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Abstract: Remote sensing has been used as an important tool for disaster monitoring and disaster 14 
scope extraction, especially for the analysis of spatial and temporal disaster patterns of large-scale 15 
and long-duration series. Based on the Google Earth Engine cloud platform, this study used MODIS 16 
vegetation index products with 250-m spatial resolution synthesized over 16 days from the period 17 
2005–2019 to develop a rapid and effective method for monitoring disasters across a wide 18 
spatiotemporal range. Three types of disaster monitoring and scope extraction models are proposed: 19 
the normalized difference vegetation index (NDVI) median time standardization model (RNDVI_TM(i)), 20 
the NDVI median phenology standardization model (RNDVI_AM(i)(j)), and the NDVI median 21 
spatiotemporal standardization model (RNDVI_ZM(i)(j)). The optimal disaster extraction threshold for 22 
each model in different time phases was determined using Otsu’s method, and the extraction results 23 
were verified by medium-resolution images and ground-measured data of the same or quasi-same 24 
period. Finally, the disaster scope of cultivated land in Heilongjiang Province from 2010–2019 was 25 
extracted, and the spatial and temporal patterns of the disasters were analyzed based on 26 
meteorological data. This analysis revealed that the three aforementioned models exhibited high 27 
disaster monitoring and range extraction capabilities, with verification accuracies of 97.46%, 96.90%, 28 
and 96.67% for RNDVI_TM(i), RNDVI_AM(i), and (j)RNDVI_ZM(i)(j), respectively. The spatial and temporal disaster 29 
distributions were found to be consistent with the disasters of the insured plots and the 30 
meteorological data across the entire province. Moreover, different monitoring and extraction 31 
methods were used for different disasters, among which wind hazard and insect disasters often 32 
required a delay of 16 days prior to observation. Each model also displayed various sensitivities and 33 
were applicable to different disasters. Compared with other techniques, the proposed method is fast 34 
and easy to implement. This new approach can be applied to numerous types of disaster monitoring 35 
as well as large-scale agricultural disaster monitoring and can easily be applied to other research 36 
areas. This study presents a novel method for large-scale agricultural disaster monitoring. 37 

Keywords: Google Earth Engine; MODIS; disaster monitoring; remote sensing index 38 
39 

1. Introduction40 

Climate impact and environmental change are two important factors that restrict the 41 
development of agricultural production. Among them, the impacts of droughts, windstorms, pest 42 
infestations, hailstorms, and other agricultural disasters are the most significant. As a result of the 43 
global warming trend, the increasing frequency and intensity of various extreme weather events 44 
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around the world has brought great harm to food security and agricultural development [1]. The 45 
traditional agricultural disaster monitoring methods are time-consuming and mainly consist of field 46 
investigation and sampling, which are difficult to implement in large areas. Compared with the 47 
traditional methods, the use of remote sensing to monitor agricultural disasters has the advantages 48 
of continuous spatiotemporal access to high-resolution surface information, fast data acquisition, and 49 
a wide range. For these reasons, remote sensing has been widely used in agricultural disaster and 50 
vegetation dynamic monitoring, and numerous remote sensing measurement methods have been 51 
developed to monitor global vegetation and extreme climate events [2, 3]. The monitoring of 52 
agricultural disasters via remote sensing plays an essential role in rapid crop loss assessment, crop 53 
condition monitoring, crop insurance, and food security. Therefore, there is an urgent necessity to 54 
establish a rapid and large-scale agricultural disaster monitoring method with remote sensing as its 55 
technical basis. 56 

At present, many agricultural disaster monitoring methods have been proposed, including ground 57 
spectral features, remote sensing vegetation indices, and vegetation index time series. Many vegetation 58 
indices based on remote sensing parameters, including the normalized difference vegetation index 59 
(NDVI), enhanced vegetation index (EVI), normalized difference water index (NDWI), vegetation 60 
condition index (VCI), vegetation health index (VHI), disaster vegetation damage index (DVDI), fire 61 
weather index (FWI), crop water stress index (CWSI), vegetation supply water index (VSWI), and 62 
temperature vegetation dryness index (TVDI), are widely used in disaster monitoring. Furthermore, 63 
based on these indices, a daily-scale forest fire danger forecasting system (FFDFS) was developed for 64 
drought monitoring, and a fire risk assessment and remote sensing-based flood crop loss assessment 65 
service system (RF-CLASS) has been employed to assess crop damage caused by waterlogging [4-10]. 66 
The VCI has proven to be an effective means of monitoring drought occurrence and measuring the 67 
intensity, duration, and impact of droughts around the world. The spatial and temporal ranges of 68 
agricultural drought can be studied via the VCI [11], although the correlation between the VCI and the 69 
meteorological drought index based on weather station data is not high [12]. The VCI is also not very 70 
sensitive to short-term precipitation shortages. In addition, there is significant spatial variability in the 71 
relationship strength between the VCI and the meteorological drought index [13]. The VHI is a widely 72 
used comprehensive remote sensing drought index whose goal is to improve the VCI in areas with high 73 
soil moisture and long-term cloudy conditions [14]. It is also used to evaluate the degree of agricultural 74 
drought and extract the spatiotemporal range of drought [15]. However, drought monitoring via the 75 
VHI requires the assumption of a negative correlation between the NDVI and land surface temperature 76 
(LST). Therefore, the VHI is not applicable in regions and periods where the NDVI-Ts correlation 77 
coefficient is non-negative [16]. The TVDI is feasible for large-scale drought monitoring, although it is 78 
usually affected by its high sensitivity to clouds. Hence, it should not be used to monitor moderate and 79 
severe droughts [17][18][19]. The crop water stress index (CWSI) is widely used as an indicator of crop 80 
water status. The short-term oscillations of canopy temperature and vegetative flushing are the main 81 
factors that make the CWSI less effective in wet areas, which is its chief limitation [20][21]. The VSWI 82 
and TVDI can be used for drought monitoring, but they are not suitable for areas with large elevation 83 
changes [22]. Moreover, the CWSI, TVDI, and VSWI exhibit certain lags in drought detection, meaning 84 
that they take some time to respond [23]. In view of these lagging vegetation indices, hyperspectral 85 
remote sensing technology can be used to monitor winter wheat freezing injury and locust disasters 86 
[24][25][26]. The DVDI, which is often used in flood disaster and wind disaster monitoring, has a linear 87 
relationship with crop yield reduction and is an effective indicator of the degree of vegetation damage 88 
[27][28]. At the same time, the EVI is also frequently utilized to describe vegetation patterns in 89 
ecosystems affected by hurricanes, such as tropical rainforests, tropical arid forests, and temperate arid 90 
grasslands. The NDVI and EVI, as the most widely used remote sensing indicators, are usually adopted 91 
for crop growth monitoring. MODIS NDVI time series can be used to analyze the spatiotemporal 92 
evolution of droughts and ENSO events in order to estimate the associated yield loss [29][30][31]. In 93 
areas with less vegetation, methods based on the vegetation index have their limitations. For desert 94 
locusts, based on the mid-infrared (MIR), near-infrared (NIR), and red reflectance, multi-temporal and 95 
multi-spectral image analysis is effective [32]. Corn fields damaged by hail can be effectively identified 96 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2020                   

