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Abstract We provide an axiomatic base for the set of natural numbers, that has been proposed as a canonical construction, and
use this definition of N to find several results on finite group theory. Every finite group G, is well represented with a natural
number NG; if NG = NH then H,G are in the same isomorphism class. We have a linear order on all finite groups, that is well
behaved with respect to cardinality. In fact, if H,G are two finite groups such that |H|= m < n = |G|, then H < Zn ≤G. There is
also a canonical order for the elements of G and we can define equivalent objects of G. This allows us to find the automorphisms
of G. The Cayley table of G takes canonical block form, and a minimal set of independent equations that define the group is
obtained. We show how to find all groups of order n, and order them. Examples are given using all groups with order smaller than
10. The canonical block form of the symmetry group ∆4 is given and we find its automorphisms. These results are extended to the
infinite case. A real number is an infinite set of natural numbers. A real function is a set of real numbers, and a sequence of real
functions f1, f2, . . . is well represented by a set of real numbers, as well. We make brief comments on treating the calculus of real
numbers. In general, we represent mathematical objects using the smallest possible data-type. In the last section, mathematical
objects are well assigned to tree structures. We conclude with brief comments on type theory and future work on computational
and physical aspects of these representations.
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Introduction

The present work is part of a broader attempt in proposing an optimal universe for classical mathematics. The construction
presented in [Ramirez(2019)], is the first exposition of natural and real numbers, defined as set numbers. Here, we focus on
finite structures, and group theoretic aspects of this proposal. The constructions are self contained. We provide a definition of
operation, group, field and linear space that allow the constructions of the next sections. These definitions were explored in
[Ramirez(2015)], but the exposition has been revised. In the second section, we proceed with a description of natural numbers
as the set of hereditarily finite sets, HFS. This is an axiomatic treatment, and details for proofs not given in [Ramirez(2019)],
are given here. An order < and operation ⊕ are given, on HFS, isomorphic to the natural numbers N(<,+). This is a canonical
representation of natural numbers in set theory. In particular, Von-Neumann and Zermelo-Fraenkel ordinals are embedded sub
orders of our construction.

In the third section we provide a method of representing a finite function as a natural number. If A,B are two finite collections,
and f : A→ B a function, we assign a unique natural number N f . We can do this whether the objects of f are abstract or concrete.
We have an equivalence relation on the class of finite functions, and a linear order on the quotient space. This induces a linear
order on the subset of all finite permutations, that is well defined with respect to cardinality. If ηm,ηn are permutations of m < n
objects, then ηm < 1n ≤ ηn ≤ idn where 1n is the one-cycle permutation of n objects and idn is the identity permutation of n
objects. This representation gives a good definition for equivalent functions; we can say when two functions are equivalent.
Given a function, we will also be able to identify which objects of the function are equivalent.

Next, we focus on the formal definition of finite groups. We give the definition of canonical form for a group, where a single
natural number is used to represent the group. This reduces the problem of proving two finite groups are isomomorphic, to
finding the canonical representation of these groups and compare these natural numbers. We provide the method for finding all
groups of order n, and finding their canonical representation. We find the linear order for all groups with |G|< 10 is

Z1 < Z2 < Z3 < Z4 < Z2
2 < Z5 < Z6 < D6 < Z7 < Z8 < Q8 < D8 < Z2⊕Z4 < Z3

2 < Z9 < Z2
3 < · · · ,

where Dn is the Dihedral group and Q8 is the quaternion group. In general, Zn≤G if |G|= n so that the order is well behaved with
respect to cardinality. The order induced on commutative groups of order n also behaves well with respect to factorization of n.
Intuitively, a commutative group is larger than another if it is expressed in terms of more factors. For example, Z8 <Z2⊕Z4 <Z3

2.
We also have Z9 < Z2

3. In this section we also provide the automorphisms for all groups |G|< 10. We also find the twenty four
automorphisms of ∆4.

Then we give an overview of the infinite case of these results, which is a model for real numbers. We mention a general
outline on treating concepts of calculus, which will be described in full in a separate publication. The study of real numbers
is reduced to the study of natural numbers. However, the gap (conceptual and practical) between these two kinds of objects is
enormous, in most axiomatic treatments. Our construction of natural numbers, will allow us to express the continuum of real
numbers as an extension of natural numbers. It is not necessary to build intermediate structures such as Z or Q, although we do
provide brief descriptions of these structures. Just as we are able to reduce a finite group to a natural number, we will have some
similar results in the infinite case. For example, we are able to express a real function as a set of real numbers. More surprisingly,
a sequence of real functions is also a set of real numbers. The general idea is that we can reduce the complexity of objects to
its minimum possible. In the last section we express mathematical objects using tree structures. Natural numbers are finite trees,
real numbers are infinite trees and we will give a general description of mathematical objects.

1 Groups, Fields and Linear Spaces

In most axiomatic constructions of numerical systems, the set of integers is defined in terms of a quotient space of N×N. Then,
the rational numbers are defined in terms of a quotient space of Z×Z. We take an alternate approach by defining the operation of
a group as a function X→ (X→ X). A description of fields and linear spaces is also given. A linear space is defined as an abelian
group V (⊕), together with a field of automorphisms B(⊕,◦) ⊂ Aut V (⊕), where ⊕ is addition of automorphisms induced by
the operation of V (⊕) and ◦ is composition. The definitions and propositions, of this section, enable us to have trivial proofs in
the theory of set numbers of Section 2.

Definition 1 Let G a non empty set, and Aut G be the set of bijective functions of the form G→ G. A function G→ Aut(G) is
called an operation on the set G. A set of functions B ⊆ Aut G is said to be balanced if idG ∈ B, and if x ∈ B implies x−1 ∈ B.
Let ∗ : G→ B a bijective function, for some balanced set B. If

∗(x)◦∗(y) = ∗(∗(x)(y)), (1)

for every x,y ∈ G, we say ∗ is a group structure.

The functions ∗(x) are called operation functions of ∗. We remark that the expression ∗(x)(y) ∈ G is the image of y under
the action of ∗(x). Thus, ∗(∗(x)(y)) ∈ Aut G is the image of ∗(x)(y) ∈ G under the action of ∗.

Theorem 1 The definitions of group and group structure are equivalent.

Proof Suppose we have a group structure. Then we can verify
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– Identity Element. There exists an object e∈G such that ∗(e) = idG. Therefore, ∗(e)(x) = x for all x∈G. This means e∗x = x
for all x ∈ G. Now we have to prove x∗ e = x. We have ∗(∗(x)(e)) = ∗(x)◦∗(e) = ∗(x). Since ∗ is injective, ∗(x)(e) = x.

– Inverse Element. Let a ∈ G, then there exists a unique a−1 ∈ G such that ∗(a−1) = (∗(a))−1 is the inverse function of ∗(a).
This is a direct consequence of the definition of balanced set. We must show a ∗ a−1 = a−1 ∗ a = e. It is enough to prove
a−1 ∗a = e. We know a−1 ∗a = ∗(a−1)(a) = (∗(a))−1(a). But, ∗(a)(e) = a. This means (∗(a))−1(a) = e.

– Associativity.

x∗ (y∗ z) = ∗(x)(y∗ z)

= ∗(x)(∗(y)(z))
= (∗(x)◦∗(y))(z)
= ∗(∗(x)(y))(z)
= (∗(x)(y))∗ z

= (x∗ y)∗ z.

For the the second part of this proof, we simply have to prove that a group G defines a group structure. The operation
functions of the group structure are defined in terms of the cosets xG; define ∗(x) by g 7→∗(x) x∗g. We can easily verify ∗ is an
injective function and it is onto a balanced set. The associative property implies (1). ut

We use the equivalence of groups and group structures to find the basic properties of groups.

Theorem 2 Let G(∗) a group with operation ∗. Then, we verify

1. Right cancellation; ∗(a)(c) = ∗(b)(c) implies a = b.
2. Left cancellation; ∗(c)(a) = ∗(c)(b) implies a = b.
3. Uniqueness of identity and inverse elements.
4. Inverse of inverse; (x−1)−1 = x.
5. Existence of unique solutions; given a,b ∈G there exists a unique x ∈G such that ∗(a)(x) = b, and a unique y ∈G such that
∗(y)(a) = b.

Proof The first part requires to apply the function ∗, so that ∗(∗(a)(c)) = ∗(∗(b)(c)) which implies ∗(a) ◦ ∗(c) = ∗(b) ◦ ∗(c).
Right cancellation of functions gives ∗(a) = ∗(b). We conclude a = b because ∗ is bijective. We can similarly prove the second
part if we use left cancellation of functions.

Let e1,e2 be identity elements. If we consider e1 as identity we get ∗(e1)(e2) = e2, and if we consider e2 identity we get
∗(e1)(e2) = e1. Therefore e1 = e2. The uniqueness of the inverse is trivial. If a1,a2 are inverse elements of a, then ∗a(a1) = e =
∗a(a2) implies a1 = a2 because of left cancellation.

Let y= x−1, so that ∗(x) and ∗(y) are inverse functions; (∗(x))−1 = ∗(y) and (∗(y))−1 = ∗(x). The inverse element of y= x−1

is the object z such that ∗(z) is the inverse function of ∗(y). Therefore, x is the inverse of y and we conclude (x−1)−1 = x.
For the last part, consider a,b fixed. We know ∗(a) is a bijective function G→G so that their exists a unique x ∈G such that

∗(a)(x) = b. On the other hand, we would like to find a function ∗(y) that sends a to b. We see that b∗ (a−1 ∗a) = b, which can
be rewritten as (∗(b)◦∗(a−1))(a) = b. The function ∗(b∗a−1) = ∗(∗(b)(a−1)) = ∗(b)◦∗(a−1) sends a to b so that y = b∗a−1

is our solution. Suppose we have a second object w that satisfies the property of y. Then ∗(y)(a) = ∗(w)(a) which is equivalent
to y∗a = w∗a which in turn implies y = w if we use right cancellation. ut

Proposition 1 A group structure, ∗, defines a new function ∗̄ : G→ Aut(G) such that ∗̄(a)(b) = ∗(b)(a) = b∗a. The function ∗̄
is also a group structure. The two group structures ∗, ∗̄ are equivalent in the sense that they generate isomorphic groups.

Proof Let us first prove ∗̄ is a group structure. We must show ∗̄ is a function ∗̄ : G→ B, where the image Im ∗̄= B is a balanced
subset of Aut(G). Every object a ∈ G is assigned a unique function ∗̄(a), and ∗̄(e) = idG for exactly one object e ∈ G. Next
we prove ∗̄(a) is bijective. First of all, it is injective. Take ∗̄(a)(x) = ∗̄(a)(y) which is equivalent to the expression x∗a = y∗a,
then x = y because of right cancellation. This proves ∗̄(a) is injective. Let us prove ∗̄(a) is onto G. Let b ∈ G, then there exists
a solution x to the equation x ∗ a = b which is equivalent to ∗̄(a)(x) = b. This proves ∗̄(a) is a bijection. Now let us prove the
inverse function of ∗̄(a) is equal to (∗̄(a))−1 = ∗̄(a−1)∈ Im(∗̄). We know, by definition, ∗̄(a−1)(x) = x∗a−1. We also know ∗̄(a)
acts by ∗̄(a)(x∗a−1) = (x∗a−1)∗a = x, which implies the inverse function (∗̄(a))−1 acts by (∗̄(a))−1(x) = x∗a−1. This proves
∗̄(a−1) = (∗̄(a))−1. So far, we have proven the image of ∗̄ is a balanced set. To prove ∗̄ is injective, take two objects x,y ∈ G
such that ∗̄(x) = ∗̄(y). Then, x = ∗̄(x)(e) = ∗̄(y)(e) = y. Now we prove ∗̄ satisfies the associative property. For all a,b ∈ G

∗̄(∗̄(a)(b))(x) = ∗̄(b∗a)(x)

= x∗ (b∗a)

= (x∗b)∗a

= ∗̄(a)(x∗b)

= ∗̄(a)(∗̄(b)(x))
= (∗̄(a)◦ ∗̄(b))(x),

for all x ∈ G. This proves ∗̄ is a group structure.
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Let G(∗) be the group generated by ∗ and G(∗̄) the group generated by ∗̄, then x−1 is the same inverse element under both
operations. The inverse of a∗b, under ∗, is equal to b−1∗a−1. The inverse of a∗b= b∗̄a, under ∗̄, is equal to a−1∗̄b−1 = b−1∗a−1.
These two groups are isomorphic by x 7→ x−1. To prove, take φ(a∗b) = (a∗b)−1 = b−1 ∗a−1 = φ(b)∗φ(a) = φ(a)∗̄φ(b). ut

Definition 2 In general the functions ∗(x) and ∗̄(x) are not equal. When they are equal, we say the object x commutes. A group
is abelian if its two generating functions are equal, ∗= ∗̄.

Proposition 2 Let G(∗) an operation on the set G. The following are equivalent statements.

1. The operation ∗ is associative.
2. ∗(∗(x)(y)) = ∗(x)◦∗(y) for all x,y ∈ G.
3. ∗(x)◦ ∗̄(y) = ∗̄(y)◦∗(x) for all x,y ∈ G.

Proof The equivalence of 1. and 2. was proven in Theorem 1. Now we prove the equivalence of 1. and 3. Let z ∈ G, then

(∗(x)◦ ∗̄(y))(z) = ∗(x)(∗̄(y)(z))
= ∗(x)(z∗ y)

= x∗ (z∗ y)

= (x∗ z)∗ y

= ∗̄(y)(x∗ z)

= ∗̄(y)(∗(x)(z))
= (∗̄(y)◦∗(x))(z)

If we suppose 3. holds, then we can prove associativity,

x∗ (z∗ y) = ∗(x)(z∗ y)

= ∗(x)(∗̄(y)(z))
= (∗(x)◦ ∗̄(y))(z)
= (∗̄(y)◦∗(x))(z)
= ∗̄(y)(∗(x)(z))
= ∗̄(y)(x∗ z)

= (x∗ z)∗ y

ut

We have the following useful result, for consequent sections. It gives a practical means of proving associativity. If the
elements of G commute and the operation functions also commute, then the operation is associative.

Proposition 3 If ∗ is a commutative operation on the set G, and ∗(x)◦∗(y) = ∗(y)◦∗(x), for all x,y ∈G, then ∗ is associative.

Proof Given our hypothesis, we have the equalities ∗(x)◦ ∗̄(y) = ∗(x)◦∗(y) = ∗(y)◦∗(x) = ∗̄(y)◦∗(x). Our result follows from
3. and 1. of the last proposition. ut

Definition 3 Let G(∗) a group and let H ⊆ G be a subset of the set G. Define ∗H as the function ∗ restricted to H. If ∗H is a
group structure we say it is a subgroup of G(∗).

For H ⊂G to be a subgroup of G it is necessary that the image of H, under the action of ∗H(h), be equal to H, for all h ∈H.
In short, ∗H(h)[H] = H, for all h ∈ H. This means H is closed under the operation ∗.

Definition 4 Given two groups G1(∗1) and G2(∗2), a homomorphism is a function φ : G1(∗1)→ G2(∗2) such that

φ(∗1(a)(b)) = ∗2(φ(a))(φ(b)).

The set of all homomorphisms from G1(∗1) to G2(∗2) is represented by the notation Hom(G1,G2), when no confusion arises
with respect to the operations of each group.

If the homomorphism is injective as function then we call it a monomorphism, and if it is surjective as function we call it an
epimorphism. If the function is bijective we have an isomorphism, or automorphism, φ : G→ G. The set of all automorphisms
of G(∗) is represented with the notation Aut G(∗).

We use the notation Aut(G) and Aut G(∗) to differentiate between bijective functions and automorphisms.
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Theorem 3 Let X a set, then the composition operation ◦ is a group structure for the set of all bijective functions Aut X. A
subset B⊆ Aut X that is balanced and closed under composition is a subgroup B(◦)⊂ Aut X.

A group structure ∗ : G→ B, induces an isomorphism ∗ : G(∗)→ B(◦).
The composition operation is a group structure for the set of automorphisms Aut G(∗). A balanced and closed subset,

B ⊆ Aut G(∗), is a subgroup B(◦)⊂ Aut G(∗).

Proof For the first part, we have a function ◦ : Aut X → Aut(Aut X). If f ∈ Aut X , then ◦( f ) : Aut X → Aut X is the function
that acts by ◦( f )(g) = f ◦ g. We have to prove ◦ : Aut X → B is a bijective function, and the image Im ◦ = B ⊂ Aut(Aut X)
is a balanced set. Every object in Aut X is assigned a function ◦( f ) ∈ Aut(Aut X). To see ◦ is injective, take two objects
f ,g ∈ Aut X and suppose ◦( f ) = ◦(g). This implies f = f ◦ idX = g◦ idX = g. Now we focus on the image of ◦. We first prove
the objects in the image are bijective functions Aut X → Aut X . Suppose ◦( f )(g) = ◦( f )(h), for two g,h ∈ Aut X . That is to
say, f ◦g = f ◦h and because of cancellation of bijections, we have g = h. This means ◦( f ) is injective. To prove ◦( f ) is onto
Aut X , take any g ∈ Aut X , and we find ◦( f )(x) = f ◦ x = g for x = f−1 ◦g. We also know the image of ◦ is balanced because
◦(idG) ∈ Aut(Aut X) and (◦( f ))−1 = ◦( f−1) ∈ Aut(Aut X). The associative property is the usual associativity of composition
of functions. This proves the first assertion of the first part. The second assertion of the first part is trivial. Take B(◦) balanced
and closed under composition. This makes B(◦) a subgroup.

For the second part, we must prove ∗ is an isomorphism. From the first part of this theorem we know B(◦) is a group. We
also know ∗ is a bijection. We use definition 4 and associativity, in G, to verify ∗(∗(x)(y)) = ∗(x)◦∗(y) = ◦(∗(x))(∗(y)). This
proves that the group structure ∗ produces an isomorphism G(∗)→ B(◦), where B(◦) is the image of ∗ with the operation ◦.

The third part of this theorem is proven similarly to the first part of this theorem. ut

We define the distributive property for two operations on a single set. We also define rings and fields.

Definition 5 Let K(+) a group with identity 0; the set K−{0} is represented by K0. Let · : K0→ C ⊂ Hom(K,K) operation.
We say · distributes over K(+), because

·(x)(+(a)(b)) = +(·(x)(a))(·(x)(b)).

Let R(+) an abelian group, and let · a second operation that distributes over R(+). Suppose · is associative and suppose
·1 = idR for a unique non trivial element 1 ∈ R0. We say R(+, ·) is a ring and if · is commutative, the ring is abelian.

Let K(+, ·) a ring and suppose Im(·) = C ⊂ Aut K(+) is a balanced set of automoprhisms. Then K(+, ·) is a skew field. If
the ring K(+, ·) is abelian, we say K(+, ·) is a field.

We start using a new notation ∗x for the operation function ∗(x). The distributive property holds when we have a group K(·)
whose operation functions ·x, are homomorphisms on the original group K(+). Our conditions give us the relations ·x(0) = 0,
for all x ∈ K. Therefore, we define ·0(x) = 0. The operation function ·0 is the trivial function 0 : K→{0}.

Corollary 1 A field is an abelian group K(+) together with a second abelian group K(·) that distributes over K(+).

Theorems 4 and 5, below, characterize linear spaces and modules. A linear space is an abelian group V (⊕), together with a
field of automorphisms of V (⊕). Although these two theorems are not explicitly used in the following sections, it is useful for
the last section on real numbers. Given an abelian group V (⊕), we can provide a second operation on Hom(V,V ), apart from
composition. The operation ⊕ of V naturally induces a closed operation on Hom(V,V ). This allows us to define modules and
linear spaces. Define addition of homomorphisms by ( f ⊕g)(x) = f (x)⊕g(x). If B ⊂ Aut V (⊕) we write B(⊕) to emphasize
we are considering the set together with addition, not composition. The trivial function e : V → {e} acts as an identity object
under addition of homomorphisms, f = f ⊕ e = e⊕ f . Let f ∈ Aut V (⊕), and − f ∈ Aut V (⊕) the automorphism defined by
− f (x) =−( f (x)) where −( f (x)) is the additive inverse of f (x); we use the notation −x for the inverse of x under ⊕. We easily
verify f ⊕ (− f ) = e. A set of automorphisms B(⊕) is balanced if e ∈B(⊕), and if f ∈B(⊕) implies − f ∈B(⊕).

Lemma 1 Let V (⊕) an abelian group with identity e, and B(⊕)⊂ Aut V (⊕) a balanced set. If B(⊕) is closed under addition
of automorphisms, then B(⊕) is an abelian group with identity e.

Proof This result is telling us an easy way of knowing if B(⊕) is a group with addition of functions. We of course require that
B(⊕) be balanced. Under addition of automorphisms, the inverse of f is the function − f that acts by x 7→ −( f (x)). The inverse
of idV is −idV that makes x 7→ −x. Associativity in V (⊕) implies associativity in B(⊕). The commutative property in B(⊕)
also follows from the commutative property in V (⊕). ut

Theorem 4 Let V (⊕) an abelian group and suppose B(◦)⊂ Aut V (⊕) is a balanced, closed and commutative set of automor-
phisms with composition. Suppose B(⊕) is balanced and closed with addition. Then B(⊕,◦) is a field. We say V (⊕) is a linear
space over the field of automorphisms B. The elements of V (⊕) are called vectors.

Proof With respect to composition, it is sufficient to verify B(◦) is balanced, closed and abelian. From the third part of Theorem
3, we conclude B(◦) is an abelian subgroup of Aut V (⊕). If the conditions of the Lemma hold, then B(⊕) is a group. Now

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2020                   doi:10.20944/preprints202007.0415.v1

https://doi.org/10.20944/preprints202007.0415.v1


6 Juan Pablo Ramı́rez Ramı́rez

we have to show the distributive property holds. This is the simple statement that ◦ f is a homomorphism on B(⊕). This is
expressed by f ◦ (g⊕h) = ( f ◦g)⊕ ( f ◦h). Let x ∈V , then

( f ◦ (g⊕h))(x) = f (g(x)⊕h(x))

= f (g(x))⊕ f (h(x))

= ( f ◦g)(x)⊕ ( f ◦h)(x)

= (( f ◦g)⊕ ( f ◦h))(x)

This proves B(⊕,◦) is a field. Now we shall prove we have the structure of a linear space, in the classic sense. The scalar
product is simply the application of an automorphism to a vector. Let f ∈ B, then the scalar product of f , with a vector
v ∈ V , is defined as f · v = f (v). First, ( f · g) · v = ( f ◦ g)(v) = f (g(v)) = f · (g · v) because ◦ is the product of the field. Also,
f ·(u⊕v) = ( f ·u)⊕( f ·v) because f ∈Aut V (⊕). By definition of addition of functions, ( f ⊕g) ·v = ( f ·v)⊕(g ·v). This result
is telling us is that a linear space is defined by an abelian group V and a set of automorphisms (of V ) that form a field. ut

We similarly define a module M over a ring.

Theorem 5 Let M(⊕) an abelian group and suppose B(◦)⊂Hom(M,M) is a closed set of homomorphisms with composition,
and idM ∈B(◦). Suppose B(⊕) is balanced and closed. Then B(⊕,◦) is a ring. We say M(⊕) is a module over the ring of
homomorphisms B.

2 Finite Sets and Natural Numbers

Finding a mathematical collection of objects that behave under rules that we can interpret as the order and operation of addition
for natural numbers, is not an easy task. This problem was taken up by many mathematicians at the beginning of the last century.
When we talk about spacial geometry we understand we are referring to objects called points, lines and planes. In general we
talk of collections of points, such as circles, or others. Just in the same way, if we wish to formalize the theories of arithmetic
and analysis, we have to know what objects we are dealing with. The solution was found that we can formulate the statements of
arithmetic, and later analysis, using an elementary concept, set. Attempts were then made to find set representations of numbers
and to model the structure of natural numbers, using sets.

Being an elementary concept, we can not describe a set in terms of other mathematical objects. Rather, we describe all
mathematical objects using the language of sets. A set can only be defined linguistically, as a collection of objects. But, it has
been found that a definition this ambiguous, leads to more problems than it solves. The trick is to find a collection of sets that
is well enough defined to serve our purposes, and that does not lead to conceptual paradoxes that have been pointed out in
the literature. The problem is that considering arbitrary collections we can have strange sets such as {{{· · ·{{· · ·}} · · ·}}} and
other collections we do not need for the construction of N. Although it has been found that we can incorporate such sets to
an appropriate set theory, here we will take a different view. We will try to find the simplest possible representation of natural
numbers and real numbers, as sets. The two most widely used models of mathematics begin by describing the natural numbers as
Hereditarily Finite Sets. This collection of sets, which we denote HFS, consists of the sets obtained in the following procedure.
We say the set with no objects, /0, is in HFS. Also, if x1,x2, . . . ,xn are objects in HFS, then the collection of these, {x1,x2, . . . ,xn},
is also in HFS. When we wish to make the statement, that an object x is in a set X we denote this with x ∈ X . Let us construct
sets using these parameters. We immediately know the collection { /0} is an object in HFS. Now that we have /0 and { /0} in
HFS, we know that the collection of these two objects, { /0,{ /0}} is also in HFS. Then, we can take /0 and { /0,{ /0}} to find
{ /0,{ /0,{ /0}}} ∈HFS. We can also use the sets { /0} and { /0,{ /0}} to find {{ /0},{ /0,{ /0}}} ∈HFS, etc. The first difficulty we have
is ordering these sets so that we can model the order of natural numbers.

The solution Zermelo and Fraenkel found is to order a sub collection of HFS. Notice it is trivial to order the sets /0, { /0},
{{ /0}}, {{{ /0}}}, . . .. We can intuitively say that these sets are ordered by contention. If we only consider these sets, we have the
order of natural numbers, N< = { /0,{ /0},{{ /0}},{{{ /0}}}, . . .}. Then we have to find a way of defining addition of these sets, in
such a way that it serves as a model of addition of natural numbers. This simply means, we have to find an operation on these
sets, that is commutative, associative and has an identity element. Proving these statements is usually tedious and laborious. But,
the real difficulty arises in understanding the constructions and objects used to describe more complicated structures such as
the integer numbers, rational numbers, and real numbers. These have to be built in terms of each other. Integers are described
in terms of natural numbers. Rational numbers are described in terms of integers, and real numbers are defined in terms of
rational numbers. The last step, in building real numbers, gives objects that are difficult to describe and work with, leading
to a gap in most undergraduate students’ learning since most programs do not include these constructions. Even modern day
efforts to describe the real number system do not provide an easy way to understand the nature of the object we call real
number. The second approach taken in describing the order of natural numers is due to Von Neumann. He begins by ordering
the sets /0 < { /0}< { /0,{ /0}}< { /0,{ /0},{ /0,{ /0}}}< { /0,{ /0},{ /0,{ /0}},{ /0,{ /0},{ /0,{ /0}}}}. Here, we say that one of these sets, x,
is smaller than an other, y, if x ∈ y. Of course, we can easily verify this order is transitive and anti symmetric. This approach has
some advantages in simplifying some proofs for the order and addition of natural numbers. However, when building the later
numerical structures, we have a similar situation as in the Zermelo-Fraenkel theory. The greater difficulty arises in building the
real numbers. These constructions and their technical aspects can be consulted in [Bernays(1991)].

The fact that we have at least two different constructions, gave way to another question, formally referred to as Benaceraff’s
Identification Problem. It has a great deal to do more with the Philosophy of Mathematics, than the mathematical models in
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use, but it still has wide implications. The main statement is set forth in a publication titled ”What Numbers Could Not Be”,
[Benacerraf(1965)]. The argument is made that numbers are actually not sets because there is no absolute way of describing
them in terms of sets. In fact, numbers do not exist at all. We are simply taking abstract objects, and giving them properties
we want them to satisfy. But, there is no entities satisfying these properties; we make it all up. For example, we can not know
what object the number 3 is. Zermelo-Fraenkel say 3 = {{{ /0}}}, but Von Neumann says 3 = { /0,{ /0},{ /0,{ /0}}}. Who are we
to believe? One school of thought says, nobody. This section is a proposal for a canonical set theory that allows us to identify
what set any number is. We will do this for natural numbers and real numbers, and this will lead to a theory of types we briefly
discuss in the conclusions for later work. We take the approach of defining natural numbers as objects in HFS. However, the
main difference with the other two constructions is that we order all of the sets in HFS, thus proving N = HFS. An interesting
thing happens. The sets used in Z-F and VN are sub orders of our construction of N. Let us be precise with this. Z-F set
theory assigns the numbers 0 = /0, 1 = { /0}, 2 = {{ /0}}, 3 = {{{ /0}}}, 4 = {{{{ /0}}}}, etc. Our construction of natural numbers
assigns the Z-F objects to the numbers 0 = /0, 1 = { /0}, 2 = {{ /0}}, 4 = {{{ /0}}}, 16 = {{{{ /0}}}}, 216 = {{{{{ /0}}}}}, . . ..
Thus, we can say Z-F Fraenkel ordinals are the sub order {0,1,2,22,222

,2222
, . . . ,2222···

, . . .} ⊂ N. On the other hand, VN
set theory assigns 0 = /0, 1 = { /0}, 2 = { /0,{ /0}}, 3 = { /0,{ /0},{ /0,{ /0}}}, etc. Our construction of natural numbers assigns the
VN objects to the numbers 0 = /0, 1 = { /0}, 3 = { /0,{ /0}}, 11 = { /0,{ /0},{ /0,{ /0}}}, . . .. The VN ordinals are the sub order

{0, 20, 20 +220
, 20 +220

+2(2
0+220

), . . . ,n,n+2n, . . .} ⊂N. Each of these constructions, Z-F and VN, order strict sub sets of N.
In this section we construct the structure of natural numbers using an order and addition operation on the set of all hereditarily
finite sets. Our order and operation will be defined simultaneously in constructive manner.

2.1 Motivation

There is an intuitive motivation behind the axiomatic base given in this section. We discuss this now, to help understand the
structure of order and addition of natural numbers, that we will be using. When adding numbers in base 10 (or base b > 2)
we have to use sequences of digits to represent natural numbers. We must specify how many times we consider each power of
b. But, with binary representation we use a more elementary language. It suffices to specify if the power is considered or not,
∈, /∈. This means that a natural number is determined by a set of smaller natural numbers, that are those that appear as power
in binary form. For example, the number 7 = 20 + 21 + 22 is determined by the set {0,1,2}. This is commonly referred to as
Ackermann Coding or BIT-predicate. This is an important part of the practical aspects this work has, since we are able to model
mathematical systems directly in terms of classic computational processes. The Ackermann coding does not give a means for
adding numbers in any special manner. We have the same means of operating. Namely, carry over algorithms. This happens
because when we add numbers we treat them as a sequence.

