
Batch scheduling on a single machine with

maintenance interval
Honglin Zhang1, Bin Qian2 and Yaohua Wu1*.

1 School of Control Science and Engineering, Shandong University, Jinan 250061, China, 201920522@mail.sdu.edu.cn

2 Faculty of Information Engineering and Automation, Kunming University of Science and Engineering, Kunming 650500, China,

bin.qin@vip.163.com

* Correspondence: MIKE.WU@263.net; Tel: +86 15666940680

Abstract: In the manufacturing industry, orders are typically scheduled and delivered
through batches, and the probability of machine failure under high-load operation is high.
On this basis, we focus on a single machine batch scheduling problem with a maintenance
interval (SMBSP-MI). The studied problem is expressed by three-field representation as
1|𝐵, 𝑀𝐼| ∑ 𝐹 + 𝜇 𝑚 , and the optimization objective is to minimize total flow time and
delivery costs. Firstly, 1|𝐵, 𝑀𝐼| ∑ 𝐹 + 𝜇 𝑚 is proved to be NP-hard by Turing reduction.
Secondly, shortest processing time (SPT) order is shown the optimal scheduling of SMBSP-
MI, and a dynamic programming algorithm based on SPT (DPA-SPT) with the time
complexity of 𝑂(𝑛 𝑇) is proposed. A small-scale example is designed to verify the
feasibility of DPA-SPT. Finally, DPA-SPT is approximated to a fully-polynomial dynamic
programming approximation algorithm based on SPT (FDPAA-SPT) by intervals

partitioning technique. The proposed FDPAA-SPT runs in 𝑂() time with the

approximation (1 + 𝜀).

Keywords: batch scheduling; single machine scheduling; maintenance interval; dynamic
programming; approximation algorithm

1. Introduction
 Single machine scheduling problem is ubiquitous in manufacturing. As of December
2019, the number of small and micro enterprises in China accounted for 82.5% of the
national number [1]. Although modern manufacturing has shifted toward intensification
and large factories, in terms of quantity, small and micro enterprises still make up a large
proportion. Unlike large enterprises that have a large number of machines and assembly
lines, in small and micro enterprises, especially micro enterprises, there is only one
machine in the workshop production. Due to the large number of machines in large
enterprises, accidental machine failure has little impact on the completion of the entire
production plan. In 2017, a single machine in the large-scale wafer factory of Magnesium
Group failed, and the maintenance of the machine took a lot of time, resulting in a serious
lag in production progress. The lag in production progress has led to insufficient capacity
of memory products using wafers as raw materials, which has triggered a surge in the
prices of related products worldwide. The influence of machine failure on large enterprises
is still the same. For small enterprises with only one or a few machines, once one or several
machines fail, it will be under a significant negative impact on their production plans. It
can be seen that despite the fact that the occurrence of machine failure is a small probability

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202007.0400.v1
http://creativecommons.org/licenses/by/4.0/

event, once the machine fails, it will have many adverse effects. By reasonably shutting
down and inspecting the machine regularly, the probability of machine failure can be
greatly reduced.
 In the actual production and trading process, the finished products are usually
delivered to customers in batches. Based on this fact, many scholars have conducted
research in the field of batch scheduling. Ikura etc. [2] studied single machine batch
scheduling problem with the goal of minimizing the maximum completion time. An
approximate algorithm was proposed, while the effect of this algorithm is not ideal. Chang
etc. [3] further studied the same problem and proposed a Simulated Annealing Algorithm
(SAA) with better optimization effect. In Chang’s paper, Longest processing time (LPT)
order was applied to optimize the initial solution of SAA. Lee etc. [4] proposed a pseudo-
polynomial time exact algorithm and a complete polynomial time approximate algorithm
to minimize total completion time of SMBSP with dynamic job arrivals. Branch and bound
algorithm (BBA) is another algorithm that is commonly used to solve single machine batch
scheduling problems. For typical case, see reference XXX. In XXX, Azizoglu etc. [5]
proposed a BBA to minimize total weighted completion time of SMBSP. In addition to the
batch single-machine scheduling problem, research on the single machine scheduling
problem with unavailable intervals (SMSP-UI) is also one of the research hotspots. Several
researchers have made progress in SMSP-UI. Sanlaville etc. [6] and Ma etc. [7]
independently reviewed the research in this field in recent decades. To optimize the total
weighted completion time of SMSP-UI, Ma etc. [8] proposed a dynamic programming
algorithm (DPA) and a BBA. both runs in pseudo-polynomial time. Although both DPA
and BBA are feasible, they are both pseudo-polynomial time algorithms. In addition, Ma
etc. [9] proposed a heuristic algorithm based on longest processing time (LPT) order to
minimize max completion time of SMSP-UI. Xie etc. [10] designed a heuristic algorithm
which runs in polynomial time to optimize delivery time of SMSP-UI with job rejection.
Luo etc. [11] studied a mew branch of SMSP-UI, in which the maintenance time is related
to workload. An approximate algorithm running in polynomial time was proposed to
optimize total weighted completion time.

It is clear from the above literature review, however, despite the in-depth study in the
field of SMBSP and SMSPUI, single machine batch scheduling with maintenance intervals
(SMBSP-MI) is still a blind spot for research. Since the outbreak of the COVID-19 virus in
January 2020, the production capacity of major mask manufacturers worldwide has been
unable to meet demand, and a large number of household mask factories have appeared
in this context. Most of these small mask factories work independently or independently
from each other. Due to the serious shortage of production capacity, mask machines
usually need to work at full load or overload, which greatly increases the probability of
machine failure. Therefore, it is necessary to carry out regular shutdown and maintenance
of the mask machine. This paper studies SMBSP-MI of a single mask machine scheduling
environment. First, the mathematical programming model of SMBSP-MI is established,
and then the SMBSP-MI is proved to be NP-hard. On this basis, shortest processing time
(SPT) order is proved the optimal scheduling rule of SMBSP-MI, and a DPA based on SPT
(DPA-SPT) is running in 𝑂(𝑛 𝑇) is proposed. Finally, an approximate method is added
to reduce the time complexity of DPA-SPT to polynomial time.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

