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14 Abstract: Remote sensing has been used as an important tool for disaster monitoring and disaster
15 scope extraction, especially for the analysis of spatial and temporal disaster patterns of large-scale
16 and long-duration series. Based on the Google Earth Engine cloud platform, this study used MODIS
17 vegetation index products with 250-m spatial resolution synthesized over 16 days from the period
18 2005-2019 to develop a rapid and effective method for monitoring disasters across a wide
19 spatiotemporal range. Three types of disaster monitoring and scope extraction models are proposed:
20 the normalized difference vegetation index (NDVI) median time standardization model (Rxpvi_mva),
21 the NDVI median phenology standardization model (Rnoviampg), and the NDVI median
22 spatiotemporal standardization model (Rnovizmep). The optimal disaster extraction threshold for
23 each model in different time phases was determined using Otsu’s method, and the extraction results
24 were verified by medium-resolution images and ground-measured data of the same or quasi-same
25 period. Finally, the disaster scope of cultivated land in Heilongjiang Province from 2010-2019 was
26 extracted, and the spatial and temporal patterns of the disasters were analyzed based on
27 meteorological data. This analysis revealed that the three aforementioned models exhibited high
28 disaster monitoring and range extraction capabilities, with verification accuracies of 97.46%, 96.90%,
29 and 96.67% for Rnpvi_tve), Rnoviama, and ¢Rnovi_zm)), respectively. The spatial and temporal disaster
30 distributions were found to be consistent with the disasters of the insured plots and the
31 meteorological data across the entire province. Moreover, different monitoring and extraction
32 methods were used for different disasters, among which wind hazard and insect disasters often
33 required a delay of 16 days prior to observation. Each model also displayed various sensitivities and
34 were applicable to different disasters. Compared with other techniques, the proposed method is fast
35 and easy to implement. This new approach can be applied to numerous types of disaster monitoring
36 as well as large-scale agricultural disaster monitoring and can easily be applied to other research
37 areas. This study presents a novel method for large-scale agricultural disaster monitoring.

38 Keywords: Google Earth Engine; MODIS; disaster monitoring; remote sensing index

39

40 1. Introduction

41 Climate impact and environmental change are two important factors that restrict the
42 development of agricultural production. Among them, the impacts of droughts, windstorms, pest
43 infestations, hailstorms, and other agricultural disasters are the most significant. As a result of the
44  global warming trend, the increasing frequency and intensity of various extreme weather events
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45  around the world has brought great harm to food security and agricultural development [1]. The
46  traditional agricultural disaster monitoring methods are time-consuming and mainly consist of field
47  investigation and sampling, which are difficult to implement in large areas. Compared with the
48  traditional methods, the use of remote sensing to monitor agricultural disasters has the advantages
49  of continuous spatiotemporal access to high-resolution surface information, fast data acquisition, and
50  a wide range. For these reasons, remote sensing has been widely used in agricultural disaster and
51  vegetation dynamic monitoring, and numerous remote sensing measurement methods have been
52 developed to monitor global vegetation and extreme climate events [2, 3]. The monitoring of
53  agricultural disasters via remote sensing plays an essential role in rapid crop loss assessment, crop
54 condition monitoring, crop insurance, and food security. Therefore, there is an urgent necessity to
55  establish a rapid and large-scale agricultural disaster monitoring method with remote sensing as its
56  technical basis.

57 At present, many agricultural disaster monitoring methods have been proposed, including ground
58  spectral features, remote sensing vegetation indices, and vegetation index time series. Many vegetation
59  indices based on remote sensing parameters, including the normalized difference vegetation index
60  (NDVI), enhanced vegetation index (EVI), normalized difference water index (NDWI), vegetation
61 condition index (VCI), vegetation health index (VHI), disaster vegetation damage index (DVDI), fire
62  weather index (FWI), crop water stress index (CWSI), vegetation supply water index (VSWI), and
63  temperature vegetation dryness index (TVDI), are widely used in disaster monitoring. Furthermore,
64  based on these indices, a daily-scale forest fire danger forecasting system (FFDFS) was developed for
65  drought monitoring, and a fire risk assessment and remote sensing-based flood crop loss assessment
66  service system (RF-CLASS) has been employed to assess crop damage caused by waterlogging [4-10].
67  The VCI has proven to be an effective means of monitoring drought occurrence and measuring the
68  intensity, duration, and impact of droughts around the world. The spatial and temporal ranges of
69  agricultural drought can be studied via the VCI [11], although the correlation between the VCI and the
70 meteorological drought index based on weather station data is not high [12]. The VCl is also not very
71 sensitive to short-term precipitation shortages. In addition, there is significant spatial variability in the
72 relationship strength between the VCI and the meteorological drought index [13]. The VHI is a widely
73 used comprehensive remote sensing drought index whose goal is to improve the VCI in areas with high
74 soil moisture and long-term cloudy conditions [14]. It is also used to evaluate the degree of agricultural
75  drought and extract the spatiotemporal range of drought [15]. However, drought monitoring via the
76  VHIrequires the assumption of a negative correlation between the NDVI and land surface temperature
77  (LST). Therefore, the VHI is not applicable in regions and periods where the NDVI-Ts correlation
78  coefficient is non-negative [16]. The TVDI is feasible for large-scale drought monitoring, although it is
79 usually affected by its high sensitivity to clouds. Hence, it should not be used to monitor moderate and
80 severe droughts [17][18][19]. The crop water stress index (CWSI) is widely used as an indicator of crop
81  water status. The short-term oscillations of canopy temperature and vegetative flushing are the main
82  factors that make the CWSI less effective in wet areas, which is its chief limitation [20][21]. The VSWI
83  and TVDI can be used for drought monitoring, but they are not suitable for areas with large elevation
84  changes [22]. Moreover, the CWSI, TVDI, and VSWI exhibit certain lags in drought detection, meaning
85  that they take some time to respond [23]. In view of these lagging vegetation indices, hyperspectral
86  remote sensing technology can be used to monitor winter wheat freezing injury and locust disasters
87 [24][25][26]. The DVDI, which is often used in flood disaster and wind disaster monitoring, has a linear
88  relationship with crop yield reduction and is an effective indicator of the degree of vegetation damage
89  [27][28]. At the same time, the EVI is also frequently utilized to describe vegetation patterns in
90  ecosystems affected by hurricanes, such as tropical rainforests, tropical arid forests, and temperate arid
91  grasslands. The NDVIand EV], as the most widely used remote sensing indicators, are usually adopted
92 for crop growth monitoring. MODIS NDVI time series can be used to analyze the spatiotemporal
93  evolution of droughts and ENSO events in order to estimate the associated yield loss [29][30][31]. In
94 areas with less vegetation, methods based on the vegetation index have their limitations. For desert
95 locusts, based on the mid-infrared (MIR), near-infrared (NIR), and red reflectance, multi-temporal and
96  multi-spectral image analysis is effective [32]. Corn fields damaged by hail can be effectively identified
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97 by comparing the ANDVI before and after the hail from HJ-1 CCD images, although it is difficult to