Here, we define addition treating natural numbers as sets. Let us consider the following addition of numbers 7+ 13 =
(20 + 21 + 22)+ (20 + 22 + 23). We are going to consider two new sets, the powers that are not repeated (21 + 23), and the
powers that repeat (20 + 22). In terms of sets, we are considering the symmetric difference {1,3} and the intersection {0,2}.
Here we make the following observation. To add a power of 2 with itself we simply add 1 to the power. So, we can consider
the sum 7+ 19 = (21 + 23)+ (20+1 + 22+1) = (21 + 23)+ (21 + 23). Iterate the process, so we have to add 1 to the repeated
powers. This gives 7+ 9 = 21+1 + 23+1 = 22 + 24 = 20. If A,B are two finite sets of natural numbers, we can add them using
this method. Form two new sets A′ = A4B and B′ = s(A∩B), where s is a function that adds 1 to the elements of A∩B.
Then we have A⊕B = A′⊕B′. But, this alone does not get us anywhere. We have reduced the sum of two sets, A⊕B, to the
sum of two new sets A′⊕B′. The sum A′⊕B′ is in turn reduced to a sum A′′⊕B′′, etc. So basically, we have done nothing.
However, this is not the case, since we can guarantee that in a finite number of iterations the intersection A(n)∩B(n) = /0 becomes
the empty set. This yields our final answer A(n+1), because we have A⊕B = A(n+1)⊕B(n+1) = A(n+1)⊕ s( /0) = A(n+1). Let us
apply this reasoning with another example, 15+23 = 38, from Figure 1. We have the addition A⊕B = {0,1,2,3}⊕{0,1,2,4}
because 15 = 20 + 21 + 22 + 23 and 23 = 20 + 21 + 22 + 24. We find that A′ = A4B = {3,4} and A∩B = {0,1,2}, so that
B′ = {0+1,1+1,2+1} = {1,2,3}. We iterate the process with A′′ = A′4B′ = {1,2,4} and B′′ = s(A∩B) = {3+1} = {4}.
We can view this process as a Finite State Machine. A state is composed of two columns, each column is a finite configuration
of energy-levels. A particle in the basic level is 1 unit, a particle in level 1 is worth 2 units. A particle in level 2 represents four
units, etc. A finite configuration of particles in a column is representative of a set number in the obvious way so that each state
is a pair of natural numbers. The initial state S(t0) is given by the initial summands A,B. The next state, S(t1) is again given
by two columns. The configuration of the left column, is given by the energy levels that were not repeated in state S(t0). The
right column in S(t1) is given by the objects that do repeat, but we displace these one level up. The configuration of state S(t2)
is defined similarly in terms of state S(t1). The left column of state S(t2) is given by the energy levels not repeated in state S(t1).
The configuration in the right column of state S(t2) is given by the energy levels repeated in state S(t1), but one level up. In a
finite number of steps we reach a stable state with no occupation in the right column, giving us our result in the left column. It
will not be difficult for the reader to prove the number of steps to reach stability is bounded above by max(A∪B). For example,
it takes at most 8 = max({0,1,2,3,5,6,8}) states to find {0,3,6}⊕{0,1,2,5,8}.

We will provide an addition operation for finite sets, and this operation is isomorphic to N+. The sum of two sets is expressed
as the sum of two new sets, in a process that ends in finite steps. We take the view that an operation is a function whose domain
is a space of functions itself; ∗ : A→ (A f A) where A f A is the set of all functions A→ A. This way, the operation ⊕ of sets is
defined in terms of its functions ⊕n. Each function makes ⊕n(x) = n⊕ x. We begin by defining the function ⊕1 which not only
generates the hereditarily finite sets, it also generates the set of operation functions ⊕n. The family of functions ⊕n is generated
by a single function ⊕1, all others being powers of composition, ⊕2 = ⊕1 ◦⊕1, ⊕3 = ⊕1 ◦⊕1 ◦⊕1, etc. In the forthcoming,
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Fig. 1 Graphic Representation of 15+23 = 38.

consider the usual symmetric difference of sets, A4B = (A∪B)/(A∩B), and the partition A∪B = (A4B)∪ (A∩B). We define
two base cases 0 = /0 and 1 = { /0}, along with a recursive function ⊕1 : HFS→HFS defined by

⊕1(A) = (A41)⊕ s(A∩1), (2)

where s : HFS→ HFS sends every set X = {x}x∈X to the set s(X) = {⊕1(x)}x∈X . Applying the function s to the set X simply
means we apply ⊕1 to every object of X . In the following calculations we use the fact that s( /0) = /0. Furthermore, we define
A⊕ /0 = /0⊕A = /0 which simply defines /0 as the identity element.

First we have ⊕1(0) = (041)⊕ s(0∩ 1) = 1⊕ s( /0) = 1⊕ /0 = 1. The function ⊕1 generates every element of HFS when
applied successively.

2 = ⊕1(1) = (141)⊕ s(1∩1) = /0⊕ s(1) = s(1) = {⊕1(0)}= {1}
3 = ⊕1(2) = (241)⊕ s(2∩1) = ({1}4{0})⊕ s({1}∩{0}) = {0,1}⊕ s( /0)

= {0,1}⊕ /0 = {0,1}
4 = ⊕1(3) = (341)⊕ s(3∩1) = {1}⊕ s({0}) = 2⊕{⊕1(0)}= 2⊕{1}
= 2⊕2

Here we come upon a new object. We must find a suitable definition for 2⊕2, and in general we will need to find a suitable
definition for A⊕B. We simply extend our definition in the obvious way,

A⊕B = (A4B)⊕ s(A∩B).

This gives

2⊕2 = (242)⊕ s(2∩2) = /0⊕ s(2) = {⊕1(1)}= {2}.

Therefore,

4 = {2}.

This simply means the set {2}= {{1}}= {{{ /0}}} is the object we know as the number 4. We continue to generate sets, by
applying the function ⊕1 to the result.

5 = ⊕1(4) = (441)⊕ s(4∩1) = {0,2}⊕ s( /0) = {0,2}
6 = ⊕1(5) = (541)⊕ s(5∩1) = {2}⊕ s{0}= {2}⊕{1}= ({2}4{1})⊕ s({2}∩{1}) = {1,2}⊕ s( /0) = {1,2}
7 = ⊕1(6) = (641)⊕ s(6∩1) = {0,1,2}⊕ s( /0) = {0,1,2}
8 = ⊕1(7) = (741)⊕ s(7∩1) = {1,2}⊕ s{0}= {1,2}⊕{1}
= ({1,2}4{1})⊕ s({1,2}∩{1}) = {2}⊕ s{1}= {2}⊕{2}= ({2}4{2})⊕ s({2}∩{2}) = /0⊕ s{2}= /0⊕{3}
= ( /04{3})⊕ s( /0∩{3}) = {3}⊕ s( /0) = {3}

9 = ⊕1(8) = (841)⊕ s(8∩1) = {0,3}⊕ s( /0) = {0,3}
10 = ⊕1(9) = (941)⊕ s(9∩1) = {3}⊕ s{0}= {3}⊕{1}= ({3}4{1})⊕ s({3}∩{1}) = {1,3}⊕ s( /0) = {1,3}.

The set { /0,{{ /0}}} is the number 5. To find the set that is the number 6, we use the definition of addition of two sets to
find {2}⊕{1} = {1,2}⊕ s( /0) = {1,2} = {{ /0},{{ /0}}}. We notice, first of all, that the sum of two disjoint sets is the union,
and secondly that every natural number is a set of smaller natural numbers. When we refer to hereditarily finite sets, in this
manner, we call them set numbers because we give them the structure of natural numbers. Let N be a natural number with binary

representation
n
∑

i=1
2ai , then N is the set number {a1,a2, . . . ,an}. For example, 5 = {0,2} because 5 = 20 +22, while 6 = {1,2}

because 6 = 21 +22. We can easily find 11 = {0,1,3}.
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11 = 5⊕6 = {0,2}⊕{1,2}= {0,1}⊕ s({2}) = {0,1}⊕{3}= {0,1,3}.

We find

11 = 7⊕4 = {0,1,2}⊕{2}= {0,1}⊕ s({2}) = {0,1,3}.

The fact that the binary representation is involved is not a coincidence. Let us look at this from another point of view, and consider
the number 13. We wish to find its natural representation so we start with its binary elements 13 = {0,2,3}. Then, 2 = {1} and
3 = {0,1}. But, 1 = {0} so that we only need to assign 0 = /0 as the base case. We finally get 13 = { /0,{{ /0}},{ /0,{ /0}}}
which is the same we obtain from (11⊕1)⊕1. We give an adequate axiomatic base for proving thee statements. We construct
mathematical sets, using hereditarily finite sets and the axioms we need are stated in the following subsection.

2.2 Axiomatic Base

We begin with the empty set and the set that contains that set, 0 = /0 and 1 = { /0}. Notice that using our definition of addition
of sets allows to build all hereditarily finite sets. But, if we simply used union and intersection, we can not generate more sets
beyond 0 and 1. So, our definition A⊕B = (A4B)⊕s(A∩B) allows us to lift off the ground and generate new sets. We will have
an axiom for the following statement. If x is a set, then the object⊕1(x) is a set. If this axiom should be true we first need for the
union and intersection of sets to be sets, because the function⊕1 is defined in terms of union and intersection of sets. This raises
the following question. Why are we able to generate new sets, using ⊕1, if it is defined in terms of ∩,∪, which do not generate
new sets? The reason is because ⊕1 is also defined in terms of itself when we say ⊕1(0) = 1 and ⊕1(1) = {⊕1(0)} = {1}.
Adding an object to the elements of a set is what allows us to find 2,3,4, . . ..

We give the axiomatic base for this model of N. We assume the existence of the empty set 0 = /0 and the set that contains 0;
the set 1 = { /0}. We also assume the union of sets and the intersection of sets, is a set. We will also assume any sub collection of
a set, is a set. This will be the first part of our axioms. Our second axiom is the statement that ⊕1 sends sets to sets. This axiom
states that every set in HFS is obtained by applying the function ⊕1 sufficiently many times. It simply states that no matter how
many times we apply ⊕1, we will always get a new object in HFS. These new objects we obtain from the function, are called
sets and we find them in linear order. Once we have this, we use the union axiom to find N =

⋃
n⊕1n(0) is a set. It is the set

that contains all the objects, generated by ⊕1 and 0,1. This is the set of natural numbers N = HFS. In this section we provide
the axioms needed for the formal construction of N. In a later section we will see that real numbers are infinite sets of natural
numbers, and we will provide an additional axiom in order to construct larger sets.

Axiom 1 The empty collection /0 is a set, as is the collection { /0}. If A,B are two sets then A∪B is a set, and A∩B is a set. If A
is a set, then any sub collection X ⊂ A is also a set.

With this first axiom, we are not able to go beyond the sets /0 and { /0}. The following definition and axiom will allow us to
build all hereditarily finite sets, in linear order.

Define the set operation ⊕ with A⊕B = (A4B)⊕{x⊕1}x∈A∩B.
To make our definition good, we set ⊕0(x) = x. We have seen in the last sub section, how to find ⊕1(1), ⊕1(2), . . .. When

carrying out the calculations for 3⊕1 we recognized that it was necessary to know the value of ⊕2(2).
If we continue to apply ⊕1, we encounter more calculations of the form ⊕x(y). But, the operation function for ⊕x is

explicitly dependent of ⊕1. The functions ⊕x are defined as powers of ⊕1, but to find ⊕1 we also need to start finding ⊕x. The
reason for this is that the operation functions build each other simultaneously, as we have seen in the calculations above.

Axiom 2 The operation function ⊕1 generates all HFS when applied successively to 0. The order in which sets are generated
is an order of HFS, equivalent to the order of natural numbers N≤.

This axiom states that every set in HFS is obtained by applying the function ⊕1 successively to 0. That is to say, every
hereditarily finite set is of the form (⊕1◦⊕1◦ · · · ◦⊕1)(0) = 1⊕ (1⊕ (1⊕·· ·(1⊕0))). Furthermore, our construction of finite
sets is at the same time providing an order because we construct the finite sets in order,

0→⊕1 1→⊕1 2→⊕1 3→⊕1 4→⊕1 · · · .

That is to say, hereditarily finite sets are ordered in terms of the order of construction. The order in which we find the
elements of HFS is the natural order given to these. An important difference between this construction, and the Von-Neumann
Ordinals and the Zermelo-Fraenkel Ordinals is that we order all HFS, while the latter two order transitive subsets of HFS. We
have given an order < and operation⊕, on HFS, that are isomorphic to N(≤) and N(+), respectively. The commutative property
of ⊕ is trivial because symmetric difference and intersection are commutative.

A⊕B = (A4B)⊕ s(A∩B)

= (B4A)⊕ s(B∩A)

= B⊕A
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The easiest way to prove associative property of set sum is to prove the functions⊕x and ⊕̄y commute, for every set numbers
x,y. Given that commutativty holds, we know ⊕y = ⊕̄y. It is sufficient to prove the commutative property holds for operation
functions, ⊕x◦⊕y =⊕y◦⊕x, because of Proposition 3.

Proposition 4 The associative property holds for ⊕.

Proof Let a ∈ N, our second axiom states that to add n we must apply ⊕1 a total of n times, ⊕n(a) =⊕1n(a). This proves the
operation functions ⊕m, ⊕n commute,

(⊕n◦⊕m)(a) = ⊕n(⊕m(a))

= ⊕1n(⊕1m(a))

= ⊕1m(⊕1n(a))

= ⊕m(⊕n(a))

= (⊕m◦⊕n)(a).

We are simply using the fact that f n ◦ f m = f m ◦ f n for any bijection f . ut

Now we give the following result which provides a practical way of defining the natural order of HFS, and which will allow
us to define our order of finite groups, among other applications such as real analysis which we will see briefly at the end. Take
two distinct natural numbers A,B and consider their symmetric difference A4B which is not empty and is bounded. That is to
say, max(A4B) exists. Furthermore, this maximum is in exactly one of the two sets, not in both. We compare two sets in terms
of this object, max(A4B). The set that contains this object is the largest of the two. For example, 15 = {0,1,2,3} < {4} = 16
because A4B = {0,1,2,3,4} and the maximum of this set is in 16 = {4}.

Theorem 6 If A,B are two set numbers, then A < B if and only if max(A4B) ∈ B.

Before proving this theorem, let us provide some examples. The set number A = {1,5,6}= 96 is smaller than the set number
B = {0,7}= 129 because max(A4B) = 7 ∈ B. For a second example, consider A = {2,3,6,7} and B = {0,1,2,3,6,7}.

Proof Let A = {a1,a2, . . . ,an} be a set number, and suppose B is a set number such that A < B. From the second axiom we know
that the set number B is obtained by successively adding 1 to the set number A. This means B = ⊕1n(A) for some n ∈ N. We
shall prove max(A4B) ∈ B for every B > A. In this proof we will use the fact that A⊕B = A∪B if A∩B = /0; this is a direct
consequence of the addition of the definition of addition for set numbers. We start with A⊕1 = {a1,a2, . . . ,an}⊕{0}. There are
two cases; 0 /∈A or 0∈A. In the first case, A⊕1= {0,a1,a2, . . . an}which implies max(A4(A⊕1)) =max{0}= 0∈A⊕1. Now
consider the second case; suppose a1 = 0. Then we have A⊕1 = {0,a2, . . . ,an}⊕{0}= {a2,a3, . . . ,an}⊕{1}. We have two sub
cases; 1 /∈ A or 1 ∈ A. In the first case, A⊕1 = {1,a2,a3, . . . ,an} and we are done, max(A4(A⊕1)) = max{0,1}= 1 ∈ A⊕1.
In the second case we have a2 = 1 and this implies A⊕1 = {a3,a4, . . . ,an}⊕{2}.

More generally, suppose k is the smallest number not in A. Then, we have A = {0,1, . . . ,k− 1,ak+1,ak+2, . . . ,an}, where
k < ak+1 < ak+2 < .. . < an. Applying ⊕1 yields

A⊕1 = {k,ak+1,ak+2, . . . ,an}.

Then max(A4(A⊕1)) = k, which proves max(A4(A⊕1)) ∈ A⊕1. If we apply ⊕1 again, we get

A⊕2 = {k,ak+1,ak+2, . . . ,an}⊕{0}= {0,k,ak+1,ak+2, . . . ,an}.

This means A4(A⊕ 2) = {1,2, . . . ,k} and the maximum of this set is k ∈ A⊕ 2. We can add a unit again, to get A⊕ 3 =
{1,k,ak+1,ak+2, . . . ,an} which gives us the symmetric difference A4(A⊕ 3) = {0,2,3, . . . ,k} with maximum in A⊕ 3. Then
we have A⊕4 = {0,1,k,ak+1,ak+2, . . . ,an} and symmetric difference A4(A⊕4) = {2,3,4, . . . ,k}. We continue in this manner,
applying ⊕1, until we have applied it 2k− 1 times. Thus far, we have proven max(A4B) ∈ B if A < B < A⊕ 2k. If we apply
⊕1 once more, we are simply adding the singleton 2k = {k}, to A. The result is A⊕2k = {0,1, . . . ,k,ak+1,ak+2, . . . ,an} because
k is the smallest object not in A. This implies max(A4(A⊕ 2k)) = max{k} = k ∈ A⊕ 2k. We conclude max(A4B) ∈ B if
A < B≤ A⊕2k. Now we fall into repetition of what we have done up to this point. When we apply⊕1 to A⊕2k, we are going to
substitute all the elements 0,1, . . . ,k with k⊕1; we are using 2k+1 = 1+(1+2+4+8+ · · ·+2k). There are two cases; k⊕1 /∈ A
or k⊕1 ∈ A. In the first case, max(A4(A⊕2k⊕1)) = k⊕1 ∈ A⊕2k⊕1 because A⊕2k⊕1 = {k⊕1,ak+1,ak+2, . . . ,an}. In the
second case, ak+1 = k⊕1 so that

A⊕2k⊕1 = {k⊕1,ak+2, . . . ,an}⊕{k⊕1}.

We proceed as before, finding the second smallest number not in A. Let p ∈ A the smallest number in A−{k}. The numbers k, p
are the two smallest numbers not in A, so that A = {0,1, . . . ,k− 1,k+ 1,k+ 2, . . . , p− 1,an−p+1,an−p+2, . . . ,an}. This implies
(A⊕2k)⊕1 = {p,an−p+1,an−p+2, . . . ,an}. The symmetric difference, with A, is {0,1, . . . ,k−1,k+1,k+2, . . . , p−1, p}. The
maximum of the symmetric difference is p ∈ (A⊕2k)⊕1. This proves max(A4B) ∈ B if A < B≤ (A⊕2k)⊕1. The symmetric
difference of (A⊕2k⊕1)⊕1 = {0, p,an−p+1,an−p+2, . . . ,an}with A, is {1,2, . . . ,k−1,k+1,k+2, . . . , p−1, p}. The maximum
of the symmetric difference is p ∈ (A⊕2k)⊕2. This proves max(A4B) ∈ B, if A < B≤ (A⊕2k)⊕2.
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We have (A⊕2k)⊕3 = {1, p,an−p+1,an−p+2, . . . ,an}, which again gives p = max(A4(A⊕2k⊕3)) ∈ A⊕2k⊕3. Continue
in this manner. Apply ⊕1 to A⊕2k a total of 2k−1 times before we reach

(A⊕2k)⊕2k = {0,1, . . . ,k−1, p,an−p+1,an−p+2, . . . ,an}.

Here, we have symmetric difference A4((A⊕2k)⊕2k)= {k+1,k+2, . . . , p}, and the maximum is p∈ (A⊕2k)⊕2k. This proves
max(A4B) ∈ B, if A < B ≤ A⊕2k⊕2k. If we add 1 again, we obtain A⊕2k⊕2k⊕1 = {k, p,an−p+1, . . . ,an}. The symmetric
difference with A is the set {k, p}. We have max{k, p} = p ∈ A⊕ 2k⊕ 2k⊕ 1. Keep adding 1, until we reach (A⊕ 2k)⊕ 2p =
{0,1, . . . ,q−1,an−q+1,an−q+2, . . . ,an} where A = {0,1, . . . ,k−1,k+1, . . . , p−1, p+1, . . . ,q−1,an−q+2,an−q+3, . . . ,an} and
q > p is the third smallest number not in A. We continue, for all k, p,q, . . . ,r not in A. We reach the largest number r /∈ A such
that r < an. This proves max(A4B)∈ B if A < B < A⊕2k⊕2p · · ·⊕2r. When we add 1 to A⊕2k⊕2p⊕·· ·⊕2r = {0,1, . . . ,an},
the result is the singleton {an +1}. Now it is trivial that the maximum of the symmetric difference is in A⊕2k⊕2p · · ·⊕2r⊕1,
since max(A)< max(A⊕2k⊕2p · · ·⊕2r⊕1). Observe that adding 1 to X leaves the maximum of X equal or larger by one, for
any set number X . We conclude the result also holds for any X > A⊕2k⊕2p · · ·⊕2r⊕1 because

max(X)≥max(A⊕2k⊕2p · · ·⊕2r⊕1)> max(A)

.
Proving the second implication is easy. We use the following observation from the first part of this proof. Given A =

{a1,a2, . . . ,an} and any number x /∈ A, we can find a set number N such that A⊕N = {x,ai,a j, . . . ,an}; of course if x > A we
have A⊕N = {x}. Let M = max(A4B) ∈ B, then we add 1 to A, until we obtain the result A⊕N = {M,ai1 ,ai2 , . . . ,an}, where
ai1 ,ai2 , . . . ,an are the elements of A that are greater than M. If an < M, we simply have A⊕N = {M}. Now we need to add P to
A⊕N, where P = {b1,b2, . . . ,bα} is the set of objects in B that are smaller than M. The result is B = (A⊕N)⊕P = A⊕ (N⊕P)
which implies A < B. ut

Let us carry out an example of finding which of two different set numbers is largest. Let A = {2,5,6,8,9} and B =
{0,1,7,8,9}. The largest of the two is the set that contains max{0,1,2,5,6,7} = 7, so that A < B. In the next sections we
will have to find the order of set numbers given in a different form. For example, we may write a set number in the form

A = {{3,5},{1,2},{4,6}} = 2223+25
+221+22

+224+26
. Let us compare it with B = {{3,4},{1,2},{5,6}} = 2223+24

+221+22
+225+26

.
Obviously A < B since max(A) = {4,6}< {5,6}= max(B).

2.3 Product of Set Numbers

The product is easy to define. We have already defined multiplication by 2. In binary representation, we have 2n + 2n = 2n+1,
so here we have a corresponding rule. If a power is repeated we add 1 to that power. Therefore, to multiply by 2 is to apply
the function �2 = s that adds 1 to the elements of the argument. Multiplication by 4 is s ◦ s which adds 2 to the elements
of the argument. In general, multiplication of B by 2k is equal to sk(B). If B = {b1, . . . ,bn} then 2k �B is equal to the set
{b⊕ k}b∈B = {b1⊕ k, . . . ,bn⊕ k}. The product of a set number B with 2k, in our graphic representation, consists of displacing
the objects of the set, k units up. We say 2k�B is the k-displacement of B. We define the general product A�B in terms of
displacements of the base B, and the pivot A.

A�B =
⊕
a∈A

{b⊕a}b∈B. (3)

This means we add displacements of B, one for each object of the pivot A. If a ∈ A then the a-displacement of B is one of
the displacements in our sum. We notice that multiplication by 0 results in the empty set, 0�X = X �0 = 0. It is also trivial to
find 1�X = X�1 = X . To show that 2 = {1} is commutative under multiplication,

{1}�X = {x⊕1}x∈X

=
⋃
x∈X

{x⊕1}

=
⊕
x∈X

{1⊕ x}

= X�{1}.

This means 2�X =X�2=X⊕X . Before proving general properties, let us calculate 3�5= {0,1}�{0,2} in two different
ways to verify these numbers commute. We first make A = 3 and B = 5 so that we will add two displacements of B = {0,2}.
The first displacement is {0⊕ 0,2⊕ 0} = {0,2}, and our second displacement is {0⊕ 1,2⊕ 1} = {1,3}. We add the two and
obtain {0,2}⊕{1,3} = {0,1,2,3} = 15. Now we take A = 5 and B = 3, so that we will add two displacements of 3 = {0,1},
each corresponding to an element of 5 = {0,2}. Our displacements of 3 are the 0-displacement, {0⊕ 0,1⊕ 0} = {0,1}, and
the 2-displacement, {0⊕ 2,1⊕ 2} = {2,3}. Adding these two displacements results in {0,2}⊕{1,3} = {0,1,2,3} = 15. Let
us give an example in terms of powers of 2, to illustrate this procedure. To find the product (20 + 21)(20 + 22) we distribute
20(20 +22)+21(20 +22). Then, we have (20+0 +22+0)+(20+1 +22+1) = (20 +22)+(21 +23).
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Fig. 2 We find the product 7�9. The first and second columns are the pivot and base, respectively. The next three columns correspond to the displace-
ments of our base. The last column is the sum of the displacements. The result is equal to 63 = {0,1,2,3,4,5}.

In Figure 2 we have the visual representation of 7�9. To formalize this, we first verify �2 is a morphism for addition of set
numbers, s(A⊕B)= s(A)⊕s(B). We know X⊕X = s(X), so that s(A⊕B)= (A⊕B)⊕(A⊕B)= (A⊕A)⊕(B⊕B)= s(A)⊕s(B).
Of course this implies

sk(A⊕B) = sk(A)⊕ sk(B), (4)

for every k ∈ N. To prove the distributive property use (4) and the commutative and associative properties of addition of sets.

A� (B⊕C) =
⊕
a∈A

{x⊕a}x∈B⊕C

=
⊕
a∈A

sa(B⊕C)

=
⊕
a∈A

(sa(B)⊕ sa(C))

=
⊕
a∈A

sa(B)⊕
⊕
a∈A

sa(C)

= (A�B)⊕ (A�C)

Now we prove multiplication is commutative. Let a ∈ A fixed, then the set {b⊕a}b∈B = {b1⊕a,b2⊕a, . . . ,bn⊕a} can be
expressed as a sum of disjoint singletons,

⊕
b∈B{b⊕a}

A�B =
⊕
a∈A

{b⊕a}b∈B

=
⊕
a∈A

⊕
b∈B

{b⊕a}

=
⊕
b∈B

⊕
a∈A

{a⊕b}

=
⊕
b∈B

{a⊕b}a∈A

= B�A.

We have proven the distributive and commutative properties, so that we have also proven

(A⊕B)�C = (A�C)⊕ (B�C). (5)

Now, we wish to prove that multiplication is associative. We need the following proposition.

Proposition 5 The operation function �N acts on sets by �N(X) =⊕XN(0).

Proof This is proven by mathematical induction. We know it is true for 1, since 1�X = X . Suppose it is true for N, then using
the distributive property of (5)

�(N⊕1)(X) = �N(X)⊕�1(X)

= ⊕XN(0)⊕X

= ⊕X(⊕XN(0))

= ⊕XN+1(0).

ut
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Now we can prove the associative property holds for the product of set numbers. Because of Proposition 3, it is sufficient

to verify the operation functions of � commute. We will use the notation
N⊕

i=1
X to represent the number ⊕XN(0). This way, the

expression
⊕A

j=1
(⊕B

i=1 X
)

means we add X a number of B times to obtain the number B�X , and then we add B�X a total of A
times to obtain A�(B�X). We are really adding X a total number of A�B = B�A times. It is as if we have a rectangular matrix
of size A×B and every entry is equal to X , then we add all the entries. Considering the matrix of size B×A and proceeding
is equivalent to rearranging the order of the sum. To prove associativity of product we apply Proposition 5 twice, then we use
commutativity and associativity of addition to find the third equality. Then we apply Proposition 5 again.

(�A◦�B)(X) = �A

(
B⊕

i=1

X

)

=
A⊕

j=1

(
B⊕

i=1

X

)

=
B⊕

i=1

(
A⊕

j=1

X

)

= �B

(
A⊕

i=1

X

)
= (�B◦�A)(X)

To prove the properties of multiplication, we have expressed them in terms of addition, where we have proven the commu-
tative, associative and distributive properties. In [Ramirez(2019)], there is a description of subtraction, division and powers of
set numbers.

2.4 Integers

We do not require the structure of integers, to construct the structure of real numbers. However, we provide a construction of Z
because it introduces methods and concepts of previous and later sections. We use operation functions and their inverse functions
to describe integers. A positive integer n∈Z is an operation function⊕n, while its negative integer -n∈Z is the inverse function
(⊕n)−1. We notice one important fact. Negative integers can easily be distinguished from positive integers. A negative integer is
a function of the form -n : {n,n⊕1,n⊕2, . . .}→N, while a positive integer is a function of the form n : N→{n,n⊕1,n⊕2, . . .}.
This will have to be considered when defining addition of integers; it does not represent any difficulty but we must be careful.
The integer 0 is the identity function of N. We represent the set of negative integers with the symbol −N. We say X ⊂ Z is a non
negative subset of Z if −N∩X = /0, and the like.

The sum of integers is defined in the obvious way, using composition. Let m = ⊕m and n = ⊕n positive integers. The
composition of these is a positive integer. We define the addition of two positive integers, m+n = ⊕m ◦⊕n. The sum, -m-n,
of negative integers -m = (⊕m)−1 and -n = (⊕n)−1, is defined as the composition (⊕m)−1 ◦ (⊕n)−1 = (⊕n ◦⊕m)−1. We
have ⊕n ◦⊕m = ⊕m ◦⊕n, so that -m-n is equal to the negative integer (⊕m ◦⊕n)−1 = -(m+n). The sum of one negative
integer -m and one positive integer n is defined as follows. We can have two cases. If the corresponding natural numbers
satisfy m < n, we know there is a natural number x such that n = m+ x. We define -m+n = x, where x = ⊕x : N→ {n−
m,n−m+ 1,n−m+ 2, . . .}. In the contrary case that the natural numbers satisfy n < m, we have m = n+ x for some natural
number x. We define addition of these integers by -m+n = -x, where -x = (⊕x)−1 : {m− n,m− n+ 1,m− n+ 2, . . .} → N.
The order relation between m,n determines if -m+n is a positive integer or a negative integer. In both cases, we have -m+n =
(⊕m)−1 ◦⊕n. But, what happens if we try to define n-m? Consider the composition ⊕n ◦ (⊕m)−1. In both cases, m < n or
n < m, the composition is ⊕n◦ (⊕m)−1 : {m,m+1, . . .}→ {n,n+1, . . .}. Although ⊕n◦ (⊕m)−1 is a well defined composition,
it is not an integer. The functions ⊕n ◦ (⊕m)−1 and (⊕m)−1 ◦⊕n are not the same function. However, in the intersection of
the domains, these compositions are equal functions. Thus, we are justified in defining the sum of integers as commutative,
n-m = -m+n. To prove addition of integers is associative, let x,y,z integers. We have to consider two cases; y is positive
or negative. Suppose first, y is positive. Then we have x+y = ⊕x ◦⊕y. Consider two sub cases. If z is positive, the associative
property holds for (x+y)+z= x+(y+z) because the associative property holds for composition of functions. Suppose z is negative.
Then (x+y)+z= z+(x+y)= z+(y+x)= (z+y)+x= x+(z+y)= x+(y+z). Go back to our assumption of y. Now, suppose y is negative
and x is positive. We have (x+y)+z = (y+x)+z = (y+x)+z = y+(x+z) = y+(z+x) = (y+z)+x = x+(y+z). If x and y are negative,
then x+y = ⊕x ◦⊕y. This implies (x+y)+z = (⊕x ◦⊕y) ◦⊕z = ⊕x ◦ (⊕y ◦⊕z) = x+(y+z). This proves addition of integers is
associative. The addition of integers 5-3 is equal to the function ⊕2, while the result of 3-5 is (⊕2)−1.