2. Problem description

Since the outbreak of the COVID-19 virus in January 2020, the production capacity of
major mask manufacturers worldwide has been unable to meet demand, and a large
number of household mask factories have appeared in this context. Most of these small
mask factories work independently or independently from each other. Due to the serious
shortage of production capacity, mask machines usually need to work at full load or
overload, which greatly increases the probability of machine failure. Therefore, it is
necessary to carry out regular shutdown and maintenance of the mask machine. This paper
studies the maintenance scheduling problem in the environment of a masking machine.
The problem is described as follows: Mask orders for multiple customers are processed on
one mask machine. The factory needs to process n quantities of raw materials into masks.
Because different customers have different delivery times, the raw materials are processed
in batches. Due to a large number of orders, the mask machine needs high-load work. To
reduce and avoid the probability of machine failure due to high-load work and ensure
smooth production, the factory regularly shuts down the mask machine for maintenance.
To ensure that the delivery schedule is not affected while overhauling, the total process
time and delivery cost of mask production are used as evaluation indicators

The mathematical description of SMBSP-MI is: n jobs are processed in batches on
single machine. The set of jobs is 𝐽 = {𝑗 , 𝑗 , … , 𝑗 }. Jobs in J is divided into m batches, i.e.,
𝐵 = {𝐵 , 𝐵 , … 𝐵 , … , 𝐵 } , where 𝐵 represents a batch of jobs, and 𝐵 is the set of all
batches. Once a batch of jobs is processed, it is delivered to the customer. The unit batch
delivery cost is 𝜇. A maintenance interval (MI) is set during the machining process, where
MI begins at time 𝑇 and ends at time 𝑇 . No job is allowed to be processed during MI.
The goal is to optimize schedule of batches and jobs, so that the sum of total flow time
∑ 𝐹 and delivery cost total 𝜇𝑚 is minimized. SMBSP-MI is expressed by three-field
representation as 1|𝐵, 𝑀𝐼| ∑ 𝐹 + 𝜇 𝑚.

The mathematical programming model of SMBSP-MI is expressed as follows.
 min 𝑍 = ∑ 𝐹 + 𝜇𝑚 (1)

s.t.
 ∑ 𝐹 = ∑ 𝐹 (2)

 𝐹 =
𝐹 + 𝐶 , 𝑖 > 1

𝐹 + 𝐶 , 𝑖 < 1
 (3)

 𝐶 =
𝐶 + 𝑝 + 𝛾(𝑇 − 𝑇), 𝑖 > 1

𝐶 + 𝑝 + 𝛾(𝑇 − 𝑇), 𝑖 < 1
 (4)

 𝛾 =
1 , 𝐶 + 𝑝 > 𝑇

0, 𝐶 + 𝑝 < 𝑇
 , 𝑜𝑟 𝛾 =

1 , 𝐶 + 𝑝 > 𝑇

0, 𝐶 + 𝑝 < 𝑇
 (5)

 𝑝 ≤ 𝑇 < 𝑇 ≤ 𝜏 ∑ 𝑝 (6)

Formula 1 is the objective function, in which 𝐹 is flow time of the kth scheduled
batch, and 𝜇𝑚 is total delivery cost. Formula 2 indicates that the total flow time of all jobs
is equal to the sum of the flow time of all batches. This formula makes it convenient to
calculate the total flow time in an efficient way. Formula 3 indicates that the flow time of

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

the ith job in the kth batch is equal to the sum of the flow time of the previous processed
job and the completion time of 𝐽 . i=1 means that 𝐽 is the first job to be processed in the
kth batch, thus the previous job of 𝐽 is 𝐽 i.e. the last job processed in the (k-1)th batch .
The previous job of 𝐽 is 𝐽 while i >1, respectively. Formula 4 and 5 explains the
calculation of 𝐽 ‘s completion time, where 𝛾 is a 0-1 variable to judge whether 𝐽 is
allowed to be processed before MI. i.e. 𝐽 is allowed to be processed immediately while

𝐶 + 𝑝 < 𝑇 (or 𝐶 + 𝑝 < 𝑇), otherwise it is to be processed after MI. The strong

constraint of formula 6 ensures that the processing time of any job is not greater than 𝑇 ,
and the end of MI is not earlier than the sum of the processing time of all jobs.

3. The NP-hard attribute of SMBSP-MI

If 𝜇=0 and |MI| = 0, this problem is reduced to 1|𝐵| ∑ 𝐹 , which is proved to be NP-
hard by Yang [12]. Obviously 1|𝐵, 𝑀𝐼| ∑ 𝐹 + 𝜇 𝑚 is more complicated than 1|𝐵| ∑ 𝐹 ,
hence is supposed to be an NP-hard problem. In what follows, 1|𝐵, 𝑀𝐼| ∑ 𝐹 + 𝜇 𝑚 is
proved an NP-hard problem by reducing of equal-size partition problem [13-15].

Equal-size partition problem is described as: Given a set 𝐼 =

(𝑎 , 𝑎 , . . . , 𝑎 , . . . , 𝑎), 𝑎 ∈ 𝑁∗, and ∑ 𝑎 = 2𝑀. Are there two disjoint subsets 𝐼 and 𝐼 ,
where |𝐼 | = |𝐼 | and ∑ 𝑎 =∈ ∑ 𝑎 = 𝑀∈ ?

Theorem 1. SMBSP-MI is an NP-hard problem.
Proof. The NP-hard attribute of SMBSP-MI is proved by the reduction of the Equal-

Size Partition Problem. Let 𝑀 ≥ 𝑢 + 2. The Equal-Size Partition Problem is obviously
meaningless when 𝑀 <𝑢 + 2, so the situation of 𝑀 <𝑢 + 2 is not considered. An example of
equal-size partition problem is established bellow, variables of example see table 1.