Peer-reviewed version available at Sustainability 2020, 12, 6497; doi:10.3390/su12166497

https://doi.org/10.3390/su12166497


 3 of 23 

by comparing the ΔNDVI before and after the hail from HJ-1 CCD images, although it is difficult to 97 
precisely classify the damage [33][34]. Pixel-based time series derived from enhanced vegetation index 98 
(EVI) data can be extracted to detect flood disturbances of crop production, but when assessing flood 99 
events occurring during crop maturity, the accuracy rate is very low [35]. At the same time, the habitat 100 
of Asian locusts can be monitored [36]. Some studies have employed three different remote sensing 101 
green indices, namely the normalized vegetation difference index (NDVI), the enhanced vegetation 102 
index (EVI), and the green index (GI), to study the damage of frost to the canopy [37]. The above 103 
indicators have been widely used to monitor crop growth in specific regions and countries, as well as 104 
the entire world. Crop growth monitoring usually uses the NDVI as the main indicator of crop 105 
conditions, either by combining the NDVI value with other variables for analysis and utilization, or by 106 
calculating the difference between the multi-year average (or selected “reference” year) and the NDVI 107 
of that year to monitor the growth of crops [38]. However, this method also has its limitations. First, one 108 
needs to obtain multi-year averages for the same crop, which requires that the crop planting structure 109 
and distribution remain unchanged. Second, the error of the crop growth fluctuation in the selected 110 
reference year will affect the assessment results of that year. In order to avoid the crop distribution 111 
changes that lead to information errors, C. Li proposed monitoring the growth of winter wheat based 112 
on the percentage of crop NDVI (pNDVI) [39]. Few studies, however, can remove this limitation in 113 
terms of phenology. In addition, most research generally focuses on relatively small areas. For example, 114 
when monitoring disasters using ground spectral characteristics, the use of visible and near-infrared 115 
reflectance spectroscopy is an alternative method for monitoring soil contaminated by heavy metals, 116 
although the study area tends to focus on either a particular city or county [40][41]. From the above 117 
research, we determined that the traditional disaster monitoring methods rely on the disaster data 118 
collected by surface stations in order to construct indicators based on the data. In addition, the amount 119 
of data obtained is limited, and the data are difficult to collect. Moreover, many disaster monitoring 120 
methods based on remote sensing exhibit various application shortcomings. Most disaster monitoring 121 
research methods are limited by large image data, generally focus on small time scales or small research 122 
areas, and their speeds are slow since they lack a fast large-scale disaster discrimination scheme. 123 
Therefore, it is difficult to quickly analyze the spatiotemporal disaster pattern in a certain area. Google 124 
Earth Engine (GEE) can solve this problem since it can quickly carry out large-scale and long-range 125 
disaster monitoring in a long-term sequence analyze the spatiotemporal pattern of the designated area. 126 
Google Earth Engine is a cloud platform that stores and processes BP-level global time series satellite 127 
images and vector data. Researchers from various countries have used GEE to conduct research in 128 
vegetation monitoring, land cover, agricultural applications, disaster management, and Earth science 129 
[42][43]. A. Beaton et al. calculated the icebreaking period of a river for flood monitoring using GEE 130 
[44]; N. Sazib et al. verified the value of global soil moisture data for drought disaster monitoring using 131 
GEE [45]; C. C. Liu et al. developed a flood control and emergency system based on GEE (FPERS) [46]; 132 
and B. Pradhan et al. used GEE to provide physical support for the assessment of the forest impacts of 133 
sand dune risk and hurricanes in the Sabha region of Libya [47]. Based on GEE, L. Lu et al. examined 134 
the spatial characteristics of vegetation destruction induced by typhoons in the coastal areas of 135 
southeastern China from 2000–2018 [48]. 136 

In terms of phenology, there have been few studies on large-scale disaster monitoring and disaster 137 
range extraction. In addition, most of the research has focused on a single disaster type and has lacked 138 
a method for extracting a wide range of disaster types. In GEE, different vegetation indices extracted 139 
through multi-temporal remote sensing images are used as standard values to reflect the normal 140 
conditions of crop growth in different regions and different growth stages, and they are compared with 141 
the vegetation index extracted in a single time phase in order to compare agricultural disasters in the 142 
region. The situation is monitored more accurately, thereby making the results universally applicable. 143 
It remains difficult, however, to extract the standard value that can represent the average growth of 144 
crops. To address this issue, this study introduces the NDVI median time normalization model 145 
(RNDVI_TM(i)), the NDVI index median phenology standardization model (RNDVI_AM(i)(j)), and the NDVI 146 
median time-space normalization model (RNDVI_ZM(i)(j)), which comprehensively consider the effects of 147 
phenology, different disasters and crop types, and changes in planting structure, with the goal of 148 
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proposing a large-scale GEE-based monitoring method for the rapid extraction of agricultural disasters. 149 
We attempted to utilize the MODIS 16-day NDVI time series data after smooth reconstruction and 150 
compare and analyze the regional-scale disaster index analysis map generated by the three models. 151 
Additionally, we planned to extract the disaster threshold of the study area using Otsu’s method and 152 
compare it with HJ-1A/B CCD data in order to analyze the spatial and temporal distributions of 153 
disasters in Heilongjiang Province from 2000–2019. This method features good transferability and can 154 
be quickly applied in other areas. 155 

2. Materials and Methods  156 

2.1. Study area 157 

Located between latitude 43°25'–53°33'N and longitude 121°11'–135°05'E, Heilongjiang Province 158 
straddles three humidity zones from east to west. The total land area of the province is approximately 159 
473,000 km2, of which agricultural land accounts for ~39.5045 million hectares. In terms of elevation, it 160 
is high in the northwest, north, and southeast, and low in northeast and southwest. Heilongjiang 161 
Province is located in the eastern part of Eurasia to the west of the Pacific Ocean, and experiences a 162 
temperate continental climate. The average annual temperature in the province generally ranges from 163 
-5°C to 5°C, and its annual precipitation varies from 400 to 650 mm, with uneven spatial and temporal 164 
distributions. Agricultural disasters are frequent, and the frequencies of the representative disasters of 165 
droughts, floods, windstorms, hailstorms, low temperatures, and freezing, as well as disease and insect 166 
disasters, are increasing [49][50]. 167 

 168 
Figure 1. Cultivated land in Heilongjiang Province 169 

2.2. Data 170 

2.2.1. MOD13Q1 171 

The MODIS vegetation index (MOD13Q1) synthesized over 16 days with a 250-m spatial 172 
resolution that was used in the study area is a terrestrial data product, whose complete and formal 173 
designation is the MODIS/Terra Vegetation Indices 16-day L3 Global 250-m SIN Grid. This product is 174 
calculated by the atmospheric correction of bidirectional surface reflectance and possesses the 175 
advantages of moderate spatial resolution, high temporal resolution, high spectral resolution, wide 176 
observation range, and low cost. 177 
 178 
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2.2.2. HJ-1A/B 179 

The verification data for the disaster monitoring in this study were the HJ-1A/B data with a 30-m 180 
spatial resolution from the environmental disaster mitigation satellite. The Chinese HJ-1A/B satellite 181 
makes synchronous ground observations, the charge-coupled device (CCD) sensor captures the ground 182 
features with a 30-m pixel resolution at a minimum angle, and four bands cover the visible light and 183 
near-infrared wavelength ranges. Each satellite has two CCD sensors, and the constellation consisting 184 
of two satellites forms an observation network covering China and its surrounding areas, featuring 185 
large-scale, all-weather, all-day, dynamic environmental and disaster monitoring capabilities. In 186 
addition, it was combined with the crop insurance plots from 2011–2019 in order to determine disaster 187 
scope via visual interpretation. Insurance company personnel carried out field verification on 80% of 188 
the plots, and the accuracy was determined to be > 95%. These data were used to validate the extraction 189 
extent of the disasters in this study. 190 

2.2.3. Meteorological data 191 

The spatial and temporal distribution characteristics of agricultural disasters in Heilongjiang 192 
Province and its prefecture-level cities from 2010–2019 were analyzed based on the precipitation, 193 
temperature, humidity, and sunshine duration meteorological data gathered by the Heilongjiang 194 
Provincial Bureau of Statistics (http://www.hlj.stats.gov.cn/) and the China Meteorological Disaster 195 
Yearbook. 196 

2.2.4. Cultivated land range data 197 

In this study, in order to avoid the influence of other land types and to conduct phenological 198 
zoning for the construction of the disaster monitoring model, the disaster monitoring and extraction for 199 
the cultivated land was performed using the land range extracted from the global 30-m land cover data. 200 
The land use classification data were from the Northeast Institute of Geography and Agroecology of 201 
Chinese Academy of Sciences, which used 2014 land samples. Taking the CCD images from the China 202 
Resources No. 1 satellite and the Landsat remote sensing images as the main data sources, and adopting 203 
the manual visual interpretation method, we obtained the cultivated land range, as shown in Figure 1. 204 