Ordering integers is natural, in this context. Two integers x,y satisfy the inequality x < y if and only if x(n) < y(n), for
any n ∈ N. For example, -5 < 2 because -5(5) = 0 < 7 = 2(5). Of course, the order is well defined so that there is no natural
number n such that 2(n) < -5(n). Let us prove -6 < -3. We need a set number that is in the domain of -3 and -6, say 6. Then,
-6(6) = 0 < 3 = -3(6).
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3 Finite Functions and Permutations

In this section we will build the set of finite functions on N, and provide an injective function from this set, into the set of natural
numbers. The important quality of this representation is that functions are equivalent if and only if they are represented by the
same number. We find a way to assign natural numbers to abstract functions as well. There will be a distinct difference when we
are working with an abstract function or a concrete function. When working with abstract functions, two functions are defined
to have the same structure if they are assigned the same natural number. Concrete functions, on the other hand, can have the
same structure but different numeric representation. For example, consider the functions f ,g defined by

f (a) = b g(a) = a
f (b) = a g(b) = c
f (c) = c g(c) = b

These two abstract functions have the same structure, and have the same numeric representation; they will be considered
to be the same function. However, if the objects are not abstract, a,b,c ∈ N, then f ,g are concrete functions and they will be
represented by distinct numbers. In our example, let a = 3, b = 5 and c = 0. The functions f ,g defined by f (3) = 5, f (5) = 3,
f (0) = 0, and g(3) = 3, g(5) = 0, g(0) = 5 are different and they will be represented by different numbers.

In this section we order the set of finite functions of natural numbers. Then we give an equivalence definition for abstract
finite functions, which simultaneously orders these equivalence classes. In the process we are able to provide a canonical order
for the elements of a given abstract finite function, and we can say which objects of the function can be considered to be
equivalent. In our example, the objects a,b, are equivalent in the function f , while c is not equivalent to another object. The
objects b,c are equivalent in the function g, and a is not equivalent to another object.

3.1 Ordered Pairs

If we wish to represent finite functions as natural numbers, we will first find a way of representing ordered pairs as natural
numbers. An ordered pair of natural numbers should be an object (m,n) from which you can determine two natural numbers in
a predetermined order. This means that we do not want (m,n) and (n,m) to be the same object. The first ordered pair, (m,n),
means we have two natural numbers. First m, then n. The second ordered pair (n,m) means we have first n, then m. A set of two
natural numbers {X ,Y} is not an ordered pair because we it simply tells us we have two objects, without a pre determined order;
we simply have objects X ,Y and they are not ordered.

To solve this, we give a method of coding an ordered pair of natural numbers using odd/even numbers to represent the
first/second component respectively. Given any set number X , we can associate to it the odd number s(X)⊕ 1, and the even
number s(X⊕1). For example, 0 is associated to the odd number s(0)⊕1 = 1 and the even number s(0⊕1) = 2. The number 1
is associated the odd number s{0}1 = {1}⊕1 = 2⊕1 = 3 and the even number s(1⊕1) = s(2) = 4. In general, the number k
is associated to the k+1-st odd and even numbers 2k+1 and 2(k+1), as shown in the table 1.

Table 1 Every natural number can be uniquely represented as an odd and even number.

X Odd Even

0 1 2
1 3 4
2 5 6
3 7 8
4 9 10
5 11 12
...

...
...

An odd number is a set number A with 0 ∈ A. To transform a set number X to its odd representation, displace the objects of
X one unit up, to get s(X). Then add the object 0 to the set s(X), to obtain s(X)⊕1 = s(X)∪{0}. When we apply ⊕1 to s(X),
we simply add the object 0 to the set s(X) because 0 /∈ s(X). The set number 5 = {0,2} is sent to the odd number s(5)⊕ 1 =
{0⊕1,2⊕1}⊕1= {1,3}⊕{0}= {0,1,3}. Take another example, the set number 13= {0,2,3} is sent to the odd representation
s(13)⊕1= {0⊕1,2⊕1,3⊕1}⊕{0}= {1,3,4}⊕{0}= {0,1,3,4}. Given an odd number A, we can easily see what set number
it represents. To find the set number X such that A = s(X)⊕1, take away the object 0, from A, and displace the rest of the objects
one unit down. Doing this to the odd number {0,1,3,4}, of our last example, we get 13 = {1−1,3−1,4−1} = {0,2,3}. An
even number is a set number B such that 0 /∈ B. The set number X is represented by the even number s(X ⊕ 1). For example,
the set number 7 = {0,1,2} is assigned the even number 16 = s({0,1,2}⊕1) = s({0,1,2}⊕{0}) = s{3}= {3⊕1}= {4}. If
B is an even number, we can find the set number X it is representing. Displace the objects of B one unit down. This means B
is representing the predecessor of X ⊕ 1. For example, the number 10 = {1,3} is the even representation of 4 = 5− 1 because
{1−1,3−1}= {0,2}= 5. We can go back an forth between a set number X and its odd/even representation.
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The ordered pair (m,n) is a set number of one odd and one even number, {2m+1,2(n+1)}. This allows us to differentiate
the two components. We will use the convention that the odd number is the first component of the ordered pair, while the even
number is used for the second component of the ordered pair. If P = {A,B} is an ordered pair, we use the convention that the first
component is given by the odd number, A, and the second component is given by the even number, B. If P = {2k+1,B} then it
represents an ordered pair with k in the first component, P = (k,n). We use even numbers to represent the second component.
If P = {A,2(k + 1)} then it represents an ordered pair with k in the second component, P = (m,k). An ordered pair (m,n),
of natural numbers m,n, is defined as the set number 22m+1 + 22(n+1) = {2m+ 1,2(n+ 1)}, where m,n ∈ N. The set number
representing (0,0) is {1,2} = 22(0)+1 + 22(0+1) = 6. For another example, the ordered pair (4,5) is represented by the natural
number 22(4)+1 + 22(5+1) = 29 + 212. In summary, P = {A,B} ∈ N, with 0 ∈ A and 0 /∈ B, represents the ordered pair (m,n),
where m,n ∈ N are the unique natural numbers that satisfy s(m)⊕ 1 = A and s(n⊕ 1) = B. We find m = A−1

2 and n = B
2 − 1,

where X
2 = s−1(X). The function s−1 sends the elements of X to their predecessor, s−1(X) = {x−1}x∈X . There exists a numeric

table describing this rule, in general.

Definition 6 We define a family of sets,

(0,) = {6,18,66,258,1026, . . . ,2+22(n+1), . . .}
(1,) = {12,24,72,264,1032, . . . ,8+22(n+1), . . .}
(2,) = {36,48,96,288,1056, . . . ,32+22(n+1), . . .}

...
...

(m,) = {22m+1 +4,22m+1 +16, . . . ,22m+1 +22(n+1), . . .}. (6)

Any element x ∈
⋃

i(i,), in the above family of sets, is an ordered pair. The ordered pair (m,n) is the n+1-st element of the
set (m,). A finite relation is a finite subset R⊂

⋃
i(i,); elements of R are called components.

There are a few important remarks to be made. Every ordered pair of natural numbers is identified with a unique natural
number. Two ordered pairs are the same if and only they are represented by the same set number. And, every natural number
representing an ordered pair is a multiple of 6 (the converse is obviously not true). We have an easy way of knowing what
number represents (m,n). An ordered pair (0,n) is any element of the set (0,). The ordered pair (0,0) is represented by 6 =
22(0)+1 +22(0+1), and (0,1) is 18 = 22(0)+1 +22(1+1). The third number of the set (0,) represents the ordered pair (0,2), etc. An
element of (1,) is an ordered pair of the form (1,n). The ordered pair (1,0) is represented by 12 = 22(1)+1 + 22(0+1), the first
object of (1,). The ordered pair (1,1) is 24 = 22(1)+1 +22(1+1), the second object of (1,). The third object of (1,) represents the
ordered pair (1,2), etc. Now, we are able to make an important jump. This is the second part of our definition, relation. A finite
collection of ordered pairs is a natural number,

{{A1,B1}, . . . ,{An,Bn}}= 22A1+2B1 + · · ·+22An+2Bn (7)
where Ai are odd and the Bi are even. Under this definition, a set of ordered pairs is a relation, as is usual. We are able to
store the information of a finite relation in a single natural number, and the structure is again obtainable from that number.
The relation {(0,0),(0,1),(0,2),(2,1)} is represented by the natural number 222(0)+1+22(0+1)

+222(0)+1+22(1+1)
+222(0)+1+22(2+1)

+

222(2)+1+22(1+1)
. Two finite relations are the same if and only if they are represented by the same natural number. For another exam-

ple, take the relation {(2,1),(2,2),(4,2),(4,4)} given by the natural number 222(2)+1+22(1+1)
+222(2)+1+22(2+1)

+222(4)+1+22(2+1)
+

222(4)+1+22(4+1)
. Now we are able to describe finite functions as natural numbers.

3.2 Concrete Functions

In this section we use the definition of finite relation to represent a finite function of natural numbers. Going back to our definition
of relation, we additionally require that no odd number is repeated. A finite function is represented by a set number of the form
(7), where all the Ai are distinct.

Definition 7 A function f : A→ B is a natural number f = {{A1,B1},{A2,B2}, . . . ,{An,Bn}} = 22A1+2B1 + 22A2+2B2 + · · ·+
22An+2Bn , where all the Ai are distinct odd numbers and Bi are even numbers. A function is called bijective if, additionally, all
the Bi are distinct. Every element of f is an arrow component. The function f maps m 7→ n if and only if 22m+1 +22(n+1) ∈ f .

A permutation {0,1,2, . . . ,n} → {0,1,2, . . . ,n} is particularly easy to identify. It is a set of n+ 1 ordered pairs, in which
every element of {1,2,3,4, . . . ,2n,2n+1,2(n+1)} appears in exactly one ordered pair. Examples of permutations are

{{1,2},{3,4}} = 221+22
+223+24

{{1,3},{2,4}} = 221+23
+222+24

{{1,2},{3,4},{5,6},{7,8}} = 221+22
+223+24

+225+26
+227+28

{{1,6},{3,8},{5,2},{7,4}} = 221+26
+223+28

+225+22
+227+24

{{1,4},{3,10},{5,6},{7,8},{9,2}} = 221+24
+223+210

+225+26
+227+28

+229+22

{{1,6},{3,8},{5,2},{7,10},{9,4}} = 221+26
+223+28

+225+22
+227+210

+229+24
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The first permutation is the identity permutation (0)(1). The second set number is representing the one-cycle permutation
(0,1). The third and fourth numbers represent (1)(2)(3)(4) and (0,2)(1,3), respectively. The fifth and sixth permutations are
(0,1,4,)(2)(3), and (0,2)(1,3,4). We provide a linear order to the set of finite functions, and in particular permutations.

This order is well behaved in several ways. If f : {0,1,2, . . . ,m}→ {0,1,2, . . . ,m}, and g : {0,1,2, . . . ,n}→ {0,1,2, . . . ,n}
are permutations and m< n, then the representation of f is smaller than the representation of g. For now, we conclude this section
with the following remark. This representation is not very good if we want a representation that measures how much movement
a permutation causes. This manner of assigning natural numbers to functions makes a distinction between functions with the
same structure. For example, the functions f ,g defined by f (0) = 0 and g(1) = 1 have the same structure but are assigned
different numbers. In the following section we address this issue. We assign a natural number to any abstract finite function, in
such a way that two functions are represented by the same number if and only if they have the same structure (this will be our
definition of equivalent structure between two functions). This gives us a modulo-structure representation of concrete functions.
We forget the numerical values of the objects of the concrete function, turning it into an abstract function. Then we find the
number representation of that abstract function.

3.3 Abstract Functions

Consider the permutations (1,2)(3,4) and (1,3)(2,4). These will be represented by the numbers 223+26
+ 225+24

+ 227+210
+

229+28
and 223+28

+227+24
+225+210

+229+26
, respectively. These numbers are different. We would like to make a good defini-

tion, modulo the structure, so that the two functions above are assigned the same natural number. It would be advantageous to
number finite functions in such a manner that functions with the same structure will be represented by the same natural number.
Let f : A→ B a concrete function, where A,B ∈ N. Our first step is to forget the numeric value assigned to the elements of the
components. This means that the sets A,B are no longer thought of as set numbers. We will think of the elements of A and B as
abstract objects with a function defined on them. We need to know how many distinct elements are in A∪B. For example, the
function f defined by

f (2) = 2

f (5) = 6

f (6) = 5

f (8) = 6

f (10) = 15

depends on the distinct objects 2,5,6,8,10,15 and it will be considered an abstract function f ∗ defined by

f ∗(a) = a

f ∗(b) = c

f ∗(c) = b (8)

f ∗(d) = c

f ∗(p) = q

Now, we must find a way of assigning a natural number N f ∗ to the abstract function f ∗, in a sufficiently reasonable manner.
To do this, we must go back to the realm of numeric values. Let us take a fixed bijection η : {a,b,c,d, p,q} → {0,1,2,3,4,5},
and call it a naming function of f ∗. Using the procedure of the last section, we have a representation N f ∗(η) ∈ N that depends
on the naming function η and the abstract function f ∗. Now consider the set of all representations {N f (η)}η ; let η variable over
all possible naming functions. In our example we have 6! possibilities.

To find the modulo-structure representation of a concrete function f , we first find the abstract function f ∗ corresponding
to f , then we proceeded to find all the possible naming functions of f ∗. There is a total of #(A∪B)! naming functions. Each
naming function η provides a representation N f ∗(η), so that we have a set of representations {N f ∗(η)}η .

Definition 8 Let f be a concrete function and f ∗ its corresponding abstract function. Their exists at least one naming, ρ , such
that N f ∗(ρ) is equal to the maximum element of the set {N f ∗(η)}η . This maximum is the modulo-structure representation of f ,
and we use the symbol N f ∗ = N f ∗(ρ).

Let f ∗ and g∗ abstract functions such that N f ∗(η) = Ng∗(µ), for some naming functions η of f ∗ and µ of g∗. Then f ∗ = g∗

and we say η ,µ are equivalent naming functions for f ∗. The sets of representations for f ∗,g∗ are disjoint if f ∗,g∗ are different
functions; f ∗ 6= g∗ implies {N f ∗(η)}η ∩{Ng∗(µ)}µ = /0. This is a good representation of abstract functions as natural numbers,
because {N f ∗(η)}η is a natural number and two functions are assigned different numbers if and only if they have different
structure. Therefore, we have a linear order for finite functions. The representation of a function is a large natural number because
#{N f ∗(η)}η = (#(Dom( f ∗)∪ Im( f ∗)))!. If f ∗ is a permutation of k objects, the representation of f ∗ is a natural number that
is the sum of k! distinct powers of 2. The representation of a permutation of 10 objects would be a natural number somewhere
close to 1010230

. We can make this representation smaller, and the order of the functions will be invariant. In Definition 8,
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we use the fact that sets of representations are disjoint for different functions, to our advantage. We choose to represent the
function f with the maximum of the set of representations, for the following reason. Let A∩B = /0, then the order relation of
the maximum elements, max(A) < max(B), determines the order relation A < B. We conclude that representing f with the set
of representations, {N f ∗(η)}η , or with the maximum element, N f ∗ = max{N f ∗(η)}η , gives us the same order.

Now we define equivalent objects of a finite function f : A→ B of n objects; n = #(A∪B). Suppose we have two canonical
naming functions ρ1,ρ2 : (A∪B)→{0,1,2, . . . ,n−1} so that N f ∗ = N f ∗(ρ1) = N f ∗(ρ2). We are supposing the naming functions
are not equal, so that we have ρ1(x) 6= ρ2(x), for some x ∈ A∪B. Also, naming functions are bijections, so we know there exists
y 6= x such that ρ1(y) = ρ2(x). We will say x,y are equivalent objects because there are two distinct canonical naming functions
ρ1,ρ2 that assign the same numerical value to x,y.

Definition 9 Let f : A→ B a finite function. Two objects x,y ∈ A∪B are equivalent if there exist canonical naming functions
ρ1,ρ2 such that ρ1(x) = ρ2(y). This is an equivalence relation on the set of objects A∪B.

This method has given us two things. We are able to number the set of all finite functions (modulo structure), and we
are also provided with a canonical naming function on the objects Dom( f )∪ Im( f ). We can order the set of abstract finite
permutations. We can also order the elements of any abstract finite permutation, and we know which objects of f are equivalent.
Most importantly these orders are well behaved in several ways. In this work, we focus on the ordering of finite permutations,
and a general exposition of finite functions is left for future work. Nonetheless, we do some examples of general functions. Let
us find the representation of the first finite functions, to get an intuitive grasp of how functions are ordered.

Our first example is of course the trivial function f0 that sends a→ a. This function depends of a single object so we use
the set {0} to name the set of objects {a}. We have to recall the definition of ordered pair, and specifically we said the ordered
pair 0→ 0 is represented by the number 6 = 21 +22. We use the odd number to represent the preimage and the even number to
represent the image; a 0 in the preimage means 1 is an element of the ordered pair and a 0 in the image means 2 is an element
of the ordered pair. Our function consists of one component. Its only element is 6, so N f0 = 221+22

. Let us continue to represent
functions. We will try to construct all finite functions in order of their representation, so the next logical choice is the function f1
defined by one component, f1(a) = b. In this case we have two objects so a naming of this function is a bijection {a,b}→ {0,1}.
If we choose the naming a = 0 and b = 1 we get the representation 221+24

. If we give instead the naming a = 1 and b = 0 then
the representation is 223+22

. We conclude that the canonical representation of f1 is the number N f1 = 221+24
corresponding to the

first naming function a = 0 and b = 1. These are the only two possible abstract functions of one component; namely f0(0) = 0
(trivial function) and f1(0) = 1 (one object sent to a different object).

Now let us consider functions of two components. Bur first let us recall what it is we are trying to do. We know finite
functions are ordered isomorphic to N; every finite function is assigned a unique natural number. We can state this in the
following simple manner. There is a set of natural numbers {N f } f : f inite f unction = {N0,N1,N2, . . .} and we say an element of this
set is a finite function. Let us find the first few functions f0, f1, . . . represented by the first numbers N0, N1,. . . . So far we know
the first two functions are the one component functions N0 = 221+22

and N1 = 221+24
from above. If we want to find the next

function, f2 = N2, we will have to add a component but we do not want to use more than two objects because that would give
us a function represented by a larger number. Consider finite functions of two components, and two objects. There is a total
of 3 functions that satisfy this conditions and they are the functions N2,N3,N4. The function N2 is given by two components
that switch the objects in the domain, f2(a) = b and f2(b) = a. This is the first time we encounter two equivalent objects for a
function. If we give the naming a = 0,b = 1 or the naming a = 1,b = 0 we get the same representation N2 = 221+24

+ 222+23
.

The next function in order is the identity function on two objects, f3(a) = a and f3(b) = b. Again, both objects are equivalent
and they give the representation N3 = 221+22

+ 223+24
. The function N4 is the trivial function that sends two objects to one of

the two; the components are f4(a) = a and f4(b) = a. The canonical representation N4 = 221+24
+223+24

is given by the naming
a = 1 and b = 0. The first summand represents f4(0) = 1 and the second summand represents f4(1) = 1. We can easily verify the
alternative naming function would give us a smaller representation. If we give the naming a = 0 and b = 1, the corresponding
representation of f4 is 221+22

+ 223+22
. Notice that the function that seems to cause more movement, f2, is represented by the

smallest number of the three. The function that sends everything to a is the largest of the three, and the identity is the middle
number. This observation will be important in the special case of ordering permutations.

Now we can consider functions of two components and three objects, the next functions in our order N5,N6,N7. We give
each function with its canonical naming, and then some of the other non canonical representations.

f5(a) = b, f5(b) = c has canonical naming a = 1, b = 2, c = 0 giving ordered pairs (1,2),(2,0) with representation

N5 = 223+26
+225+22

.

Other, non canonical, representations are a = 0, b = 1, c = 2 with representation 221+24
+223+26

; a = 0, b = 2, c = 1 with
representation 221+26

+225+24
; a = 1, b = 0, c = 2 with representation 223+22

+221+26
; a = 2, b = 1, c = 0 with representation

225+24
+223+22

; a = 2, b = 0, c = 1 with representation 225+22
+221+24

, etc.
f6(a) = c, f6(b) = c has canonical naming a = 0, b = 1, c = 2 giving the ordered pairs (0,2),(1,2) with representation

N6 = 221+26
+223+26

.

The naming a = 1, b = 0, c = 2 is also canonical; a,b are equivalent objects of f . Other, non canonical, representations are
a = 2, b = 1, c = 0 with representation 225+22

+223+22
; a = 2, b = 0, c = 1 with representation 225+24

+221+24
. etc.

f7(a) = a, f7(b) = c has canonical naming a = 2, b = 0, c = 1 giving the ordered pairs (2,2),(0,1) with representation
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N7 = 221+24
+225+26

.

Other, non canonical, naming functions are a = 2, b = 1, c = 0 with representation 223+22
+225+26

; a = 0, b = 1, c = 2 with
representation 221+22

+223+26
; a = 0, b = 2, c = 1 with representation 221+22

+225+24
; etc.

So far, we have found the first eight numbers N0,N1, . . . ,N7. We wish to find the next numbers representing functions.
Here, we have to be careful. There is one function of two components and four objects. However, it is not next in order,
because the functions of three components and three objects have smaller representation. We see that the order of functions is
determined first in terms of objects. Let f : A→ B and g : C→ D finite functions and suppose #(A∪B)< #(C∪D), then f < g.
If #(A∪B) = #(C∪D), we check the number of components. The function with more components has larger representation;
#( f )< #(g) implies f < g. Let Am

n a finite function of n objects and m components. The following inequalities hold.

A1
1 < A1

2 < A2
2 < A2

3 < A3
3 < A2

4 < A3
4 < A4

4 < A3
5 < A4

5 < A5
5 < A3

6 < A4
6 < A5

6 < A6
6 < · · ·

The table below states the number of functions with n objects and m components. There is one function of one object and
one component (a→ a). There is one function of two objects and one component (a→ b). There are three functions of two
objects and two components. We found three functions of three objects and two components, etc. This is shown in Table 2.

Table 2 The first column indicates how many distinct functions of n objects and m components. There is no general way of calculating the number of
functions, except to find all possible functions and to determine which ones are equivalent.

# Functions # Objects # Components

1 1 1
1 2 1
3 2 2
3 3 2
7 3 3
1 4 2
9 4 3

4 4
3 5 3

5 4
5 5

1 6 3
6 4
6 5
6 6

...
...

...

If f ,g have the same number of objects, and the same number of components, then we have to find their canonical repre-
sentation and the order relation N f < Ng determines the order relation f < g. Therefore, to compare two finite functions, it is
sufficient to compute their canonical representations and compare these numbers. If, however, we wish to find the index k such
that Nk = N f , we have a slightly more complicated situation. We know how to find the canonical representation N f of f , but if
we want to know its position in the order we need more information than just its canonical representation. We have to know how
many functions there are of less objects, and how many functions of the same number of objects but of less components. Then,
we need to find the canonical representation of all functions with the same number of objects and same number of components.
In the table above, we state there are seven functions of three components and three objects. We now provide these seven func-
tions, and for simplicity of lecture and exposition we give arrows defining these functions. For example, the function defined by
the three components f (a) = f (b) = f (c) = a is the set of arrows of the last column. These are shown in Table 3.

Table 3 There is a total of seven functions of three objects and three components.

N8 N9 N10 N11 N12 N13 N14

a→ b a→ b a→ a a→ a a→ a a→ a a→ a
b→ c b→ a b→ c b→ b b→ a b→ a b→ a
c→ a c→ a c→ b c→ c c→ c c→ b c→ a

Any function of three components and three objects is equivalent to one of these seven. These functions are next in the
canonical ordering of finite functions; they are represented by the numbers N8,N9, . . . ,N14. To know which of these seven
functions is N8, we have to find the canonical representation of all seven and the one with smallest canonical representation is
the function N8, then the function N9 is the function with second smallest representation, etc. Of these seven functions, the one
with largest representation is the function N14. Here we give them in order from smallest to largest (left to right). We leave as an
exercise for the reader to verify the canonical representations of these functions.
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N8 = 221+24
+223+26

+225+22

N9 = 221+26
+223+26

+225+24

N10 = 221+24
+223+22

+225+26

N11 = 221+22
+223+24

+225+26

N12 = 221+22
+223+26

+225+26

N13 = 221+24
+223+26

+225+26

N14 = 221+26
+223+26

+225+26

To find the canonical representation of N8, we observe the objects are all equivalent. Let a = 2, then we obviously have to
make b = 0 and c = 1, because we have to maximize the term where a is image. The naming functions b = 2,a = 1,c = 0 and
c = 2,b = 1,a = 0 also give the canonical representation. The canonical naming function of N9 is also easy to find. We start by
naming a = 2, since a is the most frequent object. Then we make b = 1 because b is the object that has more relations with a.
In N10 we first make a = 2 because a is a fixed point; this ensures we have the term 25 + 26. The objects b,c are equivalent in
the function N10 because we have the two canonical naming functions a = 2,b = 1,c = 0 and a = 2,b = 0,c = 1. The rest of the
canonical naming functions are easily found.

Now consider the function of two components and four objects defined by f15(a) = c and f15(b) = d. The objects in the
image have priority for being assigned larger numbers, so we start with naming c = 3 because c is in the image. Now, things
change between choosing a,b,d for the value 2. Instead of assigning 2 to d, which is also in the image, we want to use the
object that is related to c = 3. That would be the object a = 2. Then, assign the values d = 1 and b = 0. The components of the
function are the ordered pairs (2,3) and (0,1) stating f15(2) = 3 and f15(0) = 1. The set of these ordered pairs is the canonical
representation N15 = 221+24

+225+28
; the summand 221+24

represents the pair (0,1) and the second summand 225+28
represents

the pair (2,3). The naming function d = 3, b = 2, c = 1, a = 0 gives components (0,1) and (2,3) so that this is also a canonical
naming function. Equivalent objects are those that can be assigned the same numerical value under different canonical naming
functions. Therefore, a,b are equivalent and c,d are equivalent.

Next in order we have the functions of three components and four objects. Each of these nine functions is represented by one
of the numbers N16,N17, . . . ,N24. Any function of three components and four objects is equivalent to one of these nine. Table 4
provides these functions.

Table 4 There is a total of nine functions of four objects and three components.

N16 N17 N18 N19 N20 N21 N22 N23 N24

a→ c a→ b a→ b a→ c a→ d a→ a a→ a a→ a a→ a
b→ a b→ a b→ d b→ c b→ d b→ c b→ d b→ b b→ a
c→ d c→ d c→ d c→ d c→ d c→ d c→ d c→ d c→ d

The smallest of these nine functions is N16 = 221+26
+225+28

+227+24
given by the canonical naming function a = 2, b = 0,

c = 3, d = 1. The next function is N17 = 221+24
+225+28

+227+26
with canonical naming function a = 3, b = 2, c = 0, d = 1 and

a,b are equivalent objects. The third is N18 = 221+26
+223+28

+225+28
under the naming a = 0, b = 2, c = 1, d = 3. Next is the

function N19 = 223+28
+225+28

+227+22
with the naming function a = 2, b = 1, c = 3, d = 0 and a,b are equivalent objects. The

function N20 = 221+28
+223+28

+225+28
has naming a = 2, b = 1, c = 0, d = 3 and a,b,c are equivalent objects. The function

N21 = 223+26
+225+22

+227+28
is given by a = 3, b = 1, c = 2, d = 0. We have N22 = 221+26

+223+26
+227+28

with a = 3, b = 1,
c = 0, d = 2 and b,c equivalent. The second largest is N23 = 221+24

+ 225+26
+ 227+28

with naming a = 3, b = 2, c = 0, d = 1
and a,b equivalent. Finally, we have N24 = 221+24

+225+28
+227+28

with a = 3, b = 2, c = 0, d = 1. By now we can see that is
not trivial to find the canonical naming function of a finite function, in the general case. In this section we have to make careful
observations to calculate the canonical naming functions, without having to find all possible representations. We will have two
main problems to solve in the general case, and we will treat these computational strategies in future work. These are 1) finding
the canonical naming function of any finite function, and 2) we need to know how many distinct abstract functions of n objects
and m components. In the next section we will study the suborder of finite permutations, and it proves much easier to work with.

At this point the next functions in the order of all finite functions, are functions of four objects and four components. We
leave the general analysis for future work, because finding all the possible distinct functions of four objects and four components
is a little more laborious. Instead, let us find the functions that come after those; functions of three components and five objects.
There is a total of three such functions.

a→ a a→ b a→ d

b→ d b→ d b→ d

c→ p c→ p c→ p
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There is one function of three components and six objects.

a→ d

b→ p

c→ q

Let us find the representation of f ∗, in example (8). We have five components, so our representation will be a set of five
natural numbers. In the general case it is not possible to construct the largest representation, without constructing several possible
representations. We know the canonical naming will have to assign η(a) = 5. This guarantees we have 211 + 212 ∈ N f ∗(ρ)
representing f ∗(a) = a. There is no object that has a relation with a, so we must find out which object, of the remaining
objects b,c,d, p,q, will be assigned the value 4. If we make ρ(c) = 4 we maximize the representation because we will have two
components with the power 210; namely the components f ∗(b) = c and f ∗(d) = c. We choose ρ(b) = 3 instead of ρ(d) = 3
because b is related to c by two components. This leaves us with ρ(d) = 2. Now we have to assign q = 1 and p = 0. The
canonical representation of

f ∗(a) = a

f ∗(b) = c

f ∗(c) = b

f ∗(d) = c

f ∗(p) = q

under the canonical naming ρ is

N f ∗ = 221+24
225+210

+227+210
+229+28

+2211+212

and there are no equivalent objects.

3.4 Finite Permutations

The suborder of permutations is easier to find, in part because it is well behaved with respect to cardinality (size). Let f a
permutation on m objects and g a permutation on n > m objects, then N f < Ng. Furthermore, permutations are ordered by
complexity. Given permutations f ,g of the same size, then we can order these permutations and the interpretation is that a larger
number is a simpler permutation. The identity permutation of size n has larger representation than all other permutations of size
n. The one cycle permutation of n objects has the smallest representation. The number of distinct abstract permutations of size
n, is equal to the number of additive partitions of n. Let us order the first few permutations. The unique permutation P0, of size
1, is the function f0 of one component, represented by N0 = 26. There are two permutations of size 2, the functions N2 and
N3. There is a total of three permutations of size 3. These are the functions N8,N10,N11. The smallest of these three numbers,
N8, represents the one cycle permutation. The middle permutation, N10, leaves one object fixed. The largest, N11, represents the
identity permutation. Call these first six permutations P0 = N0,P1 = N2,P2 = N3,P3 = N8,P4 = N10,P5 = N11. Let us order the
five distinct permutations of size 4. These are given in order in Table 5.

Table 5 There is a total of five permutations of four objects.

P6 P7 P8 P9 P10

a→ b a→ b a→ a a→ a a→ a
b→ c b→ a b→ c b→ b b→ b
c→ d c→ d c→ d c→ d c→ c
d→ a d→ c d→ b d→ c d→ d

If two objects are in the same cycle, then they are equivalent. The converse is not true. For example all objects of P10 are
equivalent but they are all in different cycles. For P6, we have the canonical naming function a = 3, b = 1, c = 0, d = 2. To find
this naming function, observe all the objects are equivalent, so we choose a = 3, without loss of generality. Next, we have to
maximize the term where a is in the image. Thus, we define d = 2. Then to maximize the term where a is in the preimage, we
make b = 1. This leaves us with c = 0. In the second permutation a,b and c,d are pairs of equivalent objects and a canonical
naming function is a = 3, b = 2, c = 1, d = 0. The third permutation has the naming a = 3, b = 2, c = 0, d = 1 and b,c,d are
equivalent. Next we have the naming a = 3, b = 2, c = 1 d = 0 with c,d equivalent. Any naming function of P10 is canonical.
Therefore, all objects are equivalent. The fact that all objects are equivalent does not imply every naming is the canonical naming.
An example of this is P6.
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P6 = 221+26
+223+22

+225+28
+227+24

P7 = 221+24
+223+22

+225+28
+227+26

P8 = 221+24
+223+26

+225+22
+227+28

P9 = 221+24
+223+22

+225+26
+227+28

P10 = 221+22
+223+24

+225+26
+227+28

To find the maximum N f (ρ) = maxη{N f (η)}, over all possible naming η , we must find the canonical naming providing the
largest representation. We wish to maximize the set number {{a, f (a)},{b, f (b)},{c, f (c)},{d, f (d)}}. We know 27 +28 ∈ f if
and only if f (x) = x for some x ∈ {a,b,c,d}. If there are no fixed points we look for cycles of two objects, and continue looking
for the smallest possible cycle, to assign the largest values of the naming. The largest possible set number that can represent an
abstract permutation of four elements is 221+22

+223+24
+225+26

+227+28
, representing the identity permutation (0)(1)(2)(3).

