| = 3 implies x2 ∗ x4 = a. There is also a
contradiction if b ∗ a = x4. This relation implies x3 ∗ a = c. The last expression together
with |x3| = 3 implies x3 ∗ x1 = a, which is a contradiction with x2

1 = a. The supposition
b ∗ a = x5 implies x2 ∗ a = c. This, together with x2 ∗ c = a is a contradiction with the

Journal Not Specified 2022, 1, 0 43 of 54

fact that |x2| = 3. It can be concluded b ∗ a = x2. Then it can be found x2 ∗ a = x3 and
x3 ∗ a = b. Use the last expression to find b ∗ x1 = x3.

e a x1 b x2 x3 c x4 x5
a x1 e x2 x3 b
x1 e a x3 b x2
b x2 x3 c x4 x5 e a x1
x2 x3 b
x3 b x2
c x4 x5 e a x1 b x2 x3

x4 x5 c
x5 c x4

Use the expression b = x2 ∗ x1 to find b ∗ x2 = x4. Then use b = x2 ∗ x1 to find
b ∗ x4 = a.

e a x1 b x2 x3 c x4 x5
a x1 e x2 x3 b
x1 e a x3 b x2
b x2 x3 c x4 x5 e a x1
x2 x3 b x4 x5 c
x3 b x2 x5 c x4
c x4 x5 e a x1 b x2 x3

x4 x5 c a x1 e
x5 c x4 x1 e a

Finding the rest of the table is trivial. The result is the direct product group Z3 ⊕Z3.
The system of equations that defines this group is given by the relations

a2 = x1

b2 = c

a3 = b3 = e

a ∗ b = b ∗ a.

This group is determined by two commuting third order elements such that neither
is the square of the other. To find the canonical naming function of this group begin by
expressing the table in generic variables gi.

e g1 g2 g3 g4 g5 g6 g7 g8
g1 g2 e g4 g5 g3 g7 g8 g6
g2 e g1 g5 g3 g4 g8 g6 g7
g3 g4 g5 g6 g7 g8 e g1 g2
g4 g5 g3 g7 g8 g6 g1 g2 e
g5 g3 g4 g8 g6 g7 g2 e g1
g6 g7 g8 e g1 g2 g3 g4 g5
g7 g8 g6 g1 g2 e g4 g5 g3
g8 g6 g7 g2 e g1 g5 g3 g4

Observe that the group is commutative. The group naming will be determined by
choosing any two objects a, b that satisfy the conditions mentioned above. Let e = 8 and
choose an arbitrary a = 7. Then a2 = 6 maximizes the representation. The object a is
chosen from eight possible choices. Next choose a second object b = 5, and assign the
name a ∗ b = x2 = 4 and a ∗ x2 = 3. This object b can be chosen from six remaining objects.
Finally, assign the values b2 = c = 2, a ∗ c = x4 = 1, a ∗ x4 = x5 = 0. This has determined a

Journal Not Specified 2022, 1, 0 44 of 54

total of forty eight canonical naming functions and automorphisms of Z2
3. Choosing the

two objects a, b determines the rest of the naming values. This gives the numeric table

8 7 6 5 4 3 2 1 0
7 6 8 4 3 5 1 0 2
6 8 7 3 5 4 0 2 1
5 4 3 2 1 0 8 7 6
4 3 5 1 0 2 7 6 8
3 5 4 0 2 1 6 8 7
2 1 0 8 7 6 5 4 3
1 0 2 7 6 8 4 3 5
0 2 1 6 8 7 3 5 4

.

The canonical representation of this group is the number

NZ2
3

= 2217+2
2
(

2(2
17+218)+2(2

15+216)+2(2
13+214)+2(2

11+212)+2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)

+2215+2
2
(

2(2
17+216)+2(2

15+214)+2(2
13+218)+2(2

11+210)+2(2
9+28)+2(2

7+212)+2(2
5+24)+2(2

3+22)+2(2
1+26)+1

)

+2213+2
2
(

2(2
17+214)+2(2

15+218)+2(2
13+216)+2(2

11+28)+2(2
9+212)+2(2

7+210)+2(2
5+22)+2(2

3+26)+2(2
1+24)+1

)

+2211+2
2
(

2(2
17+212)+2(2

15+210)+2(2
13+28)+2(2

11+26)+2(2
9+24)+2(2

7+22)+2(2
5+218)+2(2

3+216)+2(2
1+214)+1

)

+229+2
2
(

2(2
17+210)+2(2

15+28)+2(2
13+212)+2(2

11+24)+2(2
9+22)+2(2

7+26)+2(2
5+216)+2(2

3+214)+2(2
1+218)+1

)

+227+2
2

(
22(2

17+28)+(215+212)+2(2
13+210)+2(2

11+22)+2(2
9+26)+2(2

7+24)+2(2
5+214)+2(2

3+218)+2(2
1+216)+1

)

+225+2
2
(

2(2
17+26)+2(2

15+24)+2(2
13+22)+2(2

11+218)+2(2
9+216)+2(2

7+214)+2(2
5+212)+2(2

3+210)+2(2
1+28)+1

)

+223+2
2
(

2(2
17+24)+2(2

15+22)+2(2
13+26)+2(2

11+216)+2(2
9+214)+2(2

7+218)+2(2
5+210)+2(2

3+28)+2(2
1+212)+1

)

+221+2
2
(

2(2
17+22)+2(2

15+26)+2(2
13+24)+2(2

11+214)+2(2
9+218)+2(2

7+216)+2(2
5+28)+2(2

3+212)+2(2
1+210)+1

)
.

Cyclic Group Z9. If |G| = 9, the objects of G have order 3 or 9. The only group with
all objects of order three has been found. Now consider the case where there exists at least
one object of order 9. But, since the group has nine objects, this must be the cyclic group,
Z9. The cyclic group of nine objects is trivially given by the numeric table

8 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0 8
6 5 4 3 2 1 0 8 7
5 4 3 2 1 0 8 7 6
4 3 2 1 0 8 7 6 5
3 2 1 0 8 7 6 5 4
2 1 0 8 7 6 5 4 3
1 0 8 7 6 5 4 3 2
0 8 7 6 5 4 3 2 1

.