Table 1. variables of equal-size partition example

variables equations
𝑛 𝑛 = 2𝑢 + 1

𝑝 𝑝 =
𝑀 + 𝑎 , 𝑗 = 1,2, . . . ,2𝑢

(𝑢 + 2)𝑀, 𝑗 = 2𝑢 + 1

𝑇 (𝑢 + 1)𝑀
𝑇 𝑀3 + (𝑢 + 1)𝑀

𝜇 𝜇 =(𝑢-1) 𝑀3+ 2(2𝑢2+3𝑢+1)𝑀

U (Z threshold) 𝑈 =(3u-1)𝑀3 + 4(3u2+5u+2)𝑀

In what follows, we will prove that the equal-size partition problem has a feasible

solution, if and only if the constructed example has a solution which does not exceed U.
Let the sets 𝐼 and 𝐼 be the solutions to Equal-Size Partition Problem. Let collection 𝐵
represent the set of jobs corresponding to set 𝐼 , 𝐴 represent the set of artifacts
corresponding to collection 𝐼 .

Consider a situation where jobs in B are divided into one batch and processed before
𝑇 , and jobs in A are divided into one batch and processed after 𝑇 . The objective function

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

is
𝑍 = ∑ 𝐹 + 2𝜇 = 𝑢 ∑ 𝑀 + 𝑎∈ + (+1) 𝑀 + (𝑢 + 1)𝑀 + ∑ 𝑀 + 𝑎 +∈ { }

(𝑢 + 2)𝑀 = 𝑢(𝑢 + 1)𝑀 + (𝑢 + 1)(𝑀 + 2(𝑢 + 1)𝑀 + (𝑢 + 2)𝑀) + 2 (𝑢 − 1)𝑀 + 2(2𝑢 +

3𝑢 + 1)𝑀 = (3𝑢 − 1)𝑀 + 4(3𝑢 + 5𝑢 + 2)𝑀
In this case the function value is exactly U.
Conversely, assume that there is a feasible schedule with the objective value not

exceeding U. Let B and A be the sets of jobs scheduled before 𝑇 and after 𝑇 , respectively.
Then the following assertions hold:

1) The (2𝑢 + 1)th job is processed after 𝑇 ;
2) There are only two batches in this feasible schedule, one batch is processed before

𝑇 and another batch is processed after 𝑇 , respectively.
3) |𝐵| = 𝑢, |𝐴| = 𝑢 + 1;
4) ∑ 𝑝 = 𝑀∈ .
The proof of these assertions is as follows:
1) The (2𝑢 + 1)th job is processed after 𝑇 because 𝑝 + 𝑀 > 𝑇;
2) Three possible cases are considered to prove assertion 2.
Case 1: There is one batch in this schedule, i.e. all jobs are processed after 𝑇 , and thus
∑ 𝐹 + 𝜇𝑚 = (2𝑢 + 1)𝑀(𝑀 + 3(𝑢 + 1)𝑀 + (𝑢 + 2)𝑀) + (𝑢 − 1)𝑀 + 2(2𝑢 +

 3𝑢 + 1)𝑀 = 3𝑢𝑀 + (12𝑢 + 20𝑢 + 7)𝑀 > 𝑈 ,
which contradicts the constraint that 𝑍 = ∑ 𝐹 + 𝜇𝑚 ≤ 𝑈.
Case 2: Jobs are divided into more than two batches, i.e. there are at least two jobs

processed after 𝑇 .
∑ 𝐹 + 𝜇𝑚 > (2𝑢 + 1)𝑀(𝑀 + 3(𝑢 + 1)𝑀 + (𝑢 + 2)𝑀) + (𝑢 − 1)𝑀 + 2(2𝑢 +

 3𝑢 + 1)𝑀 = 3𝑢𝑀 + (12𝑢 + 20𝑢 + 7)𝑀 > 𝑈 ,
which contradicts the constraint that 𝑍 = ∑ 𝐹 + 𝜇𝑚 ≤ 𝑈.
Case 3: Jobs are divided into two batches and both batches are processed after 𝑇 .
∑ 𝐹 + 2𝜇 − 𝑈 > (2𝑢 + 1)𝑀 + (𝑢 + 1)𝑀 − (𝑢 + 1)(𝑀 + 4(𝑢 + 1)𝑀) = 𝑀(𝑢𝑀 −

2𝑢 − 5𝑢 − 3) > 0 ,
which contradicts the constraint that 𝑍 = ∑ 𝐹 + 𝜇𝑚 ≤ 𝑈 . The inequality holds

because 𝑀 ≥ 𝑢 + 2.
3) As shown in table 1, 𝑇 =(𝑢 + 1)𝑀 and 𝑝 > 𝑀, thus |𝐵| ≤ 𝑢. Take the case that

|𝐴| ≥ 𝑢 + 1 under consideration. Let ∑ 𝑝 = 𝐶 ≤ 𝑀∈ and |𝐴| = 𝑢 + 1 + 𝜗, 𝜗 ≥

1.
∑ 𝐹 + 2𝜇 − 𝑈 = (𝑢 − 𝜗) (𝑢 − 𝜗)𝑀 + 𝐶 + (𝑢 + 1 + 𝜗)(𝑀 + (𝑢 + 1)𝑀 + (𝑢 +

𝜗)𝑀 + (2𝑀 − 𝐶) + (𝑢 + 2)𝑀) − ((𝑢 + 1)𝑀 + 4(𝑢 + 1) 𝑀) = 𝜗𝑀 + (2𝑢𝜗 + 2𝜗 +

6𝜗 + 1)𝑀 − (2𝜗 + 1)𝐶 ≥ 𝜗𝑀 + (2𝑢𝜗 + 2𝜗 + 6𝜗 + 1)𝑀 − (2𝜗 + 1)𝑀 > 0 ,
which contradicts the constraint that 𝑍 = ∑ 𝐹 + 𝜇𝑚 ≤ 𝑈 . Thus |𝐴| ≤ 𝑢 + 1 .