The number N f measures and compares the movement a permutation causes. If f has more movements than g, then N f >Ng. The
more complicated a permutation becomes the smaller its representation becomes (holding fixed the size). Intuitively, assigning
larger values to objects in smaller cycles helps to maximize the representation.

We will give one more example of permutations before applying the same method to define groups. Let f be the permutation
(a)(b,c)(p,q,r) on the set of abstract objects {a,b,c,d, p,q,r}. We wish to find a canonical ordering of its elements, and the
canonical representation N f . It should result in a = 5, b = 4, c = 3, p = 2, q = 0, r = 1, or one of its equivalent numbering
functions, and

N f = 221+24
+223+26

+225+22
+227+210

+229+28
+2211+212

.

In all the equivalent numbering functions, we have a = 0. We can change b = 3 and c = 4. We can also change the values of
the objects in the 3-cycle. If we make q = 2 then we have p = 1 and r = 0. If r = 2, then q = 1 and p = 0.

4 Finite Groups

Using the results from the previous sections, we can represent finite groups as natural numbers. A finite group G(∗) is a bijection
that assigns permutations, of the set G, to objects of G. Operation functions are the elements in the image of ∗ : G→ Aut(G).
Consider a naming η of the set G. Then the objects of G, and the operation functions of G are set numbers. Thus, we can say ∗ is
a function of the form M→N, where max(M)< min(N). If the group has k elements, the domain M = Dom(∗) is the set number
{0,1,2, . . . ,k− 1} = 2k− 1. The image N = Im(∗) is the set number {∗0,∗1,∗2, . . . ,∗k}, where ∗x are concrete permutations
of {0,1,2, . . . ,k− 1}. Notice that the operation functions N∗x do not have canonical form because they are concrete functions.
We turned the operation function ∗x into a natural number N∗x(η), by providing the naming function η . The definition of group
we provide satisfies the definition of function, given above. Every finite group is a set number whose elements are ordered
pairs. The ordered pairs are sets of two objects; one odd and one even. The first components are odd numbers 2i+1, for every
i ∈ {0,1,2, . . . ,k−1}. The second components are even numbers representing permutations, 2(N∗x +1). Every naming function
η defines a natural number NG(η), that depends on the group and the naming function of that group. There is a finite number
of these representations. The maximum representation is the canonical representation NG = max{NG(η)}η of the group G. This
canonical representation gives us a canonical ordering of the elements of G, as well. It behaves much like the representations of
permutations. Here we assign the largest value to the identity element, e = k−1.

A group is a set number of the form

222(k−1)+1+2
2
(

2(2
1+22)+2(2

3+24)+···+2(2
2k−1+22(k−1+1))+1

)
+ 222(k−2)+1+2

2
(

2(2
1+2a)+2(2

3+2b)+···+2(2
2k−1+22(k−2+1))+1

)
+

+222(k−3)+1+2
2
(

2(2
1+2c)+2(2

3+2d )+···+2(2
2k−1+22(k−3+1))+1

)
+ 222(k−4)+1+2

2
(

2(2
1+2x)+2(2

3+2y)+···+2(2
2k−1+22(k−4+1))+1

)
+ . . .

. . .+222(0)+1+2
2
(

2(2
1+2z)+2(2

3+2w)+···+2(2
2k−1+22(0+1))+1

)
,

where the k− 1 numbers a,b, . . . are distinct elements of {2,6,8, . . . ,2k− 6,2k− 4,2k}, the k− 1 numbers c,d, . . . are distinct
elements of {2,4,8, . . . ,2k− 6,2k− 2,2k}, the k− 1 numbers x,y, . . . are distinct elements of {2,4,8, . . . ,2k− 8,2k− 4,2k−
2,2k}. The numbers z,w, . . . are distinct elements of {4,6, . . . ,2k}. Also, the a,c,x,z, . . . are different; all the b,d,y,w, . . . are

different, etc. The first term, 222(k−1)+1+2
2
(

2(2
1+22)+2(2

3+24)+···+2(2
2k−1+22(k−1+1))+1

)
, tells us that e = k−1 is assigned to the identity

function. Not all natural numbers of this form are groups. We additionally require the associative property. Later in this section
we will see that verifying the associative property is a straightforward process; we are able to verify this through numeric
computation. For that end, we will study the composition of functions, numerically. But before that, we give our main result.
With abstract permutations we had a canonical representation, given by a canonical naming of the objects. This naming had
equivalent naming functions, if we had equivalent objects. Here we have the same situation, now in the context of groups.
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Theorem 7 Given a finite group G of order k, We have a naming function ρ : G→{0,1,2, . . . ,k−1} and a canonical represen-
tation NG = max

η
NG(η) = NG(ρ). We say that ρ is the canonical ordering of G, and ρ(e) = k− 1. Two distinct group objects

x,y are equivalent if their exists two distinct canonical orderings ρ1,ρ2 such that ρ1(x) = ρ2(y).
This gives a well defined linear order on the set of finite groups. Two groups have the same canonical representation if and

only if they are isomorphic. This linear order is well behaved with respect to cardinality; |G|< |H| implies NG < NH .

We will also speak of the order of a group element, |g|, as the smallest power n such that gn = e. We will have to assign the
identity element to k−1, in order to maximize our representation. Then we must identify the objects of smallest order, in G; this
number is the smallest prime number that divides |G|. We will assign k− 2 to one of these objects. To know how we proceed
further, we will illustrate by constructing and representing the groups of the first few orders.

We start with the trivial group of one object. The group G0 is determined by the relation ∗a(a) = a. We have the trivial
naming a = 0 and the operation function N∗0 is the one component function P0 = N0 = 221+22

. The canonical representation is

G0 = 222(0)+1+2
2
(

221+22
+1
)
= 221+22(26+1)

.

This number has 1019 decimal digits. It does not matter, how large it is, because we are able to easily manipulate and interpret
these large numbers in terms of simple operations and functions for much smaller numbers. Simply said, we can work with these
large representations.

Before continuing on to more groups, we clarify the use of a table notation, based on the fact that we are trying to represent
a set of permutations. We will use the same notation of a column of arrows to represent a single permutation, but now we will
ignore the arrows. For example, the permutation (a,b)(c)(d) can be written as

a b
b a
c c
d d

If we wish to represent several permutations of the same size, we can do this in a single rectangular grid. For this, we need to
use one column as a pivot for the rest. For example, the set of permutations {(a,b)(c)(d), (a,b,c,d), (a)(c,b)(d),(a)(b)(c)(d)}
can be written as a single rectangular grid of 4+ 1 columns. The first (left-most) column serves as pivot by which all other
columns are defined. The second column represents the permutation (a,b)(c)(d), the third column represents the permutation
(a,b,c,d), the fourth column is (a)(b,c)(d) and the fifth column is (a)(b)(c)(d).

c c d b c
a b b a a
b a c c b
d d a d d

In the particular case of groups, the table is square and rows and columns do not repeat objects. Additionally, we need to
have one column equal to the identity permutation, so we have the following convention. The left-most column will represent
the identity permutation and we only need to write it once. The identity object will be in the upper left hand corner. The second
column is representing the operation function of the second object in the first column. The third column represents the operation
function of the third object in the first column. In general, if a is the k− th object in the first column, then the operation function
∗a is represented in the k− th column table. This simply means that we will write an operation in the usual table form, so that
the following table has products such as e∗ e = e, a∗ e = a, b∗b = e, a∗ c = e, and the like.

e a b c
a b c e
b c e a
c e a b

This simply means that given any fixed position, the object in that position is expressed in terms of the first objects of that
row and column. This form of writing the operation functions coincides with the multiplication table of the group. If x is the
k− th object in the first row, then the k− th column gives the function ∗x.

In our process of finding representations and naming functions of groups, we will also need to verify the associative property
holds. This is given by a simple rule on the table. Let x be any object in a group G of order n. We know x appears in the table
exactly n times; once in each column/row. Each one of the positions where x appears, gives us an expression for x in terms of two
objects; a factorization x = y ∗ z. Given a table representing a set of operation functions, the operation satisfies the associative
property table if and only if ∗x = ∗y ◦ ∗z, for every factorization x = y ∗ z of every x ∈ G. In the table example above, we have
b = a ∗ a so that we need to verify ∗b = ∗a ◦∗a. To verify this is true, we have to verify ∗b(g) = (∗a ◦∗a)(g) for every g ∈ G.
To find b ∗ c = ∗b(c), we have the arrows c→∗a e→∗a a. We also have b ∗ a = ∗b(a) given by the arrows a→∗a b→∗a c. For
another example, take the product e = c∗a. This means we have to verify ∗c◦∗a is the identity function. Let us find (∗c◦∗a)(b).
We have the arrows b→∗a c→∗c b. We also have (∗c◦∗a)(a) given by a→∗a b→∗c a, etc.

We continue with the construction of groups, having in mind the above rules. Let us start with a group of two objects.
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e g1
g1

We know, g1 has an inverse 6= e, so we must have g1 ∗g1 = e,

e g1
g1 e

The canonical naming function is trivial to find. In order to maximize our representation, we make e = 1, g1 = 0. The group
has numeric table

1 0
0 1

Let us find the canonical representation of this group. Our group is an operation. This operation is a concrete function of
two components. The first component is ∗(1) = id, that sends 1 to the identity function. The second component of our operation
is ∗(g1) = (0,1), that sends the object 0 to the concrete permutation (0,1). The canonical representation has two terms. The

first term representing the first component is 222(1)+1+2
2
(

223+24
+221+22

+1
)

. The second component is given by the expression

222(0)+1+2
2
(

223+22
+221+24

+1
)

. The canonical representation of Z2 is

GZ2 = 222(1)+1+2
2
(

223+24
+221+22

+1
)
+222(0)+1+2

2
(

223+22
+221+24

+1
)

= 223+22(26+224+1)
+22+22(218+212+1)

. (9)

Why do we say (9) is the canonical representation? The canonical representation is the maximum of the representations. In
this case we have two possible representations, one for each naming function. If we had used the naming e = 0 and g1 = 1, we
would have the representation

222(0)+1+2
2
(

223+24
+221+22

+1
)
+222(1)+1+2

2
(

223+22
+221+24

+1
)

because now 0 is assigned to the identity function, while 1 is assigned the permutation (0,1). This representation is smaller
than the canonical representation above. The reader should understand why this is true, before moving on to the next exam-
ples. Remember, we will always assign the largest number of the naming, to the identity object because this maximizes our
representation. We will see how to name the rest of the objects, to obtain the canonical representation.

If we wish to make a distinction, we say a term is a number representing a component x→∗ ∗x. The upper terms are the
numbers representing components of the operation functions; we call them sub terms. For example, 223+22

is a sub term of

the term 222(0)+1+2
2
(

223+22
+221+24

+1
)

. Terms are ordered pairs; they are elements of the set
⋃

i(i,), defined at the beginning of
section 4.1. Notice in the second equality, that sub terms are also ordered pairs. For example, the sub term 223+22

and the term
23 +22(26+224+1) are both numbers of the form 22m+1 +22(n+1). They are both concrete arrows.

4.1 |G|= 3

Next we have the groups of three objects. We start with our table

e g1 g2
g1
g2

All objects of G have to satisfy |g| 3, so that we have |g|= 3 for all g ∈ G. This means g2
1 6= e. Since g1 is not the identity

element, we also know g2
1 6= g1. Therefore g2

1 is a new object g2, and g1 ∗g2 = g3
1 = e.

e g1 g2
g1 g2
g2 e

Use the associative rule to find the column of g2. We know g2 = g2
1 so that ∗g2 is the function ∗g1 ◦∗g1. To find ∗g2(g1) we

follow the arrows g1→∗g1 g2→∗g1 e so that g2 ∗g1 = e. In the same way, we find g2→∗g1 e→∗g1 g1 so that g2
2 = g1.

e g1 g2
g1 g2 e
g2 e g1
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This is the group Z3. We wish to find the canonical naming function. We start with e = 2. One of the non trivial objects
g1,g2 will have to be assigned the value 1 and the other will be assigned the value 0. We wish to know which of the two objects
will be assigned the value 1 and which will be assigned the value 0. Let us say a ∈ {g1,g2} is the object that is assigned a = 1,
and say b ∈ {g1,g2} is the object that will be assigned b = 0. If we list these objects in table form,

e a b
a
b

then the complete table
e a b
a b e
b e a

is already determined. This means, it does not matter who we choose to be a or b; they are equivalent objects. We have two
different canonical naming functions. These are ρ1 : e = 2, g1 = 1, g2 = 0, and ρ2 : e = 2, g1 = 0, g2 = 1. Either of these naming
functions will give the numerical table

2 1 0
1 0 2
0 2 1

(10)

The canonical representation of the group is a concrete function of three components. We can use either of the two canonical
naming functions to find it. The first component is the ordered pair that assigns 2 to the identity permutation (1)(2)(3) because
e = 2 is the identity object. This ordered pair is represented by the number

222(2)+1+2
2
(

225+26
+223+24

+221+22
+1
)
.

The second component assigns a = 1 to the concrete permutation (2,1,0) because this is the permutation represented by the
column of 1, in (10). This component is given by

222(1)+1+2
2
(

225+24
+223+22

+221+26
+1
)
.

The object b = 0 is assigned the permutation (2,0,1) because this is the permutation given by the column of 0, in table (10).
The third term is the number

222(0)+1+2
2
(

225+22
+223+26

+221+24
+1
)
.

The canonical representation is the number

GZ3 = 222(2)+1+2
2
(

225+26
+223+24

+221+22
+1
)
+222(1)+1+2

2
(

225+24
+223+22

+221+26
+1
)
+222(0)+1+2

2
(

225+22
+223+26

+221+24
+1
)

= 225+22(26+224+296+1)
+223+22(266+212+248+1)

+221+22(218+272+236+1)

This number is approximately as large as 10101028
.

4.2 |G|= 4

Before moving on to finding groups of four objects, we bring one more thing to attention. Given a finite group G, the list of all
the operations a ∗ b is a system of equations that defines the group. Our procedure for finding a group of order n, will provide
us with a minimal set of independent equations that determine the group. The complete list of operations is not needed; we
minimize the number of expressions. The group Z2 is determined by the expression a2 = e (trivial expressions, e2 = e and
e∗x = x∗e = x do not have to be written down). So, we can say Z2 is a group determined by one equation. The group Z3 is given
by the expressions a2 = b and a3 = e. From these two equation, we can derive the complete list of operations of the group. We
will try to find all groups with less than ten objects. For each, we will give the the minimum independent set of equations, the
canonical naming functions of its elements, the set of automorphisms, the canonical table and canonical numeric representation.
We will also compare canonical numeric representations to find the linear order of the first few groups.

Klein 4-Group. We start with a set {e,g1,g2,g3}. There is at least one object with order equal to the smallest prime divisor
of 4; suppose g2

1 = e, without loss of generality.

e g1 g2 g3
g1 e g3 g2
g2 g3
g3 g2

(11)
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Now we can make g2
2 = e or g2

2 = g1. Suppose we have the first case. Then the Klein four-group, K(4), is determined. Any
group of of four elements e,g1,g2,g3 such that e = g2

1 = g2
2, is isomorphic to K(4).

e g1 g2 g3
g1 e g3 g2
g2 g3 e g1
g3 g2 g1 e

Let us find the canonical naming functions. Start with e = 3; their are three remaining objects a = 2,b = 1,c = 0. To find a,
b, and c, start with the list of objects in table form. All the non trivial objects are second order objects.

e a b c
a e
b e
c e

whoever a,b,c may be. This determines the group,
e a b c
a e c b
b c e a
c b a e

This means that any naming function with e = 3 is a canonical naming function. The objects g1,g2,g3 are all equivalent, so
that K(4) has a total of six canonical naming functions. The object a = 2 can be chosen from three possible options. The object
b = 1 can be chosen from the remaining two objects and c = 0 is determined as the remaining object. A naming function will be
represented by a sequence. For example, the naming function e = 3, g1 = 2, g2 = 1, g3 = 0 is written as (e,g1,g2,g3). The six
naming functions are

(e,g1,g2,g3) (e,g2,g1,g3) (e,g3,g1,g2)
(e,g1,g3,g2) (e,g2,g3,g1) (e,g3,g2,g1)

Any naming function with e = 3, gives the numeric table

3 2 1 0
2 3 0 1
1 0 3 2
0 1 2 3

and canonical representation

NK(4) = 227+2
2
(

2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)
+225+2

2
(

2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+223+2
2
(

2(2
7+24)+2(2

5+22)+2(2
3+28)+2(2

1+26)+1
)
+221+2

2
(

2(2
7+22)+2(2

5+24)+2(2
3+26)+2(2

1+28)+1
)
.

The first term is the component that sends 3 to the identity function (1)(2)(3)(4), while the second term is the component
that sends 2 to the permutation (0,1)(2,3), etc.

We bring something new to attention. The group K(4) has a total of six automorphisms, and we have found a total of six
distinct canonical naming functions. This in not coincidental. Each of these six naming functions determines an automorphism
of K(4). We simply need to hold one of these fixed as pivot. For example, take the pivot A = (e,g3,g1,g2) which will be held
fixed. Choose a second canonical naming function B = (e,g1,g3,g2). The function that sends the first component of A to the
first component of B, and the second component of A to the second component of B, etc. is called a component function. The
component function φ : A→ B is an automorphism, for every canonical naming function B. That is to say, φ that acts by e 7→ e,
g1 7→ g3, g2 7→ g2, g3 7→ g1 is an automorphism of K(4). If we choose B = A then we obviously are describing the identity
automorphism. We let B be any of the of the canonical naming functions to obtain all six automorphisms. Our initial choice of
A is inconsequential; any choice for A gives the same set of component functions.

Cyclic group Z4. Going back to table (11), consider the second case, g2
2 = g1. This determines the table

e g1 g2 g3
g1 e g3 g2
g2 g3 g1 e
g3 g2 e g1

This is the cyclic group Z4, determined by the equations g2
1 = e and g2

2 = g1. To find the canonical representation, we are
careful assigning the values. We will assign the values 2,1,0 to the objects a,b,c, respectively. We do not know which object of
Z4 is a,b,c. If we assign a = 2 to one of the objects g2,g3, we will have the numeric table
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3 2 1 0
2 1
1
0

On the other hand, if a = 2 is assigned to the second order object, g1, we have the table

3 2 1 0
2 3
1
0

The latter maximizes the representation. Intuitively, we are trying to assign the larger numbers by giving priority to the
left-most columns. Within a column we are giving priority to the objects of upper rows. we place larger numbers further to the
left and then further to the top of the table. The rest of the table is determined.

3 2 1 0
2 3 0 1
1 0 2 3
0 1 3 2

Any naming function with e = 3, g1 = 2 is a canonical naming function. One canonical naming function is e = 3, g1 = 2,
g2 = 1, g3 = 0 which is written as (e,g1,g2,g3). The other canonical naming function is (e,g1,g3,g2). This implies g2,g3 are
equivalent objects. We have two automorphisms. Fix A = (e,g1,g3,g2). If we consider B = (e,g1,g2,g3) we have determined
the automorphism with components e 7→ e, g1 7→ g1, g2 7→ g3, g3 7→ g2. If we make B = A we have determined the identity
automorphism. The canonical representation is

NZ4 = 227+2
2
(

2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)
+225+2

2
(

2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+223+2
2
(

2(2
7+24)+2(2

5+22)+2(2
3+26)+2(2

1+28)+1
)
+221+2

2
(

2(2
7+22)+2(2

5+24)+2(2
3+28)+2(2

1+26)+1
)
.

We wish to compare the groups K(4) and Z4 in terms of the order of natural numbers. The odd number of the terms do not
determine the order because the even numbers, representing the operation functions, are much larger than the odd numbers. The
group with the largest operation function, that is not in both groups, is the larger of the two. The group K(4) has larger numeric
representation than Z4 because K(4) has the largest operation function that is not in both groups; NZ4 < NK(4). As we would
expect, the cyclic group has the smallest representation, just as the one cycle permutation (a,b,c,d) has smaller representation
than (a,b)(c,d).

4.3 |G|= 5

If G is a group with five objects, we know that all non trivial objects satisfy |g| 7. This implies |g|= 7, for all non trivial g ∈ G.
Without loss of generality, choose any object g1. Then, g2

1 is a non trivial object, g2. We find g1 ∗ g2 = g3
1 is a new non trivial

object, g3, etc.

e g1 g2 g3 g4
g1 g2
g2 g3
g3 g4
g4 e

Now, we have to use the associative property to find the operation function of g2, and it will be placed in the second column.
We know g2 = g1 ∗g1, so that we must have ∗g2 = ∗g1 ◦∗g1. This means ∗g2(g1) is found by g1→∗g1 g2→∗g1 g3. We also have
∗g2(∗g2) because g2→∗g1 g3→∗g1 g4, etc.

e g1 g2 g3 g4
g1 g2 g3
g2 g3 g4
g3 g4 g5
g4 e g1

We do the same with the column of g3 = g1 ∗g2 and g4 = g1 ∗g3, so that ∗g3 = ∗g1 ◦∗g2 and ∗g4 = ∗g1 ◦∗g3. For example,
g3 ∗g1 = ∗g3(g1) is given by the arrows g1→∗g2 g3→∗g1 g4, etc.
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e g1 g2 g3 g4
g1 g2 g3 g4 e
g2 g3 g4 e g1
g3 g4 e g1 g2
g4 e g1 g2 g3

The group is defined by the number of objects, so that there exists only one group, Z5, of five objects. Let us find the
canonical naming functions. We know that we must make e = 4 and a = 3 for some object a ∈ Z5 such that |a| = 5. However,
all non trivial objects have order 5, so that a can be any non trivial object.

If we wish to maximize the representation, the object b = a2 has to be assigned the numerical value 2.

4 3 2 1 0
3 2
2
1
0

The new object c = a∗b = a3 is assigned the value 1, and d = a4 is assigned the value 0.

4 3 2 1 0
3 2
2 1
1 0
0 4

Using the associative property, we find the rest of the table

4 3 2 1 0
3 2 1 0 4
2 1 0 4 3
1 0 4 3 2
0 4 3 2 1

This numerical table is given by four different naming functions. Consider the naming function that has e = 4 and g4 = 3.
Then g2

4 = g3 = 2, and g3
4 = g2 = 1, and g4

4 = g1 = 0. This naming functions is represented by the sequence (e,g4,g3,g2,g1).
The four canonical naming functions are

(e,g1,g2,g3,g4)
(e,g2,g4,g1,g3)
(e,g3,g1,g4,g2)
(e,g4,g3,g2,g1)

These four canonical naming functions are actually the automorphisms of Z5, in disguise. Fix any one of these naming
functions, say A = (e,g3,g1,g4,g2). Let B any other canonical naming function, say B = (e,g2,g4,g1,g3). The bijective function
defined below is an automorphism.

e 7→ e
g1 7→ g4
g2 7→ g3
g3 7→ g2
g4 7→ g1

Let B any other canonical naming functions, say B = (e,g4,g3,g2,g1). We have determined a second automorphism

e 7→ e
g1 7→ g3
g2 7→ g1
g3 7→ g4
g4 7→ g2

We find all four automorphisms of Z5 using the four canonical naming functions. The canonical representation is
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NZ5 = 229+2
2
(

2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)
+227+2

2
(

2(2
9+28)+2(2

7+26)+2(2
5+24)+2(2

3+22)+2(2
1+210)+1

)

+225+2
2
(

2(2
9+26)+2(2

7+24)+2(2
5+22)+2(2

3+210)+2(2
1+28)+1

)
+223+2

2
(

2(2
9+24)+2(2

7+22)+2(2
5+210)+2(2

3+28)+2(2
1+26)+1

)

+221+2
2
(

2(2
9+22)+2(2

7+210)+2(2
5+28)+2(2

3+26)+2(2
1+24)+1

)
.

4.4 |G|= 6

Symmetry group ∆3. We begin as usual with the list of objects.

e g1 g2 g3 g4 g5
g1
g2
g3
g4
g5

We know we will have at least one element of order equal to the smallest prime divisor of 6. There is at least one object
of order 2. Since 3 is a prime divisor of 6, we also know our group has at least one object of order 3. In fact, there has to be a
multiple of φ(3) = 2 many objects of order 3. Therefore, we can consider groups of six objects with two, or four, objects of order
3. First, consider the case with two objects of order 3, and three objects of order 2. We can suppose, without loss of generality,
g2

1 = g2 and g1 ∗g2 = e.

e g1 g2 g3 g4 g5
g1 g2 e
g2 e g1
g3 e
g4 e
g5 e

Then g1 ∗ g3 is a new object g4, and the column of g1 is determined. Then we find the column of g2 by means of the
composition ∗g1 ◦∗g1.

e g1 g2 g3 g4 g5
g1 g2 e
g2 e g1
g3 g4 g5 e
g4 g5 g3 e
g5 g3 g4 e

Then, we use |g3|= 2 to find

e g1 g2 g3 g4 g5
g1 g2 e
g2 e g1
g3 g4 g5 e
g4 g5 g3 g2
g5 g3 g4 g1

Again, we use |g3|= 2, now to find

e g1 g2 g3 g4 g5
g1 g2 e g5
g2 e g1 g4
g3 g4 g5 e
g4 g5 g3 g2
g5 g3 g4 g1

It is trivial to find the columns of g4,g5 in terms of the rest of the columns, using associativity as usual.
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e g1 g2 g3 g4 g5
g1 g2 e g5 g3 g4
g2 e g1 g4 g5 g3
g3 g4 g5 e g1 g2
g4 g5 g3 g2 e g1
g5 g3 g4 g1 g2 e

(12)

This is the symmetry group ∆3. It is determined by the equations

g2
1 = g2

g1 ∗g2 = g2
3 = g2

4 = g2
5 = e.

We will use letters a,b,c, . . . and x1,x2,x3, . . . as auxiliary variables in finding our canonical naming. We know we have to
start with e = 5. Recall we are trying to assign the larger numbers by giving priority to the left-most columns. Within a column
we are giving priority to the objects of upper rows. Our first observation is that we have three objects of second order. One of
these three objects, call it a, will be assigned the value 4. Then, whatever object we may choose for b, we have a fourth object
a∗b = x1. And, since |a|= 2 we also have a∗ x1 = b.

e a b x1
a e
b x1
x1 b

In order to maximize our representation we name b = 3 and a∗b = x1 = 2. That way, we have the numeric table

5 4 3 2
4 5
3 2
2 3

So far, the only thing we know about the canonical naming functions, is that a = 4 is one of the second order objects. We
know, from (12), that there is no x1 that commutes with a. That is to say, the second order objects of ∆3 do not commute with
any non trivial object. Therefore, we need new objects c = b∗a and x2 = a∗ c,

e a b x1 c x2
a e c
b x1
x1 b
c x2
x2 c

If we make |b|= 2, we maximize our representation. Now we know a canonical naming function must have a = 4 and b = 3
for two second order objects a,b. We also have to make c = 1 and x2 = 0 if we wish to maximize the representation. Then we
use the fact that |b|= 2 to find the rest of the column of b. The rest of the table is determined using associativity.

5 4 3 2 1 0
4 5 1 0 3 2
3 2 5 4 0 1
2 3 0 1 5 4
1 0 4 5 2 3
0 1 2 3 4 5

To obtain a canonical naming function make a = 4, b = 3 for two objects of order 2. Obviously, g3,g4,g5 are equivalent
objects; two of these have to be chosen to take the values of 4 and 3. This implies g3,g4,g5 are equivalent. The object a ∗ b is
assigned the value x1 = 2. Then b∗a = c = 1 and a∗c = x2 = 0. The objects g2,g3 are equivalent. We have a total of six possible
canonical naming functions.

(e,g3,g4,g2,g1,g5) (e,g4,g3,g1,g2,g5) (e,g5,g3,g2,g1,g4)
(e,g3,g5,g1,g2,g4) (e,g4,g5,g2,g1,g3) (e,g5,g4,g1,g2,g3)

The group has a total of six automorphisms, given by the six canonical naming functions. We have block form, but the blocks
are not cosets of a normal subgroup (even though ∆6 has a normal subgroup). We have a table of four 3× 3 blocks, and there
are two types of blocks. The first type of block has objects in A = {1,2,3,4,5} while the second type of block has objects in
B = {0,1,2,3,4}. We have blocks A1 and A2 in the upper left corner and lower right corner, respectively. We have blocks B1 and
B2 in the upper right hand and lower left hand, respectively. In this case, we have a normal subgroup, but it is not apparent in the
canonical naming table. The normal subgroup is N = {e = 5,g2 = 2,g3 = 1}. We can write the canonical table in such a manner
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that N will be trivially seen. The only thing that we have to do is change the rows and columns, appropriately. This group has
canonical representation

N∆3 = 2211+2
2
(

2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)
+ 229+2

2
(

2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+227+2
2
(

2(2
11+28)+2(2

9+24)+2(2
7+212)+2(2

5+22)+2(2
3+210)+2(2

1+26)+1
)
+ 225+2

2
(

2(2
11+26)+2(2

9+22)+2(2
7+210)+2(2

5+24)+2(2
3+212)+2(2

1+28)+1
)

+223+2
2
(

2(2
11+24)+2(2

9+28)+2(2
7+22)+2(2

5+212)+2(2
3+26)+2(2

1+210)+1
)
+ 221+2

2
(

2(2
11+22)+2(2

9+26)+2(2
7+24)+2(2

5+210)+2(2
3+28)+2(2

1+212)+1
)
.

Cyclic Group Z6. Now we consider the case with four objects of order 4, and one object of order 2. We begin with

e g1 g2 g3 g4 g5
g1 e
g2 g3 e
g3 e g2
g4
g5

We make g1 ∗g2 = g4, without loss of generality,

e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e
g3 g5 e g2
g4
g5

Using |g1|= 2, we have

e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e
g3 g5 e g2
g4 g2
g5 g3

Now use |g2|= |g3|= 3 to find
e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e g5 g1
g3 g5 e g2 g1 g4
g4 g2
g5 g3

We are considering |g4|= |g5| 6= 2, so that our only option is g2
4 = g3 and g2

5 = g2.

e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e g5 g1
g3 g5 e g2 g1 g4
g4 g2 g3
g5 g3 g2

However, it is easy to see that |g4|= |g5|= 6. We conclude there is no group |G|= 4 with four objects of order 2. The table
is determined and we obtain the cyclic group.

e g1 g2 g3 g4 g5
g1 e g4 g5 g2 g3
g2 g4 g3 e g5 g1
g3 g5 e g2 g1 g4
g4 g2 g5 g1 g3 e
g5 g3 g1 g4 e g2

(13)
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The cyclic group Z6 is determined by |G|= 6 and

g2
1 = e

g2
2 = g2

3 = g4

g1 ∗g2 = g3

g2
4 = g2.