98  precisely classify the damage [33][34]. Pixel-based time series derived from enhanced vegetation index

99  (EVI) data can be extracted to detect flood disturbances of crop production, but when assessing flood
100 events occurring during crop maturity, the accuracy rate is very low [35]. At the same time, the habitat
101 of Asian locusts can be monitored [36]. Some studies have employed three different remote sensing
102 green indices, namely the normalized vegetation difference index (NDVI), the enhanced vegetation
103 index (EVI), and the green index (GI), to study the damage of frost to the canopy [37]. The above
104  indicators have been widely used to monitor crop growth in specific regions and countries, as well as
105  the entire world. Crop growth monitoring usually uses the NDVI as the main indicator of crop
106  conditions, either by combining the NDVI value with other variables for analysis and utilization, or by
107  calculating the difference between the multi-year average (or selected “reference” year) and the NDVI
108  of that year to monitor the growth of crops [38]. However, this method also has its limitations. First, one
109  needs to obtain multi-year averages for the same crop, which requires that the crop planting structure
110 and distribution remain unchanged. Second, the error of the crop growth fluctuation in the selected
111 reference year will affect the assessment results of that year. In order to avoid the crop distribution
112 changes that lead to information errors, C. Li proposed monitoring the growth of winter wheat based
113 on the percentage of crop NDVI (pNDVI) [39]. Few studies, however, can remove this limitation in
114 terms of phenology. In addition, most research generally focuses on relatively small areas. For example,
115  when monitoring disasters using ground spectral characteristics, the use of visible and near-infrared
116  reflectance spectroscopy is an alternative method for monitoring soil contaminated by heavy metals,
117 although the study area tends to focus on either a particular city or county [40][41]. From the above
118  research, we determined that the traditional disaster monitoring methods rely on the disaster data
119  collected by surface stations in order to construct indicators based on the data. In addition, the amount
120 of data obtained is limited, and the data are difficult to collect. Moreover, many disaster monitoring
121 methods based on remote sensing exhibit various application shortcomings. Most disaster monitoring
122 research methods are limited by large image data, generally focus on small time scales or small research
123 areas, and their speeds are slow since they lack a fast large-scale disaster discrimination scheme.
124 Therefore, it is difficult to quickly analyze the spatiotemporal disaster pattern in a certain area. Google
125  Earth Engine (GEE) can solve this problem since it can quickly carry out large-scale and long-range
126  disaster monitoring in a long-term sequence analyze the spatiotemporal pattern of the designated area.
127 Google Earth Engine is a cloud platform that stores and processes BP-level global time series satellite
128  images and vector data. Researchers from various countries have used GEE to conduct research in
129 vegetation monitoring, land cover, agricultural applications, disaster management, and Earth science
130 [42][43]. A. Beaton et al. calculated the icebreaking period of a river for flood monitoring using GEE
131 [44]; N. Sazib et al. verified the value of global soil moisture data for drought disaster monitoring using
132 GEE [45]; C. C. Liu et al. developed a flood control and emergency system based on GEE (FPERS) [46];
133 and B. Pradhan et al. used GEE to provide physical support for the assessment of the forest impacts of
134 sand dune risk and hurricanes in the Sabha region of Libya [47]. Based on GEE, L. Lu et al. examined
135  the spatial characteristics of vegetation destruction induced by typhoons in the coastal areas of
136  southeastern China from 2000-2018 [48].
137 In terms of phenology, there have been few studies on large-scale disaster monitoring and disaster
138  range extraction. In addition, most of the research has focused on a single disaster type and has lacked
139 a method for extracting a wide range of disaster types. In GEE, different vegetation indices extracted
140  through multi-temporal remote sensing images are used as standard values to reflect the normal
141  conditions of crop growth in different regions and different growth stages, and they are compared with
142 the vegetation index extracted in a single time phase in order to compare agricultural disasters in the
143 region. The situation is monitored more accurately, thereby making the results universally applicable.
144 It remains difficult, however, to extract the standard value that can represent the average growth of
145  crops. To address this issue, this study introduces the NDVI median time normalization model
146 (Rnpvitv), the NDVI index median phenology standardization model (Rnovi_ama), and the NDVI
147 median time-space normalization model (Rnovi_zme)j), which comprehensively consider the effects of
148  phenology, different disasters and crop types, and changes in planting structure, with the goal of
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proposing a large-scale GEE-based monitoring method for the rapid extraction of agricultural disasters.
We attempted to utilize the MODIS 16-day NDVI time series data after smooth reconstruction and
compare and analyze the regional-scale disaster index analysis map generated by the three models.
Additionally, we planned to extract the disaster threshold of the study area using Otsu’s method and
compare it with HJ-1A/B CCD data in order to analyze the spatial and temporal distributions of
disasters in Heilongjiang Province from 2000-2019. This method features good transferability and can
be quickly applied in other areas.