The canonical representation is

Journal Not Specified 2022, 1, 0 45 of 54

NZ9 = 2217+2
2
(

2(2
17+218)+2(2

15+216)+2(2
13+214)+2(2

11+212)+2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)

+2215+2
2
(

2(2
17+216)+2(2

15+214)+2(2
13+212)+2(2

11+210)+2(2
9+28)+2(2

7+26)+2(2
5+24)+2(2

3+22)+2(2
1+218)+1

)

+2213+2
2
(

2(2
17+214)+2(2

15+212)+2(2
13+210)+2(2

11+28)+2(2
9+26)+2(2

7+24)+2(2
5+22)+2(2

3+218)+2(2
1+216)+1

)

+2211+2
2
(

2(2
17+212)+2(2

15+210)+2(2
13+28)+2(2

11+26)+2(2
9+24)+2(2

7+22)+2(2
5+218)+2(2

3+216)+2(2
1+214)+1

)

+229+2
2
(

2(2
17+210)+2(2

15+28)+2(2
13+26)+2(2

11+24)+2(2
9+22)+2(2

7+218)+2(2
5+216)+2(2

3+214)+2(2
1+212)+1

)

+227+2
2

(
22(2

17+28)+(215+26)+2(2
13+24)+2(2

11+22)+2(2
9+218)+2(2

7+216)+2(2
5+214)+2(2

3+212)+2(2
1+210)+1

)

+225+2
2
(

2(2
17+26)+2(2

15+24)+2(2
13+22)+2(2

11+218)+2(2
9+216)+2(2

7+214)+2(2
5+212)+2(2

3+210)+2(2
1+28)+1

)

+223+2
2
(

2(2
17+24)+2(2

15+22)+2(2
13+218)+2(2

11+216)+2(2
9+214)+2(2

7+212)+2(2
5+210)+2(2

3+28)+2(2
1+26)+1

)

+221+2
2
(

2(2
17+22)+2(2

15+218)+2(2
13+216)+2(2

11+214)+2(2
9+212)+2(2

7+210)+2(2
5+28)+2(2

3+26)+2(2
1+24)+1

)
.

Comparing the two numbers, it is verified Z9 < Z2
3. It is becoming more clear how to

find the canonical representation, without having to calculate all the representations. But
there are still several considerations before attacking the general case.

The canonical block form of the symmetric group ∆4 is calculated, as another example.

Journal Not Specified 2022, 1, 0 46 of 54

Appendix .5 ∆4

The multiplication table of ∆4 is exhibited for reference. The symbols gi are used for
the elements of order 2, and hi for the rest of the objects.

e g1 g2 g3 g4 g5 g6 g7 g8 g9 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14
g1 e g4 g5 g2 g3 h2 h1 h4 h3 g7 g6 g9 g8 h6 h5 h12 h11 h14 h13 h8 h7 h10 h9
g2 g4 e h6 g1 h5 h1 h2 g9 g8 g6 g7 h4 h3 g5 g3 h11 h12 h10 h9 h7 h8 h14 h13
g3 g5 h5 e h6 g1 h10 h9 h8 h7 h14 h13 h12 h11 g2 g4 g9 g8 g7 g6 h4 h3 h2 h1
g4 g2 g1 h5 e h6 g7 g6 h3 h4 h2 h1 g8 g9 g3 g5 h8 h7 h13 h14 h12 h11 h9 h10
g5 g3 h6 g1 h5 e h13 h14 h11 h12 h9 h10 h7 h8 g4 g2 h3 h4 h1 h2 g8 g9 g6 g7
g6 h1 h2 h7 g7 h11 e g4 h13 h10 g1 g2 h9 h14 h8 h12 g3 h5 h3 g9 g5 h6 g8 h4
g7 h2 h1 h8 g6 h12 g4 e h9 h14 g2 g1 h13 h10 h7 h11 h5 g3 g8 h4 h6 g5 h3 g9
g8 h3 g9 h9 h4 h13 h11 h8 e g2 h7 h12 g1 g4 h14 h10 h1 g7 g3 h6 g6 h2 g5 h5
g9 h4 g8 h10 h3 h14 h7 h12 g2 e h11 h8 g4 g1 h13 h9 g6 h2 h6 g3 h1 g7 h5 g5
h1 g6 g7 h11 h2 h7 g2 g1 h14 h9 g4 e h10 h13 h12 h8 h6 g5 h4 g8 h5 g3 g9 h3
h2 g7 g6 h12 h1 h8 g1 g2 h10 h13 e g4 h14 h9 h11 h7 g5 h6 g9 h3 g3 h5 h4 g8
h3 g8 h4 h13 g9 h9 h12 h7 g4 g1 h8 h11 g2 e h10 h14 h2 g6 h5 g5 g7 h1 h6 g3
h4 g9 h3 h14 g8 h10 h8 h11 g1 g4 h12 h7 e g2 h9 h13 g7 h1 g5 h5 h2 g6 g3 h6
h5 h6 g3 g4 g5 g2 h14 h13 h7 h8 h10 h9 h11 h12 g1 e h4 h3 g6 g7 g9 g8 h1 h2
h6 h5 g5 g2 g3 g4 h9 h10 h12 h11 h13 h14 h8 h7 e g1 g8 g9 h2 h1 h3 h4 g7 g6
h7 h11 h8 g6 h12 h1 g9 h3 h5 g3 h4 g8 h6 g5 h2 g7 h10 h13 g4 e h14 h9 g2 g1
h8 h12 h7 g7 h11 h2 h4 g8 g3 h5 g9 h3 g5 h6 h1 g6 h14 h9 e g4 h10 h13 g1 g2
h9 h13 h14 g8 h10 h3 h6 g3 g7 h1 h5 g5 h2 g6 g9 h4 g2 e h8 h11 g4 g1 h12 h7
h10 h14 h13 g9 h9 h4 g3 h6 h2 g6 g5 h5 g7 h1 g8 h3 e g2 h12 h7 g1 g4 h8 h11
h11 h7 h12 h1 h8 g6 g8 h4 g5 h6 h3 g9 g3 h5 g7 h2 h9 h14 g1 g2 h13 h10 e g4
h12 h8 h11 h2 h7 g7 h3 g9 h6 g5 g8 h4 h5 g3 g6 h1 h13 h10 g2 g1 h9 h14 g4 e
h13 h9 h10 h3 h14 g8 g5 h5 g6 h2 g3 h6 h1 g7 h4 g9 g1 g4 h7 h12 e g2 h11 h8
h14 h10 h9 h4 h13 g9 h5 g5 h1 g7 h6 g3 g6 h2 h3 g8 g4 g1 h11 h8 g2 e h7 h12

