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Abstract: In this research, an attempt was made to reduce the dimension of wavelet-ANFIS/ANN 

(artificial neural network/adaptive neuro-fuzzy inference system) models toward reliable forecasts 

as well as to decrease computational cost. In this regard, the principal component analysis was 

performed on the input time series decomposed by a discrete wavelet transform to feed the 

ANN/ANFIS models. The models were applied for dissolved oxygen (DO) forecasting in rivers 

which is an important variable affecting aquatic life and water quality. The current values of DO, 

water surface temperature, salinity, and turbidity have been considered as the input variable to 

forecast DO in a three-time step further. The results of the study revealed that PCA can be employed 

as a powerful tool for dimension reduction of input variables and also to detect inter-correlation of 

input variables. Results of the PCA-Wavelet-ANN models are compared with those obtained from 

Wavelet-ANN models while the earlier one has the advantage of less computational time than the 

later models. Dealing with ANFIS models, PCA is more beneficial to avoid Wavelet-ANFIS models 

creating too many rules which deteriorate the efficiency of the ANFIS models. Moreover, 

manipulating the Wavelet-ANFIS models utilizing PCA leads to a significant decreasing in 

computational time. Finally, it was found that the PCA-Wavelet-ANN/ANFIS models can provide 

reliable forecasts of dissolved oxygen as an important water quality indicators in rivers. 

Keywords: Machine learning; Dimensionality reduction; Wavelet transform; Water quality; 

Principal component analysis 

 

1. Introduction 

Due to the importance of environmental issues that play a vital role in health, food supply, and 

in general in the ecosystem, reliable forecasting of water quality indicators is beneficial for better 

management and probably to mitigate risk impacts. Dissolved oxygen (DO) represents the amount 

of oxygen dissolved in water which is available to living aquatic organisms. These aquatic organisms 

are the main elements in the food supply chain as they feed other larger species. Furthermore, it is 

among the key variables indicating water quality. Therefore, sound forecasts of the water quality 

parameters such as DO can provide suitable information for environmental monitoring and 

assessment. Reliable forecasting models can be considered as an early warning to take serious actions 
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in case of emergency to save aquatic life or mitigate the risks. This case may occur due to extreme 

weather conditions or a sudden release of effluents in upstream of rivers. 

Generally, DO concentration in the water body is depended on the physiochemical and 

biochemical activities which are promising to developed models to forecast it as a function of other 

variables. Therefore, it can be formulated as a function of some other physicochemical and 

biochemical indicators which are easier to measure. There are different types of models and 

techniques to simulate DO in rivers which can be mainly categorized as analytical, numerical, and 

statistical approaches (Bennett & Rathbun, 1971; Cox, 2003; Phelps & Streeter, 1958). Analytical 

methods are based on mathematical expressions in which the exact solutions for them are difficult or 

in some cases impractical. On the other hand, the numerical models and also conceptual models may 

need a large range of variable to be introduced to the models and also tuning the variables which can 

differ from place to place. On the other hand, machine learning-based models as statistical 

approaches have shown the great capability for simulating and forecasting of complicated 

phenomena. These techniques have been successfully applied to forecasting purposes for a large 

number of real-world applications such as river flow forecasting and hydrological modeling (Ahani, 

Shourian, & Rad, 2018; Anusree & Varghese, 2016; Dastorani, Moghadamnia, Piri, & Rico-Ramirez, 

2010; Nourani, Kisi, & Komasi, 2011), water quality predictions (Heddam & Kisi, 2017; Maier & 

Dandy, 1996; Sarkar & Pandey, 2015), and groundwater level estimations (Daliakopoulos, Coulibaly, 

& Tsanis, 2005; Gong, Wang, Xu, & Zhang, 2018; Li, Lu, Zheng, Yang, & Li, 2019), etc. Detailed 

descriptions of big data in complex and social networks are presented in (Thai, Wu, & Xiong, 2016). Following 

the literature, it can be derived that machine learning models can be considered as cost-effective and 

reliable techniques for simulation and forecasting of different problems. Aside from their capability 

for time series forecasting, they are handy to be combined with different data pre-processing 

techniques such as wavelet transform (Hadi & Tombul, 2018; Nourani & Parhizkar, 2013; Pramanik, 

Panda, & Singh, 2011). This feature enhanced their accuracy, popularity, and applications. 

Wavelet transforms as a data pre-processing technique is common to remove errors and de-noise 

time series which can be subsequently employed as input variables for the forecasting models. It is 

based on the Fourier transform which decomposes time series to several low and high-frequency 

filters. Many research studies are demonstrating that combining the wavelet approach with the 

machine learning models can improve the performance of the existing models remarkably 

(Adamowski & Chan, 2011; Sharghi, Nourani, Molajou, & Najafi, 2019). Efficient modeling of a target 

variable requires to know the effective parameters on it. Regarding DO, a wide range of biochemical 

and physiochemical factors may affect it. Therefore, the application of wavelet transforms to 

decompose the input variables may lead to a large number of subseries and subsequently generating 

a large number of rules which increase computational time. Moreover, considering too many input 

variables may deteriorate the models’ efficiency due to the inter-correlation of input variables. The 

principal component analysis is a suitable proxy to reduce the dimension of input variables to make 

it applicable for further simulations. PCA has been successfully used for dimensionality reduction of 

different models in for many applications such as biochemical oxygen demand (BOD) and solar 

radiation forecasting, etc. (Solgi, Pourhaghi, Bahmani, & Zarei, 2017; Zhang & Wei, 2019).        