2.3. Method 205 

2.3.1. Data preprocessing 206 

Here, the MOD13Q1 reflectivity product was used to construct the model based on Google Earth 207 
Engine. GEE contains over 200 public datasets and more than 5 million images, and is increasing at a 208 
rate of approximately 4,000 images per day. Images uploaded into Google Earth Engine are 209 
preprocessed. In GEE, the MOD13Q1 NDVI products are calculated based on atmosphere-corrected 210 
bidirectional surface reflectance, which is shielded against water, clouds, heavy aerosols, and cloud 211 
shadows. We selected the good data and marginal data from the SummaryQA in order to remove the 212 
impact of clouds and snow and ensure that the extracted disaster scope was not affected by outliers. 213 

2.3.2. Phenological remote sensing zoning method 214 

In terms of the remote sensing image processing, 23 MODIS (MOD13Q1) remote sensing data 215 
with a spatial resolution of 250 m synthesized over 16 days in 2014 were employed to extract 11 crop 216 
phenological features, and the multi-phase NDVI time series was smoothly reconstructed using 217 
Savitzky-Golay filtering. The dynamic threshold method was utilized to extract the key phenological 218 
values, and the intervention of different vegetation types and soil background values were 219 
eliminated. Based on the time series changes of the NDVI curve, the beginning of the crop growth 220 
period was defined as the sharp rise of the NDVI curve on the left side, i.e., the time when the 221 
increasing range was 20% of the overall increase. At the same time, the end of the crop growth period 222 
was defined as the sharp decrease of the NDVI curve, i.e., the time when the decreasing range was 223 
20% of the overall increase. The 11 extracted phenological characteristic parameters are listed in Table 224 
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1. The regions with similar phenological values were categorized as a single study area, and 225 
multiscale segmentation was carried out on the cultivated land. Via this method, different crops with 226 
various geographical distributions and growth conditions were divided into different agricultural 227 
phenological zones. It was required that the laws of zonality and non-zonality for phenological 228 
distribution as well as the principle of crop similarity and difference be followed, and certain zoning 229 
methods were adopted in order to divide a region into units of different grades, with clear differences 230 
in crop growth. Pursuant to the method described above, Heilongjiang Province was divided into 39 231 
phenological areas [51]. 232 

Table 1. Definition of phenological parameters in remote sensing 233 

Name Definition interpretation 
NDVIStart Start of crop growth period 
NDVIEnd End of crop growth period 
NDVIAmp Amplitude 
NDVIBase Average of NDVI at start and end 
NDVILength Length of crop growth period 
NDVISmall Integral of the average NDVI for the entire period 
NDVIMax  NDVI maximum 

NDVILeft 
Slope between the 20% and 80% amplitude points on the 

left side of the rising curve 

NDVIRight 
Slope between the 20% and 80% amplitude on the right 

side of the descending curve 
NDVIMid Midpoint of the entire period 
NDVILarge NDVI integral for the entire period 

 234 

2.3.3. Construction of three disaster monitoring models 235 

Certain differences exist in Heilongjiang Province: the phenological periods and cultivated land 236 
planting structures, the vegetation indices of crops growing at the same time but in different areas, 237 
and the vegetation indices of different crops. Therefore, the results of disaster range recognition and 238 
extraction based directly on the NDVI value difference of a certain phase are not precise and not 239 
universal. For this situation, the following three models were proposed and calculated in GEE: 240 

The RNDVI_TM(i) model with normalized difference median vegetation index time: 241 

  242 

                   𝑅ே஽௏ூ_்ெ(௜) =
ே஽௏ூ(೔)ିே஽௏ூ೅ಾಶವ(೔)

ே஽௏ூ೅ಾಶವ(೔)
× 100%                (1) 243 

                                                                                244 
where RNDVI_TM(i) represents the time standardization value of the NDVI(i) of the ith time phase in a 245 

certain year, NDVI(i) is the NDVI value of the ith time phase in a certain year, and NDVITMED(i) is the NDVI 246 
value of the ith time phase for five consecutive years. The smaller the RNDVI_TM(i) value, the less the 247 
vegetation grows. Five years was selected as the time scale because longer time scales are susceptible 248 
to management decisions such as dryland diversion, crop rotation, and changes of planting structure. 249 
Meanwhile, shorter time scales cannot reflect the time trend, and are prone to the influence of individual 250 
annual outliers. 251 

 252 
The RNDVI_AM(i)(j) model of phenology standardization of the median value of the normalized 253 

difference vegetation index is: 254 

 𝑅ே஽௏ூ_஺ெ(௜)(௝) =
ே஽௏ூ(೔)ିே஽௏ூಲಾಶವ(೔)(ೕ)

ே஽௏ூಲಾಶವ(೔)(ೕ)
× 100%             (2) 255 
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 256 
where RNDVI_AM(i)(j) is the phenological standardization value of the median NDVI(i) in the jth 257 

phenological region of the ith phase in a certain year, NDVI(i) Is the NDVI value of the ith phase in a certain 258 
year, and NDVIAMED(i)(j) is the median value of the NDVI region in the jth phenological region of the ith 259 
phase in a certain year. The smaller the RNDVI_AM(i)(j) value, the worse the vegetation grows. 260 
 261 

The RNDVI_ZM(i)(j) model is based on an improvement of Eqs. (1) and (2). Given that the median value 262 
curve of the NDVI region for the same phenological area in different years may be affected by the 263 
change of crop planting structure and other factors, the median NDVI values extracted at the same time 264 
in different years can exhibit great differences. Therefore, the regional median of the phase NDVI of 265 
phase I for five consecutive years is proposed as an alternative. 266 
  267 

           𝑅ே஽௏ூ_௓ெ(௜)(௝) =
ே஽௏ூ(೔)ିே஽௏ூೋೈಶವ(೔)(ೕ)

ே஽௏ூೋಾಶವ(೔)(ೕ)
× 100%              (3) 268 

  269 
where RNDVI_ZM(i)(j) is the spatiotemporal standardization value of the median NDVI(i) in the jth 270 

phenological region of the ith phase in a certain year, NDVI(i) is the NDVI value of the ith phase in a certain 271 
year, and NDVIZMED(i)(j) is the standardized median value of the NDVI in the jth phenological region of 272 
the ith phase for five consecutive years. The smaller the RNDVI_ZM(i)(j) value, the less the vegetation grows. 273 

2.3.4. Determination of threshold value 274 

Table 2. Phenological period of main crops in Heilongjiang Province 275 

Crop species  Crop phenology  (10 days/month)     

Rice 
Sowing and seedling 

raising 
Mid-April–mid-May 

Transplanting and 
rejuvenation 

Late May–early June 

Tillering 
Mid June–
mid-July 

Booting and 
tasseling 

Late July–mid-
August 

Milk 
Late 

August–
early 

September 

Mature 
Mid-

September–
late 

September 

Corn 
Seed and emergence 

Late April–early 
May 

Seedling 
Mid-May–mid-June 

Jointing 
Late June–
mid-July 

Emasculation 
Late July–early 

August 

Milk 
Mid-

August–
early 

September 

Mature 
Mid-

September– 
late 

September 

Soybean 
Seed and emergence 
Early May–late May 

Third Leaf 
Early June–late June 

Parabranching 
Late June 

Flowering 
Early July–mid 

July 

Podding 
Mid-

August–
early 

September 

Mature 
Mid-

September–
late 

September 

 276 

From mid-April to early June, crops in Heilongjiang Province are in the seeding stage and seedling 277 
stage, during which the crop coverage is low and the NDVI value is small, and thus images are easily 278 
susceptible to the soil background value. Therefore, this study began extracting the disaster scope from 279 
the day-of-year (DOY) 177 time phase. In mid-September, precocity occurs in some crops, so the disaster 280 
area cannot be directly extracted on DOY 273. In this study, images between DOY 161 and DOY 257 281 
were selected. A total of 113 typical disasters reported by insurance companies from 2011–2019 were 282 
chosen as sample data. Otsu’s method was employed to determine the appropriate threshold value for 283 
extracting the disaster scope and verifying its universal applicability via the GEE monitoring model. 284 
We adopted the average value without the extreme outliers as the threshold in order to distinguish 285 
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between disasters and non-disasters and calculated the proportions of the MODIS image extraction 286 
results and the insured plots to obtain the corresponding error size and verify its accuracy. 287 