(A6)
It is noted, ahead of time, the canonical naming function does not assign the ten

highest values to the set {e, g1, g2, . . . , g9}. Some hi objects will have a higher numeric value
than some gi. The smallest order of any non trivial object is 2. It is obvious e = 23, 23 = a,
22 = b for two second order objects, a, b, that commute. The possible pairs are:

{g1, g2} {g4, g6}
{g1, g4} {g4, g7}
{g2, g4} {g6, g7}
{g1, g3} {g2, g8}
{g1, g5} {g2, g9}
{g3, g5} {g8, g9}

(A7)

Let a, b any of these pairs; the pairs can be used in either order because they are not
ordered pairs. For example, a naming can be a = g1, b = g2, or a = g2, b = g1. Any of the
pairs above determine the naming function e = 23, a = 22, b = 21, x1 = 20 with table

e a b x1
a e x1 b
b x1 e a
x1 b a e

.

To maximize the representation, find a, b, x1 such that {e, a, b, x1} forms the Klein
4-group. In fact, the triads

{g1, g2, g4} {g1, g3, g5} {g4, g6, g7} {g2, g8, g9} (A8)

Journal Not Specified 2022, 1, 0 47 of 54

form the Klein 4-group. Given any one of these triads, it is unknown which objects will
be a and b. For example, using {g1, g2, g4}, who should we define as a, b, x1? All the non
trivial objects of K(4) are equivalent, so this can not be decided yet.

Add a new object c1 and x2 = a ∗ c1.

e a b x1 c1 x2
a e x1 b
b x1 e a
x1 b a e
c1 x2
x2 c1

Another new object is needed also, c2 = b ∗ c1, then x3 = a ∗ c2.

e a b x1 c1 x2 c2 x3
a e x1 b
b x1 e a
x1 b a e
c1 x2 c2 x3
x2 c1 x3 c2
c2 x3 c1 x2
x3 c2 x2 c1

In summary, the canonical naming function will involve one of the Klein 4-subgroups
{e, a, b, x1} of ∆4, and an object c1 that commutes with a, if it should exist. This maximizes
the table. There are several options to do this. In fact, all the candidate naming functions
admit an object c1 that commutes with a. This gives the table

e a b x1 c1 x2 c2 x3
a e x1 b x2 c1
b x1 e a
x1 b a e
c1 x2 c2 x3
x2 c1 x3 c2
c2 x3 c1 x2
x3 c2 x2 c1

determined by the equations

e = a2 = b2

a ∗ b = b ∗ a

a ∗ c1 = c1 ∗ a.

For the triads in (A8), it is necessary to find an object c1 that commutes with a. For
example, all the objects in {g1, g2, g4} commute with at least one object not in that set. In
the case of {g2, g8, g9}, only g2 commutes with objects not in that list. This means if the
triad {g2, g8, g9} is chosen, then a = g2. For {g1, g3, g5} it must be true a = g1, and for
{g4, g6, g7} the naming a = g4 must be given. The objects that commute with each second
order object gi are listed.

Comm(g1) = {g2, g4, g3, g5, h5, h6} Comm(g2) = {g1, g4, g8, g9, h3, h4} Comm(g3) = {g1, g5}
Comm(g4) = {g1, g2, g6, g7, h1, h2} Comm(g5) = {g1, g3} Comm(g6) = {g4, g7}

Comm(g7) = {g4, g6} Comm(g8) = {g2, g9} Comm(g9) = {g2, g8}
(A9)

This information reduces the possible naming functions because a little more is known
about a. The possible naming functions are more than would be practical to list, but

Journal Not Specified 2022, 1, 0 48 of 54

they are easy to describe. An object a ∈ {g1, g2, g4} is needed, along with a second order
object b that together determine the subgroup K(4). For example, if a = g4, then one can
choose b ∈ {g1, g2, g6, g7}; find a second order object that commutes with a = g4. In the
case of a = g1, one must choose b ∈ {g2, g4, g3, g5}. If a = g2 then b ∈ {g1, g4, g8, g9}.
After determining the subgroup K(4), an object c1 that commutes with a is needed. The
expressions of (A9) determine which combinations allow c1. Start representing naming
functions with finite sequences; in the form (a, b, x1, c1, x2, c2, x3). For example, the naming
function a = g4, b = g2, x1 = a ∗ b = g1, c1 = g7, x2 = a ∗ c1 = g6, c2 = b ∗ c1 = h1,
x3 = a ∗ c2 = h2 is given by the expression (g4, g2, g1, g7, g6, h1, h2). It is already known
a ∈ g1, g2, g4 for any of the triads giving K(4). Choose a second order object, b, that
commutes with a, and then choose an object c1 that also commutes with a. All possible
naming functions are listed below.