In this study, an attempt was made to evaluate the applicability and suitability of principal 

component analysis for dimensionality reduction of the combined wavelet-ANN/ANFIS (artificial 

neural network/adaptive neuro-fuzzy inference system) models for dissolved oxygen (DO) 

forecasting. The modeling procedures are proceeded by performing PCA on decomposed time series 

of water surface temperature, salinity, electric conductivity, and DO in the current time step to 

forecast DO in the three days in advance. Prior to PCA and wavelet implementations, separate ANN 

and ANFIS models are developed using the original time series without any pre-processing and 

dimension reduction process. Afterward, these techniques are employed to establish combined 

models for further applications and to provide more comparisons. In section 2, data and methodology 

are described while the modeling procedures are explained in section 3. The results of different 

models are discussed in section 4. Conclusions will form the last section of the manuscript.  
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2. Materials and Methods 

2.1. Data  

In this study, after considering different stations available at USGS (United States Geological 

Survey) data portal, water quality data of chlorophyll (Chl) in microgram per litter (𝜇𝑔/𝐿), water 

temperature (T) in degrees Celsius (C), specific conductivity (SC) in micro Siemens per centimeter 

(𝜇𝑆/𝑐𝑚), turbidity (Tur) in Formazin Nephelometric Unit (FNU), and dissolved oxygen (DO) in 

milligram per lit (mg/L) for the station ID USGS 14211720 have been downloaded. These data are 

freely available from the following website: 

https://waterdata.usgs.gov/usa/nwis/uv?site_no=14211720. The datasets are related to water quality 

measurements for the Willamette River at Portland, Oregan State recorded from 2018 to 2020. The 

geographical coordinates of the station in terms of longitude and latitude are 122° 40' 09" and 45° 31' 

03". Table 1 gives a statistical analysis of the data including minimum (“Min”), maximum (“Max), 

average (“Mean”), skewness (“Skew”), coefficient of variation (CV) in percent and correlation 

between the input variables with the target variable here means DO. Some of these data along with 

the data of phycocyanin pigment concentration for the year 2015 have been formerly employed by 

Heddam, Sanikhani, and Kisi (2019). However, they only compared the performance of the feed-

forward neural network, ANFIS, and gene expression programming models without wavelet 

applications but still concluded slightly outperformance of ANFIS models over the other models.  

Table 1. Data Statistical analysis. 

Variable Min Max Mean Skew CV (%) CC 

Chl  (𝝁𝒈/𝑳) 0.52 10.37 1.81 2.36 73 0.75 

T (C) 4.45 24.87 13 0.45 47 0.82 

SC (𝝁𝑺/𝒄𝒎) 53.17 106.17 80.94 -0.29 11 0.97 

Turbidity (FNU) 1.00 60.57 6.50 3.10 122 0.70 

DO (mg/L) 6.91  14.30  11.00  -0.23  17  1  

Following Table 1, it can be found that there is a relatively high correlation between the input 

variables and the DO concentration for the study area. Moreover, the data related to turbidity, 

chlorophyll, and water temperature have relatively higher variation than specific conductivity and 

DO. It is pointed out that the data have been recorded in a 30-minute interval while this study 

employs daily data. Therefore, they have been averaged to convert on a daily scale.   

Dealing with any data-driven models and factor analysis, it is recommended to normalize 

or standardize the data into a range where all data have a roughly similar scale for a perfect 

training purpose and to restrict the search space to decrease computational time. For PCA 

implementation, data standardization is a common process before its application. In this 

study, the following relationship was applied to standardize the data with mean value (𝑥̅) 

of zero and standard deviation (Std) of 1. 

𝑥𝑖,𝑠 =
𝑥𝑖−𝑥̅

𝑆𝑡𝑑
            (1) 

where 𝑥𝑖 and 𝑥𝑖,𝑠 are the original and standardized data, respectively.  

2.2. ANN 

Artificial neural networks (ANNs) inspiring the biological process of animal brains are 

computational systems that learn by considering the examples. Generally, the network is established 

from a collection of connections of neurons or nodes. The nodes are aggregated to a layer in which 

each neuron in the layer is connected to the other nodes in the subsequent layer transferring signal 

or information. The importance of each node or connection is recognized by assigning weight in 
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which higher weights show more importance or stronger connections and vice versa. Based on the 

structure and learning algorithms, different types of ANNs have been developed such as radial basis 

function (RBF), multi-layer perceptron (MLP), etc. Feedforward backpropagation (FFBP) networks of 

MLP are amongst the most common type ANNs in use. It gains a backpropagation algorithm to 

decrease the error by getting back to modify the weights toward more accurate predictions. Input 

variables are processed in the input layers in a way each variable is represented by a node or neuron. 

Afterward, these data through connections are transmitted to the neurons in the hidden layer in 

which main computations are performed therein. Data transformation from input to hidden and 

hidden to the output layers are carried out utilizing log-sigmoid and linear activation functions, 

respectively. Finally, they are transformed into the output layer which provides the model 

predictions. In brief, the model can be formulated as follows. 

oj = ∑ βig(wixj + bi)
n
i=1           (2) 

where  oj is the predicted value given in the output at node j, xj is the input value to node j, g is 

the activation function transforming the input data to the hidden layer, biases in the hidden layer are 

represented with bi, and n denotes the number of the hidden layer neurons. Weights in the input to 

hidden layer connections are represented by wi. Similarly, the weights of the connections from the 

hidden layer to the output layer is denoted by βi. A detailed description of neural networks can be 

found in Zurada (1992) and Beale, Demuth, and Hagan (1996). 