2. Materials and Methods

2.1. Study area

Located between latitude 43°25'-53°33'N and longitude 121°11'-135°05'E, Heilongjiang Province
straddles three humidity zones from east to west. The total land area of the province is approximately
473,000 km?, of which agricultural land accounts for ~39.5045 million hectares. In terms of elevation, it
is high in the northwest, north, and southeast, and low in northeast and southwest. Heilongjiang
Province is located in the eastern part of Eurasia to the west of the Pacific Ocean, and experiences a
temperate continental climate. The average annual temperature in the province generally ranges from
-5°C to 5°C, and its annual precipitation varies from 400 to 650 mm, with uneven spatial and temporal
distributions. Agricultural disasters are frequent, and the frequencies of the representative disasters of
droughts, floods, windstorms, hailstorms, low temperatures, and freezing, as well as disease and insect
disasters, are increasing [49][50].
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Figure 1. Cultivated land in Heilongjiang Province
2.2. Data

2.2.1. MOD13Q1

The MODIS vegetation index (MOD13Q1) synthesized over 16 days with a 250-m spatial
resolution that was used in the study area is a terrestrial data product, whose complete and formal
designation is the MODIS/Terra Vegetation Indices 16-day L3 Global 250-m SIN Grid. This product is
calculated by the atmospheric correction of bidirectional surface reflectance and possesses the
advantages of moderate spatial resolution, high temporal resolution, high spectral resolution, wide
observation range, and low cost.
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179  2.22.HJ-1A/B

180 The verification data for the disaster monitoring in this study were the HJ-1A/B data with a 30-m
181  spatial resolution from the environmental disaster mitigation satellite. The Chinese HJ-1A/B satellite
182  makes synchronous ground observations, the charge-coupled device (CCD) sensor captures the ground
183  features with a 30-m pixel resolution at a minimum angle, and four bands cover the visible light and
184  near-infrared wavelength ranges. Each satellite has two CCD sensors, and the constellation consisting
185  of two satellites forms an observation network covering China and its surrounding areas, featuring
186  large-scale, all-weather, all-day, dynamic environmental and disaster monitoring capabilities. In
187  addition, it was combined with the crop insurance plots from 2011-2019 in order to determine disaster
188  scope via visual interpretation. Insurance company personnel carried out field verification on 80% of
189  the plots, and the accuracy was determined to be >95%. These data were used to validate the extraction
190 extent of the disasters in this study.

191  2.2.3. Meteorological data

192 The spatial and temporal distribution characteristics of agricultural disasters in Heilongjiang
193 Province and its prefecture-level cities from 2010-2019 were analyzed based on the precipitation,
194 temperature, humidity, and sunshine duration meteorological data gathered by the Heilongjiang
195 Provincial Bureau of Statistics (http://www.hlj.stats.gov.cn/) and the China Meteorological Disaster
196  Yearbook.

197  2.2.4. Cultivated land range data

198 In this study, in order to avoid the influence of other land types and to conduct phenological
199 zoning for the construction of the disaster monitoring model, the disaster monitoring and extraction for
200  the cultivated land was performed using the land range extracted from the global 30-m land cover data.
201  The land use classification data were from the Northeast Institute of Geography and Agroecology of
202  Chinese Academy of Sciences, which used 2014 land samples. Taking the CCD images from the China
203 Resources No. 1 satellite and the Landsat remote sensing images as the main data sources, and adopting
204  the manual visual interpretation method, we obtained the cultivated land range, as shown in Figure 1.

205 2.3. Method

206  2.3.1. Data preprocessing

207 Here, the MOD13Q1 reflectivity product was used to construct the model based on Google Earth
208  Engine. GEE contains over 200 public datasets and more than 5 million images, and is increasing at a
209  rate of approximately 4,000 images per day. Images uploaded into Google Earth Engine are
210 preprocessed. In GEE, the MOD13Q1 NDVI products are calculated based on atmosphere-corrected
211 bidirectional surface reflectance, which is shielded against water, clouds, heavy aerosols, and cloud
212 shadows. We selected the good data and marginal data from the SummaryQA in order to remove the
213 impact of clouds and snow and ensure that the extracted disaster scope was not affected by outliers.

214 2.3.2. Phenological remote sensing zoning method

215 In terms of the remote sensing image processing, 23 MODIS (MOD13Q1) remote sensing data
216  with a spatial resolution of 250 m synthesized over 16 days in 2014 were employed to extract 11 crop
217  phenological features, and the multi-phase NDVI time series was smoothly reconstructed using
218  Savitzky-Golay filtering. The dynamic threshold method was utilized to extract the key phenological
219  values, and the intervention of different vegetation types and soil background values were
220  eliminated. Based on the time series changes of the NDVI curve, the beginning of the crop growth
221 period was defined as the sharp rise of the NDVI curve on the left side, i.e., the time when the
222 increasing range was 20% of the overall increase. At the same time, the end of the crop growth period
223 was defined as the sharp decrease of the NDVI curve, i.e., the time when the decreasing range was
224 20% of the overall increase. The 11 extracted phenological characteristic parameters are listed in Table
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225 1. The regions with similar phenological values were categorized as a single study area, and
226  multiscale segmentation was carried out on the cultivated land. Via this method, different crops with
227  various geographical distributions and growth conditions were divided into different agricultural
228  phenological zones. It was required that the laws of zonality and non-zonality for phenological
229  distribution as well as the principle of crop similarity and difference be followed, and certain zoning
230  methods were adopted in order to divide a region into units of different grades, with clear differences
231  in crop growth. Pursuant to the method described above, Heilongjiang Province was divided into 39
232 phenological areas [51].