Considering the former assumption that |𝐴| ≥ 𝑢 + 1 , we get |𝐴| = 𝑢 + 1 , and |𝐵| = 𝑢 ,
respectively.

4) As shown in the proof of assertion 3, |𝐴| = 𝑢 + 1, |𝐵| = 𝑢. If 𝐶 < 𝑀, then

∑ 𝐹 + 2𝜇 − 𝑈 = 𝑢(𝑢𝑀 + 𝐶) + (𝑢 + 1)(𝑀 + (𝑢 + 1)𝑀 + 𝑢𝑀 + (2𝑀 − 𝐶) + (𝑢 +

2)𝑀) − ((𝑢 + 1)𝑀 + 4(𝑢 + 1) 𝑀) = (4𝑢 + 8𝑢 + 5)𝑀 − 𝐶 − 4(𝑢 + 1) 𝑀 =

𝑀 − 𝐶 > 0 ,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

which contradicts the constraint that 𝑍 = ∑ 𝐹 + 𝜇𝑚 ≤ 𝑈 . Thus 𝐶 ≥ 𝑀 .
Considering the former assumption that 𝐶 ≤ 𝑀, we get 𝐶 = 𝑀, and ∑ 𝑝 = 𝐶 = 𝑀∈ .
 The proof of proposed assertions is completed, Equal-Size Partition Problem has a
feasible solution. ----- is NP-hard.
3. DPA-SPT

In this section, the Shortest Processing Time (SPT) order[16-19] is proved to be the
optimal scheduling rule of ------. And a Dynamic Programming Algorithm (DPA) based on
SPT is proposed after that.

Theorem 2. SPT order is the optimal scheduling rule of SMBSP-MI.
Proof. Assume that there is an optimal schedule that does not follow SPT order

𝑆 = (𝐵 , 𝐵 , . . . , 𝐵 , . . . , 𝐵 , . . . , 𝐵 , 𝑀𝐼, 𝐵 . . . , 𝐵),
in which 𝑝 ∈ > 𝑝 ∈ >. . . > 𝑝 ∈ >. . . > 𝑝 ∈ >. . . > 𝑝 ∈ > 𝑝 ∈ >. . . > 𝑝 ∈ . Take 𝑗 , i.e. the

fth job of the kth batch, and 𝑗 , i.e. the gth job of the lth batch with the inequality 𝑝 >

𝑝 . Exchange 𝑗 and 𝑗 , i.e. 𝑗 ∈ 𝐵 and 𝑗 ∈ 𝐵 . A new schedule 𝑆 is established. The

objective Z with 𝑆 is increased by 𝑍 − 𝑍 , comparing to it is with S.

𝑍 − 𝑍 = −(|𝐵 | + |𝐵 |+. . . +|𝐵 |)(𝑝 − 𝑝) > 0,

which contradicts the assumption that S is the optimal schedule of ----, and thus 𝑝 ≤

𝑝 . 𝑆 is the optimal schedule of ----, that is

S = (𝐵 , 𝐵 , . . . , 𝐵 , . . . , 𝐵 , . . . , 𝐵 , 𝑀𝐼, 𝐵 . . . , 𝐵),
in which 𝑝 ∈ ≤ 𝑝 ∈ ≤. . . ≤ 𝑝 ∈ ≤. . . ≤ 𝑝 ∈ ≤. . . ≤ 𝑝 ∈ ≤ 𝑝 ∈ ≤. . . ≤ 𝑝 ∈ . Note
that batches of schedule S are processed following SPT order, and sequence of jobs in
batch does not affect the flow time of this batch.
 As is known, DPA is an exact algorithm, which implies that any step of DPA meet the
best choice. Since SPT is shown the optimal scheduling order of ---, a DPA based on SPT
order (DPA-SPT) is established as follows.

Since there are n jobs in total, DPA-SPT contains n cycles of iterations. Several states
are produced while containing the jth into S . Let 𝑅 =(𝑠 , . . . , 𝑠 , . . . , 𝑠) be the set of the
states produced in the jth cycle of iteration, in which 𝑠 = (𝑙, 𝑐 , 𝑐 , 𝑎, 𝑡) is one of the
feasible states. Variables and parameters in 𝑠 are defined as follows: 𝑙 denotes finish
time of the last job processed before 𝑇 ; 𝑐 denotes number of jobs in the last batch
processed before 𝑇 ; 𝑐 denotes number of jobs in the first batch processed after 𝑇
(these jobs may be in the same batch with those processed before 𝑇 , if processing of the
last batch is interrupt by MI); a denotes number of jobs processed after 𝑇 ; t denotes the
sum of current total flow time and delivery cost.

Since DPA select the optimal job in every cycle of iteration, the current optimal
schedule of SMBSP-MI before the jth iteration is 𝑆 = (1 , 12 , . . . , 𝑗 − 1). And by
comparing t values of all states produced in the following cycle of iteration, the one with
minimal t value is chosen as 𝑗 . And 𝑗 is at one of the possible position on the
machine, i.e. 𝑗 is located in the last batch processed before 𝑇 ; 𝑗 is located in one

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

of other batches processed before 𝑇 ; 𝑗 is located in the first batch processed after 𝑇 ;
𝑗 is located in one of other batches processed after 𝑇 , respectively. The optimal value
𝑍∗ will be found after all jobs are sequenced, and the optimal schedule of SMBSP-MI
will be decided by backtracking, respectively.

The pseudo code of DPA-SPT is as follows.

Algorithm 1: DPA-SPT
Input: J, m, 𝜇, 𝑇 , 𝑇
Output: 𝑍∗
Initialization.

 𝑅 = {(𝑝 , 1,0,0, 𝑝 + 𝜇), (0,0,1,1, 𝑇 + 𝑝 + 𝜇)};
Iteration.