2.3. ANFIS 

After introducing the theory of fuzzy logic by Zadeh (1965), thoughts to combine its features for 

predicting applications have been established. It was shown that fuzzy logic can describe complicated 

systems. However, it does not have the learning ability which is not possible to directly employ it for 

numeric predictions. In this regard, a combined system of ANN with the capability of learning 

(numeric power) and fuzzy logic to gain its reasoning features led to an adaptive neuro-fuzzy 

inference system (ANFIS) that can map the input space to the output space. A fuzzy system is if-then 

rule-based approach which for a first-order Sugeno fuzzy model with two variables of x and y , the 

following rules can be extracted as (Takagi & Sugeno, 1985): 

𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1       (3) 

𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2       (4) 

where A and B are the membership functions and p, q, and r represent parameters of the Sugeno 

fuzzy model. Generally, five layers can be illustrated to describe the characteristics of the ANFIS 

model (Figure 1).  

 

Figure 1. Layouts of the ANFIS model. 

These five layers can be sequentially named as input nodes, rule nodes, average nodes, 

consequent nodes, and output nodes. In the first layer, membership grades are produced from the 
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input variable. The following outputs denoted by 𝑂𝑖
1 can be obtained for layer 1 assuming the bell-

shaped membership function (Chang & Chang, 2006): 

𝑂𝑖
1 = 𝜇𝐴𝑖 (𝑥) =

1

1+|(𝑥−𝑐𝑖)/𝑎𝑖|2𝑏𝑖
  i=1,2        (5)  

where {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖} are called premise parameters. In layer 2, firing strength determining the degree to 

which the antecedent part of a fuzzy rule is satisfied. The output of this layer is computed by 

multiplying the input signals as: 

𝑂𝑖
2 = 𝑤𝑖 = 𝜇𝐴𝑖 (𝑥). 𝜇𝐵𝑖 (𝑦),   i=1,2        (6) 

In the third layer, the firing strength is normalized (𝑤̅𝑖) as: 

𝑂𝑖
3 = 𝑤̅𝑖 =

𝑤𝑖

∑ 𝑤𝑖
2
𝑖=1

           (7) 

In layer 4, the contribution of each rule (i) toward the total output is defined as: 

𝑂𝑖
4 = 𝑤̅𝑖𝑧𝑖 = 𝑤̅𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)         (8) 

The overall output is calculated in layer with single node by summing all coming signals (𝑂𝑖
5). 

Finally, the defuzzification process is conducted to obtain the transformed values resulted from rules. 

 𝑂𝑖
5 = ∑ 𝑤̅𝑖𝑧𝑖

2
𝑖=1 =

∑ 𝑤𝑖𝑧𝑖
2
𝑖=1

∑ 𝑤𝑖
2
𝑖=1

          (9) 

2.4. Wavelet transform 

Wavelet transform (WT) is to some extent similar to Fourier transform (FT) or a generalization 

of FT but with the advantage of time-frequency localization. Through a wavelet decomposition 

process, a signal or image is decomposed into a sequence of sub-signals or new images to extract 

more information. Generally, WT basis function consisted of two main factors of scaling and shifting 

in which the earlier one represents shrinking or stretching of a signal in time and the latter one means 

delaying or advancing the wavelet along the length of the signal. Regarding the discretization of the 

scale and translation parameters of a signal, two types of WT including continuous (CWT) wavelet 

transform and discrete wavelet transform (DWT) can be employed. CWT is appropriate for time-

frequency analysis and filtering of time localized frequency components. On the other hand, DWT is 

suitable for de-noising and compression of signals and images when simultaneous time-frequency 

analysis of a signal is required. Due to the nature of the CWT, it suffers from two drawbacks of 

redundancy and impracticality due to the nature of the WT and since both transform parameters are 

continuous (Akansu, Haddad, Haddad, & Haddad, 2001). Therefore, for time series forecasting (our 

case), DWT can be sought as the appropriate type of the transform. Simply, a DWT can be 

mathematically expressed as: 

𝜓𝑚,𝑛(𝑡) = 𝑎0

−
𝑚

2 𝜓(𝑎0
−𝑚𝑡 − 𝑛𝑏0)         (10) 

where 𝜓 is the wavelet function, t is the time, m and n are integers to control the wavelet dilation 

and transformation, respectively. 𝑎0  and 𝑏0  are called fined dilation step (greater than 1) and 

location parameter (greater than zero). However, the wavelet function must satisfy the admissibility 

condition (Equation 11). 