2.3.5. Disaster extraction 288 

When crops suffer from disasters, the values of RNDVI_TM(i), RNDVI_AM(i)(j), and RNDVI_ZM(i)(j) are slightly 289 
lower than their normal levels. Therefore, when the standardized value of a certain regional model 290 
was found to be less than a threshold value, the crop was identified as being affected by a disaster. 291 
The smaller the values of RNDVI_TM(i), RNDVI_AM(i)(j), and RNDVI_ZM(i)(j), the more severe the damage. Thus, 292 
this study analyzed the RNDVI_TM(i), RNDVI_AM(i)(j), and RNDVI_AM(i)(j) values in Heilongjiang Province from 293 
2010–2019 in accordance with the time sequence. The average value extracted using Otsu’s method 294 
was taken as the threshold value, and the disaster scope was extracted from the corresponding remote 295 
sensing disaster monitoring model via the determined threshold values of each time phase. Given 296 
the spatial resolution of the MODIS data and the need to remove small patches after the extraction of 297 
agricultural disasters, the disaster areas covering < 6 pixels (approximately 40 hectares) were 298 
eliminated in order to obtain the agricultural disaster scope of Heilongjiang Province from 2010–2019. 299 

2.3.6. Accuracy verification 300 

In order to test the accuracy of the scope of the disasters extracted by the three types of disaster 301 
monitoring models, and selecting the DOY 285 fact-finding disasters from 2010–2019 as the validation 302 
sample, this study used the MODIS data close to the moderate resolution of the HJ-1A/1B CCD image 303 
NDVI value from the calculation of the wave band operation and combined this with the data 304 
reported by the insurance company, the changes of the NDVI value in the affected area, and the 305 
affected area and disaster scope extracted from the field data of the agricultural disaster as the 306 
validation data. With a spatial resolution of 30 m, the HJ-1A/B extracts the disaster scope whose 307 
precision is higher than the actual sampling results. Therefore, the disaster range extracted by this 308 
image was taken as the truth value to verify the accuracy of the extracted disaster range by the MODIS 309 
image. 310 

We took Absolute error =| Extract value – True value |, i.e., the Absolute value between the 311 
disaster result extracted from the MODIS data and the disaster result extracted from HJ-1A/B, as the 312 
accuracy evaluation parameter. Finally, the errors of 285 verification samples for the different models 313 
were calculated as the average values of the accuracy test. 314 

3. Results 315 

3.1. Phenological division of cultivated land 316 

The purpose of utilizing the key phenological values as the basis of zoning in Heilongjiang 317 
Province was to combine the regions with similar phenological values into a single study region, then 318 
conduct multiscale segmentation within the cultivated land. After conducting numerous experiments 319 
and using the average segmentation evaluation index (ASEI) for calculation and analysis, we 320 
discovered that the ASEI value reached its maximum when the optimal segmentation scale was 70. 321 
The 39 phenological regions that were ultimately obtained are shown in Figure 2. After the cultivated 322 
land was categorized into regions according to its phenological values, the median values of the 323 
different phenological regions were extracted from the processed images in GEE as NDVIAMED(i)(j) and 324 
NDVIZMED(i)(j), and RNDVI_AM(i)(j) and RNDVI_ZM(i)(j) were then calculated. 325 
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 326 
Figure 2. Phenological zones in Heilongjiang Province 327 

3.2. Precision analysis 328 

We used Otsu method to extract the threshold value of DOY 113 sample points of different 329 
disaster types on GEE. From Table 3, we find that in the three models, the threshold size is mainly 330 
distributed between -0.1 ~-0.2. The thresholds extracted from different disaster types and by different 331 
models are different. The error in the table is received based on the difference between the proportion 332 
of disaster results extracted by HJ-1A/B provided by the insurance company and the proportion of 333 
disaster results extracted by MODIS image. Among them, the errors of insect and wind disasters are 334 
larger. At the same time, we extracted the threshold value of insect and wind disasters after 16 days 335 
and conducted precision analysis. It was found that the errors of the results of these two disasters 336 
were smaller and the accuracy was higher through images observed after 16 days. Therefore, we used 337 
the images of 16 days later to calculate the threshold value of insect and wind disasters. The errors of 338 
hailstorm, drought disaster and flood disaster are small, so The MODIS image which is close to the 339 
time of disaster is used to calculate the disaster threshold for disaster monitoring. 340 

 341 

Table 3. Otsu extraction disaster threshold and disaster error analysis example  342 

Model Definition interpretation 

Proportion of  
HJ-1A/b monitoring 

results in the 
insured land(%) 

Threshold 

Proportion of 
MODIS monitoring 

results in the 
insured land(%) 

Error(%) 

RNDVI_TM(i) 
20170803Youyi hailstorm  1.31 -0.15 1.39 0.08  

20180703Tonghe flood 2.27 -0.16 2.36 0.09  
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20160813Longjiang drought 0.47 -0.14 0.57 0.10  
20170802Fuyuan flood  0.17 -0.08 0.30 0.13  

20180703Zhaodong flood 13.14 -0.11 12.71 0.44  
20120702Maqiaohe hailstorm 84.82 -0.14 85.50 0.68  

20160702Hailstormun hailstorm 4.60 -0.15 3.88 0.73  
20160829Gannan drought 1.47 -0.16 0.66 0.82  

2018080Luobei wind hazard 2.47 -0.16 0.25 2.22  
20170901Beian wind hazard 16.63 -0.10 35.04 18.41  

RNDVI_AM(i)(j) 

20170803Youyi hailstorm  6.87 -0.10 10.96 4.09  
20180703Tonghe flood 2.27 -0.14 3.21 0.94  

20160813Longjiang drought 21.68 -0.14 25.74 4.06  
20170802Fuyuan flood  0.87 -0.17 0.77 0.10  

20180703Zhaodong flood 23.19 -0.14 19.32 3.88  
20120702Maqiaohe hailstorm 84.82 -0.17 89.06 4.24  

20160702Hailstormun hailstorm 54.57 -0.18 30.62 23.95  
20160829Gannan drought 1.47 -0.15 2.43 0.95  

2018080Luobei wind hazard 2.47 -0.15 0.63 1.84  

RNDVI_ZM(i)(j)   

20170803Youyi hailstorm  38.41 -0.13 51.15 12.73  
20180703Tonghe flood 6.87 -0.15 8.22 1.35  

20160813Longjiang drought 2.27 -0.14 1.79 0.48  
20170802Fuyuan flood  41.16 -0.14 63.13 21.98  

20180703Zhaodong flood 0.87 -0.13 0.97 0.10  
20120702Maqiaohe hailstorm 13.14 -0.11 17.28 4.14  

20160702Hailstormun hailstorm 84.82 -0.16 91.64 6.82  
20160829Gannan drought 36.25 -0.16 36.43 0.18  

2018080Luobei wind hazard 3.01 -0.16 3.74 0.73  
20170901Beian wind hazard 2.47 -0.18 0.47 1.99  

 343 
 344 
After removing the extreme values from the thresholds of the different phases in the three 345 

monitoring models, the mean value was taken as the threshold value of the time phase. The sizes and 346 
errors of the average thresholds are listed in Table 4 Generally speaking, as time increased, the 347 
threshold values increased, indicating that the disasters across the entire province exhibited a gradual 348 
decreasing trend during the crop growth period. In addition, the difference of the threshold value 349 
between the RNDVI_AM(i)(j) and RNDVI_ZM(i)(j) models for the same time phase was small, implying that the 350 
extraction disaster scopes may have been similar. At the same time, as shown in Tables 5 and 6, based 351 
on either the environmental star monitoring results or the MODIS monitoring results, the proportion 352 
of hailstorms was the highest, which as followed by drought and flood disasters. Windstorms and 353 
insect disasters often accounted for a small proportion of monitoring results in the insured land, i.e., 354 
the disaster areas resulting from these events were small. On DOY 209, the relatively large average 355 
error may have led to the large error of the disaster area extracted during this period. Having selected 356 
the DOY 285 samples to test the accuracy of the three monitoring models, our calculations revealed 357 
that the average precision values of the RNDVI_TM(i), RNDVI_AM(i)(j), and RNDVI_ZM(i)(j) monitoring models were 358 
97.46%, 96.90%, and 96.67%, respectively. In Table 6, the average errors of droughts, windstorms, 359 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2020                   