For 𝑗 = 2 to n do
 Set 𝑅 = ∅;

For (𝑙, 𝑐 , 𝑐 , 𝑎, 𝑡) ∈ 𝑅
 If 𝑙 + 𝑝 ≤ 𝑇 and 𝑐 > 1 then

 𝑠 = (𝑙 + 𝑝 , 𝑐 + 1, 𝑐 , 𝑎, 𝑡 + 𝑙 + (𝑐 + 1)𝑝);
 If 𝑙 + 𝑝 ≤ 𝑇 then

 𝑠 = (𝑙 + 𝑝 , 1, 𝑐 , 𝑎, 𝑡 + 𝑙 + 𝑝 + 𝜇);
 If 𝑐 > 1 then

 𝑠 = (𝑙, 𝑐 , 𝑐 + 1, 𝑎 + 1, 𝑡 + 𝑇 + ∑ 𝑝 − 𝑙 + 𝑐 𝑝);

 Else then

 𝑠 = (𝑙, 𝑐 , 1, 𝑎 + 1, 𝑡 + 𝑇 + ∑ 𝑝 − 𝑙 + 𝜇).

 End if;
End for;

 For 𝑠 = (𝑙, 𝑐 , 𝑐 , 𝑎, 𝑡) ∈ 𝑅 , 𝑠 = (𝑙, 𝑐 , 𝑐 , 𝑎 , 𝑡) ∈ 𝑅
If 𝑡 < 𝑡 then

Eliminate 𝑠 from 𝑅 ;
Else then

 Eliminate 𝑠 from 𝑅 ;
 End if;

 End for;
End for;

Optimization. 𝑍∗ = 𝑚𝑖𝑛(, , , ,)∈ {𝑡}.
The optimal schedule is obtained by backtracking.

For any state 𝑠 = (𝑙, 𝑐 , 𝑐 , 𝑎, 𝑡), the upper bound of 𝑙 is 𝑇 , the upper bound of 𝑐 is n,
the upper bound of 𝑐 is (n+1), and the upper bound of j is (n+1). Hence the complexity of
DPA-SPT is 𝑂(𝑛 𝑇), and thus DPA-SPT is a pseudo-polynomial time exact algorithm.

To verify the feasibility of DPA-SPT, we present an illustrative 20-scale example. The
result shows that DPA-SPT achieves the optimal solution. In this sample,𝑚 = 4, 𝜇 = 500,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

𝑇 = 90, 𝑇 = 120, and processing time of jobs are shown in table 2.
Table 2. Processing time of jobs

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p 22 13 23 13 30 30 15 5 8 23 23 22 17 26 24 19 27 23 7 6

Sort jobs according to SPT order. The sorted schedule is shown in table 3.

Table 3. SPT schedule

j 8 20 19 9 2 4 7 13 16 1 12 3 10 11 18 15 14 17 5 6

p 5 6 7 8 13 13 15 17 19 22 22 23 23 23 23 24 26 27 30 30

 Run iteration and elimination phase, result is shown in figure 1. The third job in 𝐵 is
interrupted by MI, thus the starting time of 𝑗 is 𝑇 . Detail of 𝑗 see figure 2.

B1 B2-part 1 B2-part 2 B3 B4

T1 T2

Figure 1. DPA-SPT schedule

1 2 3 4 5MI

T1 T2

B2

Figure 2. Detail of 𝐵

When DPA-SPT is finished, the optimal schedule π is obtained, where
 π = {(8，20，19，9，2)，(4，7，13，16，1)，(12，3，10，11，18)，(15，14，17，5，6)}.
Values of 𝐹 see table 4. The optimal value is 𝑍∗ =5784.

Table 4. Values of 𝐹

𝐹

5 11 18 26 39 52 77 137 156 178 200 223 246 269 292 316 342 369 399 429 3784

The example shows the feasibility of DPA-SPT.

4. FDPAA-SPT

Although DPA-SPT achieve best solution of small and medium scale problems, it is
not feasible for large-scale problems. With the expansion of the problem scale, the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

complexity of DPA-SPT faces exponential dimension explosion. Taking into account this
problem, the use of elimination is the core of approximation to reduce the complexity
down to polynomial time. By pruning some bad states and the application of state pruning
technology[17], the solution space that the algorithm needs to search is reduced, so as to
reduce the complexity. In addition, due to elimination operation, the optimal solution may
be missed, hence the improved algorithm is an approximate algorithm. In what follows, a
fully-polynomial dynamic programming approximation algorithm based on SPT (FDPAA-
SPT) is designed.

 Take two large number L and V, where 𝐿 ≤ 𝑍∗ ≤ 𝑉. Take a ε > 0, let 𝛿 = , 𝛿 =

 . Divide [0, 𝑉] and [0, 𝑇] into and sub intervals, respectively. In this way,

[0, 𝑉] × [0, 𝑇] is divided into × subintervals.

 To get a polynomial-time approximation schedule, the state set 𝑅 obtained by the
jth iteration of DPA-SPT is pruned. A new set 𝑅∗ is produced, and 𝑅∗ satisfies the
following attribute:

(1) 𝑅∗ ∈ 𝑅 ;

(2) There is only one 𝑅∗ in the same subinterval of × ;

(3) For any eliminated state (𝑙, 𝑐 , 𝑐 , 𝑎, 𝑡) , there is a state (𝑙 , 𝑐 , 𝑐 , 𝑎 , 𝑡) ∈ 𝑅∗
locating in the same subinterval with it.

The pseudo code of FDPAA-SPT is as follows.

Algorithm 2: FDPAA-SPT
Input: J, m, 𝜇, 𝑇 , 𝑇 , 𝐿, 𝑉, 𝛿 , 𝛿
Output: 𝑍∗
Initialization.

 [0, 𝛿), [𝛿 , 2𝛿), … ,
𝑽

− 1 𝛿 , 𝑉 ← [0, 𝑉];

 [0, 𝛿), [𝛿 , 2𝛿), … ,
𝑽

− 1 𝛿 , 𝑇 ← [0, 𝑇];

 𝑅 = {(𝑝 , 1,0,0, 𝑝 + 𝜇), (0,0,1,1, 𝑇 + 𝑝 + 𝜇)};
Iteration.