233 Table 1. Definition of phenological parameters in remote sensing
Name Definition interpretation
NDVIstart Start of crop growth period
NDVIEnd End of crop growth period
NDVIamp Amplitude
NDVIsase Average of NDVI at start and end
NDVILengtn Length of crop growth period
NDVIsmai Integral of the average NDVI for the entire period
NDVInmax NDVI maximum
Slope between the 20% and 80% amplitude points on the
NDVILett . .
left side of the rising curve
Slope between the 20% and 80% amplitude on the right
NDVlright . )
side of the descending curve
NDVImid Midpoint of the entire period
NDVIrarge NDVI integral for the entire period

234

235  2.3.3. Construction of three disaster monitoring models

236 Certain differences exist in Heilongjiang Province: the phenological periods and cultivated land
237  planting structures, the vegetation indices of crops growing at the same time but in different areas,
238  and the vegetation indices of different crops. Therefore, the results of disaster range recognition and
239  extraction based directly on the NDVI value difference of a certain phase are not precise and not
240  universal. For this situation, the following three models were proposed and calculated in GEE:

241 The Rnpvitvi) model with normalized difference median vegetation index time:

242
NDVI(;~NDVI ;
243 R y = ——A——— 20 % 100% 1
NDVI_TM(i) NDVIrmzn 0 (1)
244
245 where Rnpvi_tva) represents the time standardization value of the NDVIi of the it time phase in a

246  certain year, NDVIiis the NDVI value of the it time phase in a certain year, and NDVImepi is the NDVI
247 value of the ith time phase for five consecutive years. The smaller the Rnovitva value, the less the
248  vegetation grows. Five years was selected as the time scale because longer time scales are susceptible
249  to management decisions such as dryland diversion, crop rotation, and changes of planting structure.
250 Meanwhile, shorter time scales cannot reflect the time trend, and are prone to the influence of individual
251  annual outliers.

252
253 The Rnpvi_amag model of phenology standardization of the median value of the normalized

254 difference vegetation index is:

NDVI—NDVI N
[©3) AMED (1) (j) x 100% (2)
NDVIamED(i)(j)

255 Rypvi_am(y) =
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256
257 where Rnpviamii is the phenological standardization value of the median NDVIi in the ji
258  phenological region of the ith phase in a certain year, NDVIis the NDVI value of the it phase in a certain
259  year, and NDVIauepiyj is the median value of the NDVI region in the j* phenological region of the it
260  phase in a certain year. The smaller the Rnpvi_ameyj value, the worse the vegetation grows.
261
262 The Rnpvi_zma) g model is based on an improvement of Egs. (1) and (2). Given that the median value
263 curve of the NDVI region for the same phenological area in different years may be affected by the
264  change of crop planting structure and other factors, the median NDVI values extracted at the same time
265  in different years can exhibit great differences. Therefore, the regional median of the phase NDVI of
266  phase for five consecutive years is proposed as an alternative.
267
NDVIipy—NDVI (i
268 R () = ——i—=2200 % 100% 3
NDVI_ZM(i)(j) NDVIZmED () 0 3)
269
270 where Rnpvi_zumiy is the spatiotemporal standardization value of the median NDVIi in the jth
271  phenological region of the i phase in a certain year, NDVIiis the NDVI value of the it phase in a certain
272 year, and NDVIzuepiyj is the standardized median value of the NDVI in the j* phenological region of
273 the it phase for five consecutive years. The smaller the Rnovi_zm)j) value, the less the vegetation grows.
274  2.3.4.Determination of threshold value
275 Table 2. Phenological period of main crops in Heilongjiang Province
Crop species Crop phenology (10 days/month)
Bootine and Milk Mature
Sowing and seedling Transplanting and Tillering 00 g 2 Late Mid-
. . } . . tasseling
Rice raising rejuvenation Mid June- . August-  September—
. g . Late July-mid-
Mid-April-mid-May Late May—early June mid-July early late
August
September  September
Milk Mature
Seed and emergence . Jointing Emasculation Mid- Mid-
. Seedling
Corn Late April-early . ) Late June- Late July—early August-  September—
Mid-May-mid-June .
May mid-July August early late
September  September
Podding Mature
Seed and emergence Third Leaf Parabranching Flowering . Mid- Mid-
Soybean Early July-mid August-  September—
Early May-late May Early June-late June Late June
July early late
September  September
276
277 From mid-April to early June, crops in Heilongjiang Province are in the seeding stage and seedling
278  stage, during which the crop coverage is low and the NDVI value is small, and thus images are easily
279  susceptible to the soil background value. Therefore, this study began extracting the disaster scope from
280  theday-of-year (DOY) 177 time phase. In mid-September, precocity occurs in some crops, so the disaster
281  area cannot be directly extracted on DOY 273. In this study, images between DOY 161 and DOY 257
282  were selected. A total of 113 typical disasters reported by insurance companies from 2011-2019 were
283  chosen as sample data. Otsu’s method was employed to determine the appropriate threshold value for
284  extracting the disaster scope and verifying its universal applicability via the GEE monitoring model.
285  We adopted the average value without the extreme outliers as the threshold in order to distinguish
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286  between disasters and non-disasters and calculated the proportions of the MODIS image extraction
287  results and the insured plots to obtain the corresponding error size and verify its accuracy.

288 2.3.5. Disaster extraction

289 When crops suffer from disasters, the values of Rnpvi_tva), Rnovi_amiry), and Rnpvi_zumayy are slightly
290  lower than their normal levels. Therefore, when the standardized value of a certain regional model
291  was found to be less than a threshold value, the crop was identified as being affected by a disaster.
292 The smaller the values of Rnpvi_tma, Rnoviamayi, and Rnovi_zmixy, the more severe the damage. Thus,
293 this study analyzed the Rnpvi_tm, Rnovi_amar, and Rpviamcyy values in Heilongjiang Province from
294 2010-2019 in accordance with the time sequence. The average value extracted using Otsu’s method
295  was taken as the threshold value, and the disaster scope was extracted from the corresponding remote
296  sensing disaster monitoring model via the determined threshold values of each time phase. Given
297  the spatial resolution of the MODIS data and the need to remove small patches after the extraction of
298  agricultural disasters, the disaster areas covering < 6 pixels (approximately 40 hectares) were
299  eliminated in order to obtain the agricultural disaster scope of Heilongjiang Province from 2010-2019.

300  2.3.6. Accuracy verification

301 In order to test the accuracy of the scope of the disasters extracted by the three types of disaster
302  monitoring models, and selecting the DOY 285 fact-finding disasters from 2010-2019 as the validation
303  sample, this study used the MODIS data close to the moderate resolution of the HJ-1A/1B CCD image
304  NDVI value from the calculation of the wave band operation and combined this with the data
305  reported by the insurance company, the changes of the NDVI value in the affected area, and the
306  affected area and disaster scope extracted from the field data of the agricultural disaster as the
307  validation data. With a spatial resolution of 30 m, the HJ-1A/B extracts the disaster scope whose
308  precision is higher than the actual sampling results. Therefore, the disaster range extracted by this
309  image was taken as the truth value to verify the accuracy of the extracted disaster range by the MODIS
310  image.