Peer-reviewed version available at Sustainability 2020, 12, 6497; doi:10.3390/su12166497

https://doi.org/10.3390/su12166497


 11 of 23 

hailstorms, and floods were smaller and their accuracy values were higher, while the average error 360 
of insect infestation was larger and its accuracy was lower. 361 

Table 4. Mean thresholds and error analysis of each phase 362 

Model DOY Threshold Average error (%) 

RNDVI_TM(i) 

177 -0.13  2.90  

193 -0.16  7.78  

209 -0.15  6.29  

225 -0.15  4.22  

241 -0.13  4.58  

257 -0.14  2.83  

RNDVI_AM(i)(j) 

177 -0.15  5.89  

193 -0.15  3.70  

209 -0.15  7.51  

225 -0.13  4.99  

241 -0.13  5.11  

257 -0.13  7.08  

RNDVI_ZM(i)(j) 

177 -0.16  5.27  

193 -0.16  4.32  

209 -0.15  7.44  

225 -0.13  5.31  

241 -0.15  3.16  
257 -0.13  4.06  

 363 

 364 

 365 

Table 5. Comparison sample table of the accuracy test of MODIS data disaster range extraction based on HJ-366 

1A/B CCD image 367 

 368 

Model Definition interpretation 

Proportion of HJ-1A/b 

monitoring results in 

the insured land(%) 

Threshold 

Proportion of 

MODIS monitoring 

results in the 

insured land(%) 

Error (%) 

RNDVI_TM(i) 

20180801Tongjiang flood 7.08  -0.15  8.44  1.36  

20180803Tonghe wind hazard 3.41  -0.15  3.61  0.20  

20180803Suiling wind hazard 2.62  -0.15  1.79  0.83  

20160829Nehe drought 5.60  -0.13  0.86  4.73  

20120914Hulan Insect 20.36  -0.14  20.90  0.54  

20120829Wuchang Insect 8.79  -0.13  0.14  8.65  

2017090Nenjiang flood 12.35  -0.14  16.77  4.42  

20180901Zhaodong hailstorm 51.82  -0.14  58.66  6.84  

20180901Hailun hailstorm 52.13  -0.14  69.87  17.74  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2020                   

Peer-reviewed version available at Sustainability 2020, 12, 6497; doi:10.3390/su12166497

https://doi.org/10.3390/su12166497


 12 of 23 

20190907Nehe flood 22.34  -0.14  28.85  6.51  

RNDVI_AM(i)(j) 

20180801Tongjiang flood 4.10  -0.13  4.28  0.18  

20180803Tonghe wind hazard 8.55  -0.13  10.98  2.43  

20180803Suiling wind hazard 2.62  -0.13  3.22  0.60  

20160829Nehe drought 1.92  -0.13  1.06  0.86  

20120914Hulan Insect 20.36  -0.13  4.64  15.72  

20120829Wuchang Insect 8.79  -0.13  0.69  8.11  

20170901Nenjiang flood 6.94  -0.13  13.73  6.79  

20180901Zhaodong hailstorm 67.07  -0.13  70.06  2.98  

20180901Hailun hailstorm 80.72  -0.13  92.93  12.21  

20190907Nehe flood 50.25  -0.13  48.16  2.09  

RNDVI_ZM(i)(j) 

20180801Tongjiang flood 4.10  -0.13  4.73  0.63  

20180803Tonghe wind hazard 8.55  -0.13  10.98  2.43  

20180803Suiling wind hazard 2.62  -0.13  3.22  0.60  

20160829Nehe drought 1.92  -0.13  1.18  0.74  

20120914Hulan Insect 20.36  -0.13  1.80  18.55  

20120829Wuchang Insect 8.79  -0.13  12.41  3.62  

20170901Nenjiang flood 6.94  -0.13  8.53  1.58  

20180901Zhaodong hailstorm 67.07  -0.13  62.44  4.63  

20180901Hailun hailstorm 80.72  -0.13  91.63  10.90  

20190907Nehe flood 50.25  -0.13  42.80  7.45  
 369 

Table 6. Average errors of the three monitoring models for different disasters (%) 370 

 RNDVI_TM(i) RNDVI_AM(i)(j) RNDVI_ZM(i)(j) 
hailstorm 3.16 2.93 3.52 

pest plague 6.70 11.91 12.33 
wind hazard 1.61 2.28 1.77 

drought 4.91 1.68 5.39 
flood 2.48 2.85 2.94 

 371 

3.3. Consistency analysis of applicability and extraction scope of different models 372 

Based on the thresholds of the different time phases listed in Table 4, the typical disasters verified 373 
by the HJ-1A/B monitoring range and the disaster scope of Heilongjiang Province from 2010–2019 374 
were extracted. These results are presented in Figures 4 and 5. 375 

As shown in Table 6, the average errors of the hailstorm and wind disasters extracted by the  376 
RNDVI_TM(i) and RNDVI_ZM(i)(j) models were relatively small, and the disaster extraction ranges of these 377 
models for the actual observations shown in Figure 5 were similar. The average flood disaster errors 378 
extracted by the RNDVI_AM(i)(j) and RNDVI_ZM(i)(j) were small, and the disaster extraction ranges of these 379 
models for the actual observations were similar. In terms of drought, however, although the error 380 
difference between the RNDVI_TM(i) and RNDVI_ZM(i)(j) was smaller, the disaster range extracted by the 381 
RNDVI_AM(i)(j) was similar to that extracted by the RNDVI_ZM(i)(j) for the actual observations. 382 

 383 
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The crops ripen once a year in Heilongjiang Province, although the three models monitored and 384 
extracted the disaster areas from mid-June to mid-September with little difference. It can be seen from 385 
Table 7 that the three monitoring models exhibited similar ratios of phase disaster range to the 386 
cultivated land range across the entire province during the period DOY 177–DOY 225, among which 387 
the RNDVI_TM(i) and RNDVI_ZM(i)(j) displayed a small difference in this ratio on DOY 177. Figure 4 shows 388 
that their extracted disaster ranges were also relatively close. For the DOY 193–DOY 209 phases, there 389 
was a small difference between the RNDVI_AM(i)(j) and RNDVI_ZM(i)(j) in the disaster scope proportion of the 390 
cultivated land across the entire province, and the disaster scopes extracted in Figure 4 were more 391 
consistent. In the phase from DOY 241–DOY 257, the RNDVI_TM(i) and the other two monitoring models 392 
indicated that the extracted disaster range accounted for a larger percentage of the total cultivated 393 
land area in the province, and the extracted disaster range exhibited a larger difference. The main 394 
reason for this finding is that from DOY 241–DOY 257, the RNDVI_AM(i)(j) and RNDVI_ZM(i)(j) were more 395 
sensitive to waterlogging, resulting in a larger monitored range. 396 

 397 

Table 7. Ratio of 2017 disaster scope to cultivated land area in Heilongjiang Province (%) 398 

 RNDVI_TM(i) RNDVI_AM(i)(j) RNDVI_ZM(i)(j) 
177 11.29 14.17 11.83 
193 8.04 7.22 6.78 
209 6.03 4.41 4.06 
225 3.17 4.38 3.97 
241 5.96 10.30 11.58 
257 11.43 18.59 16.85 

 399 

3.4. Analysis of spatiotemporal patterns of disasters in the study area 400 

3.4.1. Spatial and temporal pattern analysis of 2017 disasters in Heilongjiang Province 401 

 402 

Figure 4. 2017 disaster distribution maps of Heilongjiang Province for the three monitoring models 403 