Let us find the canonical naming functions; we use a,b,c, . . . and x1,x2,x3, . . . as auxiliary variables. Start naming e = 5.
There is only one second order object, so g1 = a = 4. Add an object b 6= g1. Whatever object we may choose for b, we have
another object a∗b = x1. The group is commutative, so we also have b∗a = x1. Since |a|= 2, we have a∗x1 = b. Commutativity
gives us x1 ∗a = b.

e a b x1
a e x1 b
b x1
x1 b

.

In order to maximize our representation we name b = 3 and a ∗ b = x1 = 2. But, we still do not know what object of the
group will be assigned to b = 3.

The possible naming functions we have are

(e,g1,g2,g4,g3,g5) (e,g1,g3,g5,g2,g4) (e,g1,g4,g2,g3,g5) (e,g1,g5,g3,g2,g4)
(e,g1,g2,g4,g5,g3) (e,g1,g3,g5,g4,g2) (e,g1,g4,g2,g5,g3) (e,g1,g5,g3,g4,g2)

Whatever object b may be, we know b2 is a new object c. Then, the operation a∗c is a new object x2. Consequently, we find
b∗ x1 = x1 ∗b = x2 and x2

1 = c. To maximize our representation we have to make c = 1 and x2 = 0.

e a b x1 c x2
a e x1 b x2 c
b x1 c x2
x1 b x2 c
c x2
x2 c

We can eliminate some naming functions. We only keep those such that the square of the third component is equal to the
fifth component (b2 = c). Notice, only the objects g2,g3 are the square of some other object. The naming functions that satisfy
these conditions are reduced to four.

(e,g1,g2,g4,g3,g5)
(e,g1,g3,g5,g2,g4)
(e,g1,g4,g2,g3,g5)
(e,g1,g5,g3,g2,g4)

Any of the naming functions above, gives the table below.

e a b x1 c x2
a e x1 b x2 c
b x1 c x2
x1 b x2 c
c x2
x2 c

We can not find more operations with the information we have. We have to choose choose b,c so that b∗ c = e or b∗ c = a.
Choosing them so b∗ c = e maximizes our representation. The four candidate naming functions above satisfy this condition, so
we have not reduced the candidate naming functions. However, we have the table

e a b x1 c x2
a e x1 b x2 c
b x1 c x2 e a
x1 b x2 c a e
c x2 e a
x2 c a e

Now, we have to focus on c2. Notice that two of our four naming functions satisfy c2 = x1. The other two naming functions
satisfy c2 = b. The latter two maximize the representation. Our two canonical naming functions are (e,g1,g2,g4,g3,g5) and
(e,g1,g3,g5,g2,g4). The cyclic group Z6 has a total of two automorphisms.

Take A = (e,g1,g3,g5,g2,g4). The non trivial automorphism is the function φ with components e 7→ e, g1 7→ g1, g2 7→ g3,
g3 7→ g2, g4 7→ g5, g5 7→ g4. If we take A = (e,g1,g2,g4,g3,g5) and B = (e,g1,g3,g5,g2,g4), we get the same non trivial
automorphism φ . The numeric table obtained by these naming functions is
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5 4 3 2 1 0
4 5 2 3 0 1
3 2 1 0 5 4
2 3 0 1 4 5
1 0 5 4 3 2
0 1 4 5 2 3

The 2×2 block on the upper left hand corner is the normal subgroup N = Z2. The table is made up of nine 2×2 blocks that
are the cosets N, bN and b2N, for b ∈ {g2,g3}. These coset blocks form the group Z3. The canonical table above is written as

N bN b2N
bN b2N N
b2N N bN

The canonical naming table gives us the additional information that Z6/Z2 = Z3. These canonical representation of the
cyclic group is

NZ6 = 2211+2
2
(

2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)
+ 229+2

2
(

2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+227+2
2
(

2(2
11+28)+2(2

9+26)+2(2
7+24)+2(2

5+22)+2(2
3+212)+2(2

1+210)+1
)
+ 225+2

2
(

2(2
11+26)+2(2

9+28)+2(2
7+22)+2(2

5+24)+2(2
3+210)+2(2

1+212)+1
)

+223+2
2
(

2(2
11+24)+2(2

9+22)+2(2
7+212)+2(2

5+210)+2(2
3+28)+2(2

1+26)+1
)
+ 221+2

2
(

2(2
11+22)+2(2

9+24)+2(2
7+210)+2(2

5+212)+2(2
3+26)+2(2

1+28)+1
)
.

Up to this point, we have not had any difficulty in finding the canonical naming and representation of the smaller groups. So
far we know that the first groups are ordered

G0 = Z1

G1 = Z2

G2 = Z3

G3 = Z4

G4 = K(4)

G5 = Z5

G6 = Z6

G7 = ∆3

The first step in finding the canonical naming function is to identify the objects of smallest order. By now we know how to
find the canonical table and representation of Z7 (see Z5). This is the next group in order, G8 = Z7.

4.5 |G|= 8

Let us find groups of eight objects. We know The possible orders of the objects are the divisors of 8. Particularly, we have at least
one object of order 2, we can have 2i objects of order 4 and we can have 4 j objects of order 8. We will find all groups of eight
objects. We will provide each group found with a canonical naming function given in the numeric table, the minimal independent
set of equations that defines the group, and the canonical representation. Then, we will compare the canonical representations of
these groups to find G9 < G10 < G11 < G12 < G13.

Direct Product Z2⊕Z2⊕Z2. Let us take the simplest case first, and then it will be clear how we can complicate things
little by little, so that we find all possible groups of order 8. The simplest case is to consider all objects of order 2 (we make
i = j = 0). Additionally, we will suppose they all commute.

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 e
g3 g2 e
g4 g5 e
g5 g4 e
g6 g7 e
g7 g6 e
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We can easily find
e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 e g1
g3 g2 g1 e
g4 g5 e g1
g5 g4 g1 e
g6 g7 e g1
g7 g6 g1 e

We know g2 ∗ g4 /∈ {e,g1,g2,g3,g4,g5}. Suppose without loss of generality, g2 ∗ g4 = g6. This determines the rest of the
column of g2. Then we use g2 ∗g4 = g4 ∗g2 and g2 ∗g6 = g6 ∗g2 to find the third row. Now we can find the fourth column and
fourth row using the associative property. For example, we use g6 ∗g2 = g4 to find g4 ∗g3 = g6 ∗ (g2 ∗g3) = g6 ∗g1 = g7. Finally,
we use g3 ∗g5 = g6 to find g6 ∗g4 = g3 ∗ (g5 ∗g4) = g3 ∗g1 = g2.

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 e g1 g6 g7 g4 g5
g3 g2 g1 e g7 g6 g5 g4
g4 g5 g6 g7 e g1 g2 g3
g5 g4 g7 g6 g1 e g3 g2
g6 g7 g4 g5 g2 g3 e g1
g7 g6 g5 g4 g3 g2 g1 e

(14)

This determines the group Z3
2 = Z2⊕Z2⊕Z2. Again, we have the special block form of cosets of N = Z2. The expression

Z8/N = Z4 is given in the table, because we have sixteen 2×2 blocks, N,g2N,g4N,g6N, forming Z4.

N g2N g4N g6N
g2N N g6N g4N
g4N g6N N g2N
g6N g4N g2N N

This coset table, is itself an expression of quotient groups. It expresses Z4/Z2 = Z2. We have a third expression of group
quotients, going back to table (14). It simultaneously shows Z8/Z4 = Z2 because we have four 4×4 blocks forming Z2; these
blocks are the cosets of N3 = Z4,

N3 cN3
cN3 N3

To define this group we need seven objects of order 2. We also need an object g1 that commute with the rest of the objects.

e = g2
1 = g2

2 = g2
3 = g2

4 = g2
5 = g2

6 = g2
7

g1 ∗g = g∗g1, g ∈ Z3
2.

Let us find the one hundred and sixty eight distinct automorphisms of Z3
2. We must find the canonical naming functions.

Given that all of the objects commute, and they are all second order objects, we know they are all equivalent. This means we
make e = 7, and a = 6 for an arbitrary object of the group. Then, we assign value to another arbitrary object b = 5, and x1 = 4.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 e a
x2 c a e
d x3 e a
x3 d a e

Now we choose a third object to assign to c = 3, and a∗ c = x2 = 2. Finally, we make b∗ c = d = 1 and a∗d = x3 = 0. This
determines the rest of the table. The first object, a, is chosen from seven different possible choices. The object b is chosen from
a total of six options. Finally, we choose c from a total of four different options. The numeric table, given by these canonical
naming functions is

7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 7 6 1 0 3 2
4 5 6 7 0 1 2 3
3 2 1 0 7 6 5 4
2 3 0 1 6 7 4 5
1 0 3 2 5 4 7 6
0 1 2 3 4 5 6 7
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and the canonical representation is

NZ3
2
= 2215+2

2
(

2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+ 2213+2
2
(

2(2
15+214)+2(2

13+216)+2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+ 2211+2
2
(

2(2
15+212)+2(2

13+210)+2(2
11+216)+2(2

9+214)+2(2
7+24)+2(2

5+22)+2(2
3+28)+2(2

1+26)+1
)

+ 229+2
2
(

2(2
15+210)+2(2

13+212)+2(2
11+214)+2(2

9+216)+2(2
7+22)+2(2

5+24)+2(2
3+26)+2(2

1+28)+1
)

+ 227+2
2
(

2(2
15+28)+2(2

13+26)+2(2
11+24)+2(2

9+22)+2(2
7+216)+2(2

5+214)+2(2
3+212)+2(2

1+210)+1
)

+ 225+2
2
(

2(2
15+26)+2(2

13+28)+2(2
11+22)+2(2

9+24)+2(2
7+214)+2(2

5+216)+2(2
3+210)+2(2

1+212)+1
)

+ 223+2
2
(

2(2
15+24)+2(2

13+22)+2(2
11+28)+2(2

9+26)+2(2
7+212)+2(2

5+210)+2(2
3+216)+2(2

1+214)+1
)

+ 221+2
2
(

2(2
15+22)+2(2

13+24)+2(2
11+26)+2(2

9+28)+2(2
7+210)+2(2

5+212)+2(2
3+214)+2(2

1+216)+1
)

Now we will look for groups with all objects of order 2, and a ∗ c 6= c ∗ a. We can take c ∗ a = d. This implies d ∗ a = c
because |a|= 2. Since |d|= 2 we also have d ∗ c = a. Also, a∗ c = x2 and |c|= 2 imply x2 ∗ c = a. This is a contradiction.

e a b x1 c x2 d x3
a e x1 b d x3 c x2
b x1 e a
x1 b a e
c x2 e a a
x2 c e
d x3 e
x3 d e

The contradiction does not depend on the first four objects e,a,b,x1. This means that any non abelian group of eight objects,
must also have objects of order 4 or 8. In particular, the group Z3

2, above, is the only group of eight objects with all non trivial
elements of order 2.

Dihedral Group D8. Now we seek for G with objects of order 4. We must have a multiple of 2 = φ(4), many objects of
order 4. We first consider the case with two objects of order 4, and five objects of second order. Let a,b,x1,c,x2 be the objects
of order 2, and let d,x3 our objects of order 4. We have the form

e a b x1 c x2 d x3
a e
b x1 e
x1 b e
c x2 e
x2 c e
d x3 a e
x3 d e a

Since |b|= |x1|= |c|= |x2|= 2, we have x1 ∗b = b∗ x1 = x2 ∗ c = c∗ x2 = a, respectively.

e a b x1 c x2 d x3
a e
b x1 e a
x1 b a e
c x2 e a
x2 c a e
d x3 a e
x3 d e a

Now, |b| = |x1| = |c| = |x2| = 2 implies b ∗ a = x1, x1 ∗ a = b, c ∗ a = x2, x2 ∗ a = c, respectively. Then, d ∗ a = x3 and
x3 ∗a = d. Notice we are starting to see a block form of the table for K(4). We have 2×2 blocks forming the Klein group. The
blocks of d,x3 have not yet interfered with the rest of the blocks. We can suppose b∗ c = d, without loss of generality,
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e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3 e a
x2 c x3 d a e
d x3 a e
x3 d e a

The rest of the table is determined. Find b∗d = c, and d ∗ c = b.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3 e a b x1
x2 c x3 d a e x1 b
d x3 c x2 a e
x3 d x2 c e a

Now we can use c = b∗d to find c∗d = b∗ (d ∗d) = b∗a = x1.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3 e a b x1
x2 c x3 d a e x1 b
d x3 c x2 x1 b a e
x3 d x2 c b x1 e a

The rest of the table is determined similarly. For example, |c|= 2 implies c∗b = x3.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a x3 d c x2
x1 b a e d x3 x2 c
c x2 d x3 e a b x1
x2 c x3 d a e x1 b
d x3 c x2 x1 b a e
x3 d x2 c b x1 e a

This is the Dihedral group, D8, defined by |G|= 8 and the set of equations

e = a2 = b2 = x2
1 = c2 = x2

2

(b∗ c)2 = a.

It is the only group |G|= 8, with exactly two objects of order 4, and five objects of order 2. Notice that the set of equations
only mentions seven different objects. The eighth object is a∗ (b∗ c), and it is also of order 4, just as b∗ c. Now we will find the
canonical naming function of this group. We write the group with generic symbols.

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 g1 e g7 g6 g4 g5
g3 g2 e g1 g6 g7 g5 g4
g4 g5 g6 g7 e g1 g2 g3
g5 g4 g7 g6 g1 e g3 g2
g6 g7 g5 g4 g3 g2 e g1
g7 g6 g4 g5 g2 g3 g1 e

(15)

Now we will use the letters a,b, . . . ,x1,x2, . . . as auxiliary variables to find the canonical naming. We want to avoid confusion
with the fact that we just used the same symbols a,b, . . . ,x1,x2, . . . as auxiliary variables to find the group. Table (15) will be
the reference for D8. We start with e = 7, and an arbitrary object, a = 6, of order 2. We add an object b = 5, and if we want to
maximize we have to make x1 = a∗b = 4.
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e a b x1
a e
b x1
x1 b

We simply need two objects a,b that satisfy e = a2 and a ∗ b = b ∗ a. There are many options of ordered pairs of D8 that
satisfy this. For example, g7 is a second order object and it commutes with g6. Also, g1 is a second order object and it commutes
with g2. We have a total of ten options to do this.

e a b x1
a e x1 b
b x1
x1 b

We can find b such that |b| = 2, maximizing the representation. Finding two objects of order 2 that commute, gives us the
partial table below.

e a b x1
a e x1 b
b x1 e a
x1 b a e

We have six options to do this. The objects g4,g5 commute, as do g6,g7 and they are all second order objects. Also, g1
commutes with each of them. Therefore, any of these objects can take the place of a, for now. Add another object to the table,
say c = 3, and consequently x2 = a∗c = 2. Then, we need to add another object d = 1, for the product b∗c = d. Finally we have
x3 = a∗d = 0.

e a b x1 c x2 d x3
a e x1 b
b x1 e a
x1 b a e
c x2 d x3
x2 c x3 d
d x3 c x2
x3 d x2 c

If we wish to maximize the representation, we will have to find c that commutes with a. This implies a also commutes with
a ∗ c. The only object that commutes with four objects, of order 2, is g1. This means a = g1. We have reduced the possible
canonical naming functions, that give the table below, to a total of sixteen possible naming functions. We choose b from four
different objects and c can also be chosen from four different objects.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3
x2 c x3 d
d x3 c x2
x3 d x2 c

None of our choices of naming functions will have b∗ c = c∗b. This is because our four options of b are g4,g5,g6,g7. Each
of these objects only commutes with g1 and a∗b = x1. For example, g4 commutes with g5 = g1 ∗g4, etc. We have the table

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a x3 d
x1 b a e d x3
c x2 d x3
x2 c x3 d
d x3 c x2
x3 d x2 c

Notice that in eight of the sixteen possible naming functions, we have c2 = e. The other eight functions are the ones that
have c equal to g2 or g3. We wish to maximize the representation so we choose the first eight naming functions; assign c to a
second order object.
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e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a x3 d
x1 b a e d x3
c x2 d x3 e a
x2 c x3 d a e
d x3
x3 d

The rest of the table is determined. We have a total of eight canonical naming functions. We can choose b from four different
objects g4,g5,g6,g7, and make x1 = g1 ∗b. Then we can choose c from the remaining two objects of that list. The objects g4,g5
are equivalent, and g6,g7 are equivalent. The order 4 objects g2,g3 are equivalent. The canonical naming functions are

(e,g1,g4,g5,g6,g7,g3,g2) (e,g1,g5,g4,g6,g7,g2,g3) (e,g1,g6,g7,g4,g5,g2,g3) (e,g1,g7,g6,g4,g5,g3,g2)
(e,g1,g4,g5,g7,g6,g2,g3) (e,g1,g5,g4,g7,g6,g3,g2) (e,g1,g6,g7,g5,g4,g3,g2) (e,g1,g7,g6,g5,g4,g2,g3)

The numeric table is

7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 7 6 0 1 2 3
4 5 6 7 1 0 3 2
3 2 1 0 7 6 5 4
2 3 0 1 6 7 4 5
1 0 3 2 4 5 6 7
0 1 2 3 5 4 7 6

and the canonical representation is

ND8 = 2215+2
2
(

2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+ 2213+2
2
(

2(2
15+214)+2(2

13+216)+2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+ 2211+2
2
(

2(2
15+212)+2(2

13+210)+2(2
11+216)+2(2

9+214)+2(2
7+24)+2(2

5+22)+2(2
3+28)+2(2

1+26)+1
)

+ 229+2
2
(

2(2
15+210)+2(2

13+212)+2(2
11+214)+2(2

9+216)+2(2
7+22)+2(2

5+24)+2(2
3+26)+2(2

1+28)+1
)

+ 227+2
2
(

2(2
15+28)+2(2

13+26)+2(2
11+22)+2(2

9+24)+2(2
7+216)+2(2

5+214)+2(2
3+210)+2(2

1+212)+1
)

+ 225+2
2
(

2(2
15+26)+2(2

13+28)+2(2
11+24)+2(2

9+22)+2(2
7+214)+2(2

5+216)+2(2
3+212)+2(2

1+210)+1
)

+ 223+2
2
(

2(2
15+24)+2(2

13+22)+2(2
11+26)+2(2

9+28)+2(2
7+212)+2(2

5+210)+2(2
3+214)+2(2

1+216)+1
)

+ 221+2
2
(

2(2
15+22)+2(2

13+24)+2(2
11+28)+2(2

9+26)+2(2
7+210)+2(2

5+212)+2(2
3+216)+2(2

1+214)+1
)

Direct Product Z2⊕Z4. Now we will consider groups with four objects of order 4, and three objects of order 2. Let a any
object of order 4. We know a2 = b is a new object, as is a3 = c.

e a x1 x2 b x3 x4 x5
a x1
x1 x2
x2 e
b
x3
x4
x5

We can easily find operations for x1 and then for x2.
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e a x1 x2 b x3 x4 x5
a x1 x2 e
x1 x2 e a
x2 e a x1
b
x3
x4
x5

The column of a can be completed defining a∗b = x3. Then we can complete the column of x1 and x2.

e a x1 x2 b x3 x4 x5
a x1 x2 e
x1 x2 e a
x2 e a x1
b x3 x4 x5
x3 x4 x5 b
x4 x5 b x3
x5 b x3 x4

We can suppose |b|= 2, without loss of generality. This implies x3 ∗b = a, x4 ∗b = x1 and x5 ∗b = x2.

e a x1 x2 b x3 x4 x5
a x1 x2 e
x1 x2 e a
x2 e a x1
b x3 x4 x5 e a x1 x2
x3 x4 x5 b
x4 x5 b x3
x5 b x3 x4

Consider two different cases; b,x3 commute or not. If we suppose they do not commute we come to a contradiction. It is a
good exercise to see how we come to a contradiction in the least number of steps. Let us consider the commutative case. Then
the table is determined.

e a x1 x2 b x3 x4 x5
a x1 x2 e x3 x4 x5 b
x1 x2 e a x4 x5 b x3
x2 e a x1 x5 b x3 x4
b x3 x4 x5 e a x1 x2
x3 x4 x5 b a x1 x2 e
x4 x5 b x3 x1 x2 e a
x5 b x3 x4 x2 e a x1

This is the direct product group Z2⊕Z4. To define our group, we need an object of order 4, given by the equations a2 = x1,
a∗ x1 = x2, a∗ x2 = e. Then we need a second order object, b, that commutes with x3 = a∗b. This is the system of equations

a2 = x1

a3 = x2

a∗ x2 = b2 = e

a∗b = x3

b∗ x3 = x3 ∗b

To find the canonical naming functions, we write the table in terms of gi.

e g1 g2 g3 g4 g5 g6 g7
g1 g2 g3 e g5 g6 g7 g4
g2 g3 e g1 g6 g7 g4 g5
g3 e g1 g2 g7 g4 g5 g6
g4 g5 g6 g7 e g1 g2 g3
g5 g6 g7 g4 g1 g2 g3 e
g6 g7 g4 g5 g2 g3 e g1
g7 g4 g5 g6 g3 e g1 g2

(16)
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We begin by assigning e = 7, and a = 6 for some second order object a. Choose an arbitrary object b = 5, and make
a∗b = x1 = 4. The group is commutative so b∗a = x1.

e a b x1
a e x1 b
b x1
x1 b

We choose b of second order. This gives us the table of K(4). Add another arbitrary object c = 3, and a∗ c = x2 = 2.

e a b x1 c x2
a e x1 b x2 c
b x1 e a
x1 b a e
c x2
x2 c

We need to add another new object b∗ c = c∗b = d = 1, and x3 = a∗d = 0.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 e a d x3 c x2
x1 b a e x3 d x2 c
c x2 d x3
x2 c x3 d
d x3 c x2
x3 d x2 c

If we wish to maximize the representation, we must choose a so that it is the square of some object; c2 = a. Therefore,
g2 = a = 7. This determines the table. To find a canonical naming function we can choose b from two possible choices, g4,g6.
Then we choose c from four possible choices, g1,g3,g5,g7. There is a total of eight canonical naming functions defining eight
automorphisms of Z2⊕Z4.

(e,g2,g4,g6,g1,g3,g5,g7) (e,g2,g4,g6,g3,g1,g7,g5) (e,g2,g4,g6,g5,g7,g1,g3) (e,g2,g4,g6,g7,g5,g3,g1)
(e,g2,g6,g4,g1,g3,g7,g5) (e,g2,g6,g4,g3,g1,g5,g7) (e,g2,g6,g4,g5,g7,g3,g1) (e,g2,g6,g4,g7,g5,g1,g3)

These naming functions give the numeric table

7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 7 6 1 0 3 2
4 5 6 7 0 1 2 3
3 2 1 0 6 7 4 5
2 3 0 1 7 6 5 4
1 0 3 2 4 5 6 7
0 1 2 3 5 4 7 6

with canonical representation

NZ2⊕Z4 = 2215+2
2
(

2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+ 2213+2
2
(

2(2
15+214)+2(2

13+216)+2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+ 2211+2
2
(

2(2
15+212)+2(2

13+210)+2(2
11+216)+2(2

9+214)+2(2
7+24)+2(2

5+22)+2(2
3+28)+2(2

1+26)+1
)

+ 229+2
2
(

2(2
15+210)+2(2

13+212)+2(2
11+214)+2(2

9+216)+2(2
7+22)+2(2

5+24)+2(2
3+26)+2(2

1+28)+1
)

+ 227+2
2
(

2(2
15+28)+2(2

13+26)+2(2
11+24)+2(2

9+22)+2(2
7+214)+2(2

5+216)+2(2
3+210)+2(2

1+212)+1
)

+ 225+2
2
(

2(2
15+26)+2(2

13+28)+2(2
11+22)+2(2

9+24)+2(2
7+216)+2(2

5+214)+2(2
3+212)+2(2

1+210)+1
)

+ 223+2
2
(

2(2
15+24)+2(2

13+22)+2(2
11+28)+2(2

9+26)+2(2
7+210)+2(2

5+212)+2(2
3+214)+2(2

1+216)+1
)

+ 221+2
2
(

2(2
15+22)+2(2

13+24)+2(2
11+26)+2(2

9+28)+2(2
7+212)+2(2

5+210)+2(2
3+216)+2(2

1+214)+1
)
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Quaternion Group Q8. Consider G with six objects of order 4. Let a be our only object of second order.

e a b x1 c x2 d x3
a e
b x1 a
x1 b a
c x2 a
x2 c a
d x3 a
x3 d a

We find x1 ∗b = e and b∗ x1 = e.
e a b x1 c x2 d x3
a e
b x1 a e
x1 b e a
c x2 a
x2 c a
d x3 a
x3 d a

Use |b|= 4 to find b∗a = x1.

e a b x1 c x2 d x3
a e x1 b
b x1 a e
x1 b e a
c x2 a
x2 c a
d x3 a
x3 d a

We have, without loss of generality, b∗ c = d,

e a b x1 c x2 d x3
a e x1 b
b x1 a e
x1 b e a
c x2 d x3 a
x2 c x3 d a
d x3 x2 c a
x3 d c x2 a

We use associativity as usual, to find

e a b x1 c x2 d x3
a e x1 b
b x1 a e
x1 b e a
c x2 d x3 a e
x2 c x3 d e a
d x3 x2 c a e
x3 d c x2 e a

Again we use |c|= 4 to find c∗a = x2. In the same way we use |d|= 4 to find d ∗a = x3.

e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 a e
x1 b e a
c x2 d x3 a e
x2 c x3 d e a
d x3 x2 c a e
x3 d c x2 e a

Now we can use c = x1 ∗d to find c∗d = x1 ∗ (d ∗d) = x1 ∗a = b.
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e a b x1 c x2 d x3
a e x1 b x2 c x3 d
b x1 a e
x1 b e a
c x2 d x3 a e
x2 c x3 d e a
d x3 x2 c b x1 a e
x3 d c x2 x1 b e a

The rest of the table is determined as usual, with generic variables g1,g2,g3,g4,g5,g6,g7.

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 g1 e g7 g6 g4 g5
g3 g2 e g1 g6 g7 g5 g4
g4 g5 g6 g7 g1 e g3 g2
g5 g4 g7 g6 e g1 g2 g3
g6 g7 g5 g4 g2 g3 g1 e
g7 g6 g4 g5 g3 g2 e g1

This group was determined by the conditions of having one second order object, g1, and g1 = g2
2 = g2

3 = g2
4 = g2

5 = g2
6, where

g6 = g2 ∗g4. Thus, the system of equations

g2
1 = e

g2
2 = g2

4 = (g1 ∗g2)
2 = (g1 ∗g4)

2 = (g2 ∗g4)
2 = g1.

determines the quaternion group Q8. Notice we did not include g1 = (g4 ∗ g2)
2, because it is implied by the others. We would

like to find the canonical naming functions. we start with e = 7 and g1 = a = 6 because g1 is the only second order object. Then,
we must choose a fourth order object to take the numerical value b = 5, and x1 = a ∗ b = 4. This object, b, is chosen from six
possible objects of fourth order. Then we have to choose another object c = 3, and a∗ c = x2 = 2, b∗ c = d = 1, a∗d = x3 = 0.
The object c is chosen from four remaining objects. All the fourth order objects are equivalent and we have a total of twenty
four canonical naming functions and automorphisms.

The numeric table given by the canonical naming funcitons is

7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 6 7 0 1 3 2
4 5 7 6 1 0 2 3
3 2 1 0 6 7 4 5
2 3 0 1 7 6 5 4
1 0 2 3 5 4 6 7
0 1 3 2 4 5 7 6

The canonical representation is

NQ8 = 2215+2
2
(

2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+ 2213+2
2
(

2(2
15+214)+2(2

13+216)+2(2
11+210)+2(2

9+212)+2(2
7+26)+2(2

5+28)+2(2
3+22)+2(2

1+24)+1
)

+ 2211+2
2
(

2(2
15+212)+2(2

13+210)+2(2
11+214)+2(2

9+216)+2(2
7+24)+2(2

5+22)+2(2
3+26)+2(2

1+28)+1
)

+ 229+2
2
(

2(2
15+210)+2(2

13+212)+2(2
11+216)+2(2

9+214)+2(2
7+22)+2(2

5+24)+2(2
3+28)+2(2

1+26)+1
)

+ 227+2
2
(

2(2
15+28)+2(2

13+26)+2(2
11+22)+2(2

9+24)+2(2
7+214)+2(2

5+216)+2(2
3+212)+2(2

1+210)+1
)

+ 225+2
2
(

2(2
15+26)+2(2

13+28)+2(2
11+24)+2(2

9+22)+2(2
7+216)+2(2

5+214)+2(2
3+210)+2(2

1+212)+1
)

+ 223+2
2
(

2(2
15+24)+2(2

13+22)+2(2
11+28)+2(2

9+26)+2(2
7+210)+2(2

5+212)+2(2
3+214)+2(2

1+216)+1
)

+ 221+2
2
(

2(2
15+22)+2(2

13+24)+2(2
11+26)+2(2

9+28)+2(2
7+212)+2(2

5+210)+2(2
3+216)+2(2

1+214)+1
)
.
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Cyclic Group Z8. Finding the cyclic group is trivial, and it is defined by the equations a2 = b, b2 = c, c2 = e. It has numeric
table

7 6 5 4 3 2 1 0
6 5 4 3 2 1 0 7
5 4 3 2 1 0 7 6
4 3 2 1 0 7 6 5
3 2 1 0 7 6 5 4
2 1 0 7 6 5 4 3
1 0 7 6 5 4 3 2
0 7 6 5 4 3 2 1

The canonical representation of this group being

NZ8 = 2215+2
2
(

2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1
)

+ 2213+2
2
(

2(2
15+214)+2(2

13+212)+2(2
11+210)+2(2

9+28)+2(2
7+26)+2(2

5+24)+2(2
3+22)+2(2

1+216)+1
)

+ 2211+2
2
(

2(2
15+212)+2(2

13+210)+2(2
11+28)+2(2

9+26)+2(2
7+24)+2(2

5+22)+2(2
3+216)+2(2

1+214)+1
)

+ 229+2
2
(

2(2
15+210)+2(2

13+28)+2(2
11+26)+2(2

9+24)+2(2
7+22)+2(2

5+216)+2(2
3+214)+2(2

1+212)+1
)

+ 227+2
2
(

2(2
15+28)+2(2

13+26)+2(2
11+24)+2(2

9+22)+2(2
7+216)+2(2

5+214)+2(2
3+212)+2(2

1+210)+1
)

+ 225+2
2
(

2(2
15+26)+2(2

13+24)+2(2
11+22)+2(2

9+216)+2(2
7+214)+2(2

5+212)+2(2
3+210)+2(2

1+28)+1
)

+ 223+2
2
(

2(2
15+24)+2(2

13+22)+2(2
11+216)+2(2

9+214)+2(2
7+212)+2(2

5+210)+2(2
3+28)+2(2

1+26)+1
)

+ 221+2
2
(

2(2
15+22)+2(2

13+216)+2(2
11+214)+2(2

9+212)+2(2
7+210)+2(2

5+28)+2(2
3+26)+2(2

1+24)+1
)

We have ordered groups of eight objects. The order is Z8 < Q8 < D8 < Z2⊕Z4 < Z3
2.