311 We took Absolute error =| Extract value — True value |, i.e., the Absolute value between the
312 disaster result extracted from the MODIS data and the disaster result extracted from HJ-1A/B, as the
313 accuracy evaluation parameter. Finally, the errors of 285 verification samples for the different models
314  were calculated as the average values of the accuracy test.

315  3.Results

316 3.1. Phenological division of cultivated land

317 The purpose of utilizing the key phenological values as the basis of zoning in Heilongjiang
318  Province was to combine the regions with similar phenological values into a single study region, then
319  conduct multiscale segmentation within the cultivated land. After conducting numerous experiments
320  and using the average segmentation evaluation index (ASEI) for calculation and analysis, we
321 discovered that the ASEI value reached its maximum when the optimal segmentation scale was 70.
322 The 39 phenological regions that were ultimately obtained are shown in Figure 2. After the cultivated
323 land was categorized into regions according to its phenological values, the median values of the
324  different phenological regions were extracted from the processed images in GEE as NDVIaumepiij and
325  NDVIzmep, and Rnovi_amaxy and Rnpvi_zmarg were then calculated.
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327 Figure 2. Phenological zones in Heilongjiang Province
328  3.2. Precision analysis
329 We used Otsu method to extract the threshold value of DOY 113 sample points of different

330  disaster types on GEE. From Table 3, we find that in the three models, the threshold size is mainly
331  distributed between -0.1 ~-0.2. The thresholds extracted from different disaster types and by different
332 models are different. The error in the table is received based on the difference between the proportion
333 of disaster results extracted by HJ-1A/B provided by the insurance company and the proportion of
334  disaster results extracted by MODIS image. Among them, the errors of insect and wind disasters are
335  larger. At the same time, we extracted the threshold value of insect and wind disasters after 16 days
336  and conducted precision analysis. It was found that the errors of the results of these two disasters
337  were smaller and the accuracy was higher through images observed after 16 days. Therefore, we used
338  theimages of 16 days later to calculate the threshold value of insect and wind disasters. The errors of
339 hailstorm, drought disaster and flood disaster are small, so The MODIS image which is close to the
340  time of disaster is used to calculate the disaster threshold for disaster monitoring.

341
342 Table 3. Otsu extraction disaster threshold and disaster error analysis example

Proportion of Proportion of

HJ-1A/b itori MODIS itori
Model Definition interpretation J-1A/ m(.)nl oring Threshold m(.)nl oring Error(%)
results in the results in the
insured land(%) insured land(%)
20170803Youyi hailstorm 1.31 -0.15 1.39 0.08

Rnpvi vy

20180703Tonghe flood 227 -0.16 2.36 0.09
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20160813Longjiang drought 0.47 -0.14 0.57 0.10
20170802Fuyuan flood 0.17 -0.08 0.30 0.13
20180703Zhaodong flood 13.14 -0.11 12.71 0.44
20120702Magiaohe hailstorm 84.82 -0.14 85.50 0.68
20160702Hailstormun hailstorm 4.60 -0.15 3.88 0.73
20160829Gannan drought 1.47 -0.16 0.66 0.82
2018080Luobei wind hazard 247 -0.16 0.25 222
20170901Beian wind hazard 16.63 -0.10 35.04 18.41
20170803Youyi hailstorm 6.87 -0.10 10.96 4.09
20180703Tonghe flood 227 -0.14 3.21 0.94
20160813Longjiang drought 21.68 -0.14 25.74 4.06
20170802Fuyuan flood 0.87 -0.17 0.77 0.10
Rapv_amg) 20180703Zhaodong flood 23.19 -0.14 19.32 3.88
20120702Magiaohe hailstorm 84.82 -0.17 89.06 4.24
20160702Hailstormun hailstorm 54.57 -0.18 30.62 23.95
20160829Gannan drought 1.47 -0.15 2.43 0.95
2018080Luobei wind hazard 2.47 -0.15 0.63 1.84
20170803Youyi hailstorm 38.41 -0.13 51.15 12.73
20180703Tonghe flood 6.87 -0.15 8.22 1.35
20160813Longjiang drought 227 -0.14 1.79 0.48
20170802Fuyuan flood 41.16 -0.14 63.13 21.98
Reov 2 20180703Zhaodong flood 0.87 -0.13 0.97 0.10
20120702Magiaohe hailstorm 13.14 -0.11 17.28 4.14
20160702Hailstormun hailstorm 84.82 -0.16 91.64 6.82
20160829Gannan drought 36.25 -0.16 36.43 0.18
2018080Luobei wind hazard 3.01 -0.16 3.74 0.73
20170901Beian wind hazard 2.47 -0.18 0.47 1.99
343
344
345 After removing the extreme values from the thresholds of the different phases in the three

346  monitoring models, the mean value was taken as the threshold value of the time phase. The sizes and
347  errors of the average thresholds are listed in Table 4 Generally speaking, as time increased, the
348  threshold values increased, indicating that the disasters across the entire province exhibited a gradual
349  decreasing trend during the crop growth period. In addition, the difference of the threshold value
350  Dbetween the Rnovi_aminj) and Rnovi_zmarg models for the same time phase was small, implying that the
351  extraction disaster scopes may have been similar. At the same time, as shown in Tables 5 and 6, based
352 oneither the environmental star monitoring results or the MODIS monitoring results, the proportion
353 of hailstorms was the highest, which as followed by drought and flood disasters. Windstorms and
354  insect disasters often accounted for a small proportion of monitoring results in the insured land, i.e.,
355  the disaster areas resulting from these events were small. On DOY 209, the relatively large average
356  error may have led to the large error of the disaster area extracted during this period. Having selected
357  the DOY 285 samples to test the accuracy of the three monitoring models, our calculations revealed
358 that the average precision values of the Rnovi_tv(), Rnovi_amiyj), and Rxpvi_zmg monitoring models were
359  97.46%, 96.90%, and 96.67%, respectively. In Table 6, the average errors of droughts, windstorms,
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362 Table 4. Mean thresholds and error analysis of each phase
Model DOY Threshold Average error (%)