After extracting the disaster area of Heilongjiang Province using the threshold values of different 404 
time phases, the spatial and temporal distributions of disasters in Heilongjiang Province over the past 405 
10 years could then be analyzed in combination with the corresponding meteorological data. Taking 406 
2017 as an example, as shown in Figure 4, disasters in June were concentrated in the western and 407 
southeastern regions. Longjiang County and Tailai County had little rain over the years, and drought 408 
occurred frequently. In early July, the crop situation improved, although serious disasters still 409 
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occurred in southern areas such as Wuchang due to heavy rain, as well as in Keshan County, Nehe, 410 
and other areas. In late July, the crops grew well, and the disasters were concentrated in the western 411 
and northwestern areas of Heilongjiang Province, while the southeastern area of Fuyu County had a 412 
low vegetation index for the entire month of July, and disasters occurred. In mid-August, the 413 
vegetation growth in the Jiamusi and Suihua areas was poor, and the trend worsened in early 414 
September. 415 

In terms of the spatial and temporal distribution trends of disasters, based on distribution 416 
consistency, the time period DOY 177–DOY 193 was labeled time period 1, and DOY 193–DOY 209, 417 
DOY 209–DOY 225, DOY 225–DOY 257 was designated period 2, 3, and 4, respectively. The time 418 
variation characteristics of the provincial disasters revealed that the disaster area exhibited a 419 
downward trend from period 1 to period 2, and this trend continued to period 3, when it reached its 420 
minimum. Entering period 4, however, the disaster area increased rapidly, which was consistent with 421 
the disaster area change of the insured land across the entire province. In period 1, the disasters were 422 
mainly distributed in the west and south, among which Qiqihar, Heihe, Daqing, Mudanjiang, Anda, 423 
and Wudalianchi were severely affected, and the level of severity gradually decreased with time. 424 
During the second period, agricultural disasters were mainly concentrated in Qiqihar, Heihe (the 425 
Aihui District, Nenjiang County, Xunke County, Sunwu County, and Wudalianchi), Suihua, Nehe, 426 
and other locations, all of which were severely impacted. In the third period, the disasters mainly 427 
occurred in the west, south, and central portions of Heilongjiang Province. Qiqihar and Heihe were 428 
still the most affected areas; Jixi, Jiamusi, and Suihua were clearly stricken; and Duerbert, Zhaozhou, 429 
and Acheng also suffered severely. During period 4, crops in many areas had already entered the 430 
harvest season by late August and early September, particularly rice, which is grown widely in the 431 
Sanjiang region of the Jiamusi belt, leading to a significant increase of disaster area in the Kiamusze 432 
region, as seen in Figure 4. This gave the impression that agricultural disasters in Heilongjiang 433 
Province were concentrated in the northeast. In summary, the 2017 agricultural disasters in 434 
Heilongjiang Province were mainly concentrated in the northeast, south, west, and central regions. 435 

 436 

3.4.2. Spatial and temporal disaster pattern analysis of different phases in the study area from 2010 437 
to 2019 438 

 

 

(a) (b) 

 439 

 440 

 441 
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(c) (d) 

  
(e) (f) 

Figure 5. Disaster distribution maps of Heilongjiang Province during different phases from 2010–2019: (a) DOY 442 
177, (b) DOY 193, (c) DOY 209, (d) DOY 225, (e) DOY 241, and (f) DOY 257 443 

 444 
Comparing the same time phase images of different years allows a deeper analysis of the spatial 445 

and temporal pattern distributions of disasters. 446 
The analysis of the disaster range and meteorological data over the 10-year study period 447 

revealed that on DOY 177 in 2010, 2011, 2012, 2016, and 2017 a large range of disasters occurred. In 448 
2010, Heilongjiang Province continued to experience low temperatures in the winter and spring. The 449 
weather warmed late and the soil defrosted slowly. In May, precipitation was unusually heavy, 450 
leading to late field seeding. Therefore, the bare soil area was extensive, resulting in the large 2010 451 
disaster scope shown in Figure 5(a). Severe convective weather generated a hailstorm in the Beilin 452 
District of Suihua, Hailun, Lanxi County, Qingan County, Suiangxian County, and the Hulan District 453 
of Harbin. The actual range of the hailstorm was consistent with the ranges extracted from the three 454 
models. Due to the sustained high temperatures and sparse rainfall from late May through June, parts 455 
of the Songnen Plain, the northern forest region, the northern Sanjiang Plain, and Mudanjiang 456 
experienced drought conditions. The drought-stricken areas were mainly distributed in the Greater 457 
Hinggan Mountains and the Mudan River region. In the Mudan River region, the three monitoring 458 
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models were consistent. In the forest regions, however, the RNDVI_AM(i)(j) and RNDVI_ZM(i)(j) were more 459 
sensitive to drought monitoring, resulting in more extensive drought extraction in the northern areas. 460 
In June 2011, rainstorm and flood disasters occurred in Heilongjiang Province, severely impacting 461 
Fujin, Qiqihar, and other areas. In addition, hailstorms occurred in many locations. Figure 5(a) reveals 462 
that the disaster area extracted in 2011 was concentrated in the western and northeastern sections of 463 
Heilongjiang Province, which was consistent with the meteorological data. In June 2012, precipitation 464 
in the eastern part of Harbin and the Sanjiang Plain continued to be low, eventually resulting in 465 
drought. Shuangyashan, Baoqing, Wuchang, Tonghe, Fangzheng, and other counties suffered from 466 
severe drought. A hailstorm occurred in Qiqihar Mountain County. In Figure 5(a), the disaster areas 467 
extracted in 2012 were concentrated in the eastern and western sections of Heilongjiang Province, 468 
and the extraction of drought areas was good. In June 2014, strong convective weather occurred in 469 
some areas of Heilongjiang Province. Windstorms and hailstorms occurred with high frequency, 470 
impacting a wide area and resulting in severe losses. The extraction process revealed that the 471 
disasters were concentrated in the Jiamusi area, which is in the southern part of the province, and 472 
Suihua, which is in the western part. In June 2015, strong convective weather occurred in 473 
Heilongjiang Province, with a high frequency of hailstorms. The extracted disasters were 474 
concentrated in the northwestern, northeastern, and southern sections of Heilongjiang Province. In 475 
June 2016, there was a large amount of precipitation in the province, with heavy rain concentrated in 476 
most of the Songnen Plain and the northern portion of the Sanjiang Plain. Yanshou County and other 477 
areas suffered from severe waterlogging due to the heavy rainfall, and this meteorological disaster 478 
was consistent with the extracted disaster in this county. In mid-June 2017, rainstorms and floods 479 
occurred frequently, and waterlogging was severe in Nehe and other locations, which was consistent 480 
with the monitoring results. 481 

During the time phase DOY 193–DOY 209, the disasters occurring in 2012, 2015, 2016, and 2017 482 
were relatively serious. In 2010, the average rainfall of Heilongjiang Province in this phase was higher 483 
than the average of a normal year. The rainstorms and floods in July damaged 221,000 hectares of 484 
crops. Figure 5(b) shows that in 2010 floods mainly occurred in Heihe, Suihua, and Harbin. From 485 
May to mid-July 2012, rainfall in the eastern part of Harbin and the Sanjiang Plain continued to be 486 
low, causing moderate meteorological drought, including severe drought in the Shuangyashan urban 487 
area, as well as Baoqing, Fuchang, Tonghe, Fangzheng, and other counties. At the end of July, Daqing 488 
and many other cities suffered from severe flooding and waterlogging disasters, which was 489 
consistent with the disaster extraction range. In addition, there were mild disasters in the central and 490 
northern regions of the extraction range. In July 2013, heavy rainfall occurred in Heilongjiang 491 
Province, causing regional floods along the Heilongjiang, Nenjiang, and Songhua rivers. The disaster 492 
distribution map clearly shows that greater waterlogging occurred along these rivers. Strong 493 
convective weather was observed in some areas of Heilongjiang Province. At the end of July, 494 
hailstones pummeled the Beilin District of Suihua, which was consistent with the extracted disaster 495 
area. In July 2014, Jiamusi was hit by severe hailstorms, which was also consistent with the extracted 496 
disaster scope. Meanwhile, according to the extracted disaster map, the entire province was flooded 497 
and waterlogging was serious during this period. In 2015, Heilongjiang Province witnessed frequent 498 
rainstorms and floods, and severe convective weather occurred in many areas. For example, the 499 
Hulan District of Harbin was hit by tornadoes and hail. In mid-July, Hulin experienced a rainstorm, 500 
which matched to the disaster area extracted on DOY 209. In addition, there were a few disasters in 501 
the northeastern portion of Heilongjiang Province. In July 2016, the continuous high temperatures 502 
and low rainfall in the province led to a drought on the western Songnen Plain in mid-July. 503 
Rainstorms and floods occurred frequently, especially in late July, mainly in most sections of the 504 
Songnen Plain and the northern Sanjiang Plain. These events were all consistent with the extraction 505 
disaster scope. In addition, there was a small disaster in the northwestern part of the province on 506 
DOY 209. In July 2017, the average temperatures were excessive, causing most of the Songnen Plain 507 
to be arid. In the middle of the year, the western region suffered from a continuous drought due to 508 
insufficient precipitation. By the end of July, Duerbert, Zhaozhou, Zhaoyuan, and Acheng were 509 
experiencing drought conditions as well. Heavy rain and floods occurred frequently in mid- and late 510 
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July. In addition to tornadoes in Suihua, short-term heavy rain, strong winds, and hail battered the 511 
Aihui District of Heihe, Nenjiang County, Xunke County, Sunwu County, and Wulianchi. It can be 512 
seen from the disaster distribution map that the disasters in western China were more serious while 513 
the disasters in Heihe were relatively mild. 514 