4.6 |G|= 9

Direct Product Z3⊕Z3. We know that if |G|= 9 then |g|= 3 or |g|= 9 for any g ∈ G, so we start looking for groups with all
objects of order 3.

e a x1 b x2 x3 c x4 x5
a x1
x1 e
b x2
x2 x3
x3 b
c x4
x4 x5
x5 c

We know the function ∗x1 is equal to the composition ∗a◦∗a so that

e a x1 b x2 x3 c x4 x5
a x1 e
x1 e a
b x2 x3
x2 x3 b
x3 b x2
c x4 x5
x4 x5 c
x5 c x4

Since |b|= 3, we know b2 6= a. If b2 = a, then we would have b∗a = e which is a contradiction. We suppose b2 = c, without
loss of generality.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2020                   doi:10.20944/preprints202007.0415.v1

https://doi.org/10.20944/preprints202007.0415.v1


Canonical Set Theory for Classic Mathematics 43

e a x1 b x2 x3 c x4 x5
a x1 e
x1 e a
b x2 x3 c
x2 x3 b
x3 b x2
c x4 x5 e
x4 x5 c
x5 c x4

We easily find the rest of the rows of b and c.

e a x1 b x2 x3 c x4 x5
a x1 e
x1 e a
b x2 x3 c x4 x5 e a x1
x2 x3 b
x3 b x2
c x4 x5 e a x1 b x2 x3
x4 x5 c
x5 c x4

Let us see if we can have a non abelian group. The first option for this is b∗a = x3, which implies x2 ∗a = b.

e a x1 b x2 x3 c x4 x5
a x1 e x3 b
x1 e a
b x2 x3 c x4 x5 e a x1
x2 x3 b
x3 b x2
c x4 x5 e a x1 b x2 x3
x4 x5 c
x5 c x4

We have a contradiction because |x2|= 3 implies x2 ∗ x4 = a. We also get a contradiction if b∗a = x4.

e a x1 b x2 x3 c x4 x5
a x1 e x4 x5 c
x1 e a
b x2 x3 c x4 x5 e a x1
x2 x3 b
x3 b x2
c x4 x5 e a x1 b x2 x3
x4 x5 c
x5 c x4

This table leads to contradiction because |x3|= 3 implies x3 ∗ x1 = a. The supposition b∗a = x5 leads to contradiction also.

e a x1 b x2 x3 c x4 x5
a x1 e x5 c
x1 e a
b x2 x3 c x4 x5 e a x1
x2 x3 b
x3 b x2
c x4 x5 e a x1 b x2 x3
x4 x5 c
x5 c x4

The table shows x2 ∗a = c and x2 ∗ c = a, which is a contradiction with the fact that |x2|= 3. We conclude b∗a = x2. From
this we can trivially find x2 ∗a = x3 and x3 ∗a = b. We use this last expression to find b∗ x1 = x3.
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e a x1 b x2 x3 c x4 x5
a x1 e x2 x3 b
x1 e a x3 b x2
b x2 x3 c x4 x5 e a x1
x2 x3 b
x3 b x2
c x4 x5 e a x1 b x2 x3
x4 x5 c
x5 c x4

Use the expression b = x2 ∗ x1 to find b∗ x2 = x4.

e a x1 b x2 x3 c x4 x5
a x1 e x2 x3 b
x1 e a x3 b x2
b x2 x3 c x4 x5 e a x1
x2 x3 b x4 x5 c
x3 b x2 x5 c x4
c x4 x5 e a x1 b x2 x3
x4 x5 c
x5 c x4

Now use b = x2 ∗ x1 to find b∗ x4 = a.

e a x1 b x2 x3 c x4 x5
a x1 e x2 x3 b
x1 e a x3 b x2
b x2 x3 c x4 x5 e a x1
x2 x3 b x4 x5 c
x3 b x2 x5 c x4
c x4 x5 e a x1 b x2 x3
x4 x5 c a x1 e
x5 c x4 x1 e a

Finding the rest of the table is trivial. We have the direct product group Z3⊕Z3. The system of equations that defines this
group is given by the relations

a2 = x1

b2 = c

a3 = b3 = e

a∗b = b∗a.

Simply put, this group is determined by two commuting objects such that |a|= |b|= 3. Now let us find the canonical naming
function of this group. We begin by expressing the table in generic variables gi.

e g1 g2 g3 g4 g5 g6 g7 g8
g1 g2 e g4 g5 g3 g7 g8 g6
g2 e g1 g5 g3 g4 g8 g6 g7
g3 g4 g5 g6 g7 g8 e g1 g2
g4 g5 g3 g7 g8 g6 g1 g2 e
g5 g3 g4 g8 g6 g7 g2 e g1
g6 g7 g8 e g1 g2 g3 g4 g5
g7 g8 g6 g1 g2 e g4 g5 g3
g8 g6 g7 g2 e g1 g5 g3 g4

To find the canonical naming, observe that the group is commutative. Our group naming will be defined if we choose any
two objects a,b such that a2 6= b. Let e = 8 and choose an arbitrary a = 7. Then a2 = 6 maximizes our representation. The object
a is chosen from eight possible choices. Next we need to choose a second object b = 5, and then we have to name a∗b = x2 = 4
and a∗ x2 = 3. This object b can be chosen from six remaining objects. Finally, we assign the values b2 = c = 2, a∗ c = x4 = 1,
a ∗ x4 = x5 = 0. This has determined a total of forty eight canonical naming functions and automorphisms of Z2

3. Choose two
objects a,b such that a2 6= b and the rest of the naming values are determined. This gives us the numeric table
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8 7 6 5 4 3 2 1 0
7 6 8 4 3 5 1 0 2
6 8 7 3 5 4 0 2 1
5 4 3 2 1 0 8 7 6
4 3 5 1 0 2 7 6 8
3 5 4 0 2 1 6 8 7
2 1 0 8 7 6 5 4 3
1 0 2 7 6 8 4 3 5
0 2 1 6 8 7 3 5 4

The canonical representation of this group is the number

NZ2
3
= 2217+2

2
(

2(2
17+218)+2(2

15+216)+2(2
13+214)+2(2

11+212)+2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)

+ 2215+2
2
(

2(2
17+216)+2(2

15+214)+2(2
13+218)+2(2

11+210)+2(2
9+28)+2(2

7+212)+2(2
5+24)+2(2

3+22)+2(2
1+26)+1

)

+ 2213+2
2
(

2(2
17+214)+2(2

15+218)+2(2
13+216)+2(2

11+28)+2(2
9+212)+2(2

7+210)+2(2
5+22)+2(2

3+26)+2(2
1+24)+1

)

+ 2211+2
2
(

2(2
17+212)+2(2

15+210)+2(2
13+28)+2(2

11+26)+2(2
9+24)+2(2

7+22)+2(2
5+218)+2(2

3+216)+2(2
1+214)+1

)

+ 229+2
2
(

2(2
17+210)+2(2

15+28)+2(2
13+212)+2(2

11+24)+2(2
9+22)+2(2

7+26)+2(2
5+216)+2(2

3+214)+2(2
1+218)+1

)

+ 227+2
2

(
22(2

17+28)+(215+212)+2(2
13+210)+2(2

11+22)+2(2
9+26)+2(2

7+24)+2(2
5+214)+2(2

3+218)+2(2
1+216)+1

)

+ 225+2
2
(

2(2
17+26)+2(2

15+24)+2(2
13+22)+2(2

11+218)+2(2
9+216)+2(2

7+214)+2(2
5+212)+2(2

3+210)+2(2
1+28)+1

)

+ 223+2
2
(

2(2
17+24)+2(2

15+22)+2(2
13+26)+2(2

11+216)+2(2
9+214)+2(2

7+218)+2(2
5+210)+2(2

3+28)+2(2
1+212)+1

)

+ 221+2
2
(

2(2
17+22)+2(2

15+26)+2(2
13+24)+2(2

11+214)+2(2
9+218)+2(2

7+216)+2(2
5+28)+2(2

3+212)+2(2
1+210)+1

)

Cyclic Group Z9. If |G| = 9, we know the objects of G have order 3 or 9. We found the only group with all the objects of
order three. Now we consider the case where we have at least one object of order 9. But, since our group has nine objects, this
must be the cyclic group, Z9. The cyclic group of nine objects is trivially given by the numeric table

8 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0 8
6 5 4 3 2 1 0 8 7
5 4 3 2 1 0 8 7 6
4 3 2 1 0 8 7 6 5
3 2 1 0 8 7 6 5 4
2 1 0 8 7 6 5 4 3
1 0 8 7 6 5 4 3 2
0 8 7 6 5 4 3 2 1

The canonical representation is
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NZ9 = 2217+2
2
(

2(2
17+218)+2(2

15+216)+2(2
13+214)+2(2

11+212)+2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)

+ 2215+2
2
(

2(2
17+216)+2(2

15+214)+2(2
13+212)+2(2

11+210)+2(2
9+28)+2(2

7+26)+2(2
5+24)+2(2

3+22)+2(2
1+218)+1

)

+ 2213+2
2
(

2(2
17+214)+2(2

15+212)+2(2
13+210)+2(2

11+28)+2(2
9+26)+2(2

7+24)+2(2
5+22)+2(2

3+218)+2(2
1+216)+1

)

+ 2211+2
2
(

2(2
17+212)+2(2

15+210)+2(2
13+28)+2(2

11+26)+2(2
9+24)+2(2

7+22)+2(2
5+218)+2(2

3+216)+2(2
1+214)+1

)

+ 229+2
2
(

2(2
17+210)+2(2

15+28)+2(2
13+26)+2(2

11+24)+2(2
9+22)+2(2

7+218)+2(2
5+216)+2(2

3+214)+2(2
1+212)+1

)

+ 227+2
2

(
22(2

17+28)+(215+26)+2(2
13+24)+2(2

11+22)+2(2
9+218)+2(2

7+216)+2(2
5+214)+2(2

3+212)+2(2
1+210)+1

)

+ 225+2
2
(

2(2
17+26)+2(2

15+24)+2(2
13+22)+2(2

11+218)+2(2
9+216)+2(2

7+214)+2(2
5+212)+2(2

3+210)+2(2
1+28)+1

)

+ 223+2
2
(

2(2
17+24)+2(2

15+22)+2(2
13+218)+2(2

11+216)+2(2
9+214)+2(2

7+212)+2(2
5+210)+2(2

3+28)+2(2
1+26)+1

)

+ 221+2
2
(

2(2
17+22)+2(2

15+218)+2(2
13+216)+2(2

11+214)+2(2
9+212)+2(2

7+210)+2(2
5+28)+2(2

3+26)+2(2
1+24)+1

)

Comparing the two numbers, we verify Z9 < Z2
3. It is becoming more clear how to find the canonical representation, without

having to calculate all the representations. But we still have several steps before considering the general case.

4.7 ∆4

We exhibit, for reference, the multiplication table of ∆4. The symbols gi are used for the elements of order 2. We use hi for the
rest of the objects.

e g1 g2 g3 g4 g5 g6 g7 g8 g9 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14
g1 e g4 g5 g2 g3 h2 h1 h4 h3 g7 g6 g9 g8 h6 h5 h12 h11 h14 h13 h8 h7 h10 h9
g2 g4 e h6 g1 h5 h1 h2 g9 g8 g6 g7 h4 h3 g5 g3 h11 h12 h10 h9 h7 h8 h14 h13
g3 g5 h5 e h6 g1 h10 h9 h8 h7 h14 h13 h12 h11 g2 g4 g9 g8 g7 g6 h4 h3 h2 h1
g4 g2 g1 h5 e h6 g7 g6 h3 h4 h2 h1 g8 g9 g3 g5 h8 h7 h13 h14 h12 h11 h9 h10
g5 g3 h6 g1 h5 e h13 h14 h11 h12 h9 h10 h7 h8 g4 g2 h3 h4 h1 h2 g8 g9 g6 g7
g6 h1 h2 h7 g7 h11 e g4 h13 h10 g1 g2 h9 h14 h8 h12 g3 h5 h3 g9 g5 h6 g8 h4
g7 h2 h1 h8 g6 h12 g4 e h9 h14 g2 g1 h13 h10 h7 h11 h5 g3 g8 h4 h6 g5 h3 g9
g8 h3 g9 h9 h4 h13 h11 h8 e g2 h7 h12 g1 g4 h14 h10 h1 g7 g3 h6 g6 h2 g5 h5
g9 h4 g8 h10 h3 h14 h7 h12 g2 e h11 h8 g4 g1 h13 h9 g6 h2 h6 g3 h1 g7 h5 g5
h1 g6 g7 h11 h2 h7 g2 g1 h14 h9 g4 e h10 h13 h12 h8 h6 g5 h4 g8 h5 g3 g9 h3
h2 g7 g6 h12 h1 h8 g1 g2 h10 h13 e g4 h14 h9 h11 h7 g5 h6 g9 h3 g3 h5 h4 g8
h3 g8 h4 h13 g9 h9 h12 h7 g4 g1 h8 h11 g2 e h10 h14 h2 g6 h5 g5 g7 h1 h6 g3
h4 g9 h3 h14 g8 h10 h8 h11 g1 g4 h12 h7 e g2 h9 h13 g7 h1 g5 h5 h2 g6 g3 h6
h5 h6 g3 g4 g5 g2 h14 h13 h7 h8 h10 h9 h11 h12 g1 e h4 h3 g6 g7 g9 g8 h1 h2
h6 h5 g5 g2 g3 g4 h9 h10 h12 h11 h13 h14 h8 h7 e g1 g8 g9 h2 h1 h3 h4 g7 g6
h7 h11 h8 g6 h12 h1 g9 h3 h5 g3 h4 g8 h6 g5 h2 g7 h10 h13 g4 e h14 h9 g2 g1
h8 h12 h7 g7 h11 h2 h4 g8 g3 h5 g9 h3 g5 h6 h1 g6 h14 h9 e g4 h10 h13 g1 g2
h9 h13 h14 g8 h10 h3 h6 g3 g7 h1 h5 g5 h2 g6 g9 h4 g2 e h8 h11 g4 g1 h12 h7
h10 h14 h13 g9 h9 h4 g3 h6 h2 g6 g5 h5 g7 h1 g8 h3 e g2 h12 h7 g1 g4 h8 h11
h11 h7 h12 h1 h8 g6 g8 h4 g5 h6 h3 g9 g3 h5 g7 h2 h9 h14 g1 g2 h13 h10 e g4
h12 h8 h11 h2 h7 g7 h3 g9 h6 g5 g8 h4 h5 g3 g6 h1 h13 h10 g2 g1 h9 h14 g4 e
h13 h9 h10 h3 h14 g8 g5 h5 g6 h2 g3 h6 h1 g7 h4 g9 g1 g4 h7 h12 e g2 h11 h8
h14 h10 h9 h4 h13 g9 h5 g5 h1 g7 h6 g3 g6 h2 h3 g8 g4 g1 h11 h8 g2 e h7 h12

(17)

We do mention, ahead of time, the canonical naming function does not assign the highest ten values to the set {e,g1,g2, . . . ,g9}.
Some hi objects will have a higher numeric value than some gi. The smallest order of any non trivial object is 2. It is obvious we
must make e = 23, 23 = a, 22 = b for two second order objects, a,b, that commute. We have the following possible pairs:
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{g1,g2} {g4,g6}
{g1,g4} {g4,g7}
{g2,g4} {g6,g7}
{g1,g3} {g2,g8}
{g1,g5} {g2,g9}
{g3,g5} {g8,g9}

(18)

Let a,b any of these pairs; we can use the pairs in either order because they are not ordered pairs. For example, we can have
a = g1, b = g2, or we can also assign a = g2, b = g1. We can use any of the pairs above, and the naming function e = 23, a = 22,
b = 21, x1 = 20 gives the table

e a b x1
a e x1 b
b x1 e a
x1 b a e

If we wish to maximize our representation, we shall find a,b,x1 such that {e,a,b,x1} forms the Klein 4-group. We see that
in fact the triads

{g1,g2,g4} {g1,g3,g5} {g4,g6,g7} {g2,g8,g9} (19)

form the Klein 4-group. Given any one of these triads, we do not know which objects will be a and b. For example, if we work
with {g1,g2,g4}, who should we define as a,b,x1? All the non trivial objects of K(4) are equivalent, so we can not decide upon
this yet. Let us add a new object c1 and x2 = a∗ c1

e a b x1 c1 x2
a e x1 b
b x1 e a
x1 b a e
c1 x2
x2 c1

We also need a new object c2 = b∗ c1, and x3 = a∗ c2.

e a b x1 c1 x2 c2 x3
a e x1 b
b x1 e a
x1 b a e
c1 x2 c2 x3
x2 c1 x3 c2
c2 x3 c1 x2
x3 c2 x2 c1

In summary, the canonical naming function will involve one of the Klein 4-subgroups. And, we need an object c1 that
commutes with a, if it should exist. This maximizes the last table. We will see that there are still several options to do this. In
fact, all our candidate naming functions admit an object c1 that commutes with a. This gives the table

e a b x1 c1 x2 c2 x3
a e x1 b x2 c1
b x1 e a
x1 b a e
c1 x2 c2 x3
x2 c1 x3 c2
c2 x3 c1 x2
x3 c2 x2 c1

determined by the equations

e = a2 = b2

a∗b = b∗a

a∗ c1 = c1 ∗a.

For the triads in (19), we need to find an object c1 that commutes with a. For example, all the objects in H1 = {g1,g2,g4}
commute with at least one object not in H1. In the case of H2 = {g2,g8,g9}, only g2 commutes with objects not in H2. This means
if we are working with the triad {g2,g8,g9} we must have a = g2. For {g1,g3,g5} we must have a = g1, and for {g4,g6,g7} we
must assign a = g4. We list the objects that commute with each second order object gi.
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Comm(g1) = {g2,g4,g3,g5,h5,h6} Comm(g2) = {g1,g4,g8,g9,h3,h4} Comm(g3) = {g1,g5}
Comm(g4) = {g1,g2,g6,g7,h1,h2} Comm(g5) = {g1,g3} Comm(g6) = {g4,g7}

Comm(g7) = {g4,g6} Comm(g8) = {g2,g9} Comm(g9) = {g2,g8}
(20)

This information reduces our possible naming functions because now we know a little more about a. Our possible naming
functions are more than we would like to list, but they are easy to describe. We need an object a ∈ {g1,g2,g4}, and we need
a second order object b to determine the subgroup K(4). For example, if we choose a = g4 we can choose b ∈ {g1,g2,g6,g7};
find a second order object that commutes with a = g4. In the case of a = g1 we need to choose b ∈ {g2,g4,g3,g5}. If a = g2
then b ∈ {g1,g4,g8,g9}. After determining the subgroup K(4), we need an object c1 that commutes with a. The expressions of
(20) let us know which combinations allow c1. We shall start representing naming functions with finite sequences. We will write
naming functions in the form (a,b,x1,c1,x2,c2,x3). For example, the naming function a = g4, b = g2, x1 = a∗b = g1, c1 = g7,
x2 = a ∗ c1 = g6, c2 = b ∗ c1 = h1, x3 = a ∗ c2 = h2 is given by the expression (g4,g2,g1,g7,g6,h1,h2). We know a ∈ g1,g2,g4
for any of the triads giving K(4). Choose a second order object, b, that commutes with a, and then we choose an object c1 that
also commutes with a. We list all possible naming functions below.

(g1,g2,g4,g3,g5,h5,h6) (g2,g1,g4,g8,g9,h3,h4) (g4,g1,g2,g6,g7,h1,h2)
(g1,g2,g4,g5,g3,h6,h5) (g2,g1,g4,g9,g8,h4,h3) (g4,g1,g2,g7,g6,h2,h1)
(g1,g2,g4,h5,h6,g3,g5) (g2,g1,g4,h3,h4,g8,g9) (g4,g1,g2,h1,h2,g6,g7)
(g1,g2,g4,h6,h5,g5,g3) (g2,g1,g4,h4,h3,g9,g8) (g4,g1,g2,h2,h1,g7,g6)

(g1,g4,g2,g3,g5,h6,h5) (g2,g4,g1,g8,g9,h4,h3) (g4,g2,g1,g6,g7,h2,h1)
(g1,g4,g2,g5,g3,h5,h6) (g2,g4,g1,g9,g8,h3,h4) (g4,g2,g1,g7,g6,h1,h2)
(g1,g4,g2,h5,h6,g5,g3) (g2,g4,g1,h3,h4,g9,g8) (g4,g2,g1,h1,h2,g7,g6)
(g1,g4,g2,h6,h5,g3,g5) (g2,g4,g1,h4,h3,g8,g9) (g4,g2,g1,h2,h1,g6,g7)

(g1,g3,g5,g2,g4,h6,h5) (g2,g8,g9,g1,g4,h4,h3) (g4,g6,g7,g1,g2,h2,h1)
(g1,g3,g5,g4,g2,h5,h6) (g2,g8,g9,g4,g1,h3,h4) (g4,g6,g7,g2,g1,h1,h2)
(g1,g3,g5,h5,h6,g4,g2) (g2,g8,g9,h3,h4,g4,g1) (g4,g6,g7,h1,h2,g2,g1)
(g1,g3,g5,h6,h5,g2,g4) (g2,g8,g9,h4,h3,g1,g4) (g4,g6,g7,h2,h1,g1,g2)

(g1,g5,g3,g2,g4,h5,h6) (g2,g9,g8,g1,g4,h3,h4) (g4,g7,g6,g1,g4,h1,h2)
(g1,g5,g3,g4,g2,h6,h5) (g2,g9,g8,g4,g1,h4,h3) (g4,g7,g6,g2,g1,h2,h1)
(g1,g5,g3,h5,h6,g2,g4) (g2,g9,g8,h3,h4,g1,g4) (g4,g7,g6,h1,h2,g1,g2)
(g1,g5,g3,h6,h5,g4,g2) (g2,g9,g8,h4,h3,g4,g1) (g4,g7,g6,h2,h1,g2,g1)

(21)

In (20) we can also observe that given any choice of a,b,x1 that satisfies K(4) = {e,a,b,x1}, there is no object g /∈ K(4) that
commutes with both a and b. None of our candidate triads satisfy a∗c1 = c1 ∗a and b∗c1 = c1 ∗b simultaneously. Although we
can not find c1 that commutes with a and b, we still have to maximize our representation. The next highest object we can have
in the position of c1 ∗b is x3. Each of the finite sequences above satisfies a∗ c1 = c1 ∗a and x3 = c1 ∗b. Any one of our naming
functions in (21) will give the table

e a b x1 c1 x2 c2 x3
a e x1 b x2 c1
b x1 e a x3 c2
x1 b a e c2 x3
c1 x2 c2 x3
x2 c1 x3 c2
c2 x3 c1 x2
x3 c2 x2 c1

It is possible to choose c1 with the additional restraint |c1|= 2, maximizing the representation. The naming functions

(g1,g2,g4,g3,g5,h5,h6) (g2,g1,g4,g8,g9,h3,h4) (g4,g1,g2,g6,g7,h1,h2)
(g1,g2,g4,g5,g3,h6,h5) (g2,g1,g4,g9,g8,h4,h3) (g4,g1,g2,g7,g6,h2,h1)

(g1,g4,g2,g3,g5,h6,h5) (g2,g4,g1,g8,g9,h4,h3) (g4,g2,g1,g6,g7,h2,h1)
(g1,g4,g2,g5,g3,h5,h6) (g2,g4,g1,g9,g8,h3,h4) (g4,g2,g1,g7,g6,h1,h2)

(g1,g3,g5,g2,g4,h6,h5) (g2,g8,g9,g1,g4,h4,h3) (g4,g6,g7,g1,g2,h2,h1)
(g1,g3,g5,g4,g2,h5,h6) (g2,g8,g9,g4,g1,h3,h4) (g4,g6,g7,g2,g1,h1,h2)

(g1,g5,g3,g2,g4,h5,h6) (g2,g9,g8,g1,g4,h3,h4) (g4,g7,g6,g1,g4,h1,h2)
(g1,g5,g3,g4,g2,h6,h5) (g2,g9,g8,g4,g1,h4,h3) (g4,g7,g6,g2,g1,h2,h1)

(22)
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give the table

e a b x1 c1 x2 c2 x3
a e x1 b x2 c1 x3 c2
b x1 e a x3 c2 x2 c1
x1 b a e c2 x3 c1 x2
c1 x2 c2 x3 e a b x1
x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a

This is the table obtained for the canonical naming of the Dihedral Group D8. We add a new object d1 and x4 = a ∗ d1,
d2 = b∗d1, x5 = a∗d2 to the table above, and obtain

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5
a e x1 b x2 c1 x3 c2
b x1 e a x3 c2 x2 c1
x1 b a e c2 x3 c1 x2
c1 x2 c2 x3 e a b x1
x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a
d1 x4 d2 x5
x4 d1 x5 d2
d2 x5 d1 x4
x5 d2 x4 d1

We find we have to add another new object p1 = c1 ∗d1. Then, we have to add the objects x6 = a∗ p1, p2 = b∗ p1, x7 = a∗ p2.

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7
a e x1 b x2 c1 x3 c2
b x1 e a x3 c2 x2 c1
x1 b a e c2 x3 c1 x2
c1 x2 c2 x3 e a b x1
x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a
d1 x4 d2 x5 p1 x6
x4 d1 x5 d2 x6 p1
d2 x5 d1 x4 p2 x7
x5 d2 x4 d1 x7 p2
p1 x6
x6 p1
p2 x7
x7 p2

Use |c1|= 2 to find c1 ∗ p1 = d1, etc. It is not hard to find c2 ∗d1 = x7.

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7
a e x1 b x2 c1 x3 c2
b x1 e a x3 c2 x2 c1
x1 b a e c2 x3 c1 x2
c1 x2 c2 x3 e a b x1
x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a
d1 x4 d2 x5 p1 x6 x7 p2
x4 d1 x5 d2 x6 p1 p2 x7
d2 x5 d1 x4 p2 x7 x6 p1
x5 d2 x4 d1 x7 p2 p1 x6
p1 x6 d1 x4
x6 p1 x4 d1
p2 x7 d2 x5
x7 p2 x5 d2

Now we can use b = c2 ∗c1 to find b∗ p1 = x7. We similarly find b∗ p2 = x6. Finding c2 ∗ p1 = d2 is easy using c2 = c1 ∗x1.
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e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7
a e x1 b x2 c1 x3 c2
b x1 e a x3 c2 x2 c1
x1 b a e c2 x3 c1 x2
c1 x2 c2 x3 e a b x1
x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a
d1 x4 d2 x5 p1 x6 x7 p2
x4 d1 x5 d2 x6 p1 p2 x7
d2 x5 d1 x4 p2 x7 x6 p1
x5 d2 x4 d1 x7 p2 p1 x6
p1 x6 x7 p2 d1 x4 d2 x5
x6 p1 p2 x7 x4 d1 x5 d2
p2 x7 x6 p1 d2 x5 d1 x4
x7 p2 p1 x6 x5 d2 x4 d1

The last table tells us that if we add an object d1, to any of the naming functions in (22), we will have to add all the objects
(d1,x4,d2,x5, p1,x6, p2,x7) defined by

x4 = a∗d1 p1 = c1 ∗d1
d2 = b∗d1 x6 = a∗ p1
x5 = a∗d2 p2 = b∗ p1

x7 = a∗ p2

How do we choose d1? If we had any more objects that commute with a, those would be the candidates to d1. However, in
each of our naming functions, there are no more objects that commute with a. The next largest value we can place in d1 ∗ a is
d2. We see that only some of our naming functions will satisfy this. For example, the naming function with a = g1, b = g3 is
disqualified from being a canonical naming function. We can not find a new d1 /∈ D8 such that d1 ∗ a = b ∗ d1. The only cases
when we can find this d1 is if we have a,b∈ {g1,g2,g4}. The easiest way to find the candidates for d1, is to compare the row of a
and the column of b. If the i-th object in the row of a coincides with the i-th object in the column of b, then the i-th object on the
first column (or first row) is a candidate for d1. For example, with the naming function (g1,g2,g4,g3,g5,h5,h6), the candidates
for d1 are the objects g6,g7,h1,h2,h9,h10,h13,h14. The candidates for d1 are determined by a,b. If a = g1 and b = g3 we have
no candidate for d1. If a = g1 and b = g4 the candidates for d1 are g8,g9,h3,h4,h7,h8,h11,h12, etc. The naming functions that
satisfy this condition are those that have a,b in g1,g2,g4. Now we know more about the canonical naming function. We have
K(4) = {e,g1,g2,g4} as the first four objects of the naming function. Then we have to choose a second order object c1 that
commutes with a. Then we choose d1 so that b ∗ d1 = d1 ∗ a. Below we give twelve naming functions. Each of these has eight
possible candidates for d1. We have a total of ninety-six possible naming functions.

(g1,g2,g4,g3,g5,h5,h6,d1, . . . ,x7) (g2,g1,g4,g8,g9,h3,h4,d1, . . . ,x7) (g4,g1,g2,g6,g7,h1,h2,d1, . . . ,x7)
(g1,g2,g4,g5,g3,h6,h5,d1, . . . ,x7) (g2,g1,g4,g9,g8,h4,h3,d1, . . . ,x7) (g4,g1,g2,g7,g6,h2,h1,d1, . . . ,x7)

(g1,g4,g2,g3,g5,h6,h5,d1, . . . ,x7) (g2,g4,g1,g8,g9,h4,h3,d1, . . . ,x7) (g4,g2,g1,g6,g7,h2,h1,d1, . . . ,x7)
(g1,g4,g2,g5,g3,h5,h6,d1, . . . ,x7) (g2,g4,g1,g9,g8,h3,h4,d1, . . . ,x7) (g4,g2,g1,g7,g6,h1,h2,d1, . . . ,x7)

(23)

Let us reduce the possible choices, further. Some of our candidate naming functions (not all) give us d1 ∗b = a∗d1, which
maximizes the representation. We will keep the naming functions that satisfy d1 ∗b = a∗d1 and b∗d1 = d1 ∗a, simultaneously.
In the case of a = g1, b = g2 the candidates for d1 are reduced to g6,g7,h1,h2.
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e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7
a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 p2 x7 p1 x6
b x1 e a x3 c2 x2 c1
x1 b a e c2 x3 c1 x2
c1 x2 c2 x3 e a b x1
x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a
d1 x4 d2 x5 p1 x6 x7 p2
x4 d1 x5 d2 x6 p1 p2 x7
d2 x5 d1 x4 p2 x7 x6 p1
x5 d2 x4 d1 x7 p2 p1 x6
p1 x6 x7 p2 d1 x4 d2 x5
x6 p1 p2 x7 x4 d1 x5 d2
p2 x7 x6 p1 d2 x5 d1 x4
x7 p2 p1 x6 x5 d2 x4 d1

The naming functions (a,b,x1,c1,x2,c2,x3,d1,x4,d2,x5), without the components (p1,x6, p2,x7) are given below.