177 -0.13 2.90

193 -0.16 7.78

209 -0.15 6.29

Rapvi ™)

225 -0.15 4.22

241 -0.13 4.58

257 -0.14 2.83

177 -0.15 5.89

193 -0.15 3.70

209 -0.15 7.51

Rapvi_amg)

225 -0.13 4.99

241 -0.13 5.11

257 -0.13 7.08

177 -0.16 5.27

193 -0.16 4.32

209 -0.15 7.44

Rnovi_zwmg)

225 -0.13 531

241 -0.15 3.16

257 -0.13 4.06
363
364
365
366 Table 5. Comparison sample table of the accuracy test of MODIS data disaster range extraction based on HJ-
367 1A/B CCD image
368

Proportion of
Proportion of HJ-1A/b
MODIS monitoring
Model Definition interpretation monitoring results in  Threshold Error (%)
) results in the
the insured land(%)
insured land(%)

20180801 Tongjiang flood 7.08 -0.15 8.44 1.36
20180803Tonghe wind hazard 3.41 -0.15 3.61 0.20
201808035Suiling wind hazard 2.62 -0.15 1.79 0.83

20160829Nehe drought 5.60 -0.13 0.86 4.73

Rnpvi_tvg) 20120914Hulan Insect 20.36 -0.14 20.90 0.54
20120829Wuchang Insect 8.79 -0.13 0.14 8.65

2017090Nenjiang flood 12.35 -0.14 16.77 4.42
20180901Zhaodong hailstorm 51.82 -0.14 58.66 6.84
20180901Hailun hailstorm 52.13 -0.14 69.87 17.74
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20190907Nehe flood 22.34 -0.14 28.85 6.51
20180801 Tongjiang flood 4.10 -0.13 4.28 0.18
20180803Tonghe wind hazard 8.55 -0.13 10.98 2.43
20180803Suiling wind hazard 2.62 -0.13 3.22 0.60
20160829Nehe drought 1.92 -0.13 1.06 0.86
RNovLAvG) 20120914Hulan Insect 20.36 -0.13 4.64 15.72
20120829Wuchang Insect 8.79 -0.13 0.69 8.11
20170901Nenjiang flood 6.94 -0.13 13.73 6.79
20180901Zhaodong hailstorm 67.07 -0.13 70.06 2.98
20180901Hailun hailstorm 80.72 -0.13 92.93 12.21
20190907Nehe flood 50.25 -0.13 48.16 2.09
20180801 Tongjiang flood 410 -0.13 473 0.63
20180803Tonghe wind hazard 8.55 -0.13 10.98 2.43
201808035Suiling wind hazard 2.62 -0.13 3.22 0.60
20160829Nehe drought 1.92 -0.13 1.18 0.74
Reov 2 20120914Hulan Insect 20.36 -0.13 1.80 18.55
20120829Wuchang Insect 8.79 -0.13 12.41 3.62
20170901Nenjiang flood 6.94 -0.13 8.53 1.58
20180901Zhaodong hailstorm 67.07 -0.13 62.44 4.63
20180901Hailun hailstorm 80.72 -0.13 91.63 10.90
20190907Nehe flood 50.25 -0.13 42.80 7.45
369
370 Table 6. Average errors of the three monitoring models for different disasters (%)
Rnpv_t™() RNDvI_AM)G) RNDVI_ZM) )
hailstorm 3.16 2.93 3.52
pest plague 6.70 11.91 12.33
wind hazard 1.61 2.28 1.77
drought 491 1.68 5.39
flood 2.48 2.85 2.94
371
372 3.3. Consistency analysis of applicability and extraction scope of different models
373 Based on the thresholds of the different time phases listed in Table 4, the typical disasters verified

374 by the HJ-1A/B monitoring range and the disaster scope of Heilongjiang Province from 2010-2019
375  were extracted. These results are presented in Figures 4 and 5.

376 As shown in Table 6, the average errors of the hailstorm and wind disasters extracted by the
377 Rnovi v and Rnovizmag models were relatively small, and the disaster extraction ranges of these
378  models for the actual observations shown in Figure 5 were similar. The average flood disaster errors
379  extracted by the Rnpviamig and Rnovizvag were small, and the disaster extraction ranges of these
380  models for the actual observations were similar. In terms of drought, however, although the error
381 difference between the Rnovitvig and Rnovizmeg was smaller, the disaster range extracted by the
382 Rnpviama was similar to that extracted by the Rnovi_zmay for the actual observations.

383
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The crops ripen once a year in Heilongjiang Province, although the three models monitored and
extracted the disaster areas from mid-June to mid-September with little difference. It can be seen from
Table 7 that the three monitoring models exhibited similar ratios of phase disaster range to the
cultivated land range across the entire province during the period DOY 177-DQOY 225, among which
the Rnovi_tvg and Rnovi_zmg) displayed a small difference in this ratio on DOY 177. Figure 4 shows
that their extracted disaster ranges were also relatively close. For the DOY 193-DOY 209 phases, there
was a small difference between the Rnovi_amj and Rxovi_zmay) in the disaster scope proportion of the
cultivated land across the entire province, and the disaster scopes extracted in Figure 4 were more
consistent. In the phase from DOY 241-DQY 257, the Rnovi_tv) and the other two monitoring models
indicated that the extracted disaster range accounted for a larger percentage of the total cultivated
land area in the province, and the extracted disaster range exhibited a larger difference. The main
reason for this finding is that from DOY 241-DOY 257, the Rnoviamij and Rnovi zvmig were more
sensitive to waterlogging, resulting in a larger monitored range.