∫ 𝜓(𝑡)𝑑𝑡
+∞

−∞
= 0           (11) 

Finally, using DWT, the original signal of the series are decomposed using different wavelet 

functions at different levels. The DWT decomposes the signal into a low scale (high frequency) and 

low frequency (high scale) components in which they are called as details and approximation 

elements, respectively. For a signal with DWT at decomposition level of k, 2*k sub-signals are 

obtained. Dealing with wavelet transformation, selection of appropriate wavelet function and 

decomposition level can play an important role in the time series analysis. For more details, one can 

refer to the related citations (Akansu et al., 2001; Mallat, 1998). 
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2.5. PCA 

The principal component analysis is a suitable approach to reduce the dimension of input data 

by deleting some trivial information where the data are to some extent correlated. In other words, 

PCA is mainly performed for dimensionality reduction to project high dimension data into smaller 

ones but with keeping as much information as possible. Assuming a 2 dimensional scatter plot, PCA 

finds the best fitting line by maximizing the sum of the squared (SS) distances from the projected 

points to the origin. The models try with many different fitting lines in which the line with the largest 

SS is recognized as PC1 which is a linear combination of the variables. The number of PCs in a dataset 

is equal to the number of variables but it may be the same as the sample number if the sample number 

is smaller than the number of variables. Mathematically, factor analysis gains concepts of eigenvalues 

and eigenvectors in which for each PC, the sum of squared distances are eigenvalues of that PC, and 

the singular value for the PC is computed as the squared root of the eigenvalue of the PC. The 

eigenvalues and eigenvectors give the magnitude and direction of transformation carried out on the 

data matrix, respectively. Moreover, the proportion of variation of each PC can be determined when 

the corresponding eigenvalue of the PC is divided by the sample size minus 1 (i.e. n-1). In this way, 

the contribution of each component can be figured out and the main components associated with 

higher variances can be selected for further implications. On the other hand, the components with 

lower variances indicate that their contribution can be neglected and they do not catch much 

information. Therefore, for dimensionality reduction purposes, only the PCs with higher 

contributions or variances are employed for the modeling procedures. However, the applicability of 

PCA and correlation among the data matrix should be examined before performing factor analysis 

(Cattell, 1996; Crane, Busby, & Larson, 1991). Considering time series forecasting already 

decomposed with wavelet transform, a high dimension of input data is expected in which PCA can 

be served as a suitable proxy for dimensionality reduction of the input variables. 

3. Modeling procedures and error measures 

The modeling procedure is established by selecting input variables to predict dissolved oxygen in 

time step (t+3). Since the earlier studies have shown that the models can be efficiently employed 

for short term forecasting and suitable results were reported for one and two-time step ahead 

forecasting. Therefore, an effort was made to develop the models in a way to be applicable for 

longer time series forecasting. In this regard, measurements of the chlorophyll, DO, water 

temperature, turbidity, and specific conductivity in the current day (t) were used as input variables. 

Primarily, ANN and ANFIS models with the mentioned input variables are developed. Afterward, the 

original time series are decomposed by WT to feed the input structure of the models. Finally, PCA is 

performed for dimensionality reduction since the ANFIS models with too many input variables do 

not work due to the generation of too many rules. Moreover, for the ANN models, the effect of PCA 

on the performance and run-time are investigated and compared with those of the wavelet-ANN 

and ANN models. Dealing with the ANN models (ANN, Wavelet-ANN, and Wavelet-PCA-ANN), the 

number of iterations and neurons in the hidden layer were set as 120 and 10 respectively. These 

numbers have been obtained through a trial and error process indicating the appropriate 

performance of the models. For the ANFIS models, type and number of membership functions can 

affect the performance of the models remarkably which should be chosen accordingly. For this 

study, the Gaussian membership function with many two has been selected for the modeling 

process. Generally speaking, 70 percent of the data has been used for training of either ANN or 

ANFIS model or 30% left for the testing. It is noticed that in the ANN models, extra data are required 

for the validation period to prevent overfitting but to keep similar conditions, these data were 

selected from the training data. Therefore, for the ANN models, 55% of the data were used for 
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training, and 15% for validation which includes 70% of the whole dataset. Dealing with the discrete 

wavelet transform, appropriate wavelet function, and also suitable decomposition level are 

principal steps toward sufficient outputs in which for this study, Meyer function (“dmey”) with 

decomposition level of 3 have been employed to decompose original time series. It is noteworthy 

the decomposition level for a given wavelet function and time series are depended on the length of 

the time series. Finally, PCA was performed on the decomposed time series. Considering 5 input 

variables with 3 details and 1 approximation sub-signals as the effective sub-signals, the initial 

dimension of the input variables is 20 for 4 time series for each original time series. However, the 

dimension was reduced to 4 based on calculated variances for the principal components. Dealing 

with PCA, two metrics of eigenvalue and variance as well as break-in screen plot are three common 

criteria to extract the best components. The first criterion represents the components with eigenvalues 

higher than 1 as the suitable components. The variance factor shows the contribution of each 

component. Finally, the graphical method shows a breakpoint as the stop point or component. In this 

study, the variance metric with over 90% contribution of the whole variation is considered for 

component selection. The calculated variance indicating the contribution of each component is 

illustrated in Figure 2. 

 

 

Figure 2. The variance of each PC obtained from 20 sub-signals as input variables. 

Regarding Figure 2, it can be obtained that the first four PCs have the most contribution 

associating with more than 90% of the whole variance of the 20 components. Therefore, only three to 

four PCs are selected to feed the input structure of the Wavelet-ANN/ANFIS models. However, to 

evaluate the efficiency of different models, two error measures of the coefficient of determination (R2) 

and root mean square error (RMSE) are employed. Moreover, the effect of dimensional reduction 

approach on the computational time is compared with those of the models with the whole signal/sub-

signals. The error measured used in this study are defined as follows. 