For 𝑗 = 2 to n do
 Set 𝑅∗ = ∅;

For (𝑙, 𝑐 , 𝑐 , 𝑎, 𝑡) ∈ 𝑅∗
 If 𝑙 + 𝑝 ≤ 𝑇 and 𝑐 > 1 then

 𝑠∗ = (𝑙 + 𝑝 , 𝑐 + 1, 𝑐 , 𝑎, 𝑡 + 𝑙 + (𝑐 + 1)𝑝);
 If 𝑙 + 𝑝 ≤ 𝑇 then

 𝑠∗ = (𝑙 + 𝑝 , 1, 𝑐 , 𝑎, 𝑡 + 𝑙 + 𝑝 + 𝜇);
 If 𝑐 > 1 then

 𝑠∗ = (𝑙, 𝑐 , 𝑐 + 1, 𝑎 + 1, 𝑡 + 𝑇 + ∑ 𝑝 − 𝑙 + 𝑐 𝑝);

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

 Else then

 𝑠∗ = (𝑙, 𝑐 , 1, 𝑎 + 1, 𝑡 + 𝑇 + ∑ 𝑝 − 𝑙 + 𝜇).

 End if;
End for;

For any 𝑠∗ = (𝑙, 𝑐 , 𝑐 , 𝑎, 𝑡) ∈ 𝑅∗
 If 𝑙 > 𝑉 then

Eliminate 𝑠 from 𝑅∗;
 Else
 Keep 𝑠∗;
End for;

 For 𝑠∗ = (𝑙, 𝑐 , 𝑐 , 𝑎, 𝑡) ∈ 𝑅∗, 𝑠∗ = (𝑙 , 𝑐 , 𝑐 , 𝑎 , 𝑡) ∈ 𝑅∗
If 𝑙 < 𝑙 and 𝑡 < 𝑡 then

Eliminate 𝑠∗ from 𝑅∗;
Else then

 Eliminate 𝑠∗ from 𝑅∗;
 End if;

 End for;
End for;

Optimization. 𝑍∗ = 𝑚𝑖𝑛(, , , ,)∈ ∗ {𝑡}.
The optimal schedule is obtained by backtracking.

The approximation process of FDPAA-SPT reduces its complexity to 1, and the gap
between the optimization solution and the approximate solution of FDPAA-SPT is 2. In
what follows, the two conclusions are proved.
Theorem XXX. For any eliminated state 𝑠 = (𝑙, 𝑐 , 𝑐 , 𝑎, 𝑡) ∈ 𝑅 , there exists a state 𝑠∗ =

(𝑙 , 𝑐 , 𝑐 , 𝑎 , 𝑡) ∈ 𝑅∗, where 𝑙 < 𝑙 and 𝑡 < 𝑡 + 𝑛𝛿 + 𝑛𝑎𝛿.
Proof. Mathematical induction is used to prove theorem XXX. When 𝑛 = 1 , 𝑠 =

(𝑙, 𝑐 , 𝑐 , 𝑎, 𝑡) = 𝑠∗, theorem XXX holds. Assume that theorem XXX holds while 𝑛 = 𝑗 − 1,
i.e. for any eliminated state 𝑠 = (𝑙, 𝑐 , 𝑐 , 𝑎, 𝑡) ∈ 𝑅 , there exists a state 𝑠∗ =

(𝑙 , 𝑐 , 𝑐 , 𝑎 , 𝑡) ∈ 𝑅∗ , where 𝑙 < 𝑙 and 𝑡 < 𝑡 + (𝑗 − 1)𝛿 + (𝑗 − 1)𝑎𝛿 . When it comes to
𝑛 = 𝑗 , considering the diversity of states in 𝑅 , 𝑠 may be produced from one of the
following former cases:
Case 1: 𝑠 = (𝑙 − 𝑝 , 𝑐 − 1, 𝑐 , 𝑎, 𝑡 − 𝑙 − 𝑐 𝑝) ∈ 𝑅 ;
Case 2: 𝑠 = (𝑙 − 𝑝 , 𝑥, 𝑐 , 𝑐 , 𝑡 − 𝑙 − 𝑝 − 𝜇) ∈ 𝑅 , 0 ≤ 𝑥 ≤ 𝑛 − 𝑐 − 1;

Case 3: 𝑠 = (𝑙, 𝑐 , 𝑐 − 1, 𝑎 − 1, 𝑡 + 𝑙 − ∑ 𝑝 − (𝑐 − 1)𝑝) ∈ 𝑅 ;

Case 4: 𝑠 = (𝑙, 𝑐 , 𝑦, 𝑎 − 1, 𝑡 − 𝑇 + 𝑙 − ∑ 𝑝 − 𝜇) ∈ 𝑅 ;

In what follows, we prove that no matter how 𝑠 is produced, it satisfies the
assumption of theorem XXX.

In case 1, there is a state 𝑠∗ = (𝑙 , 𝑐 − 1, 𝑐 , 𝑎 , 𝑡) ∈ 𝑅∗ satisfying inequalities 𝑙 <

𝑙 − 𝑝 and 𝑡 < 𝑡 − 𝑙 − 𝑐 𝑝 + (𝑗 − 1)𝛿 + (𝑗 − 1)𝑎𝛿 . This judgment is clear due to the
assumption of 𝑛 = 𝑗 − 1. And in this case, inequality 𝑙 + 𝑝 ≤ 𝑙 ≤ 𝑇 holds. By iteration

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

phase of FDPAA-SPT, 𝑠 = (𝑙 + 𝑝 , 𝑐 , 𝑐 , 𝑎, 𝑡 + 𝑙 + 𝑎𝑐) ∈ 𝑅 is produced, and
inequalities 𝑙 < 𝑙 − 𝑝 and 𝑡 < 𝑡 − 𝑙 − 𝑐 𝑝 + (𝑗 − 1)𝛿 + (𝑗 − 1)𝑎𝛿 holds. According to
elimination phase of FDPAA-SPT, there is a state 𝑠∗ = (𝑙 , 1, 𝑐 , 𝑎 , 𝑡) ∈ 𝑅∗ locating in the
same subinterval of 𝑅 with 𝑠 . And 𝑙 ≤ 𝑙 + 𝑝 ≤ 𝑙 holds. Hence 𝑡 ≤ 𝑡 + 𝑙 + 𝑐 𝑝 +