(g1, g2, g4, g3, g5, h5, h6) (g2, g1, g4, g8, g9, h3, h4) (g4, g1, g2, g6, g7, h1, h2)
(g1, g2, g4, g5, g3, h6, h5) (g2, g1, g4, g9, g8, h4, h3) (g4, g1, g2, g7, g6, h2, h1)
(g1, g2, g4, h5, h6, g3, g5) (g2, g1, g4, h3, h4, g8, g9) (g4, g1, g2, h1, h2, g6, g7)
(g1, g2, g4, h6, h5, g5, g3) (g2, g1, g4, h4, h3, g9, g8) (g4, g1, g2, h2, h1, g7, g6)

(g1, g4, g2, g3, g5, h6, h5) (g2, g4, g1, g8, g9, h4, h3) (g4, g2, g1, g6, g7, h2, h1)
(g1, g4, g2, g5, g3, h5, h6) (g2, g4, g1, g9, g8, h3, h4) (g4, g2, g1, g7, g6, h1, h2)
(g1, g4, g2, h5, h6, g5, g3) (g2, g4, g1, h3, h4, g9, g8) (g4, g2, g1, h1, h2, g7, g6)
(g1, g4, g2, h6, h5, g3, g5) (g2, g4, g1, h4, h3, g8, g9) (g4, g2, g1, h2, h1, g6, g7)

(g1, g3, g5, g2, g4, h6, h5) (g2, g8, g9, g1, g4, h4, h3) (g4, g6, g7, g1, g2, h2, h1)
(g1, g3, g5, g4, g2, h5, h6) (g2, g8, g9, g4, g1, h3, h4) (g4, g6, g7, g2, g1, h1, h2)
(g1, g3, g5, h5, h6, g4, g2) (g2, g8, g9, h3, h4, g4, g1) (g4, g6, g7, h1, h2, g2, g1)
(g1, g3, g5, h6, h5, g2, g4) (g2, g8, g9, h4, h3, g1, g4) (g4, g6, g7, h2, h1, g1, g2)

(g1, g5, g3, g2, g4, h5, h6) (g2, g9, g8, g1, g4, h3, h4) (g4, g7, g6, g1, g4, h1, h2)
(g1, g5, g3, g4, g2, h6, h5) (g2, g9, g8, g4, g1, h4, h3) (g4, g7, g6, g2, g1, h2, h1)
(g1, g5, g3, h5, h6, g2, g4) (g2, g9, g8, h3, h4, g1, g4) (g4, g7, g6, h1, h2, g1, g2)
(g1, g5, g3, h6, h5, g4, g2) (g2, g9, g8, h4, h3, g4, g1) (g4, g7, g6, h2, h1, g2, g1)

(A10)

In (A9) it can also be observed that given any choice of K(4) = {e, a, b, x1}, there is
no group element g /∈ K(4) that commutes with both a and b. That is to say, x1 = a ∗ b is
the only element of ∆4 that commutes with a and b. None of the candidate triads satisfy
a ∗ c1 = c1 ∗ a and b ∗ c1 = c1 ∗ b simultaneously. The highest valued object that can be in
the position of c1 ∗ b, is x3. Each of the finite sequences above satisfies a ∗ c1 = c1 ∗ a and
x3 = c1 ∗ b. Any one of the naming functions in (A10) will give the table

e a b x1 c1 x2 c2 x3
a e x1 b x2 c1
b x1 e a x3 c2
x1 b a e c2 x3
c1 x2 c2 x3
x2 c1 x3 c2
c2 x3 c1 x2
x3 c2 x2 c1

.

Journal Not Specified 2022, 1, 0 49 of 54

It is possible to choose c1 with the additional restraint |c1| = 2, maximizing the
representation. The naming functions

(g1, g2, g4, g3, g5, h5, h6) (g2, g1, g4, g8, g9, h3, h4) (g4, g1, g2, g6, g7, h1, h2)
(g1, g2, g4, g5, g3, h6, h5) (g2, g1, g4, g9, g8, h4, h3) (g4, g1, g2, g7, g6, h2, h1)

(g1, g4, g2, g3, g5, h6, h5) (g2, g4, g1, g8, g9, h4, h3) (g4, g2, g1, g6, g7, h2, h1)
(g1, g4, g2, g5, g3, h5, h6) (g2, g4, g1, g9, g8, h3, h4) (g4, g2, g1, g7, g6, h1, h2)

(g1, g3, g5, g2, g4, h6, h5) (g2, g8, g9, g1, g4, h4, h3) (g4, g6, g7, g1, g2, h2, h1)
(g1, g3, g5, g4, g2, h5, h6) (g2, g8, g9, g4, g1, h3, h4) (g4, g6, g7, g2, g1, h1, h2)

(g1, g5, g3, g2, g4, h5, h6) (g2, g9, g8, g1, g4, h3, h4) (g4, g7, g6, g1, g4, h1, h2)
(g1, g5, g3, g4, g2, h6, h5) (g2, g9, g8, g4, g1, h4, h3) (g4, g7, g6, g2, g1, h2, h1)

(A11)

give the Dihedral Group

e a b x1 c1 x2 c2 x3
a e x1 b x2 c1 x3 c2
b x1 e a x3 c2 x2 c1
x1 b a e c2 x3 c1 x2
c1 x2 c2 x3 e a b x1
x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a

.

Add a new object d1 to the table above. The operation b ∗ d1 is a new object, d2. The
operation c1 ∗ d1 is also a new object, p1. Finally, p2 = b ∗ p1 to maximize the representation.