(g1,g2,g4,g3,g5,h5,h6,g6,h1,h2,g7,h7,h11,h8,h12) (g2,g1,g4,g8,g9,h3,h4,g6,h2,h1,g7,h13,h10,h9,h14)
(g1,g2,g4,g3,g5,h5,h6,g7,h2,h1,g6,h8,h12,h7,h11) (g2,g1,g4,g8,g9,h3,h4,g7,h1,h2,g6,h9,h14,h13,h10)
(g1,g2,g4,g3,g5,h5,h6,h1,g6,g7,h2,h11,h7,h8,h12) (g2,g1,g4,g8,g9,h3,h4,h1,g7,g6,h2,h14,h9,h13,h10)
(g1,g2,g4,g3,g5,h5,h6,h2,g7,g6,h1,h12,h8,h7,h11) (g2,g1,g4,g8,g9,h3,h4,h2,g6,g7,h1,h10,h13,h14,h9)

(g1,g2,g4,g5,g3,h6,h5,g6,h1,h2,g7,h11,h7,h12,h8) (g2,g1,g4,g9,g8,h4,h3,g6,h2,h1,g7,h10,h13,h14,h9)
(g1,g2,g4,g5,g3,h6,h5,g7,h2,h1,g6,h12,h8,h7,h11) (g2,g1,g4,g9,g8,h4,h3,g7,h1,h2,g6,h14,h9,h10,h13)
(g1,g2,g4,g5,g3,h6,h5,h1,g6,g7,h2,h7,h11,h8,h12) (g2,g1,g4,g9,g8,h4,h3,h1,g7,g6,h2,h9,h14,h13,h10)
(g1,g2,g4,g5,g3,h6,h5,h2,g7,g6,h1,h8,h12,h7,h11) (g2,g1,g4,g9,g8,h4,h3,h2,g6,g7,h1,h13,h10,h9,h14)

(g1,g4,g2,g3,g5,h5,h6,g8,h3,h4,g9,h9,h13,h10,h14) (g2,g4,g1,g8,g9,h3,h4,g3,h5,h6,g5,h8,h7,h11,h12)
(g1,g4,g2,g3,g5,h5,h6,g9,h4,h3,g8,h10,h14,h9,h13) (g2,g4,g1,g8,g9,h3,h4,g5,h6,h5,g3,h11,h12,h8,h7)
(g1,g4,g2,g3,g5,h5,h6,h3,g8,g9,h4,h13,h9,h14,h10) (g2,g4,g1,g8,g9,h3,h4,h5,g3,g5,h6,h7,h8,h12,h11)
(g1,g4,g2,g3,g5,h5,h6,h4,g9,g8,h3,h14,h10,h9,h13) (g2,g4,g1,g8,g9,h3,h4,h6,g5,g3,h5,h12,h11,h7,h8)

(g1,g4,g2,g5,g3,h6,h5,g8,h3,h4,g9,h13,h9,h14,h10) (g2,g4,g1,g9,g8,h4,h3,g3,h5,h6,g5,h7,h8,h12,h11)
(g1,g4,g2,g5,g3,h6,h5,g9,h4,h3,g8,h14,h10,h13,h9) (g2,g4,g1,g9,g8,h4,h3,g5,h6,h5,g3,h12,h11,h7,h8)
(g1,g4,g2,g5,g3,h6,h5,h3,g8,g9,h4,h9,h13,h10,h14) (g2,g4,g1,g9,g8,h4,h3,h5,g3,g5,h6,h8,h7,h11,h12)
(g1,g4,g2,g5,g3,h6,h5,h4,g9,g8,h3,h10,h14,h9,h13) (g2,g4,g1,g9,g8,h4,h3,h6,g5,g3,h5,h11,h12,h8,h7)

(g4,g1,g2,g6,g7,h1,h2,g8,h4,h3,g9,h11,h8,h7,h12)
(g4,g1,g2,g6,g7,h1,h2,g9,h3,h4,g8,h7,h12,h11,h8)
(g4,g1,g2,g6,g7,h1,h2,h3,g9,g8,h4,h12,h7,h8,h11)
(g4,g1,g2,g6,g7,h1,h2,h4,g8,g9,h3,h8,h11,h12,h7)

(g4,g1,g2,g7,g6,h2,h1,g8,h4,h3,g9,h8,h11,h12,h7)
(g4,g1,g2,g7,g6,h2,h1,g9,h3,h4,g8,h12,h7,h8,h11)
(g4,g1,g2,g7,g6,h2,h1,h3,g9,g8,h4,h7,h12,h11,h8)
(g4,g1,g2,g7,g6,h2,h1,h4,g8,g9,h3,h11,h8,h7,h12)

(g4,g2,g1,g6,g7,h1,h2,g3,h6,h5,g5,h10,h9,h13,h14)
(g4,g2,g1,g6,g7,h1,h2,g5,h5,h6,g3,h13,h14,h10,h9)
(g4,g2,g1,g6,g7,h1,h2,h5,g5,g3,h6,h14,h13,h9,h10)
(g4,g2,g1,g6,g7,h1,h2,h6,g3,g5,h5,h9,h10,h14,h13)

(g4,g2,g1,g7,g6,h2,h1,g3,h6,h5,g5,h9,h10,h14,h13)
(g4,g2,g1,g7,g6,h2,h1,g5,h5,h6,g3,h14,h13,h9,h10)
(g4,g2,g1,g7,g6,h2,h1,h5,g5,g3,h6,h13,h14,h10,h9)
(g4,g2,g1,g7,g6,h2,h1,h6,g3,g5,h5,h10,h9,h13,h14)

(24)

The careful reader will start to notice what objects might turn out to be equivalent objects. For example, it is quite clear
g1,g2,g4 might probably be equivalent, but also g3,g5 and g6,g7 and h1,h2, etc. We shall see how we can reduce our possible
choices. The table we have up to this point is
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e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7
a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 p2 x7 p1 x6
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2
x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 x7 p2 x6 p1
c1 x2 c2 x3 e a b x1
x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a
d1 x4 d2 x5 p1 x6 x7 p2
x4 d1 x5 d2 x6 p1 p2 x7
d2 x5 d1 x4 p2 x7 x6 p1
x5 d2 x4 d1 x7 p2 p1 x6
p1 x6 x7 p2 d1 x4 d2 x5
x6 p1 p2 x7 x4 d1 x5 d2
p2 x7 x6 p1 d2 x5 d1 x4
x7 p2 p1 x6 x5 d2 x4 d1

The naming functions of (24) all give a new object d1∗c1. For example, in the naming function (g1,g2,g4,g3,g5,h5,h6,g6,h1,h2,g7),
we have d1 ∗ c1 = g6 ∗g3 = h10 which is an object not yet named. Including this new object, q1 = d1 ∗ c1, gives the table

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7 q1 x8 q2 x9
a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 p2 x7 p1 x6 x8 q1 x9 q2
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2 x9 q2 x8 q1
x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 x7 p2 x6 p1 q2 x9 q1 x8
c1 x2 c2 x3 e a b x1 q1 x8 q2 x9 d1 x4 d2 x5
x2 c1 x3 c2 a e x1 b q2 x9 q1 x8 d2 x5 d1 x4
c2 x3 c1 x2 x1 b a e x8 q1 x9 q2 x5 d2 x4 d1
x3 c2 x2 c1 b x1 e a x9 q2 x8 q1 x4 d1 x5 d2
d1 x4 d2 x5 p1 x6 x7 p2
x4 d1 x5 d2 x6 p1 p2 x7
d2 x5 d1 x4 p2 x7 x6 p1
x5 d2 x4 d1 x7 p2 p1 x6
p1 x6 x7 p2 d1 x4 d2 x5
x6 p1 p2 x7 x4 d1 x5 d2
p2 x7 x6 p1 d2 x5 d1 x4
x7 p2 p1 x6 x5 d2 x4 d1
q1 x8 q2 x9
x8 q1 x9 q2
q2 x9
x9 q2

This last table tells us that if we want to maximize the representation, we will have to consider the naming functions that
have |d1|= 2. These are

(g1,g2,g4,g3,g5,h5,h6,g6,h1,h2,g7,h7,h11,h8,h12,h10,h14,h13,h9) (g1,g4,g2,g3,g5,h5,h6,g8,h3,h4,g9,h9,h13,h10,h14,h8,h12,h11,h7)
(g1,g2,g4,g3,g5,h5,h6,g7,h2,h1,g6,h8,h12,h7,h11,h9,h13,h14,h10) (g1,g4,g2,g3,g5,h5,h6,g9,h4,h3,g8,h10,h14,h9,h13,h7,h11,h12,h8)
(g1,g2,g4,g5,g3,h6,h5,g6,h1,h2,g7,h11,h7,h12,h8,h13,h9,h10,h14) (g1,g4,g2,g5,g3,h6,h5,g8,h3,h4,g9,h13,h9,h14,h10,h11,h7,h8,h12)
(g1,g2,g4,g5,g3,h6,h5,g7,h2,h1,g6,h12,h8,h7,h11,h14,h10,h13,h9) (g1,g4,g2,g5,g3,h6,h5,g9,h4,h3,g8,h14,h13,h10,h9,h12,h8,h7,h11)

(g2,g1,g4,g8,g9,h3,h4,g6,h2,h1,g7,h13,h10,h9,h14,h11,h12,h7,h8) (g2,g4,g1,g8,g9,h3,h4,g3,h5,h6,g5,h8,h7,h11,h12,h9,h14,h10,h13)
(g2,g1,g4,g8,g9,h3,h4,g7,h1,h2,g6,h9,h14,h13,h10,h8,h7,h12,h11) (g2,g4,g1,g8,g9,h3,h4,g5,h6,h5,g3,h11,h12,h8,h7,h13,h10,h14,h9)
(g2,g1,g4,g9,g8,h4,h3,g6,h2,h1,g7,h10,h13,h14,h9,h7,h8,h11,h12) (g2,g4,g1,g9,g8,h4,h3,g3,h5,h6,g5,h7,h8,h12,h11,h10,h13,h9,h14)
(g2,g1,g4,g9,g8,h4,h3,g7,h1,h2,g6,h14,h9,h10,h13,h12,h11,h8,h7) (g2,g4,g1,g9,g8,h4,h3,g5,h6,h5,g3,h12,h11,h7,h8,h14,h9,h13,h10)

(g4,g1,g2,g6,g7,h1,h2,g8,h4,h3,g9,h11,h8,h7,h12,h13,h14,h9,h10) (g4,g2,g1,g6,g7,h1,h2,g3,h6,h5,g5,h10,h9,h13,h14,h7,h12,h8,h11)
(g4,g1,g2,g6,g7,h1,h2,g9,h3,h4,g8,h7,h12,h11,h8,h10,h9,h14,h13) (g4,g2,g1,g6,g7,h1,h2,g5,h5,h6,g3,h13,h14,h10,h9,h11,h8,h7,h12)
(g4,g1,g2,g7,g6,h2,h1,g8,h4,h3,g9,h8,h11,h12,h7,h9,h10,h13,h14) (g4,g2,g1,g7,g6,h2,h1,g3,h6,h5,g5,h9,h10,h14,h13,h8,h11,h7,h14)
(g4,g1,g2,g7,g6,h2,h1,g9,h3,h4,g8,h12,h7,h8,h11,h14,h13,h10,h9) (g4,g2,g1,g7,g6,h2,h1,g5,h5,h6,g3,h14,h13,h9,h10,h12,h7,h11,h8)

These naming functions give the table
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e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7 q1 x8 q2 x9
a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 p2 x7 p1 x6 x8 q1 x9 q2
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2 x9 q2 x8 q1
x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 x7 p2 x6 p1 q2 x9 q1 x8
c1 x2 c2 x3 e a b x1 q1 x8 q2 x9 d1 x4 d2 x5
x2 c1 x3 c2 a e x1 b q2 x9 q1 x8 d2 x5 d1 x4
c2 x3 c1 x2 x1 b a e x8 q1 x9 q2 x5 d2 x4 d1
x3 c2 x2 c1 b x1 e a x9 q2 x8 q1 x4 d1 x5 d2
d1 x4 d2 x5 p1 x6 x7 p2 e a b x1 c1 x2 x3 c2
x4 d1 x5 d2 x6 p1 p2 x7 b x1 e a x3 c2 c1 x2
d2 x5 d1 x4 p2 x7 x6 p1 a e x1 b x2 c1 c2 x3
x5 d2 x4 d1 x7 p2 p1 x6 x1 b a e c2 x3 x3 c2
p1 x6 x7 p2 d1 x4 d2 x5 e a b x1
x6 p1 p2 x7 x4 d1 x5 d2 b x1 e a
p2 x7 x6 p1 d2 x5 d1 x4 a e x1 b
x7 p2 p1 x6 x5 d2 x4 d1 x1 b a e
q1 x8 q2 x9 c1 x2 c2 x3 e a x1 b
x8 q1 x9 q2 c2 x3 c1 x2 x1 b e a
q2 x9 q1 x8 x2 c1 x3 c2 a e b x1
x9 q2 x8 q1 x3 c2 x2 c1 b x1 a e

We see that we have to add a new object r1 = c1 ∗q1. We finally have x10 = a∗ r1, r2 = b∗ r1, x11 = a∗ r2. This completes
our naming functions.

(g1,g2,g4,g3,g5,h5,h6,g6,h1,h2,g7,h7,h11,h8,h12,h10,h14,h13,h9,g9,h4,g8,h3)
(g1,g2,g4,g3,g5,h5,h6,g7,h2,h1,g6,h8,h12,h7,h11,h9,h13,h14,h10,g8,h3,g9,h4)
(g1,g2,g4,g5,g3,h6,h5,g6,h1,h2,g7,h11,h7,h12,h8,h13,h9,h10,h14,g8,h3,g9,h4)
(g1,g2,g4,g5,g3,h6,h5,g7,h2,h1,g6,h12,h8,h7,h11,h14,h10,h13,h9,g9,h4,g8,h3)
(g1,g4,g2,g3,g5,h5,h6,g8,h3,h4,g9,h9,h13,h10,h14,h8,h12,h11,h7,g7,h2,g6,h1)
(g1,g4,g2,g3,g5,h5,h6,g9,h4,h3,g8,h10,h14,h9,h13,h7,h11,h12,h8,g6,h1,g7,h2)
(g1,g4,g2,g5,g3,h6,h5,g8,h3,h4,g9,h13,h9,h14,h10,h11,h7,h8,h12,g6,h1,g7,h2)
(g1,g4,g2,g5,g3,h6,h5,g9,h4,h3,g8,h14,h13,h10,h9,h12,h8,h7,h11,g7,h2,g6,h1)

(g2,g1,g4,g8,g9,h3,h4,g6,h2,h1,g7,h13,h10,h9,h14,h11,h12,h7,h8,g5,h6,g3,h5)
(g2,g1,g4,g8,g9,h3,h4,g7,h1,h2,g6,h9,h14,h13,h10,h8,h7,h12,h11,g3,h5,g5,h6)
(g2,g1,g4,g9,g8,h4,h3,g6,h2,h1,g7,h10,h13,h14,h9,h7,h8,h11,h12,g3,h5,g5,h6)
(g2,g1,g4,g9,g8,h4,h3,g7,h1,h2,g6,h14,h9,h10,h13,h12,h11,h8,h7,g5,h6,g3,h5)
(g2,g4,g1,g8,g9,h3,h4,g3,h5,h6,g5,h8,h7,h11,h12,h9,h14,h10,h13,g7,h1,g6,h2)
(g2,g4,g1,g8,g9,h3,h4,g5,h6,h5,g3,h11,h12,h8,h7,h13,h10,h14,h9,g6,h2,g7,h1)
(g2,g4,g1,g9,g8,h4,h3,g3,h5,h6,g5,h7,h8,h12,h11,h10,h13,h9,h14,g6,h2,g7,h1)
(g2,g4,g1,g9,g8,h4,h3,g5,h6,h5,g3,h12,h11,h7,h8,h14,h9,h13,h10,g7,h1,g6,h2)

(g4,g1,g2,g6,g7,h1,h2,g8,h4,h3,g9,h11,h8,h7,h12,h13,h14,h9,h10,g5,h5,g3,h6)
(g4,g1,g2,g6,g7,h1,h2,g9,h3,h4,g8,h7,h12,h11,h8,h10,h9,h14,h13,g3,h6,g5,h5)
(g4,g1,g2,g7,g6,h2,h1,g8,h4,h3,g9,h8,h11,h12,h7,h9,h10,h13,h14,g3,h6,g5,h5)
(g4,g1,g2,g7,g6,h2,h1,g9,h3,h4,g8,h12,h7,h8,h11,h14,h13,h10,h9,g5,h5,g3,h6)
(g4,g2,g1,g6,g7,h1,h2,g3,h6,h5,g5,h10,h9,h13,h14,h7,h12,h8,h11,g9,h3,g8,h4)
(g4,g2,g1,g6,g7,h1,h2,g5,h5,h6,g3,h13,h14,h10,h9,h11,h8,h7,h12,g8,h4,g9,h3)
(g4,g2,g1,g7,g6,h2,h1,g3,h6,h5,g5,h9,h10,h14,h13,h8,h11,h7,h14,g8,h4,g9,h3)
(g4,g2,g1,g7,g6,h2,h1,g5,h5,h6,g3,h14,h13,h9,h10,h12,h7,h11,h8,g9,h3,g8,h4)

We have found the canonical naming function of the permutation group ∆4. We have also been able to identify equivalent
objects of the group. The equivalence classes of objects are

{e}
{g1,g2,g4}

{g3,g5,g6,g7,g8,g9}
{h1,h2,h3,h4,h5,h6,}

{h7,h8,h9,h10,h11,h12,h13,h14}

There is a total of twenty four canonical naming functions and automorphisms of ∆4. The naming functions above give us
the canonical table in block form.
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e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7 q1 x8 q2 x9 r1 x10 r2 x11
a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 p2 x7 p1 x6 x8 q1 x9 q2 x10 r1 x11 r2
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2 x9 q2 x8 q1 r2 x11 r1 x10
x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 x7 p2 x6 p1 q2 x9 q1 x8 x11 r2 x10 r1
c1 x2 c2 x3 e a b x1 q1 x8 q2 x9 r1 x10 x11 r2 d1 x4 d2 x5 p1 x6 x7 p2
x2 c1 x3 c2 a e x1 b q2 x9 q1 x8 x11 r2 r1 x10 d2 x5 d1 x4 p2 x7 x6 p1
c2 x3 c1 x2 x1 b a e x8 q1 x9 q2 x10 r1 r2 x11 x5 d2 x4 d1 x7 p2 p1 x6
x3 c2 x2 c1 b x1 e a x9 q2 x8 q1 r2 x11 x10 r1 x4 d1 x5 d2 x6 p1 p2 x7
d1 x4 d2 x5 p1 x6 x7 p2 e a b x1 c1 x2 x3 c2 r1 x10 r2 x11 q1 x8 q2 x9
x4 d1 x5 d2 x6 p1 p2 x7 b x1 e a x3 c2 c1 x2 r2 x11 x10 r1 x9 q2 x8 q1
d2 x5 d1 x4 p2 x7 x6 p1 a e x1 b x2 c1 c2 x3 x11 r2 r1 x10 q2 x9 q1 x8
x5 d2 x4 d1 x7 p2 p1 x6 x1 b a e c2 x3 x3 c2 x10 r1 x11 r2 x8 q1 x9 q2
p1 x6 x7 p2 d1 x4 d2 x5 r1 x10 r2 x11 q1 x8 q2 x9 e a b x1 c1 x2 c2 x3
x6 p1 p2 x7 x4 d1 x5 d2 r2 x11 r1 x10 x9 q2 q1 x8 b x1 e a x3 c2 x2 c1
p2 x7 x6 p1 d2 x5 d1 x4 x11 r2 x10 r1 q2 x9 x8 q1 a e x1 b x2 c1 x3 c2
x7 p2 p1 x6 x5 d2 x4 d1 x10 r1 x11 r2 x8 q1 x9 q2 x1 b a e c2 x3 c1 x2
q1 x8 q2 x9 r1 x10 r2 x11 c1 x2 c2 x3 e a x1 b p1 x6 p2 x7 d1 x4 d2 x5
x8 q1 x9 q2 x10 r1 x11 r2 c2 x3 c1 x2 x1 b e a x7 p2 p1 x6 x5 d2 x4 d1
q2 x9 q1 x8 x11 r2 x10 r1 x2 c1 x3 c2 a e b x1 p2 x7 x6 p1 d2 x5 d1 x4
x9 q2 x8 q1 r2 x11 r1 x10 x3 c2 x2 c1 b x1 a e x6 p1 x7 p2 x4 d1 x5 d2
r1 x10 r2 x11 q1 x8 q2 x9 p1 x6 p2 x7 d1 x4 d2 x5 c1 x2 c2 x3 e a b x1
x10 r1 x11 r2 x8 q1 x9 q2 p2 x7 x6 p1 d2 x5 d1 x4 x2 c1 x3 c2 a e x1 b
r2 x11 r1 x10 x9 q2 x8 q1 x6 p1 x7 p2 x4 d1 x5 d2 x3 c2 x2 c1 b x1 e a
x11 r2 x10 r1 q2 x9 q1 x8 x7 p2 p1 x6 x5 d2 x4 d1 c2 x3 c1 x2 x1 b a e

The canonical representation is easily obtained if we write this table in terms of the numerical values. If we wish to verify
isomorphism of two groups, we simply have to find the numerical tables and these have to coincide.

5 Infinite Sets and Real Numbers

In this section we will build the structure of real numbers, using the same principles of our construction of natural numbers. We
simply have to extend our methods to the case of infinite sets. First of all, notice that any real number in the unit interval (0,1]
can be given in negative powers of 2. For example, the number 1

2 = 2−1 and 3
4 = 2−1 +2−2.

We make a second observation. Consider the energy level graph of a sum, as in Figure 1. Notice that we can vertically
displace the configuration of points, and still obtain a true statement. What happens if we make a displacement into negative
integers? The statement still holds. See Figure 3. This is true because negative powers of two are still operated with the same
rule. The expression 2n +2n = 2n+1 holds for any integer n, not only positive integers. For example, to add the numbers 1

2 +
3
4

we have 2−1 +2−1 +2−2 = 20 +2−2 = 1+ 1
4 . We use this to our advantage in formalizing the concept of real number.

Fig. 3 The energy level interpretation can be taken to negative levels. Particles occupying these levels represent negative powers of 2. In Figure 1 this
represented 15+23 = 38. Here, we have the statement 1.875+2.875 = 4.75.

We have seen how to represent natural numbers as hereditarily finite sets, and N = HFS. We know, because of the union
axiom, that HFS =

⋃
n⊕1n(0) is a set. In our first axiom we accept that the sub collection of any set, is also a set. This means

that any infinite sub collection of HFS, is a set. In this section we will prove that these sets are the real numbers. We divide this
section in three main parts.

1. Continuum [0,1]. Any real number in the unit interval is the sum of infinitely many negative powers of 2. Moreover, every
infinite set of natural numbers defines a unique real number in the unit interval.

2. Real Numbers. We generalize the constructions of N and [0,1] to represent positive real numbers as infinite subsets of Z.
Then, we give the structure of R to the set of infinite subsets of HFS.

3. Lı́mits and Continuity. The concept of limit and continuity has a simple description in terms of our constructions. We give
an initial description of Analysis, in terms of the order for natural numbers, N<.

We give a brief description of these developments, and leave some of the proofs for a separate publication on real numbers.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2020                   doi:10.20944/preprints202007.0415.v1

https://doi.org/10.20944/preprints202007.0415.v1


Canonical Set Theory for Classic Mathematics 55

5.1 Continuum [0,1]

A real number x∈ (0,1] can be expressed as a sum of negative powers of 2, so that x = ∑
i∈X

2−i for some set X ⊆N. The set X ⊂N

is the set number corresponding to x. The set number X can be a finite set (for some rational numbers). However, notice that

any rational number x =
n
∑

i=1
2−i can be seen as an infinite sum x =

(
n−1
∑

i=1
2−i
)
+

(
∞

∑
i=n

2−i
)

. Thus, every x ∈ (0,1] is represented

by a unique infinite set of natural numbers greater than 0. We use the symbol N1 = {1,2,3, . . .} for the set of natural numbers
greater than 0. We have a bijection Nin f → (0,1], where Nin f is the set of all infinite subsets of N1. We call these sets, infinite
set numbers and they are ordered similarly to finite set numbers, but with one difference. The smaller powers of 2 represent
larger numbers. For example, 2−5 < 2−1. Instead of using the maximum of the set difference, now we look for the minimum.
Therefore, we define A < B if and only if

min(A4B) ∈ B.

Notice that 1 = N ∈ Nin f . Let us verify this is a transitive order on Nin f , because it is trivial to verify it is anti symmetric.
Suppose A < B and B <C. We know there exists an object c0 ∈C/B such that c0 < b for every b ∈ B/C. We also know there is
an object b1 ∈ B/A such that b1 < a for every a ∈ A/B. Suppose there exists a2 ∈ A/C such that a2 < c for every c ∈C/A. We
treat two cases and in each we arrive at a contradiction, proving A <C.

Let us suppose a2 ∈ B. Then c0 < a2. This means c0 must be in A. This implies b1 < c0. Thus, b1 ∈C/A and a2 < b1 which
is a contradiction.

Let us suppose a2 /∈ B. This implies b1 < a2. We know b1 /∈ A so that b1 ∈ C implies a2 < b1 which is a contradiction.
Therefore, we must have b1 /∈C. Then, c0 < b1. For c0 < a2 to be true, we need c0 ∈ A. But, this would imply b1 < c0, again a
contradiction.

This proves our order on Nin f is transitive. Obviously, any two objects in Nin f are comparable in terms of this relation, <,
because the symmetric difference is non empty for different set numbers A 6= B. Then, we know min(A4B) exists because of the
well order principle. We have ordered Nin f isomorphic to (0,1]. The real number, 1, is the set N. To include the real number 0, in
our order, we consider N∗in f = Nin f ∪{ /0}. This is the set whose objects are the infinite subsets of N, plus the empty set. Now we
have the order of [0,1] in terms of sets, where 0 = /0 and every x ∈ (0,1] is an infinite set of natural numbers. The most important
aspect in the order of a continuum, is the the supremum property. This is what characterizes a continuum from a discrete order.
Now we will show that the supremum exists, for our order N∗in f . Let X ⊆ N∗in f ; every element of X is an infinite set of natural
numbers. Define x1 = min(

⋃
X) and Y1 = {A ∈ X|x1 ∈ A}. Let

xn+1 = min
(⋃

Yn−{xi}n
i=1

)
,

where Yn = {A ∈ Yn−1|xn ∈ A}. The set number {xi}i ∈ N∗in f is the supremum of X , by construction. This is shown in Figure 4.

Fig. 4 Here we represent the process of finding the supremeum of the family X = {A,B,C,D,E}. The elements of X are set numbers in the unit interval.
For example, A = 2−1 +2−2 +2−4 +2−5 +2−9 = 0.845703125.

The next step, after defining our order for infinite set numbers, is to define the addition of infinite set numbers. Let r = s−1;
the inverse function of s. Recall, this function subtracts 1 one unit to the elements of the argument. Given two infinite set numbers
A = {a1,a2, . . .} and B = {b1,b2, . . .}, let An = {ak}n

k=1 and Bn = {bk}n
k=1 be the sets of the first n objects. Define

An⊕Bn = (An4Bn)⊕ r(An∩Bn).

The addition A⊕B is the supremum of the finite sums,

A⊕B = sup
n
(An⊕Bn).
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5.2 Real Numbers

We can generalise our previous constructions of N and [0,1], into a single structure, R+
0 , based on the observation of Figure ??.

But, first we need to prove that the integers are sets. Take the integer 1 ∈ Z; it is the function ⊕1. We know that finite function
is a finite set of set numbers. Then, the function ⊕1 is the object {{1,4},{3,6},{5,8},{7,10}, . . .}. Thus, the integer 1 ∈ Z is
an infinite set number and, in particular, a set. The integer 2 ∈ Z is the infinite set {{1,6},{3,8},{5,10},{7,12}, . . .} ∈ N∗in f ,
etc. The negative integer −1 ∈ Z is the object {{{3,2},{5,4},{7,6},{9,8}, . . .}. The negative integer −2 ∈ Z is the object
{{{5,2},{7,4},{9,6},{11,8}, . . .}, etc. Now we wish to show that the collection of integers is a set. Given that Z is a sub
collection of N∗in f , it is sufficient to prove N∗in f is a set (because of Axiom 1). We know the elements of N∗in f are sets. But we can
not go any further with our axioms. Our axioms allow us to build sets using union and intersection, and sub collections. If we
take the union of the infinite set numbers we get N =

⋃
i∈N∗in f

i. We can not prove N∗in f is a set. We need a new axiom.

Axiom 3 Let X a collection of constructed sets, then X is a set.

Here we have to be very careful to avoid the commonly known paradox of the set of all sets, so let us be clear on this. If we
have a collection of concrete sets, then that collection is a set. We will see the implications of this in the last section. Intuitively,
every set is in a larger set. For now, we only care that N∗in f is a set because it is a collection of sets. Thus we have proven Z is
a set. Let Z̄ ⊂ N∗in f the set whose objects are subsets of Z, that are bounded above. Put differently, A ∈ Z̄ if and only if A ⊂ Z
and max(A) exists. We can treat A as a positive real number because a positive real number is well represented by a sum of
integer powers of 2. The non negative integers represent the whole part of the real number, while the negative integers are the
decimal part of the real number, as in Figure ??. This simply means A∩N is the whole part of A, and A∩−N is the decimal
part. The set of all non negative real numbers is R+

0 = Z̄∪{ /0}. Two positive real numbers are order related A < B if and only
if max(A4B) ∈ B. The addition is defined as before by A⊕B = (A4B)⊕ s(A∩B). The supremum can also be found in this
structure of sets. At this point, we can proceed to build the negative real numbers using the same technique we used to build the
negative integers. Every A ∈ R+

0 is identified with a function⊕A : R+
0 → A. Namely, we build a new set of positive real numbers,

which will be the bijections R+
0 → A. We can then identify negative real numbers as the inverse functions of these. We do not

focus on this construction, in this work, because we use a different path to define the structure of all real numbers.
Our alternative method of building the set of real numbers, R, does not depend on integers, only on natural numbers. Using

our construction of the unit interval [0,1], we can represent every real number as an object in N∗in f .

Fig. 5 We use the fact that R is bijective to any interval ( n
2k ,

n+1
2k ]. Under this representation, the real number 0 ∈ R is the set {2,3,4,5, . . .}. We also

have −∞ ∈ R = /0 and +∞ = N1

Each of the positive intervals I1 = (0,1], I2 = (1,2],..., and negative intervals−I1 = (−1,0],−I2 = (−2,−1],..., is isomorphic
to the interval ( n

2k ,
n+1
2k ], for any n ≤ 2k− 1 in N. Intuitively, what we will do is to compress and fit all the intervals Ii, into the

unit interval, as in Figure 5. The interval I1 ⊂ R is identified with the interval ( 1
2 ,

3
4 ] ⊂ [0,1]. The interval I2 ⊂ R is the interval

( 3
4 ,

7
8 ]⊂ [0,1], etc. The negative interval −I1 ⊂ R is the interval ( 1

4 ,
1
2 ]⊂ [0,1], etc.

Let X ∈ [0,1] =N∗in f . Notice that a number x∈ ( 1
2 ,

3
4 ]∈N∗in f is an infinite set number such that 1∈X and 2 /∈X . A set number

x∈ ( 3
4 ,

7
8 ]∈N∗in f is an infinite set number such that 1∈X and 2∈X , but 3 /∈X , etc. A set number X ∈ ( 1

4 ,
1
2 ]∈N∗in f is an infinite set

number such that 1 /∈ X and 2∈ X . A set number X ∈ ( 1
8 ,

1
4 ]∈N∗in f is an infinite set number such that 1,2 /∈ X and 3∈ X , etc. This

has a simple form, that we can easily interpret in defining the set of all real numbers. Let X = {1,2,3, . . . ,n,k1,k2,k3, . . .} ∈N∗in f ,
where 3≤ n+2≤ k1 < k2 < k3 < · · · , then we will say X is positive real number. A negative real number is X = {n,k1,k2,k3, . . .}
with 3≤ n+1≤ k1 < k2 < k3 < · · · . This simply means we will define a positive real number with whole part equal to n, as an
infinite set number X with 1,2, . . . ,n+1,∈ X and n+2 /∈ X . A negative real number with whole part equal to −n is an infinite
set number X with min(X) = n+ 1. The decimal part will be given by the remaining objects k1,k2,k3 . . .. We can immediately
differentiate a set positive set number from a negative set number. For example, The set number {1,2,3,4,10,11,12,13, . . .}
is positive with whole part equal to 3. The set number {5,10,11,12,13, . . .} is negative with whole part equal to −3. The set
number {1,2,6,7,8, . . .} has whole part equal to 1, while {6,8,9,10, . . .} has whole part equal to −4.