𝛿 ≤ 𝑡 − 𝑙 − 𝑐 𝑝 + (𝑗 − 1)𝛿 + (𝑗 − 1)𝑎𝛿 + 𝑙 + 𝑐 𝑝 + 𝛿 < 𝑡 + 𝑗𝛿 + 𝑗𝑎𝛿 .
In case 2, there is state 𝑠∗ = (𝑙 , 𝑐 − 1, 𝑐 , 𝑎 , 𝑡) ∈ 𝑅∗ satisfying inequalities 𝑙 <

𝑙 − 𝑝 and 𝑡 < 𝑡 − 𝑙 − 𝑝 − 𝜇 + (𝑗 − 1)𝛿 + (𝑗 − 1)𝑎𝛿 . By iteration phase of FDPAA-SPT,
𝑠 = (𝑙 + 𝑝 , 1, 𝑐 , 𝑎, 𝑡 + 𝑙 + 𝜇) ∈ 𝑅 is produced. According to elimination phase of
FDPAA-SPT, there is a state 𝑠∗ = (𝑙 , 1, 𝑐 , 𝑎 , 𝑡) ∈ 𝑅∗ locating in the same subinterval of
𝑅 with 𝑠 . And 𝑙 ≤ 𝑙 + 𝑝 ≤ 𝑙 holds. Hence 𝑡 ≤ 𝑡 + 𝑙 + 𝜇 + 𝛿 ≤ 𝑡 − 𝑙 − 𝜇 + (𝑗 −

1)𝛿 + (𝑗 − 1)𝑎𝛿 + 𝑙 + 𝜇 + 𝛿 < 𝑡 + 𝑗𝛿 + 𝑗𝑎𝛿 .
In case 3, there is state 𝑠∗ = (𝑙 , 𝑥, 𝑐 , 𝑎 , 𝑡) ∈ 𝑅∗ satisfying inequalities 𝑙 < 𝑙 and

𝑡 < 𝑡 + 𝑙 − ∑ 𝑝 − 𝑐 𝑝 + (𝑗 − 1)𝛿 + (𝑗 − 1)𝑎𝛿 . By iteration phase of FDPAA-SPT,

𝑠 = (𝑙 , 𝑐 , 𝑐 , 𝑎 + 1, 𝑡 − 𝑙 + ∑ 𝑝 + (𝑐 − 𝑐)𝑝) ∈ 𝑅 is produced. According to

elimination phase of FDPAA-SPT, there is a state 𝑠∗ = (𝑙 , 1, 𝑐 , 𝑎 , 𝑡) ∈ 𝑅∗ locating in the

same subinterval of 𝑅 with 𝑠 . And 𝑙 ≤ 𝑙 ≤ 𝑙 holds. Hence 𝑡 ≤ 𝑡 − 𝑙 + ∑ 𝑝 +

(𝑐 − 1)𝑝 + 𝛿 ≤ 𝑡 + 𝑙 − ∑ 𝑝 + (𝑐 − 1)𝑝 + (𝑗 − 1)𝛿 + (𝑗 − 1)𝑎𝛿 − 𝑙 + ∑ 𝑝 +

(𝑐 − 1)𝑝 + 𝛿 = 𝑡 + (𝑙 − 𝑙) + 𝑗𝛿 + (𝑗 − 1)(𝑎 − 1)𝛿 . Since 𝑙 ≥ 𝑙 − 𝑗𝛿 , 𝑡 ≤ 𝑡 + 𝑗𝛿 +

𝑗𝛿 + (𝑗 − 1)(𝑎 − 1)𝛿 < 𝑡 + 𝑗𝛿 + 𝑗𝑎𝛿 .
In case 4, there is state 𝑠∗ = (𝑙 , 𝑐 , 𝑦, 𝑎 , 𝑡) ∈ 𝑅∗ satisfying inequalities 𝑙 < 𝑙 and

𝑡 < 𝑡 − 𝑇 + 𝑙 − ∑ 𝑝 − 𝜇 + (𝑗 − 1)𝛿 + (𝑎 − 1)𝛿 . By iteration phase of FDPAA-SPT,

𝑠 = (𝑙 , 𝑐 , 1, 𝑎 + 1, 𝑡 + 𝑇 − 𝑙 + ∑ 𝑝 + 𝜇) ∈ 𝑅 is produced. According to elimination

phase of FDPAA-SPT, there is a state 𝑠∗ = (𝑙 , 𝑐 , 1, 𝑎 , 𝑡) ∈ 𝑅∗ locating in the same

subinterval of 𝑅 with 𝑠 . Hence 𝑡 ≤ 𝑡 + 𝑇 − 𝑙 + + ∑ 𝑝 + 𝜇 ≤ 𝑡 − 𝑇 + 𝑙 −

∑ 𝑝 − 𝜇 + (𝑗 − 1)𝛿 + (𝑗 − 1)𝑎𝛿 + 𝑇 − 𝑙 + ∑ 𝑝 + 𝜇 ≤ 𝑡 + 𝑗𝛿 + 𝑗𝑎𝛿 .
All the four cases meet theorem XXX, thus theorem XXX holds. Hence there is a state

𝑠∗ = (𝑙 , 𝑐 , 𝑐 , 𝑎 , 𝑡) ∈ 𝑅∗ satisfying inequalities 𝑙 < 𝑙 and 𝑡 < 𝑡 + 𝑛𝛿 + 𝑛𝑎𝛿 = 𝑡 +

𝜀 + 𝜀 . Note that job n is processed after 𝑇 , thus 𝑡 > 𝑎𝑇 . Hence 𝑡 < 𝑡 + 𝜀 + 𝜀 =

(1 + 𝜀)t. FDPAA-SPT get a (1 + 𝜀) approximate solution.