Table 7. Ratio of 2017 disaster scope to cultivated land area in Heilongjiang Province (%)

Rnpvitva) Rnpvi_amyg) Rnovi_zwmg)
177 11.29 14.17 11.83
193 8.04 7.22 6.78
209 6.03 4.41 4.06
225 3.17 4.38 3.97
241 5.96 10.30 11.58
257 11.43 18.59 16.85

3.4. Analysis of spatiotemporal patterns of disasters in the study area

3.4.1. Spatial and temporal pattern analysis of 2017 disasters in Heilongjiang Province
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Figure 4. 2017 disaster distribution maps of Heilongjiang Province for the three monitoring models

After extracting the disaster area of Heilongjiang Province using the threshold values of different
time phases, the spatial and temporal distributions of disasters in Heilongjiang Province over the past
10 years could then be analyzed in combination with the corresponding meteorological data. Taking
2017 as an example, as shown in Figure 4, disasters in June were concentrated in the western and
southeastern regions. Longjiang County and Tailai County had little rain over the years, and drought
occurred frequently. In early July, the crop situation improved, although serious disasters still
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occurred in southern areas such as Wuchang due to heavy rain, as well as in Keshan County, Nehe,
and other areas. In late July, the crops grew well, and the disasters were concentrated in the western
and northwestern areas of Heilongjiang Province, while the southeastern area of Fuyu County had a
low vegetation index for the entire month of July, and disasters occurred. In mid-August, the
vegetation growth in the Jiamusi and Suihua areas was poor, and the trend worsened in early
September.

In terms of the spatial and temporal distribution trends of disasters, based on distribution
consistency, the time period DOY 177-DOY 193 was labeled time period 1, and DOY 193-DOY 209,
DOY 209-DOY 225, DOY 225-DOY 257 was designated period 2, 3, and 4, respectively. The time
variation characteristics of the provincial disasters revealed that the disaster area exhibited a
downward trend from period 1 to period 2, and this trend continued to period 3, when it reached its
minimum. Entering period 4, however, the disaster area increased rapidly, which was consistent with
the disaster area change of the insured land across the entire province. In period 1, the disasters were
mainly distributed in the west and south, among which Qiqgihar, Heihe, Daqing, Mudanjiang, Anda,
and Wudalianchi were severely affected, and the level of severity gradually decreased with time.
During the second period, agricultural disasters were mainly concentrated in Qiqihar, Heihe (the
Aihui District, Nenjiang County, Xunke County, Sunwu County, and Wudalianchi), Suihua, Nehe,
and other locations, all of which were severely impacted. In the third period, the disasters mainly
occurred in the west, south, and central portions of Heilongjiang Province. Qigihar and Heihe were
still the most affected areas; Jixi, Jiamusi, and Suihua were clearly stricken; and Duerbert, Zhaozhou,
and Acheng also suffered severely. During period 4, crops in many areas had already entered the
harvest season by late August and early September, particularly rice, which is grown widely in the
Sanjiang region of the Jiamusi belt, leading to a significant increase of disaster area in the Kiamusze
region, as seen in Figure 4. This gave the impression that agricultural disasters in Heilongjiang
Province were concentrated in the northeast. In summary, the 2017 agricultural disasters in
Heilongjiang Province were mainly concentrated in the northeast, south, west, and central regions.

3.4.2. Spatial and temporal disaster pattern analysis of different phases in the study area from 2010
to 2019
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() ()
Figure 5. Disaster distribution maps of Heilongjiang Province during different phases from 2010-2019: (a) DOY

177, (b) DOY 193, (c) DOY 209, (d) DOY 225, () DOY 241, and (f) DOY 257

Comparing the same time phase images of different years allows a deeper analysis of the spatial
and temporal pattern distributions of disasters.

The analysis of the disaster range and meteorological data over the 10-year study period
revealed that on DOY 177 in 2010, 2011, 2012, 2016, and 2017 a large range of disasters occurred. In
2010, Heilongjiang Province continued to experience low temperatures in the winter and spring. The
weather warmed late and the soil defrosted slowly. In May, precipitation was unusually heavy,
leading to late field seeding. Therefore, the bare soil area was extensive, resulting in the large 2010
disaster scope shown in Figure 5(a). Severe convective weather generated a hailstorm in the Beilin
District of Suihua, Hailun, Lanxi County, Qingan County, Suiangxian County, and the Hulan District
of Harbin. The actual range of the hailstorm was consistent with the ranges extracted from the three
models. Due to the sustained high temperatures and sparse rainfall from late May through June, parts
of the Songnen Plain, the northern forest region, the northern Sanjiang Plain, and Mudanjiang
experienced drought conditions. The drought-stricken areas were mainly distributed in the Greater
Hinggan Mountains and the Mudan River region. In the Mudan River region, the three monitoring
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459  models were consistent. In the forest regions, however, the Rxoviamag and Rnovi_zumcyj were more
460  sensitive to drought monitoring, resulting in more extensive drought extraction in the northern areas.
461  In June 2011, rainstorm and flood disasters occurred in Heilongjiang Province, severely impacting
462  Fujin, Qigihar, and other areas. In addition, hailstorms occurred in many locations. Figure 5(a) reveals
463  that the disaster area extracted in 2011 was concentrated in the western and northeastern sections of
464  Heilongjiang Province, which was consistent with the meteorological data. In June 2012, precipitation
465  in the eastern part of Harbin and the Sanjiang Plain continued to be low, eventually resulting in
466  drought. Shuangyashan, Baoqing, Wuchang, Tonghe, Fangzheng, and other counties suffered from
467  severe drought. A hailstorm occurred in Qigihar Mountain County. In Figure 5(a), the disaster areas
468  extracted in 2012 were concentrated in the eastern and western sections of Heilongjiang Province,
469  and the extraction of drought areas was good. In June 2014, strong convective weather occurred in
470  some areas of Heilongjiang Province. Windstorms and hailstorms occurred with high frequency,
471  impacting a wide area and resulting in severe losses. The extraction process revealed that the
472  disasters were concentrated in the Jiamusi area, which is in the southern part of the province, and
473 Suihua, which is in the western part. In June 2015, strong convective weather occurred in
474  Heilongjiang Province, with a high frequency of hailstorms. The extracted disasters were
475  concentrated in the northwestern, northeastern, and southern sections of Heilongjiang Province. In
476  June 2016, there was a large amount of precipitation in the province, with heavy rain concentrated in
477  most of the Songnen Plain and the northern portion of the Sanjiang Plain. Yanshou County and other
478  areas suffered from severe waterlogging due to the heavy rainfall, and this meteorological disaster
479 was consistent with the extracted disaster in this county. In mid-June 2017, rainstorms and floods
480  occurred frequently, and waterlogging was severe in Nehe and other locations, which was consistent
481  with the monitoring results.