How do we find the decimal part of a set number, in this context? We simply used the first natural numbers as place holders
for identifying the whole part. Let X ∈ N∗in f be an infinite set number. The objects k1,k2,k3, . . . are representing the decimal part
of X . We assign X the decimal part rn+1({k1,k2,k3, . . .}). Let us look at the problem backwards, to better understand why. If we
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want to store the information of a real number x ∈ R as an infinite set number, how would we do it? We already saw that we
need the first n natural numbers to determine the whole. But then we still have infinitely many natural numbers left to determine
the decimal part. So all we have to do, is displace the decimal part n+1 places, so that the decimal part and whole part do not
interfere. Notice that in the case of positive real numbers, we need to leave one natural number out, as a queue that the whole
part ends there, and now we start with the representation of the decimal part. Displacement up, n+ 1 times, is equivalent to
applying sn+1. Now, to recover the decimal part, we have to displace the ki’s back n+1 times by applying rn+1.

Let us look at this in formal manner. For every x ∈ N∗in f , the numbers min(x) and min(xc) are well defined, because of the
well ordering principle. Exactly one of these two is equal to 1 and the other is larger than 1. A positive real number is an infinite
set number with min(x) = 1. A negative real number is an infinite set number with min(xc) = 1. More specifically, if 0 < x≤ 1
then min(xc) = 2, and if −1 < x ≤ 0 then min(x) = 2. The equality min(xc) = 3 is equivalent to 1 ≤ x < 2, and min(x) = 3 is
equivalent to −2 < x ≤ −1. If 2 < x ≤ 3 then we have min(xc) = 4, and if −3 < x ≤ −2 then we have min(x) = 4. In general,
x ∈ (n−1,n] if and only if min(xc) = n+1, and x ∈ (−n,−(n−1)] if and only if min(x) = n+1.

For example, the decimal part of π is given by the set

{3,6,11,12,13,14,15,16,18, . . .}.

because it is equal to 2−3 +2−6 +2−11 +2−12 +2−13 +2−14 + · · · . Therefore, the numbers π and −π are represented by

π = {1,2,3,4,3+5,6+5,11+5,12+5,13+5,14+5,15+5,16+5,18+5, . . .}
= {1,2,3,4,8,11,16,17,18,19,20,21,23, . . .}

−π = {5,3+5,6+5,11+5,12+5,13+5,14+5,15+5,16+5,18+5, . . .}
= {5,8,11,16,17,18,19,20,21,23, . . .}

The set of infinite set numbers N∗in f is R. Real numbers and natural numbers are different types of sets. Natural numbers
are the elements of HFS, while real numbers are the infinite subsets of HFS. Of course we can make adequate definitions for
addition of real numbers, in this definition.

5.3 Limits and Continuity

Now we have the task of finding suitable and practical expressions of the concepts of analysis. We begin by defining the
concept of limit point. Let P,X ∈ N∗in f two infinite set numbers. Intuitively, these two objects are close, if their first terms
coincide. Take as an example the set numbers P = {2,4,5,8,9,10,11,12,13, . . .} = 2−2 + 2−4 + 2−5 + 2−8 + 2−9 + 2−10 + . . .
and X = {2,4,5,8,9,14,15,16,17 . . .} = 2−2 + 2−4 + 2−5 + 2−8 + 2−9 + 2−14 + . . .. They are relatively close because the first
terms (the largest terms) coincide. So we know we need to ask that the first elements coincide, for two numbers to be close.
Another way of saying this is that min(P4X) is a large number. The larger min(P4X), the larger the elements of P4X become,
making the smaller powers (larger terms) coincide. Remember, that in the decimal part, larger natural numbers represent the
smaller terms of the real number.

Let us give a formal definition of this. Let P ∈ N∗in f an infinite set number, and let X a set of infinite set numbers. We
say P is a limit point of X if there exists XN ∈ X such that min(P4XN) > N, for every N ∈ N. There is one exception to this
definition. When we started to describe real numbers as infinite set numbers we noticed some real numbers had decimal part
that could be expressed as sum of finite many negative powers of 2. We will treat these numbers separately in defining limit
points. Suppose P ∈ N∗in f is an infinite set number that has finite representation P = {p1, p2, . . . , pk}, where p1 < p2 < · · ·< pk.
That is to say, we can write it as P = {p1, p2, . . . , pk−1, pk + 1, pk + 2, pk + 3, . . .}. We simply replace the last term 2−pk with
infinite terms, 2−(pk+1) + 2−(pk+2) + 2−(pk+3) + . . .. We give aset of infinite set numbers that get as close to P as we would
like, using larger numbers than P. Let X1 = {p1, p2, . . . , pk, pk + 1}, and X2 = {p1, p2, . . . , pk, pk + 2}. In general define Xi =
{p1, p2, . . . , pk, pk + i}. These set numbers Xi are getting closer to P but our rule is not satisfied. The minimum element of the
symmetric difference is not getting larger. In fact, it is constant, min(P4Xi) = pk. Therefore, we must make a different definition
for this case. If P is an infinite set number with finite representation, then we say P is a limit point of X if for every N ∈ N, there
exists XN ∈ X such that XN = {p1, p2, . . . , pk, pk +N, pn1 , pn2 , . . .}, where pk +N < pn1 < pn2 < · · · .

In both cases we are requiring an infinite set number XN such that |P−XN | ≤ 1
2N = {N}. Let P,X two infinite set numbers

with their whole parts equal and suppose their decimal parts coincide in the first elements. We have

P = 2m1 +2m2 + . . .+2mk +2n1 +2n2 +2n3 + . . .+2N +2α1 +2α2 +2α3 + . . .

X = 2m1 +2m2 + . . .+2mk +2n1 +2n2 +2n3 + . . .+2N +2β1 +2β2 +2β3 + . . .

where m1 < m2 < .. . < mk < n1 < n2 < .. . < N < α1 < α2 < · · · and N < β1 < β2 < · · · . The numbers mi determine the whole
part and ni,N are the elements that coincide in the decimal part (the first negative powers of 2 that coincide). Then, the difference
|P−X |< 1

2N−(mk+1) is bounded by 1
2N−(mk+1) .

We see that infinite set numbers with finite representations can be handled in another, informal, manner. For example, 1/2 ∈
[0,1] has the representations {1} = {2,3,4, . . .}. We know P = 1/2 should be a limit point of the set X = {A1,A2,A3,A4, . . .}
where Ai are
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A1 = 1 = {1,2,3,4,5,6, . . .}
A2 = 3/4 = {1,3,4,5,6,7, . . .}
A3 = 5/8 = {1,4,5,6,7,8, . . .}
A4 = 9/16 = {1,5,6,7,8,9, . . .}

...
...

...

If P = {2,3,4,5, . . .} then min(P4Ai) = 1, for every Ai. But, if we use the finite representation P = {1}, then the symmetric
differences are: P4A1 = {2,3,4, . . .}, P4A2 = {3,4,5, . . .}, P4A3 = {4,5,6, . . .}, P4A4 = {5,6,7, . . .},... In effect, complying
with our condition that for every N ∈ N there exists XN ∈ X such that min(P4XN)> N.

If P has finite representation and we where to get closer to P, using smaller numbers, we can not have the same problem that
we had when we were getting closer from above. For example, take P = 1/2 = {2,3,4,5, . . .} and the set X = {A1,A− 2, . . .}
defined by

A1 = 3/8 = {2,4,5,6,7,8 . . .}
A2 = 7/16 = {2,3,5,6,7,8 . . .}
A3 = 15/32 = {2,3,4,6,7,8 . . .}
A4 = 31/64 = {2,3,4,5,7,8 . . .}
A5 = 63/128 = {2,3,4,5,6,8 . . .}

...
...

...

We can easily verify that for every N ∈ N there exists XN such that min(P4XN)> N. We have P4A1 = {3}, P4A2 = {4},
P4A3 = {5}, P4A4 = {6}, P4A5 = {7},...

Continuity is described in terms of the order of natural orders, consequently. In the next section we will provide a formal
definition for real function. We use it provisionally, for the sake of illustration.

Definition 10 Let f : A ⊆ R→ B ⊆ R a real function, and let p a limit point of the domain A. We say f has limit point p, and
the limit is equal to q, if and only if for every N ∈ N there exists M ∈ N such that min(p4x)> M implies min( f (p)4q)> N.

The function is continuous in p if and only if for every N ∈ N there exists M ∈ N such that min(p4x) > M implies
min( f (p)4 f (x))> N.

The theory of convergence and topological aspects of R are expressed directly in terms of the order of natural numbers.
Using these general indications and the subtraction algorithm, given in [I], it is possible to define the derivative. We can treat
the derivative in two ways. If we use the subtraction algorithm we can define the derivative in the traditional manner to find the
numerical value f ′(p). If, however, we only wish to prove the existence of the derivative, we will have an alternative definition of
a discrete derivative. We know the quotient of two powers of 2 is obtained by subtracting the powers, 2n

2m = 2n−m. The derivative
of f exists at p if there exists M ∈ N such that min( f p4 f x)+M > min(p4x) for every x ∈ A. In the case that min( f p4 f x)>
min(p4x) for every x ∈A, we have 0≤ | f ′(p)|< 1. The derivative is exactly equal to 0 when min( f p4 f x)−min(p4x) is not
bounded; min(p4x) goes to infinity but min( f p4 f x) goes to infinity faster so that min( f p4 f x)−min(p4x) goes to infinity.
If min( f p4 f x) = min(p4x) for every x ∈ A then | f ′(p)|= 1. If we need to add M ∈ N to get min( f p4 f x)+M > min(p4x)
for every x ∈ A we have | f ′(p)|> 1.

The discrete derivative is a criteria for the existence and absolute value of the magnitude of the derivative. In exchange,
for not knowing the exact numerical value of the derivative, we can say that finding the discrete derivative is computationally
much faster. We are substituting the quotient f p− f x

p−x of floating point numbers, with finding the difference of natural numbers,
|min( f p4 f x)−min(p4x)|. The end result is that instead of having to calculate two subtractions and one division of real
numbers, we find the minimum element for two sets of natural numbers and the difference of these natural numbers.

6 Trees and Type Theory

In this section we will give an account of how to build and represent general objects used in modern mathematics. This will be
a very superficial description but we will show enough of these constructions to be clear on the extent of constructions possible.
We also show how this universe of sets can be well represented in terms of trees. We also give a brief description of the theory
of types this axiomatic base provides. We see how to give a consistent hierarchy of types and universes.

6.1 Basic Objects In Mathematics

Ordered pairs, and finite sets of ordered pairs, are natural numbers. Now let us define an ordered n-tuple of natural numbers.
Recall that to define an ordered pair of natural numbers we used a simple trick. We used even and odd natural numbers to tell
apart our first component from the second. One might initially want to go about this in the following manner. If we wish to
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well represent ordered 3-tuples we could use numbers {1,4,7,10, . . . ,3k−2, . . .} to represent the first component, then we use
{2,5,8,11, . . . ,3k− 1, . . .} to represent the second component, and multiples of three, {3,6,9,12, . . . ,3k, . . .} to represent the
third component. This will give us a table similar to (6), when we defined ordered pairs. Table 6 gives us ordered 3-tuples.

Table 6 The elements of this table allow us to represent an ordered 3-tuple as a natural number.

X 3k−2 3k−1 3k

0 1 2 3
1 4 5 6
2 7 8 9
3 10 11 12
4 13 14 15
5 16 17 18
6 19 20 21
...

...
...

...

The ordered 3-tuple (0,0,0) is the set number 21 + 22 + 23 = {1,2,3}. We also have (1,2,3) equal to 24 + 28 + 212 =
{4,8,12}. If we want to represent 4-tuples we would have to come up with a new table 7.

Table 7 The elements of this table allow us to represent an ordered 4-tuple as a natural number.

X 4k−3 4k−2 4k−1 4k

0 1 2 3 4
1 5 6 7 8
2 9 10 11 12
3 13 14 15 16
4 17 18 19 20
5 21 22 23 24
6 25 26 27 28
...

...
...

...
...

This manner of defining finite sequences has two big disadvantages that will become clear, when we define a second method
for representing ordered n-tuples. The first is quite obvious: we can not define an infinite sequence of natural numbers. The
easiest way to solve this is by going back to the definition of ordered pairs. The sets given in (6) are of great importance in the
constructions of this section. We include it again, for reference in Table 8. Here we will use it differently. Only the first two rows
are needed to define all ordered pairs. To define an ordered pair of natural numbers it will only be necessary to use the first two
sets (0,) and (1,). The pair (i, j) will be a set of two numbers; its elements will be the i+ 1-th object of the first row and the
j+1-th object of the second row.

Table 8 The elements of this table allow us to represent an ordered pair as a natural number. The elements of the first row are used to represent the first
component, while the elements of the second row are used to represent the second component. This table is also used for finding a good representation
of sequences of real numbers.

6 18 66 258 1026 . . . 2+22(n+1) . . .

12 24 72 264 1032 . . . 8+22(n+1) . . .

36 48 96 288 1056 . . . 32+22(n+1) . . .

128 144 192 382 1152 . . . 128+22(n+1) . . .

516 528 576 768 1536 . . . 512+22(n+1) . . .

...
...

...
...

...
...

22m+1 +4 22m+1 +16 22m+1 +64 22m+1 +256 22m+1 +1024 . . . 22m+1 +22(n+1) . . .

...
...

...
...

...
...

We give a definition of ordered pair that supersedes the one given before. An ordered pair is a set number (i, j) where i∈ (0,)
and j ∈ (1,). Specifically, the ordered pair (i, j), is the set number {21 +22(i+1),23 +22( j+1)}. We include the i+1-st element
of (0,) to show that i is in the first component. We include the j+1-st element of (1,) to indicate j is in the second component.
For example, the ordered pair (0,0) is the set number 26 +212 = {6,12}. The ordered pair (0,1) is 26 +224 = {6,24}.
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We are defining data types for different mathematical objects. Different kinds of mathematical objects and relations can be
translated represented as natural and real numbers. An infinite sequence of natural numbers is easy to define. Take one element
nk from the set (k,), for every k ∈ N. Then, 21 +22(n1+1) ∈ S means n1 is the first natural number of the sequence. The second
number is given by 23 +22(n2+1) ∈ S, and so on. The set number {21 +22(n1+1),23 +22(n2+1),25 +22(n3+1), . . .} represents the
sequence (n1,n2,n3, . . .). For example, the sequence (1,3,2,5,4,7,6,9,8,11,10,13,12, . . .) is given by the infinite set number
{2+ 22(1+1),8+ 22(3+1),32+ 22(2+1),128+ 22(5+1),512+ 22(4+1), . . .} = {18,264,96,4224,1536, . . .}. Of course, to define a
finite sequence, an k-tuple, we use the first k sets, (1,),(2,), . . .(k,). A finite sequence of natural numbers is a natural number
{21 +22(n1+1),23 +22(n2+1),25 +22(n3+1), . . . ,22k+1 +22(nk+1)}. We can easily describe a natural function, N→N as an infinite
set of ordered pairs. A function of this form is a set number

{{6,B1},{18,B2},{66,B3},{258,B4}, . . .}

where Bi are elements of (1,). If the Bi are all distinct, we have an injection. If every element of (1,) is a Bi the function is onto
N. This represents natural functions as real numbers. We have a bijective function from the set of all natural functions, onto a
proper subset of real numbers.

How would we go on about representing a sequence of real numbers? The same question stated differently, How can we
represent a sequence of infinite sets of natural numbers? We wish to find the best way of storing and rescuing the information
that determines a sequence ξ = (r1,r2,r3, . . .) where each ri = {ni

1,n
i
2,n

i
3, . . .} is a real number. Use the set (0,) to represent

the elements of r1. Use the set (1,) to represent the elements of r2, etc. We have 22(i)+1 + 22(ni
j+1) ∈ ξ if and only if ni

j ∈ ri.
The infinite sequence of real numbers, (r1,r2, . . .), is represented by the real number

⋃
i ri. The union of all the ri’s is a real

number that represents the infinite sequence (r1,r2, . . .); it is an infinite set number with infinitely many objects from each set
(i,). Actually, any set number with infinitely many elements of each (i,) is representing a unique sequence of real numbers. If we
have an infinite set X ⊂ (0,) this determines a real number. The set X = {2+22(x1+1),2+22(x2+1),2+22(x3+1), . . .} determines
the real number X∗ = {x1,x2,x3, . . .}. In the same manner, Y = {8+22(y1+1),8+22(y2+1),8+22(y3+1), . . .} ⊂ (1,) determines the
real number Y ∗ = {y1,y2,y3, . . .}. Observe that the infinite set number X∗∪Y ∗ is a real number, whose objects are in (0,)∪ (1,),
and we can distinguish the objects of (0,) from the objects of (1,). The objects in (0,) give us the first component, and the
second component is given by the elements of (1,). Thus, we are able to represent the ordered pair of real numbers, (X∗,Y ∗), as
a single real number X ∪Y . If we wish to represent ordered 3-tuples of real numbers, we can do so by additionally using (2,). Let
Z∗= {z1,z2,z3, . . .}⊂N a real number, then we have Z = {32+22(z1+1),32+22(z2+1),32+22(z3+1), . . .}⊂ (2,). And, the ordered
3-tuple (X∗,Y ∗,Z∗) is the real number X ∪Y ∪Z. An infinite sequence of real numbers x1,x2, . . . is represented by a single real
number. We are giving a bijective function from the set of all real sequences onto a proper subset of real numbers. A sequence of
real numbers is well represented by a single real number. A function N→N is well represented by a real number. Consequently,
we can represent a sequence ( f1, f2, . . .), of functions fi : N→N, as a single real number. In summary, we have provided a second
definition for ordered pairs, that is a more powerful definition than the first because it allows to represent an infinite sequence
of natural numbers, as a real number. Moreover, if ξ is a countable sequence of real numbers, it is also represented as a real
number. As a consequence we were also able to find good representations of functions N→N, and sequences of these functions.

Let us find a way of representing sequences of sequences. Start with the simplest kind, a sequence T = (S1,S2, . . .) of
sequences, Si, of natural numbers. We use subsets of (i,) to find these representations. We will work with a subset of (0,) to
represent the first sequence S1 = (n1

1,n
1
2,n

1
3, . . .). We have

2+2
2
((

2+2
2(n1

1+1)
)
+1
)
, 2+2

2
((

2+2
2(n1

2+1)
)
+1
)
, . . . ∈ T

for every i = 1,2,3, . . .. We use a subset of (1,) to represent the second sequence. If S2 = (n2
1,n

2
2,n

2
3, . . .) is the second sequence,

then we have

8+2
2
((

2+2
2(n2

1+1)
)
+1
)
, 8+2

2
((

2+2
2(n2

2+1)
)
+1
)
, . . . ∈ T

for every i = 1,2,3 . . .. The third term is

32+2
2
((

2+2
2(n3

1+1)
)
+1
)
, 32+2

2
((

2+2
2(n3

2+1)
)
+1
)
, . . . ∈ T,

etc. In general, the set (k,) is used to represent the sequence Sk, for every k ∈ N. We are able to reconstruct the sequence of
sequences, from the real number

T = 22+2
2

((
2+2

2(n1
1+1)

)
+1

)
+22+2

2

((
2+2

2(n1
2+1)

)
+1

)
+ . . .+28+2

2

((
8+2

2(n2
1+1)

)
+1

)
+28+2

2

((
2+2

2(n2
2+1)

)
+1

)
+ . . .+

+ 232+2
2

((
2+2

2(n3
1+1)

)
+1

)
+232+2

2

((
2+2

2(n3
2+1)

)
+1

)
+ . . .+ . . .+ . . . . . .

Now, let ξi = (ri
1,r

i
2,r

i
3, . . .) a sequence of real numbers, for every i ∈N, and let Ξ = (ξ1,ξ2,ξ3, . . .) the sequence of those. It

is easy to see we can construct a real number to represent this object. This is true because every sequence ξi, of real numbers, is
represented by a real number. The sequence of real numbers, Ξ , can in turn be reduced to a single real number. We can represent
a real matrix of infinitely (countable) many columns and rows, with a single real number.
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There are similarities between natural numbers and real numbers. A finite natural function is a finite set of natural numbers.
An infinite natural function is a set of infinitely many natural numbers. Similarly, a real function will be represented by a set
of real numbers. We have defined an ordered pair of real numbers, so now we can define a real function. Let us proceed with
this construction. A function is a collection of components fx = (x, f x), and every ordered pair of real numbers fx ∈ R is a real
number. Therefore, the function f : R→ R can be represented by a set of real numbers { fx}x∈R. Every real function R→ R is an
uncountable set of real numbers

f = {{ax
1,a

x
2, . . . ,b

x
1,b

x
2, . . .}}x∈R,

where x = {ax
i }i ⊂ (0,) and f (x) = {bx

i }i ⊂ (1,). This means fx = x∪ f (x) = {ax
1,a

x
2, . . . ,b

x
1,b

x
2, . . .}. The function is injective

if f (x)∩ f (y) = /0 for x 6= y. The function f is onto R if for every infinite subset A⊂ (1,), there exists an object x ∈ R such that
A= fx∩(1,). A real function is bijective if for every infinite subset A⊂ (1,) there exists exactly one x∈R such that A= fx∩(1,).

We can extend our results to represent any sequence of real functions, ( f1, f2, . . .), as a set of real numbers. Just as we use
(0,) and (1,) to define a function f1 : R→ R, we can also use (2,) and (3,) to define a function f2 : R→ R. We use (4,) and (5,)
to define a function f3 : R→ R, etc.

There is another consequence of representing a real function as a set of real numbers. Given that any function R→ R is a
subset of R, we can represent any function R→ (R→ R) as a set of real numbers, also. For any finite amount of iterations, an
object R→ (R→ (R→ (R→ ·· ·(R→ R) · · ·))) is a set of real numbers. In the next subsection, we describe objects of higher
type. We will give an easy way of defining the type of any mathematical object, by using trees.

6.2 Trees

We have seen that natural numbers are the finite sets we can build recursively with the function ⊕1. These sets can be well
represented by finite tree structures. We will use trees to represent natural numbers first, then all types of objects. Our concept of
set is equivalent to the concept of tree, we will define. A finite set number is an object that contains smaller set numbers. Every
element of that set is in turn a set of set numbers, etc. The definition of trees is equivalent. We will think of a trunk, which is the
principle node, as the set X . Every branch on that trunk is an element of the set X . For example, a single trunk with no branches
is the set number 0. Suppose we know what tree X is, how do we find the tree corresponding to X⊕1? We add a branch that is a
0-tree (add 1 unit). So the set number 1 is a trunk with one 0-branch because 1 = {0}; this branch has to be the tree representing
0. We can see this in Figure 6.

A tree is a graph of nodes and edges such that (i) We can identify a trunk: a principle edge with a finite number of branches
attached to one of the nodes. All branches are attached to the same node of the trunk. (ii) Each branch on the tree is a tree. (iii) A
single edge is a tree; we call it the 0-tree. The successor of a tree is obtained by adding a single edge to the trunk; attach a 0-tree
to the trunk. Adding an edge to the 0-tree gives its successor, the 1-tree, which is two edges joined together at one node. Adding
an edge to the 1-tree, we find its successor, the 2-tree, etc.

We need an extra rule for defining an equivalence class on finite trees. If a tree has two branches that are identical we
substitute these two identical branches with a single branch, the successor. This process is called reduction. If a tree can be
reduced to obtain another tree, they are in the same equivalence class. An irreducible tree is said to be in canonical form.
Reducing the 2-tree, we find the canonical form. To reduce the 2-tree we substitute the two identical 0-trees with a single 1-tree.
Adding a single edge to the result of that, we obtain the 3-tree in canonical form because there are no identical branches. If we
add an edge to the 3-tree we have to apply reduction of branches, two times. We first take away the two 0-trees and add a 1-tree.
But, we already had a 1-tree so now we have two identical 1-trees. We take those trees away and add a 2-tree. Every natural
number is associated an equivalence class of finite trees, and a single canonical tree. Every branch on the canonical tree of a set
number X corresponds to a natural number k ∈ X . Every tree is made up of smaller trees, and we give a well defined method of
building trees. The canonical tree associated to the set number X , has #(X) many branches. Each branch is defined in the same
way. A natural number is defined by its cardinality; and the cardinality of its elements; and the cardinality of the elements of its’
elements; etc. We use trees to represent real numbers also. We simply use trees with infinite many branches. Each branch must
be a finite tree and we do not allow these to be repeated. If the two branches are identical, we reduce the tree. Consider a third
kind of tree, with infinite many branches. But, each of these branches is a tree of infinite branches. This is a collection of real
numbers. In this next sub section we formalize the concept of types.

Fig. 6 Canonical trees can be built easily, given a set number. The canonical tree for 7 = {0,1,2} has three branches. One branch is the 0-tree, the
second branch is the 1-tree and the third branch is the 2-tree. The canonical tree of 8 = {3} is a trunk with one branch, which is the 3-tree. The canonical
tree of 151 = {0,1,2,4,7} has five branches: 0,1,2,4,7-trees.
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6.3 Type Theory

Finite trees are what we will call objects of Type-0. Trees of infinite branches with each branch being an object of type-0 are
called objects of Type-1. For example, a real number is an object of Type-1 and a natural number is an object of Type-0. A tree
whose branches are all objects of Type-1 is an object of Type-2. An example of an object of Type-2 is a set of real numbers.
A tree with branches of Type-0 and Type-1 is an object of Type-3. This would be an object that has two types of elements. For
example, a set consisting of natural and real numbers is an object of Type-3. An object of Type-4 is a tree with all its branches
being objects of Type-2. An example of a Type-4 object is a family of sets of real numbers. For example, a collection of subsets
of R is an object of Type-4. In general, we build the Type-n objects in the same manner we build natural numbers.

The next step in classifying types of objects is to consider trees with infinite many types of branches. This means our tree
has branches of Type-n1, Type-n2, Type-n3 . . . for infinite many types. This is called an object of infinite Type-1,0. An object
of infinite Type-1,1 is a tree that only has branches of infinite Type-1,0. An object of Type-1,2 is a tree with all branches of
Type-1,1. A tree with branches of both Type-1,0 and infinite Type-1,1 is an object of infinite Type-1,3. If all the branches of a
tree are objects of Type-1,2, we say it is an object of infinite Type-1,4. We can construct all infinite Types-1,k.

Consider a tree whose branches are all objects of infinite type, and suppose there are infinite many types of objects of
infinite type. We have objects of Type-1,n1, Type-1,n2, Type-1,n3, . . .. A tree built with objects of infinite many infinite-types,
is an object of infinite Type-2,0. Trees whose objects are only objects of Type-2,0 are called objects of Type-2,1. A tree with all
objects of Type-2,1 is an object of Type-2,2. A tree with objects of Type-2,0 and Type-2,1 is an object of Type-2,3, etc.

Now we have objects of infinite Type-3,0, which are trees whose branches are of finite type and infinite type. A tree with
objects of Type-3,0 is an object of Type-3,1, and so on. An object of infinite Type-4,0 is a tree with infinite many types of objects
of Type-2,k. This means an object of Type-4,0 has objects of Type-2,n1, Type-2,n2, Type-2,n3 . . . for infinite many types 2,k.
Of course an objects of Type 4,1 is a tree with branches of Type-4,0, etc. An infinite Type-5,0 object consists of branches of
finite type and types 2,k. A Type-6,0 object consists of objects of types 1,k and types 2,k, etc. We continue in this manner until
we have built all objects of Type-m,n, for every m,n ∈ N. And, leave it at this for now.

Conclusions

The importance of the axiomatic base is usually undermined because it does not bring any new results or methods into most
practical areas of mathematics. Instead, the axiomatic base of mathematics is seen as a stone in the path; an obstacle to be dealt
with and forgotten. The axiomatic base we provide here differs from others in the fact that we acquire natural constructions
for classic structures of mathematics. The construction we provide of natural numbers allowed a natural description of finite
structures. Then we extended our methods to describe infinite mathematical objects. More results can be pursued in future work.
This can include a thorough description of groups, rings, fields and linear spaces, in the finite and infinite cases. This work
has only served as introduction of these set theoretic results in the area of finite groups. Another line of work will include a
description of the calculus of real numbers. Revisions on the theory of types and the Continuum Hypothesis are also in order.

Algebraically, we are describing finite groups using natural numbers, in such a way that we have a good criteria for distin-
guishing finite groups. We have given a linear order, isomorphic to N, to the set of all finite groups. This linear order of groups is
well behaved with respect to cardinality. This order on finite groups organizes groups amongst each other. We are also provided
with a method for organizing finite groups internally; we order the elements of any finite group through the canonical naming
function. A criteria for defining equivalent objects in a group is also obtained. Given any finite group, we have to find a minimum
set of independent equations that define the group. Finding all finite groups of n objects is still not trivial but we have a better
notion of attacking this problem. We hace a method for proving isomorphism of two groups. We must build the canonical repre-
sentation of both groups, and they should be the same natural number. Or simply put, the numerical table of the groups should
be identical. There are a variety of ways for codifying the information of mathematical structures, and we have provided the
data types for some structures, although this library of types must be completed. We briefly discuss the most general case, where
we are using trees to represent any type of mathematical object. We describe the general procedure for expressing mathematical
objects using the smallest type possible. For example, real functions have the same data type as sets of real numbers.

Computational aspects can also be treated with detail, focusing on finding physical methods to represent the arithmetic
of Energy Levels. If this can be done, it could have applications in computing. We need a superposition rule to model the
process carried out in the addition of two set numbers. Aside from classic computational schemes that can be improved, we
can also think of modern computational schemes. Two options can be explored, initially. The first is the linear superposition
of identical waves, which satisfies our numeric principle, 2n + 2n = 2n+1. The linear sum of two equally phased waves with
equal wavelength and frequency, is equal a wave with double the amplitude. Thus, measuring the amplitude of waves can be
used as a computational arithmetic model. This could provide a valid approach, for a linear optical quantum computing scheme.
Encoding and storing mathematical objects (structures of information), at a quantum level, is a second option to be considered
for future work. The N-particle problem is considered in terms of Fock States, which can be used to store information if
the N-particles are distinguishable. The N particles must form an ordered sequence. Perhaps it is not necessary to consider
particles of different species, but simply to consider particles with different values of some specific attribute. For example,
instead of using the amplitude of the wave, we may use a sequence of photons p1, p2, . . . , pN where the energies satisfy inequality
Ep1 < Ep2 < · · ·< EpN , through time.
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who has always been a great teacher and friend, whose conversations and classes have inspired a great deal of the work I have tried to carry out. Any
corrections or changes to be made are sole responsibility of the author.

References

[Ramirez(2019)] Ramı́rez, J.P. A New Set Theory for Analysis.Axioms 2019, 8, 31.
[Ramirez(2015)] Ramı́rez, J.P. Systems and Categories. arXiv 2015, arXiv:1509.03649v5.
[Bernays(1991)] Bernays, P. Axiomatic Set Theory; Dover: New York, NY, USA, 1991.
[Benacerraf(1965)] Benacerraf, P. What Numbers Could Not Be. Philos. Rev. 1965, 74, 47–73.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2020                   doi:10.20944/preprints202007.0415.v1

https://doi.org/10.20944/preprints202007.0415.v1