𝑅2 = 1 −
∑ (𝑦𝑖(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)−𝑦𝑖(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑))2𝑛

𝑖=1

∑ (𝑛
𝑖=1 𝑦𝑖(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)−𝑦̅(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑))2         (12) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)−𝑦𝑖(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑))2𝑛

𝑖=1

𝑛
        (13) 
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where y represents the target variable either observed or predicted one and n denote the sample 

number. To easily remind the main steps of the study, Figure 3 presents a flowchart of the study. 

 

Figure 3. Flowchart of the study toward forecasting DO. 

4. Results and Discussion 

The results are presented in three sub-sections in which firstly, the original models without any 

pre-processing techniques are discussed. In the next sub-section, the results of the models fed by the 

outputs of the DWT are given. Finally, the results of the wavelet-PCA-ANN/ANFIS models are 

explained. It is noteworthy that all the models are calibrated and developed with similar conditions 

but with a difference in the input structure. 

4.1. ANN and ANFIS models 

As mentioned earlier, the ANN and ANFIS models have been developed using 5 input variables 

of DO, turbidity, specific conductivity, chlorophyll, and water temperature in the current time to 

predict DO value three days ahead. This is due to the ability of the available models for shorter period 

forecasting since there is available literature indicating the capability of the machine learning-based 

models for 1 and 2 days ahead forecasting. However, here, the models were organized to forecast the 

DO for three days in advance and in case of reliable results for the models, the methodology can be 

extended for longer periods. Table 2 presents the results of the ANN and ANFIS models in terms of 

R2, RMSE, and the required run time as well. The results are given for training and testing periods 

separately. 

 

 

 

Table 2. Results of the ANN and ANAFIS model for DO forecasting. 

Model Training Testing Run time 
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R2 RMSE R2 RMSE 

ANN 0.97 0.45 0.97 0.45 8.6 

ANFIS 0.99 0.19 0.92 0.56 20.6 

According to Table 2, it can be found that the ANN models outperform the ANFIS model for 

DO forecasting. It has a lower mean squared error, higher correlation than the ANFIS model. 

Moreover, it is time effective where less computational time is required for this model than the other. 

Generally, the ANFIS due to their identity which is rule-based models requires more memory and 

time than ANN models. The computational time and required memory sharply increase as the 

number of input variables increases. Therefore, to achieve reliable and desired ANFIS models, further 

actions needed to reduce the dimension of the input variables using data pre-processing techniques. 

Moreover, the performance of the ANFIS model for training and testing period differ remarkably 

which demonstrates the model drawback to catch necessary information. On the other hand, the 

performance of the ANN model for both periods is roughly the same indicating its efficiency for DO 

forecasting. Figure 4 illustrates a scatter plot for the ANN and ANFIS models during the testing stage. 

 

Figure 4. Results of the ANN and ANFIS models for the testing period. 

As observed from Figure 4, there is a good agreement of similarity between the model forecasts 

and observed values of DO. Generally, both models provide high correlated outputs with their 

corresponding values measures at the river station. However, the ANN model gives more accurate 

and reliable forecasts which indicate its outperformance for this case. As the study was mainly 

organized to deal with the dimensionality problem of the machine learning-based models, these two 

models were main prepared to provide more comparisons for the models combined with the pre-

processing technique.  
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4.2. Wavelet-ANN and –ANFIS models 

Discrete wavelet transforms are suitable tools for de-noising and extracting information from 

time series. They are being increasingly used for forecasting purposes and linking to machine 

learning-based models. In this section, the original has been decomposed into three details and three 

approximations sub-signals for each variable. Afterward, the three details and only the last 

approximation sub-signal were used as effective series to feed the ANN and ANFIS models. 

Therefore, the models were fed with a totally 20 input sub-signals. Performance of the combined 

models of Wavelet-ANN (WANN) and Wavelet-ANFIS (WANFIS) are presented in Table 3.  

Table 3. Results of the WANN and WANFIS models. 

Model 
Training Testing Run time 

(s) R2 RMSE (mg/L) R2 RMSE (mg/L) 

WANN 0.97 0.43 0.97 0.52 9.0 

WANFIS NAN NAN NAN NAN NAN 

Considering the performance of the WANN model, it can be found that its performance can be 

evaluated satisfactory since it has high and low values of the coefficient of determination and root 

mean square error, respectively. Moreover, it sounds to be economic in terms of computational cost 

as well. However, a comparison between the results of the WANN model and the ANN model, it can 

be found that the WANN model takes more time to be implemented, more expensive in terms of 

computational effects and complexity but still lower performance. However, it should not be 

misunderstood or mislead that the DWT does not improve the performance of the existing ANN 

model. On the other hand, it is mainly due to feeding the WANN model with too many input 

variables (20 sub-signals) which are inter-correlated. Therefore, it should be manipulated to only 

select the appropriate sub-signals toward increasing the accuracy and reliability of the model 

outputs. In this regard, the principal component analysis was performed to derive the most efficient 

sub-signals to be used in the input structure of the models. Similarly, for the WANFIS model, using 

all the 20 sub-signals as the model input leads to the generation of too many rules which are not 

possible to be efficiently executed by the usual CPUs. In this regard, its performance in terms of the 

error measures cannot be assessed. Therefore, this model with the current input structure requires 

more amendments to be employed for forecasting purposes. In Table 3, NAN is used to represent 

that the WANFIS model due to too many rules cannot be implemented.   