During the time phase DOY 225–DOY 241, disasters occurred in 2011, 2015, 2016, and 2017, and 515 
were relatively serious. In August 2010, heavy rains and floods developed frequently in Qiqihar and 516 
Hegang. In the provincial distribution map extracted on DOY 225, in addition to the above disasters 517 
consistent with the meteorological data, a large range of disasters were found in the eastern and 518 
northeastern sections of Heilongjiang Province. By the end of August 2011, a severe meteorological 519 
drought had developed in the eastern region, mainly in Mudanjiang, Harbin, Shuangyashan, Hulin, 520 
and other places, and especially in Linkou and Muling. These findings are consistent with the disaster 521 
range extracted in 2011 in Figure 5(e). Meanwhile, it can be seen from the figure that the Heihe River 522 
in the northwestern part of the province also experienced a serious disaster. At the end of August 523 
2012, a windstorm caused large areas of crop lodging in cities and counties in the central part of 524 
Suihua and the Sanjiang Plain, resulting in serious urban waterlogging in Harbin. From the extracted 525 
disaster map, it can be seen that, with the exceptions of the disasters consistent with the above 526 
meteorological data, the flooding on the Sanjiang Plain was relatively serious. In the summer of 2013, 527 
Heilongjiang Province experienced heavy precipitation. In mid-August, Fuyuan County was stricken 528 
by floods and waterlogging and suffered serious losses, which was in agreement with the distribution 529 
map of extracted disasters across the entire province. Furthermore, the eastern part of Heilongjiang 530 
Province suffered from a large range of disasters. At the end of August 2016, strong winds and 531 
rainstorms hit the eastern part of the province. Gusts in Tongjiang even reached level 10; Fuyuan, 532 
Suibin, Fujin, and Huachuan level 9; Tonghe, Dongning, and 13 other counties and cities level 8; and 533 
Suifenhe, Yilan, and 30 other counties and cities level 7. The high winds caused the partial lodging of 534 
rice and corn crops. The aforementioned observations were consistent with the extraction range. In 535 
August 2017, the amount of precipitation in Heilongjiang Province increased. In mid-August, a 536 
severe flood occurred in the city of Anda, and also took place along a number of small and medium-537 
sized rivers, including the Tongkan, Hulan, Zhaolanxin, Belahong, Maolan, Dongxiao and Helen, 538 
with their water levels rising rapidly. The disaster distribution map of the entire province indicated 539 
that the flooding was serious on DOY 247. 540 

On DOY 257, the disasters in 2010 and 2019 were still serious. In 2010, droughts occurred in 541 
Heilongjiang Province from late spring to early summer, and also in September. As seen in Figure 542 
5(f), the 2010 disaster map revealed that disasters mainly occurred on the Sanjiang Plain and in the 543 
eastern part of Heilongjiang Province. Since the fall of 2011, the continuous high temperatures and 544 
insufficient rainfall in Heilongjiang Province have led to meteorological drought in some areas. The 545 
disaster monitoring results extracted in 2011 primarily indicate drought in the east. In mid-September 546 
2012, Typhoon ”Sanba” tracked northward, disturbing the normal conditions in the eastern part of 547 
Heilongjiang Province. The associated precipitation from this system alleviated the previous drought 548 
and water shortage of reservoirs in the eastern part of Heilongjiang Province. Furthermore, the 549 
amount precipitation in September was high. From the disaster scope extraction map, it can be seen 550 
that waterlogging resulted from serious river flooding. Since the rice crop was harvested early in 551 
some areas, however, the disaster range of the phase extraction was large [33]. 552 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2020                   

Peer-reviewed version available at Sustainability 2020, 12, 6497; doi:10.3390/su12166497

https://doi.org/10.3390/su12166497


 18 of 23 

 553 

Figure 6. Disaster classification in Heilongjiang Province 554 

It can be seen from Figure 5, Figure 6, and the meteorological data analysis that according to the 555 
distribution of disasters throughout the year, 2010, 2011, and 2012 were normal years, while the 556 
disasters in 2014, 2015, 2017, and 2018 were relatively mild, and those in 2013, 2016, and 2019 were 557 
serious. 558 

By analyzing the meteorological disaster data, Figure 5, and Figure 6, as well as the above 559 
discussion, we were able to summarize the spatial and temporal distribution characteristics of 560 
disasters from 2010–2019 in Heilongjiang Province. In terms of time distribution, disasters occurred 561 
frequently in July and August; spatially, disasters mainly took place in the central, eastern, and 562 
southwestern regions from June–August, including Qiqihar, Heihe, Suihua, Haerbin, Jiamusi, and 563 
other locations. 564 

Different disasters exhibited different spatial and temporal distribution characteristics. 565 
Submersion was observed frequently in late June, although it also occurred in July and August, with 566 
the exception of the northwest Greater Khingan Mountains. In some years, submersion was prevalent 567 
in September. This type of disaster was primarily distributed in northeastern Heilongjiang Province, 568 
in places such as Jiamusi, Tongjiang, Fuyuan, Fujin, and Suiling County in Hegang. In addition, 569 
Shuangyashan in the east, Qiqihar in the west, and Daqing and Suihua in the southwest were also 570 
frequently flooded. This is due to the fact that precipitation in Heilongjiang Province is concentrated 571 
from June to August, and the terrain is high in the northwest, north, and southeast, and low in the 572 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2020                   

Peer-reviewed version available at Sustainability 2020, 12, 6497; doi:10.3390/su12166497

https://doi.org/10.3390/su12166497


 19 of 23 

northeast and southwest. This means that, in terms of precipitation, a substantial difference exists 573 
between the eastern and western regions in Heilongjiang Province throughout the year, with large 574 
amounts of precipitation in the eastern and western regions and small amounts in the central and 575 
southern regions. The Songnen Plain and Sanjiang Plain comprise higher topographical terrain and 576 
favorable water vapor conditions, making it easy for heavy precipitation to develop, and leading to 577 
numerous flood disasters. At the same time, since the central and northwest areas of the province are 578 
high while the northeast and west are low, flooding occurs readily. 579 

Hail disasters occur frequently in June and July, and from late August to mid-September. Jiamusi 580 
in the east is a frequent disaster site, as are Shuangyashan, Mudanjian, and Jixi. In the western part 581 
of the province, hail disasters are concentrated in the Suihua, Heihe, and Qiqihar areas. The 582 
mountainous area represented by the Greater Hinggan Mountains experiences low temperatures and 583 
is prone to suffering from frost and hail disasters. These occur primarily as a result of orographic 584 
lifting and the planting structure of crops. 585 