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7
a e x1 b x2 c1 x3 c2
b x1 e a x3 c2 x2 c1
x1 b a e c2 x3 c1 x2
c1 x2 c2 x3 e a b x1
x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a
d1 x4 d2 x5 p1 x6 p2 x7
x4 d1 x5 d2 x6 p1 x7 p2
d2 x5 d1 x4 x7 p2 x6 p1
x5 d2 x4 d1 p2 x7 p1 x6
p1 x6 p2 x7 d1 x4 d2 x5
x6 p1 x7 p2 x4 d1 x5 d2
p2 x7 p1 x6 x5 d2 x4 d1
x7 p2 x6 p1 d2 x5 d1 x4

How is d1 chosen? If there is another object(s) that commutes with a, it would be
candidate to d1. However, in each of the naming functions, there are no more objects that
commute with a. The next largest value that can be placed in d1 ∗ a, is d2 = b ∗ d1. Observe
that only some of the naming functions above will satisfy this condition. For example, the
naming function a = g1, b = g3 is disqualified from being a canonical naming function
because there is no element d1 /∈ D8 such that d1 ∗ a = b ∗ d1. The only cases when such
an object d1 exists is if a, b ∈ {g1, g2, g4}. The easiest way to find the candidates for d1, is
to compare the row of a and the column of b. If the i-th object in the row of a coincides
with the i-th object in the column of b, then the i-th object on the first row (or first column)

Journal Not Specified 2022, 1, 0 50 of 54

is a candidate for d1. For example, with the naming function (g1, g2, g4, g3, g5, h5, h6), the
candidates for d1 are the objects g6, g7, h1, h2, h9, h10, h13, h14. The candidates for d1 are
determined by a, b. If a = g1 and b = g3 there is no candidate for d1. If a = g1 and b = g4
the candidates for d1 are g8, g9, h3, h4, h7, h8, h11, h12, etc. The naming functions that satisfy
this condition are those that have a, b in g1, g2, g4. More is known about the canonical
naming function. The Klein group K(4) = {e, g1, g2, g4}, in any order, gives the first four
objects of the naming function. Then, a second order object c1 that commutes with a must
be chosen. Then choose d1 so that b ∗ d1 = d1 ∗ a. Below, twelve naming functions are given.
Each of these has eight possible candidates for d1. There is a total of ninety-six possible
naming functions.

(g1, g2, g4, g3, g5, h5, h6, d1, . . . , x7) (g2, g1, g4, g8, g9, h3, h4, d1, . . . , x7) (g4, g1, g2, g6, g7, h1, h2, d1, . . . , x7)
(g1, g2, g4, g5, g3, h6, h5, d1, . . . , x7) (g2, g1, g4, g9, g8, h4, h3, d1, . . . , x7) (g4, g1, g2, g7, g6, h2, h1, d1, . . . , x7)

(g1, g4, g2, g3, g5, h6, h5, d1, . . . , x7) (g2, g4, g1, g8, g9, h4, h3, d1, . . . , x7) (g4, g2, g1, g6, g7, h2, h1, d1, . . . , x7)
(g1, g4, g2, g5, g3, h5, h6, d1, . . . , x7) (g2, g4, g1, g9, g8, h3, h4, d1, . . . , x7) (g4, g2, g1, g7, g6, h1, h2, d1, . . . , x7)

(A12)

It is possible to reduce the naming functions, further. Some of the candidate naming
functions (not all) satisfy d1 ∗ b = a ∗ d1, which maximizes the representation. Keep the
naming functions that satisfy b ∗ d1 = d1 ∗ a and d1 ∗ b = a ∗ d1, simultaneously. In the case
of a = g1, b = g2 the candidates for d1 are reduced to g6, g7, h1, h2.

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7
a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 x7 p2 x6 p1
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2
x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 p2 x7 p1 x6
c1 x2 c2 x3 e a b x1
x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a
d1 x4 d2 x5 p1 x6 p2 x7
x4 d1 x5 d2 x6 p1 x7 p2
d2 x5 d1 x4 x7 p2 x6 p1
x5 d2 x4 d1 p2 x7 p1 x6
p1 x6 p2 x7 d1 x4 d2 x5
x6 p1 x7 p2 x4 d1 x5 d2
p2 x7 p1 x6 x5 d2 x4 d1
x7 p2 x6 p1 d2 x5 d1 x4

The naming functions (a, b, x1, c1, x2, c2, x3, d1, x4, d2, x5, p1, x6, p2, x7) are given below.

Journal Not Specified 2022, 1, 0 51 of 54

(g1, g2, g4, g3, g5, h5, h6, g6, h1, h2, g7, h7, h11, h8, h12) (g2, g1, g4, g8, g9, h3, h4, g6, h2, h1, g7, h13, h10, h9, h14)
(g1, g2, g4, g3, g5, h5, h6, g7, h2, h1, g6, h8, h12, h7, h11) (g2, g1, g4, g8, g9, h3, h4, g7, h1, h2, g6, h9, h14, h13, h10)
(g1, g2, g4, g3, g5, h5, h6, h1, g6, g7, h2, h11, h7, h8, h12) (g2, g1, g4, g8, g9, h3, h4, h1, g7, g6, h2, h14, h9, h13, h10)
(g1, g2, g4, g3, g5, h5, h6, h2, g7, g6, h1, h12, h8, h7, h11) (g2, g1, g4, g8, g9, h3, h4, h2, g6, g7, h1, h10, h13, h14, h9)

(g1, g2, g4, g5, g3, h6, h5, g6, h1, h2, g7, h11, h7, h12, h8) (g2, g1, g4, g9, g8, h4, h3, g6, h2, h1, g7, h10, h13, h14, h9)
(g1, g2, g4, g5, g3, h6, h5, g7, h2, h1, g6, h12, h8, h7, h11) (g2, g1, g4, g9, g8, h4, h3, g7, h1, h2, g6, h14, h9, h10, h13)
(g1, g2, g4, g5, g3, h6, h5, h1, g6, g7, h2, h7, h11, h8, h12) (g2, g1, g4, g9, g8, h4, h3, h1, g7, g6, h2, h9, h14, h13, h10)
(g1, g2, g4, g5, g3, h6, h5, h2, g7, g6, h1, h8, h12, h7, h11) (g2, g1, g4, g9, g8, h4, h3, h2, g6, g7, h1, h13, h10, h9, h14)