4.3.  PCA-Wavelet-ANN and –ANFIS models 

Using high dimension machine learning-based models may misconduct the training process 

since the input variables can be inter-correlated. Moreover, the model fed by many input variables 

may sharply increase computational costs and complexity as well. Therefore, dimensionality 

reduction utilizing factor analysis can be performed to improve the efficiency of the models. In this 

regard, the input structure of the already WANN and WANFIS models have been re-organized 

through factor analysis, and the most effective components (PC1, PC2, PC3, and PC4) were chosen 

as the tentative input variables for the model development. In other words, the 20 sub-signals 

obtained from DWT have been processed by PCA and more important components were employed 

to feed the ANN and ANFIS models. These models are represented by PCA-WANN and PCA-

WANFIS models as their results are presented in Table 4. It is noticed that in Table 4, either for ANN 

or ANFIS models, two sets of results are given which means two models for each technique are 

developed. In the first step, PCs number 1 to 3 have been selected as the efficient components in 

which the results are shown with (PC1-3-WANN/WANFIS). Next, the fourth component was added 

to the input variables presented as (PC1-4-WANN/WANFIS).    

Table 4. Results of the models using different PCs. 
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Model 
Training Testing Run time 

R2 RMSE R2 RMSE 

PC1-3-WANN 0.96 0.40 0.92 0.58 9.3 

PC1-4-WANN 0.98 0.25 0.97 0.36 9.6 

PC1-3-WANFIS 0.98 0.25 0.97 0.36 6.5 

PC1-4-WANFIS 0.99 0.18 0.88 1.017 8.8 

 

Regarding Table 4, it can be derived that all the models developed by PCs as the input variables 

have suitable performance. They are efficient models in terms of performance evaluation criteria and 

run time as well. Considering the WANN models, the model with four PCs (PC1-4-WANN) 

outperforms the model with the same conditions only with one less component (PC1-3-WANN). 

Therefore, for the WANN models, feeding the input structure with the first four components leads 

to more accurate predictions than the model with three PCs. In other words, adding the fourth 

component to the input structure of the WANN model increase its performance remarkably while 

the run time for that slightly increases. On the other hand, the WANFIS model with three PCs 

provides better performance than the model with four PCs. It can be concluded that for the ANFIS 

models, training the model with fewer signals are desired toward achieving reliable predictions were 

in the PC1-4-WANFIS model, adding a new input variable (PC) increase the error of the forecasts 

remarkably. Besides, it requires less computational time. The PC1-3-WANFIS simultaneously 

improves the performance of the existing WANFIS models and decrease computational time. Overall, 

the PC1-3-WANFIS has the highest performance compared with the other models. It has a very high 

value of the coefficient of determination and also very low values of RMSE for both periods. Similar 

performance for training and testing stages also confirms the suitability of the proposed model. 

Figure 5 illustrates scatter plots of the two WANN models with different PCs in their input structure.  
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Figure 5. Results of the WANN models with two different input combinations for Table 5. 

It is derived that both models generally provide sound forecasts of DO in which good agreement 

between the model outputs and field measurements can be found. However, for the measurements 

in a range of 11 to 13 mg/L, the estimated values are to some extend deviated from the correlation 

line. This deviation is more obvious for the left-hand side graph than the other one. Therefore, the 

correlation between model outputs of PC1-4-WANN and the observed values are stronger than the 

other WANN model outputs. It shows that adding the fourth PC to the input variables can provide 

useful information for the model to train better and consequently to provide more accurate forecasts. 

In a similar way to the WANN models, the outputs of the WANFIS models during the testing period 

are depicted in Figure 6. 
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Figure 6. Results of the WANFIS models with two different input combinations for the testing 

period. 

Following Figure 6, it can be found the results projected in the left panel are more accurate and 

reliable than those illustrated in the right panel demonstrating that the WANFIS model with three 

PCs is superior to the WANFIS model with four PCs. Results of the PC1-3-WANFIS model reveal that 

the model forecasts are of great consistency with those of the observed values for a wide range of 

variety of the target variable. The models’ forecasts even for the extreme values are close to the real 

values which are promising to employ such an approach for extreme value analysis and forecasting. 

Reliable estimation of the extreme values is of great interest and benefit for practical applications to 

prevent or mitigate impacts of a rapid deterioration of water quality parameters. To figure out how 

well the model forecasts DO values for a wide range from low to medium and medium to high values, 

Figure 7 presents a time series of the models’ outputs versus the real values.  
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Figure 7. Times series of the forecasted and observed DO for the WANFIS models. 

The time series illustrations in Figure 7 confirms that the PC1-3-WANFIS model can be 

successfully applied for DO forecasting from low to high values. The model simulations roughly 

overlap observation demonstrating model efficiency. On the other hand, the PC1-4-WANFIS model 

has some drawbacks for DO forecasting, especially low values. There are remarkable inconsistencies 

between the model outputs and those of the corresponding field measurements. Thus, dealing with 

ANFIS models, only the model with three PCs can estimate DO concentration in the river accordingly. 