Droughts in Heilongjiang Province generally occurred in July and September, with the July 586 
droughts mainly developing in the southwest Suihua urban area and Harbin, as well as Daqing in 587 
Durbert Mongolian Autonomous County, Zhaozhou County, and Zhaoyuan County. In the 588 
northwest, Baoqing County, Suibin County, Fujin, Tongjiang, and Fuyuan County are located on the 589 
Sanjiang Plain. In September, droughts mainly occurred in the northeast, including Yichun and 590 
Hegang in the north, as well as Lubei County, Suibin County, and Tongjiang. Qiqihar and the 591 
Mudanjiang area experienced high temperatures and were prone to drought. 592 

In Heilongjiang Province, wind damage was always observed in August and September, while 593 
there were fewer windstorms in July. This type of disaster mainly occurred in the east and northeast 594 
areas, as well as central and eastern regions such as Huachuan County, Suijiang County, Fujin, 595 
Tongjiang, Fuyuan County in Jiamusi, Yilan County, Shuangyashan in Jixian, Baoqing, Raohe, and 596 
Jidong County, as well as Jixi and Hulin. 597 

 598 
4. Discussion 599 
In general, the three disaster monitoring models exhibited high accuracy, although their 600 

monitoring accuracy levels for various disasters were different. The monitoring accuracy levels of 601 
hailstorms, droughts, and floods were higher. For insect and wind disasters, the real-time monitoring 602 
accuracy levels were low, and the phenomenon of disaster lag usually appeared in the subsequent 603 
images 16 days later. This is due to the fact that the disasters caused by hailstorms, floods, and 604 
droughts are immediate and serious for crops, with short duration and clear changes in the satellite 605 
images. The damage to crops from pests and windstorms, however, is continuous rather than short-606 
term, and does not immediately cause changes in the images. 607 

The accuracy levels of the disaster extraction range of different phases were also different. 608 
According to the extraction differences of the disaster ranges listed in Table 7, the disaster ranges on 609 
DOY 130, 145, 167, and 273 presented great differences and the ranges themselves were large, with 610 
consistency only occurring from DOY 177 to DOY 257. This was mainly due to the low crop coverage 611 
and large bare soil area before mid-June; meanwhile, in September, when the rice and other crops 612 
entered the tasseling stage, and some crops were premature, this led to the phenomenon of “no yield” 613 
on the image after the large area of rice was harvested. Therefore, the vegetation index of the three 614 
monitoring models in this area was relatively low. In late August, rice was harvested in advance in 615 
some areas of Heilongjiang Province, but the range was small, leading to a large disaster scope being 616 
extracted on DOY 241 in some small areas. On DOY 247, this range had expanded further, bringing 617 
an additional increase in the disaster extraction range error. Among the three models, the RNDVI_AM(i)(j) 618 
is highly sensitive to bare soil, and the disaster ranges that could be easily extracted on DOA 177 and 619 
DOA 257 were relatively large. 620 

Examining the applicability and consistency of the three monitoring models for different 621 
disasters, we discovered that the RNDVI_TM(i) and RNDVI_ZM(i)(j) displayed higher monitoring precision and 622 
a similar extraction range for hailstorms and windstorms; likewise for RNDVI_AM(i)(j) and RNDVI_ZM(i)(j) in 623 
terms of floods and droughts. Heilongjiang Province is vulnerable to flooding in August and 624 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2020                   

Peer-reviewed version available at Sustainability 2020, 12, 6497; doi:10.3390/su12166497

https://doi.org/10.3390/su12166497


 20 of 23 

September, resulting in a greater range of disasters than the RNDVI_TM(i) extraction. This may be due to 625 
the varying mechanisms of the different monitoring models. At present, research on crop condition 626 
monitoring has primarily focused on multi-year comparisons based on the NDVI. The difference 627 
between the current value and the standard value is examined by taking the multi-year average value 628 
or the value of a specific reference year as the standard value for crop growth monitoring and disaster 629 
extraction [53]. This principle is thus the same as that of the RNDVI_TM(i) model. This standard value is 630 
mainly reflected by the historical average crop growth. Its main disadvantage is that during a long 631 
service life the crop planting structure may change, thus affecting the standard value. For example, 632 
in the research of Q. Huang et al., the NDVI value was compared with the average value of the NDVI 633 
for the previous five years, and the application and effect of the NDVI in spring wheat, winter wheat, 634 
spring corn, summer maize, cotton, soybean, and rice were investigated [38]; however, they failed to 635 
quantify the applicability and accuracy of different disasters in crop monitoring. In their research 636 
prospects, these scientists suggested that different remote sensing monitoring index systems should 637 
be established for different agricultural divisions. In fact, the RNDVI_AM(i)(j) was proposed in terms of 638 
phenology, and can effectively solve the above problems. By extracting the regional median value of 639 
different phenological regions as the standard value, the average growth situations of crops in 640 
various phenological areas are reflected, which are not affected by changes of crop planting structure. 641 
In other studies, the pNDVI has also been used to solve this problem [38], although the monitoring 642 
accuracy of different disasters has not been quantified. Compared with the RNDVI_AM(i)(j), the RNDVI_ZM(i)(j) 643 
cannot reflect the change of crop growth relative to the historical average. In order to solve this 644 
problem, we introduced the RNDVI_ZM(i)(j), which not only reflects the comparison of crop growth level 645 
with the historical average level, but also reflects the average growth status of a given phenological 646 
region. The RNDVI_AM(i)(j) and RNDVI_ZM(i)(j) models were less affected by changes of planting structure. By 647 
comparing the applicability and accuracy of the three methods for different disasters, it was 648 
discovered that the accuracy was higher for hailstorms, droughts, and waterlogging. In addition, the 649 
model based on the GEE platform can be used for large-scale spatiotemporal pattern analysis and 650 
real-time monitoring. 651 

There are some common problems in the extraction of disaster scope by the three monitoring 652 
models, namely, their low spatial resolution results in the existence of mixed pixels, which in turn 653 
leads to the low detection accuracy of some small-scale agricultural disasters. Monitoring methods 654 
with higher spatial and temporal resolution can be adopted in order to improve the monitoring 655 
accuracy. Additionally, the growth period differences of different crop types were not fully 656 
considered in this study 657 

In future research, the planting structure data for the entire province should be combined in 658 
order to perform further detailed analysis. In addition, investigations should continue to take 659 
advantage of the rapidity, wide range, and good portability of GEE, and expand the study area in an 660 
attempt to conduct disaster monitoring analysis on the global farmland scale or to compare the 661 
differences of disasters at the same latitude, thereby determining the underlying laws governing 662 
these events and the reasons for their occurrence. Higher-resolution images can also be utilized to 663 
model the NDVI, as well as higher-resolution validation data. This research provides technical 664 
support for disaster early warning, disaster prevention and mitigation, as well as post-disaster rescue 665 
work through the extraction of such large-scale and long-duration series of disaster scope. 666 

 667 
 668 
5. Conclusions 669 
 670 
In this study, three models, i.e., RNDVI_TM(i), RNDVI_AM(i)(j), and RNDVI_ZM(i)(j), were constructed using 671 

the GEE platform to extract the scope of disasters in Heilongjiang Province from 2010–2019. In 672 
addition, the spatiotemporal pattern changes and the applicability of the different models to various 673 
disasters were studied in combination with meteorological data. The results revealed the following: 674 

1. The RNDVI_TM(i), RNDVI_AM(i)(j), and RNDVI_ZM(i)(j) models could all extract the spatiotemporal features 675 
of large-scale disasters with high precision, which were consistent with the disaster situations and 676 
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time variation trends reported across the entire province, and achieved the ideal result of disaster 677 
range extraction based on MODIS data. 678 

2. The RNDVI_TM(i), RNDVI_AM(i)(j), and RNDVI_ZM(i)(j) models were shown to have different applicability 679 
to hailstorms, floods, droughts, insect disasters, and windstorms, as well as different disaster 680 
extraction ranges. In addition, there was a strong consistency from DOY 177 to DOY 257, and the 681 
extraction disaster ranges were similar. 682 

3. The disaster scopes extracted by the RNDVI_TM(i), RNDVI_AM(i)(j), and RNDVI_ZM(i)(j) models were found 683 
to be in good agreement with the meteorological disaster data of Heilongjiang Province and can 684 
therefore be used to analyze the spatiotemporal pattern of disasters and to provide support for 685 
disaster risk partitioning. 686 
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