(g1, g4, g2, g3, g5, h5, h6, g8, h3, h4, g9, h9, h13, h10, h14) (g2, g4, g1, g8, g9, h3, h4, g3, h5, h6, g5, h8, h7, h11, h12)
(g1, g4, g2, g3, g5, h5, h6, g9, h4, h3, g8, h10, h14, h9, h13) (g2, g4, g1, g8, g9, h3, h4, g5, h6, h5, g3, h11, h12, h8, h7)
(g1, g4, g2, g3, g5, h5, h6, h3, g8, g9, h4, h13, h9, h14, h10) (g2, g4, g1, g8, g9, h3, h4, h5, g3, g5, h6, h7, h8, h12, h11)
(g1, g4, g2, g3, g5, h5, h6, h4, g9, g8, h3, h14, h10, h9, h13) (g2, g4, g1, g8, g9, h3, h4, h6, g5, g3, h5, h12, h11, h7, h8)

(g1, g4, g2, g5, g3, h6, h5, g8, h3, h4, g9, h13, h9, h14, h10) (g2, g4, g1, g9, g8, h4, h3, g3, h5, h6, g5, h7, h8, h12, h11)
(g1, g4, g2, g5, g3, h6, h5, g9, h4, h3, g8, h14, h10, h13, h9) (g2, g4, g1, g9, g8, h4, h3, g5, h6, h5, g3, h12, h11, h7, h8)
(g1, g4, g2, g5, g3, h6, h5, h3, g8, g9, h4, h9, h13, h10, h14) (g2, g4, g1, g9, g8, h4, h3, h5, g3, g5, h6, h8, h7, h11, h12)
(g1, g4, g2, g5, g3, h6, h5, h4, g9, g8, h3, h10, h14, h9, h13) (g2, g4, g1, g9, g8, h4, h3, h6, g5, g3, h5, h11, h12, h8, h7)

(g4, g1, g2, g6, g7, h1, h2, g8, h4, h3, g9, h11, h8, h7, h12)
(g4, g1, g2, g6, g7, h1, h2, g9, h3, h4, g8, h7, h12, h11, h8)
(g4, g1, g2, g6, g7, h1, h2, h3, g9, g8, h4, h12, h7, h8, h11)
(g4, g1, g2, g6, g7, h1, h2, h4, g8, g9, h3, h8, h11, h12, h7)

(g4, g1, g2, g7, g6, h2, h1, g8, h4, h3, g9, h8, h11, h12, h7)
(g4, g1, g2, g7, g6, h2, h1, g9, h3, h4, g8, h12, h7, h8, h11)
(g4, g1, g2, g7, g6, h2, h1, h3, g9, g8, h4, h7, h12, h11, h8)
(g4, g1, g2, g7, g6, h2, h1, h4, g8, g9, h3, h11, h8, h7, h12)

(g4, g2, g1, g6, g7, h1, h2, g3, h6, h5, g5, h10, h9, h13, h14)
(g4, g2, g1, g6, g7, h1, h2, g5, h5, h6, g3, h13, h14, h10, h9)
(g4, g2, g1, g6, g7, h1, h2, h5, g5, g3, h6, h14, h13, h9, h10)
(g4, g2, g1, g6, g7, h1, h2, h6, g3, g5, h5, h9, h10, h14, h13)

(g4, g2, g1, g7, g6, h2, h1, g3, h6, h5, g5, h9, h10, h14, h13)
(g4, g2, g1, g7, g6, h2, h1, g5, h5, h6, g3, h14, h13, h9, h10)
(g4, g2, g1, g7, g6, h2, h1, h5, g5, g3, h6, h13, h14, h10, h9)
(g4, g2, g1, g7, g6, h2, h1, h6, g3, g5, h5, h10, h9, h13, h14)

(A13)

One can start to suspect what objects might turn out to be equivalent. For example, it
is quite clear g1, g2, g4 might probably be equivalent, and also g3, g5, and g6, g7, and h1, h2,
etc. The naming functions of (A13) all give a new object d1 ∗ c1. For example, in the naming
function (g1, g2, g4, g3, g5, h5, h6, g6, h1, h2, g7), there is a new object d1 ∗ c1 = g6 ∗ g3 = h10.
Including this new object, q1 = d1 ∗ c1, gives another new object r1 = c1 ∗ q1. The object
r1 = c1 ∗ q1 must be added, along with x10 = a ∗ r1, r2 = b ∗ r1, x11 = a ∗ r2.

Journal Not Specified 2022, 1, 0 52 of 54

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7 q1 x8 q2 x9 r1 x10 r2 x11
a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 x7 p2 x6 p1 q2 x9 q1 x8 x11 r2 x10 r1
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2 x9 q2 x8 q1 r2 x11 r1 x10
x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 p2 x7 p1 x6 x8 q1 x9 q2 x10 r1 x11 r2
c1 x2 c2 x3 e a b x1 q1 x8 q2 x9 r1 x10 r2 x11 d1 x4 d2 x5 p1 x6 p2 x7
x2 c1 x3 c2 a e x1 b q2 x9 q1 x8 x11 r2 x10 r1 d2 x5 d1 x4 x7 p2 x6 p1
c2 x3 c1 x2 x1 b a e x8 q1 x9 q2 x10 r1 x11 r2 x5 d2 x4 d1 p2 x7 p1 x6
x3 c2 x2 c1 b x1 e a x9 q2 x8 q1 r2 x11 r1 x10 x4 d1 x5 d2 x6 p1 x7 p2
d1 x4 d2 x5 p1 x6 p2 x7
x4 d1 x5 d2 x6 p1 x7 p2
d2 x5 d1 x4 x7 p2 x6 p1
x5 d2 x4 d1 p2 x7 p1 x6
p1 x6 p2 x7 d1 x4 d2 x5
x6 p1 x7 p2 x4 d1 x5 d2
p2 x7 p1 x6 x5 d2 x4 d1
x7 p2 x6 p1 d2 x5 d1 x4
q1 x8 q2 x9 r1 x10 r2 x11
x8 q1 x9 q2 x10 r1 x11 r2
q2 x9 q1 x8 x11 r2 x10 r1
x9 q2 x8 q1 r2 x11 r1 x10
r1 x10 r2 x11 q1 x8 q2 x9
x10 r1 x11 r2 x8 q1 x9 q2
r2 x11 r1 x10 x9 q2 x8 q1
x11 r2 x10 r1 q2 x9 q1 x8

.