Generally speaking, in this study, it was found that principal component analysis can be 

employed as a suitable tool for dimensionality reduction but still keeping main features of the time 

series in which the models fed by the components obtained from the factor analysis showed a great 

performance. Through this study, it can be derived that the proposed combination of the discrete 

wavelet transform, PCA and ANFIS can improve performance of an existing ANFIS model with 

original time series of input variables about 6%, 30% and 70% in terms of R2, RMSE, and run time 

respectively. Similarly, the proposed approach can be successfully to improve the efficiency of the 

ANN and WANN models already developed. Dealing with ANN models, it was found that feeding 

the model with a large number of decomposed time series may mislead the training process of the 

ANN model due to the inter-correlation of the available data. Therefore, finding suitable sub-series 

to eliminate this problem can be fulfilled via PCA.  
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The results obtained through this study are comparable with those of literature where 

demonstrated PCA and wavelet transform as suitable proxies can be linked to ANN and ANFIS 

models to improve their forecasting performance. For instance, Solgi et al. (2017) concluded that 

wavelet and PCA combinations with support vector regression model can enhance the R2 of the 

model during the testing period about 10% when the model is applied for BOD forecasting. Similarly, 

Sahoo, Patra, and Khatua (2015) applied the PCA-ANFIS model for forecasting of water quality index 

River Brahmani, India. The results indicated the efficiency of the proposed model for modeling the 

index. However, the application of the proposed model is not limited to the abovementioned fields 

and they can be considered as a suitable approach for forecasting different atmospherics, hydrologic 

and other processes as well.    

5. Conclusions 

The main focus of this study was to manipulate machine learning-based forecasting models with 

a large number of input data. In this regard, five different input variables have been decomposed 

through discrete wavelet transform to generate high dimension input data. Afterward, artificial 

neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) as machine learning 

models have been employed for long term forecasting of dissolved oxygen (DO) in Willamette River, 

Oregan State, USA. Finally, principal component analysis (PCA) was considered for dimensionality 

reduction purposes to improve the accuracy of the available models and also to decrease 

computational time. To provide more comparisons, different models of ANN and ANFIS with 

different combinations of input variables from the original time series to models with efficient 

principal components were developed. Dealing with wavelet transform, Meyer wavelet function at 

level 3 was employed to decompose original time series. The main findings of the current study can 

be summarized as the following concluding remarks. 

• The models fed by the PCs have the highest performance among the other models 

demonstrating the PCA approach to catch suitable information from time series as well as 

reducing the dimension of the input variables. 

• The Wavelet-ANN model with the first four PCs has a better performance than the model with 

three PCs while for the ANFIS model the results were conversely. Therefore, more PCs for ANN 

and fewer PCs for the ANFIS models lead to the desired outputs. 

• Using factor analysis improved the performance of the existing wavelet-ANN and ANFIS 

models while decreased computational time and complexity. Therefore, the proposed approach 

can be employed for forecasting of other time series as well. 

• Among different models examined in this study, the PC1-3-WANFIS model indicating a wavelet-

ANFIS model using three principal components from the decomposed time series has the best 

performance. The proposed models perform fast with accurate forecasts for a wide range of 

variation for the DO. Moreover, the model has an excellent performance to forecast extreme 

values which are of great performance for environmental management and planning. 

• Results of this study that the factor analysis is a suitable proxy for dimensionality reduction of 

the forecasting models which improves the performance in terms of computational time and 

reliability of the outputs. The PCA has a great capability to detect the inter-correlation among 

time series which may lead to model misconduct if it does not manipulate accordingly. 

In brief, the results of this study were promising to apply PCA for dimensionality reduction and 

eliminate the inter-correlation of variables. It can successfully derive the most important input 

variables to be subsequently employed in the forecasting models. The proposed model provides 

reliable forecasts of DO for three days in advance. The combined model of PCA, wavelet, and 

ANN/ANFIS can be efficiently used for the forecasting of other water quality indicators or 

environmental indicators with different time steps in advance. Furthermore, it can be generalized 

and adopted for forecasting of several different hydrological variables such as flow discharge, 

suspended sediment load, rainfall, and groundwater level among the others. 
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Nomenclature 

PCA Principal Component Analysis 

ANFIS Adaptive Neuro-Fuzzy Inference System  

ANN Artificial Neural Network 

FT Fourier Transform 

CWT Continuous Wavelet Transform 

DWT Discrete Wavelet Transform 

RMSE Root Mean Square Error 

CV Coefficient of Variation 

DO Dissolved Oxygen 

BOD Biochemical Oxygen Demand 

Chl Chlorophyll 

SC Specific Conductivity 

Tur Turbidity 

 

References 

Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater 

level forecasting. Journal of Hydrology, 407(1-4), 28-40.  

Ahani, A., Shourian, M., & Rad, P. R. (2018). Performance assessment of the linear, nonlinear and 

nonparametric data driven models in river flow forecasting. Water Resources 

Management, 32(2), 383-399.  

Akansu, A. N., Haddad, P. A., Haddad, R. A., & Haddad, P. R. (2001). Multiresolution signal 

decomposition: transforms, subbands, and wavelets: Academic press. 

Anusree, K., & Varghese, K. (2016). Streamflow prediction of Karuvannur River Basin using ANFIS, 

ANN and MNLR models. Procedia Technology, 24, 101-108.  

Beale, H. D., Demuth, H. B., & Hagan, M. (1996). Neural network design. Pws, Boston.  

Bennett, J. P., & Rathbun, R. (1971). Reaeration in open-channel flow (Vol. 737): US Government 

Printing Office. 