Theorem XXX. The complexity of FDPAA-SPT is 𝑂().

Proof. In every iteration phase of FDPAA-SPT, × subintervals which

occupying space are produced. Since n is the maximum value of 𝑐 and 𝑐 , there

are cases in every iteration of FDPAA-SPT. And after n cycle of iteration, states

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

are produced. Hence the complexity of FDPAA-SPT is 𝑂(). It is very clear that FDPAA-

SPT runs in polynomial time.

5. conclusion

In the manufacturing industry, orders are typically scheduled through batch production
and delivery mode, and the probability of machine failure under high-load operation is
high. On this basis, we focus on a single machine batch scheduling problem with machine
maintenance intervals. To solve this problem, the mathematical programming model is
established. SMBSP-MI is proved to be an NP-hard problem, i.e., there is no exact
algorithm that can obtain the optimal solution of large-scale problems in polynomial time.
Hence, we consider designing an approximation algorithm that can obtain a high-
precision solution in polynomial time. Our approach is to design an accurate algorithm
based on optimal rules in the first place. Considering the dimensional explosion when
solving large-scale problems, some of the poor solutions obtained by DPA-SPT are
eliminated to reduce the complexity down to polynomial time. A small-scale example
verifies the feasibility of DPA-SPT. As for the proposed approximation algorithm, no
verification of the small and medium-scale is conducted, for the verification of the small
and medium-scale problem is meaningless. Besides, although the approximation
algorithm theoretically has a solution in polynomial time, it still consumes a lot of
calculation time, thus no large-scale calculation examples are designed for verification. On
the contrary, we proved that the approximate ratio of the algorithm is (1 + 𝜀).

Author contributions: Investigation, Zhang, H. L.; Writing—original draft, Zhang, H. L.
and Qian, B.; Writing—review & editing, Zhang, H. L. and Wu, Y. H. All authors have read
and agreed to the published version of the manuscript.

Acknowledgments: The authors would like to thank Professor Yin Y. Q. (Doctoral
candidate, School of Management and Economics, University of Electronic Science and
Technology of China, China) for providing technical support, discussions and review. First
author would like to thank professor Qian, B., for providing guidance at the beginning of
the study and the initial review of abstract.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xuan, T., Wei, Z., Weiwen, L., Huihong, L. Low-carbon sustainable development of

China's manufacturing industries based on development model change. Science of the
Total Environment,2020,737.

2. Ikura, Y., Gimple, M. Efficient scheduling algorithms for a single batch processing
machine. Operations Research Letters,1986, 5(2), 61-65.

3. Chang, P. Y., Damodaran, P., Melouk, S. Minimizing makespan on parallel batch
processing machines. International Journal of Production Research, 2004, 42(19), 4211-4220.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

4. Lee, C. Y. Minimizing makespan on a single batch processing machine with dynamic
job arrivals. International Journal of Production Research, 1999, 37(1), 219-236.

5. Azizoglu, M., Webster, S. Scheduling a batch processing machine with non-identical
job sizes. International Journal of Production Research, 2000, 38(10), 2173-2184.

6. Sanlaville, E., Schmidt, G. Machine scheduling with avalibility constraints. Acta
Information, 1998, (35):795-811.

7. Ma, Y., Chu, C., Zuo, C. A survey of scheduling with deterministic machine avalibility
constraints. Computers& Industrial Engineering, 2010, (58):199-211.

8. Ma, Y., Chu, C. B., Yang, S. L. Minimizing total weighted completion time in
semiresumable case of single-machine scheduling with an availability constraint.
Systems Engineering-Theory & Practice, 2009, 29(2), 134-143

9. Ma, Y., Yang, S. L., C. Cheng-Bin. Single machine scheduling with an availability
constraint and deteriorating jobs. Journal of Hefei University of Technology (Natural
Science) 25.3(2007):778-781.

10. Xie, X., Xingyao, W., Xiaoli, L., Xiangyu, K. Production and transportation coordinated
single machine scheduling problems with unavailability interval and rejection. Journal
of Shenyang University (Natural Science). 2015, 27(3):222-225

11. Luo, W. C., Liu, F. On single-machine scheduling with workload-dependent
maintenance duration. Omega,2017,68:119-122.

12. Yu, Y., Tang, J. F., Li, J., Sun, W., Wang, J. W. Reducing carbon emission of pickup and
delivery using integrated scheduling. Transportation Research Part D 47, 2016, 237-250.

13. Corentin, L. H., Anne, L. L. Operations scheduling for waste minimization: a review.
Journal of Cleaner Production, 2019, 206, 211-226.

14. Yin, Y. Q., Cheng, T. C. E., Hsu, C. J., Wu, C. C. Single-machine batch delivery
scheduling with an assignable common due window. Omega, 2013, 41, 216-225.

15. Yin, Y. Q., Wang, Y., Cheng, T. C. E., Wang, D. J., Wu, C. C. Two-agent single-machine
scheduling to minimize the batch delivery cost. Computers & Industrial Engineering,
2016, 92, 16-30.

16. Qi, X., Bard, J. F., Yu, G. Disruption management for machine scheduling: the case of
spt schedules. International Journal of Production Economics, 103(1), 166-184.

17. Tang, G.C. Theory of modern scheduling. Shanghai science popularization press, 2003.
18. Brucker, P. Scheduling: Theory and Applications. Operations Research Proceedings 1997.

1998.
19. Pinedo, M. Scheduling: theory, algorithms, and systems. Tsinghua university press, 2005.
20. Yin, Y. Q., Cheng, T. C. E., Wang, D. J. Rescheduling on identical parallel machines

with machine disruptions to minimize total completion time. European Journal of
Operational Research, 2016, 252, 737-749.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2020 doi:10.20944/preprints202007.0400.v1

https://doi.org/10.20944/preprints202007.0400.v1