To maximize the representation, take the naming functions that satisfy |d1| = 2.

(g1, g2, g4, g3, g5, h5, h6, g6, h1, h2, g7, h7, h11, h8, h12, h10, h14, h13, h9, g9, h4, g8, h3)
(g1, g2, g4, g3, g5, h5, h6, g7, h2, h1, g6, h8, h12, h7, h11, h9, h13, h14, h10, g8, h3, g9, h4)
(g1, g2, g4, g5, g3, h6, h5, g6, h1, h2, g7, h11, h7, h12, h8, h13, h9, h10, h14, g8, h3, g9, h4)
(g1, g2, g4, g5, g3, h6, h5, g7, h2, h1, g6, h12, h8, h7, h11, h14, h10, h13, h9, g9, h4, g8, h3)
(g1, g4, g2, g3, g5, h5, h6, g8, h3, h4, g9, h9, h13, h10, h14, h8, h12, h11, h7, g7, h2, g6, h1)
(g1, g4, g2, g3, g5, h5, h6, g9, h4, h3, g8, h10, h14, h9, h13, h7, h11, h12, h8, g6, h1, g7, h2)
(g1, g4, g2, g5, g3, h6, h5, g8, h3, h4, g9, h13, h9, h14, h10, h11, h7, h8, h12, g6, h1, g7, h2)
(g1, g4, g2, g5, g3, h6, h5, g9, h4, h3, g8, h14, h13, h10, h9, h12, h8, h7, h11, g7, h2, g6, h1)

(g2, g1, g4, g8, g9, h3, h4, g6, h2, h1, g7, h13, h10, h9, h14, h11, h12, h7, h8, g5, h6, g3, h5)
(g2, g1, g4, g8, g9, h3, h4, g7, h1, h2, g6, h9, h14, h13, h10, h8, h7, h12, h11, g3, h5, g5, h6)
(g2, g1, g4, g9, g8, h4, h3, g6, h2, h1, g7, h10, h13, h14, h9, h7, h8, h11, h12, g3, h5, g5, h6)
(g2, g1, g4, g9, g8, h4, h3, g7, h1, h2, g6, h14, h9, h10, h13, h12, h11, h8, h7, g5, h6, g3, h5)
(g2, g4, g1, g8, g9, h3, h4, g3, h5, h6, g5, h8, h7, h11, h12, h9, h14, h10, h13, g7, h1, g6, h2)
(g2, g4, g1, g8, g9, h3, h4, g5, h6, h5, g3, h11, h12, h8, h7, h13, h10, h14, h9, g6, h2, g7, h1)
(g2, g4, g1, g9, g8, h4, h3, g3, h5, h6, g5, h7, h8, h12, h11, h10, h13, h9, h14, g6, h2, g7, h1)
(g2, g4, g1, g9, g8, h4, h3, g5, h6, h5, g3, h12, h11, h7, h8, h14, h9, h13, h10, g7, h1, g6, h2)

(g4, g1, g2, g6, g7, h1, h2, g8, h4, h3, g9, h11, h8, h7, h12, h13, h14, h9, h10, g5, h5, g3, h6)
(g4, g1, g2, g6, g7, h1, h2, g9, h3, h4, g8, h7, h12, h11, h8, h10, h9, h14, h13, g3, h6, g5, h5)
(g4, g1, g2, g7, g6, h2, h1, g8, h4, h3, g9, h8, h11, h12, h7, h9, h10, h13, h14, g3, h6, g5, h5)
(g4, g1, g2, g7, g6, h2, h1, g9, h3, h4, g8, h12, h7, h8, h11, h14, h13, h10, h9, g5, h5, g3, h6)
(g4, g2, g1, g6, g7, h1, h2, g3, h6, h5, g5, h10, h9, h13, h14, h7, h12, h8, h11, g9, h3, g8, h4)
(g4, g2, g1, g6, g7, h1, h2, g5, h5, h6, g3, h13, h14, h10, h9, h11, h8, h7, h12, g8, h4, g9, h3)
(g4, g2, g1, g7, g6, h2, h1, g3, h6, h5, g5, h9, h10, h14, h13, h8, h11, h7, h14, g8, h4, g9, h3)
(g4, g2, g1, g7, g6, h2, h1, g5, h5, h6, g3, h14, h13, h9, h10, h12, h7, h11, h8, g9, h3, g8, h4)