Cattell, R. (1996). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 

629-637.  

Chang, F.-J., & Chang, Y.-T. (2006). Adaptive neuro-fuzzy inference system for prediction of water 

level in reservoir. Advances in water resources, 29(1), 1-10.  

Cox, B. (2003). A review of dissolved oxygen modelling techniques for lowland rivers. Science of 

the Total Environment, 314, 303-334.  

Crane, D. R., Busby, D. M., & Larson, J. H. (1991). A factor analysis of the Dyadic Adjustment Scale 

with distressed and nondistressed couples. American Journal of Family Therapy, 19(1), 60-

66.  

Daliakopoulos, I. N., Coulibaly, P., & Tsanis, I. K. (2005). Groundwater level forecasting using 

artificial neural networks. Journal of Hydrology, 309(1-4), 229-240.  

Dastorani, M. T., Moghadamnia, A., Piri, J., & Rico-Ramirez, M. (2010). Application of ANN and 

ANFIS models for reconstructing missing flow data. Environmental monitoring and 

assessment, 166(1-4), 421-434.  

Gong, Y., Wang, Z., Xu, G., & Zhang, Z. (2018). A comparative study of groundwater level 

forecasting using data-driven models based on ensemble empirical mode decomposition. 

Water, 10(6), 730.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 July 2020                   doi:10.20944/preprints202007.0397.v1

Peer-reviewed version available at Mathematics 2020, 8, 1233; doi:10.3390/math8081233

https://doi.org/10.20944/preprints202007.0397.v1
https://doi.org/10.3390/math8081233


 

Hadi, S. J., & Tombul, M. (2018). Monthly streamflow forecasting using continuous wavelet and 

multi-gene genetic programming combination. Journal of Hydrology, 561, 674-687.  

Heddam, S., & Kisi, O. (2017). Extreme learning machines: a new approach for modeling dissolved 

oxygen (DO) concentration with and without water quality variables as predictors. 

Environmental Science and Pollution Research, 24(20), 16702-16724.  

Heddam, S., Sanikhani, H., & Kisi, O. (2019). Application of artificial intelligence to estimate 

phycocyanin pigment concentration using water quality data: a comparative study. Applied 

Water Science, 9(7), 164.  

Li, H., Lu, Y., Zheng, C., Yang, M., & Li, S. (2019). Groundwater level prediction for the arid oasis of 

Northwest China based on the artificial bee colony algorithm and a back-propagation 

neural network with double hidden layers. Water, 11(4), 860.  

Maier, H. R., & Dandy, G. C. (1996). The use of artificial neural networks for the prediction of water 

quality parameters. Water resources research, 32(4), 1013-1022.  

Mallat, S. (1998). A wavelet tour of signal processing. San Diego, London, Boston, NY: Sydney, 

Tokyo, Toronto: Academic Press. 

Nourani, V., Kisi, Ö., & Komasi, M. (2011). Two hybrid artificial intelligence approaches for 

modeling rainfall–runoff process. Journal of Hydrology, 402(1-2), 41-59.  

Nourani, V., & Parhizkar, M. (2013). Conjunction of SOM-based feature extraction method and 

hybrid wavelet-ANN approach for rainfall–runoff modeling. Journal of Hydroinformatics, 

15(3), 829-848.  

Phelps, E. B., & Streeter, H. (1958). A study of the pollution and natural purification of the Ohio 

River: US Department of Health, Education, & Welfare. 

Pramanik, N., Panda, R. K., & Singh, A. (2011). Daily river flow forecasting using wavelet ANN 

hybrid models. Journal of Hydroinformatics, 13(1), 49-63.  

Sahoo, M. M., Patra, K., & Khatua, K. (2015). Inference of water quality index using ANFIA and PCA. 

Aquatic Procedia, 4, 1099-1106.  

Sarkar, A., & Pandey, P. (2015). River water quality modelling using artificial neural network 

technique. Aquatic Procedia, 4, 1070-1077.  

Sharghi, E., Nourani, V., Molajou, A., & Najafi, H. (2019). Conjunction of emotional ANN (EANN) 

and wavelet transform for rainfall-runoff modeling. Journal of Hydroinformatics, 21(1), 

136-152.  

Solgi, A., Pourhaghi, A., Bahmani, R., & Zarei, H. (2017). Improving SVR and ANFIS performance 

using wavelet transform and PCA algorithm for modeling and predicting biochemical 

oxygen demand (BOD). Ecohydrology & Hydrobiology, 17(2), 164-175.  

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling 

and control. IEEE transactions on systems, man, and cybernetics(1), 116-132.  

Thai, M. T., Wu, W., & Xiong, H. (2016). Big Data in Complex and Social Networks: CRC Press. 

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.  

Zhang, X., & Wei, Z. (2019). A hybrid model based on principal component analysis, wavelet 

transform, and extreme learning machine optimized by Bat algorithm for daily solar 

radiation forecasting. Sustainability, 11(15), 4138.  

Zurada, J. M. (1992). Introduction to artificial neural systems (Vol. 8): West St. Paul. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 July 2020                   doi:10.20944/preprints202007.0397.v1

Peer-reviewed version available at Mathematics 2020, 8, 1233; doi:10.3390/math8081233

https://doi.org/10.20944/preprints202007.0397.v1
https://doi.org/10.3390/math8081233