Journal Not Specified 2022, 1, 0 53 of 54

These naming functions give the table

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7 q1 x8 q2 x9 r1 x10 r2 x11
a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 x7 p2 x6 p1 q2 x9 q1 x8 x11 r2 x10 r1
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2 x9 q2 x8 q1 r2 x11 r1 x10
x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 p2 x7 p1 x6 x8 q1 x9 q2 x10 r1 x11 r2
c1 x2 c2 x3 e a b x1 q1 x8 q2 x9 r1 x10 r2 x11 d1 x4 d2 x5 p1 x6 p2 x7
x2 c1 x3 c2 a e x1 b q2 x9 q1 x8 x11 r2 x10 r1 d2 x5 d1 x4 x7 p2 x6 p1
c2 x3 c1 x2 x1 b a e x8 q1 x9 q2 x10 r1 x11 r2 x5 d2 x4 d1 p2 x7 p1 x6
x3 c2 x2 c1 b x1 e a x9 q2 x8 q1 r2 x11 r1 x10 x4 d1 x5 d2 x6 p1 x7 p2
d1 x4 d2 x5 p1 x6 p2 x7 e a b x1 c1 x2 c2 x3
x4 d1 x5 d2 x6 p1 x7 p2 b x1 e a x3 c2 x2 c1
d2 x5 d1 x4 x7 p2 x6 p1 a e x1 b x2 c1 x3 c2
x5 d2 x4 d1 p2 x7 p1 x6 x1 b a e c2 x3 c1 x2
p1 x6 p2 x7 d1 x4 d2 x5 e a b x1 c1 x2 c2 x3
x6 p1 x7 p2 x4 d1 x5 d2 b x1 e a x3 c2 x2 c1
p2 x7 p1 x6 x5 d2 x4 d1 x1 b a e c2 x3 c1 x2
x7 p2 x6 p1 d2 x5 d1 x4 a e x1 b x2 c1 x1 c2
q1 x8 q2 x9 r1 x10 r2 x11 c1 x2 c2 x3 e a b x1
x8 q1 x9 q2 x10 r1 x11 r2 c2 x3 c1 x2 x1 b a e
q2 x9 q1 x8 x11 r2 x10 r1 x2 c1 x3 c2 a e x1 b
x9 q2 x8 q1 r2 x11 r1 x10 x3 c2 x2 c1 b x1 e a
r1 x10 r2 x11 q1 x8 q2 x9 c1 x2 c2 c1 e a b x1
x10 r1 x11 r2 x8 q1 x9 q2 c2 x3 c1 x2 x1 b a e
r2 x11 r1 x10 x9 q2 x8 q1 x3 c2 x2 c1 b x1 e a
x11 r2 x10 r1 q2 x9 q1 x8 x2 c1 x3 c2 a e x1 b

.

At this point, No more information can be added to the table. An observation is made
to complete the table. All the naming functions satisfy d1 ∗ p1 = r1. With this, the table is
finished.

Journal Not Specified 2022, 1, 0 54 of 54

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7 q1 x8 q2 x9 r1 x10 r2 x11
a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 x7 p2 x6 p1 q2 x9 q1 x8 x11 r2 x10 r1
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2 x9 q2 x8 q1 r2 x11 r1 x10
x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 p2 x7 p1 x6 x8 q1 x9 q2 x10 r1 x11 r2
c1 x2 c2 x3 e a b x1 q1 x8 q2 x9 r1 x10 r2 x11 d1 x4 d2 x5 p1 x6 p2 x7
x2 c1 x3 c2 a e x1 b q2 x9 q1 x8 x11 r2 x10 r1 d2 x5 d1 x4 x7 p2 x6 p1
c2 x3 c1 x2 x1 b a e x8 q1 x9 q2 x10 r1 x11 r2 x5 d2 x4 d1 p2 x7 p1 x6
x3 c2 x2 c1 b x1 e a x9 q2 x8 q1 r2 x11 r1 x10 x4 d1 x5 d2 x6 p1 x7 p2
d1 x4 d2 x5 p1 x6 p2 x7 e a b x1 c1 x2 c2 x3 r1 x10 r2 x11 q1 x8 q2 x9 q1
x4 d1 x5 d2 x6 p1 x7 p2 b x1 e a x3 c2 x2 c1 r2 x11 r1 x10 x9 q2 x8 q1
d2 x5 d1 x4 x7 p2 x6 p1 a e x1 b x2 c1 x3 c2 x11 r2 x10 r1 q2 x9 q1 x8
x5 d2 x4 d1 p2 x7 p1 x6 x1 b a e c2 x3 c1 x2 x10 r1 x11 r2 x8 q1 x9 q2
p1 x6 p2 x7 d1 x4 d2 x5 r1 x10 r2 x11 q1 x8 q2 x9 e a b x1 c1 x2 c2 x3
x6 p1 x7 p2 x4 d1 x5 d2 r2 x11 r1 x10 x9 q2 x8 q1 b x1 e a x3 c2 x2 c1
p2 x7 p1 x6 x5 d2 x4 d1 x10 r1 x11 r2 x8 q1 x9 q2 x1 b a e c2 x3 c1 x2
x7 p2 x6 p1 d2 x5 d1 x4 x11 r2 x10 r1 q2 x9 q1 x8 a e x1 b x2 c1 x1 c2
q1 x8 q2 x9 r1 x10 r2 x11 c1 x2 c2 x3 e a b x1 p1 x6 p2 x7 d1 x4 d2 x5
x8 q1 x9 q2 x10 r1 x11 r2 c2 x3 c1 x2 x1 b a e p2 x7 p1 x6 x5 d2 x4 d1
q2 x9 q1 x8 x11 r2 x10 r1 x2 c1 x3 c2 a e x1 b x7 p2 x6 p1 d2 x5 d1 x4
x9 q2 x8 q1 r2 x11 r1 x10 x3 c2 x2 c1 b x1 e a x6 p1 x7 p2 x4 d1 x5 d2
r1 x10 r2 x11 q1 x8 q2 x9 p1 x6 p2 x7 d1 x4 d2 x5 c1 x2 c2 c1 e a b x1
x10 r1 x11 r2 x8 q1 x9 q2 p2 x7 p1 x6 x5 d2 x4 d1 c2 x3 c1 x2 x1 b a e
r2 x11 r1 x10 x9 q2 x8 q1 x6 p1 x7 p2 x4 d1 x5 d2 x3 c2 x2 c1 b x1 e a
x11 r2 x10 r1 q2 x9 q1 x8 x7 p2 x6 p1 d2 x5 d1 x4 x2 c1 x3 c2 a e x1 b

.

The canonical naming functions of the symmetry group ∆4 have been found, and these
represent the twenty four automorphisms of ∆4. Equivalent objects of the group can be
identified. The equivalence classes of objects are

{e}
{g1, g2, g4}

{g3, g5, g6, g7, g8, g9}
{h1, h2, h3, h4, h5, h6}

{h7, h8, h9, h10, h11, h12, h13, h14}

The canonical representation is easily obtained from this table in numeric form. To
verify isomorphism of two groups, find the numeric tables and these have to coincide.

	|G|=5
	|G|=6
	|G|=8
	|G|=9
	4