482 During the time phase DOY 193-DOY 209, the disasters occurring in 2012, 2015, 2016, and 2017
483  were relatively serious. In 2010, the average rainfall of Heilongjiang Province in this phase was higher
484  than the average of a normal year. The rainstorms and floods in July damaged 221,000 hectares of
485  crops. Figure 5(b) shows that in 2010 floods mainly occurred in Heihe, Suihua, and Harbin. From
486  May to mid-July 2012, rainfall in the eastern part of Harbin and the Sanjiang Plain continued to be
487  low, causing moderate meteorological drought, including severe drought in the Shuangyashan urban
488  area, as well as Baoging, Fuchang, Tonghe, Fangzheng, and other counties. At the end of July, Daqing
489  and many other cities suffered from severe flooding and waterlogging disasters, which was
490  consistent with the disaster extraction range. In addition, there were mild disasters in the central and
491 northern regions of the extraction range. In July 2013, heavy rainfall occurred in Heilongjiang
492 Province, causing regional floods along the Heilongjiang, Nenjiang, and Songhua rivers. The disaster
493  distribution map clearly shows that greater waterlogging occurred along these rivers. Strong
494  convective weather was observed in some areas of Heilongjiang Province. At the end of July,
495  hailstones pummeled the Beilin District of Suihua, which was consistent with the extracted disaster
496 area. In July 2014, Jiamusi was hit by severe hailstorms, which was also consistent with the extracted
497  disaster scope. Meanwhile, according to the extracted disaster map, the entire province was flooded
498  and waterlogging was serious during this period. In 2015, Heilongjiang Province witnessed frequent
499  rainstorms and floods, and severe convective weather occurred in many areas. For example, the
500  Hulan District of Harbin was hit by tornadoes and hail. In mid-July, Hulin experienced a rainstorm,
501 which matched to the disaster area extracted on DOY 209. In addition, there were a few disasters in
502  the northeastern portion of Heilongjiang Province. In July 2016, the continuous high temperatures
503  and low rainfall in the province led to a drought on the western Songnen Plain in mid-July.
504  Rainstorms and floods occurred frequently, especially in late July, mainly in most sections of the
505  Songnen Plain and the northern Sanjiang Plain. These events were all consistent with the extraction
506  disaster scope. In addition, there was a small disaster in the northwestern part of the province on
507  DOY 209. In July 2017, the average temperatures were excessive, causing most of the Songnen Plain
508  tobe arid. In the middle of the year, the western region suffered from a continuous drought due to
509  insufficient precipitation. By the end of July, Duerbert, Zhaozhou, Zhaoyuan, and Acheng were
510  experiencing drought conditions as well. Heavy rain and floods occurred frequently in mid- and late


https://doi.org/10.3390/su12166497

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 July 2020

17 of 23

511 July. In addition to tornadoes in Suihua, short-term heavy rain, strong winds, and hail battered the
512 Aihui District of Heihe, Nenjiang County, Xunke County, Sunwu County, and Wulianchi. It can be
513 seen from the disaster distribution map that the disasters in western China were more serious while
514  the disasters in Heihe were relatively mild.

515 During the time phase DOY 225-DOY 241, disasters occurred in 2011, 2015, 2016, and 2017, and
516  were relatively serious. In August 2010, heavy rains and floods developed frequently in Qiqihar and
517  Hegang. In the provincial distribution map extracted on DOY 225, in addition to the above disasters
518  consistent with the meteorological data, a large range of disasters were found in the eastern and
519  northeastern sections of Heilongjiang Province. By the end of August 2011, a severe meteorological
520  drought had developed in the eastern region, mainly in Mudanjiang, Harbin, Shuangyashan, Hulin,
521  and other places, and especially in Linkou and Muling. These findings are consistent with the disaster
522 range extracted in 2011 in Figure 5(e). Meanwhile, it can be seen from the figure that the Heihe River
523  in the northwestern part of the province also experienced a serious disaster. At the end of August
524 2012, a windstorm caused large areas of crop lodging in cities and counties in the central part of
525  Suihua and the Sanjiang Plain, resulting in serious urban waterlogging in Harbin. From the extracted
526  disaster map, it can be seen that, with the exceptions of the disasters consistent with the above
527  meteorological data, the flooding on the Sanjiang Plain was relatively serious. In the summer of 2013,
528  Heilongjiang Province experienced heavy precipitation. In mid-August, Fuyuan County was stricken
529 by floods and waterlogging and suffered serious losses, which was in agreement with the distribution
530  map of extracted disasters across the entire province. Furthermore, the eastern part of Heilongjiang
531  Province suffered from a large range of disasters. At the end of August 2016, strong winds and
532 rainstorms hit the eastern part of the province. Gusts in Tongjiang even reached level 10; Fuyuan,
533 Suibin, Fujin, and Huachuan level 9; Tonghe, Dongning, and 13 other counties and cities level 8; and
534 Suifenhe, Yilan, and 30 other counties and cities level 7. The high winds caused the partial lodging of
535  rice and corn crops. The aforementioned observations were consistent with the extraction range. In
536  August 2017, the amount of precipitation in Heilongjiang Province increased. In mid-August, a
537  severe flood occurred in the city of Anda, and also took place along a number of small and medium-
538 sized rivers, including the Tongkan, Hulan, Zhaolanxin, Belahong, Maolan, Dongxiao and Helen,
539  with their water levels rising rapidly. The disaster distribution map of the entire province indicated
540 that the flooding was serious on DOY 247.

541 On DOY 257, the disasters in 2010 and 2019 were still serious. In 2010, droughts occurred in
542 Heilongjiang Province from late spring to early summer, and also in September. As seen in Figure
543 5(f), the 2010 disaster map revealed that disasters mainly occurred on the Sanjiang Plain and in the
544  eastern part of Heilongjiang Province. Since the fall of 2011, the continuous high temperatures and
545  insufficient rainfall in Heilongjiang Province have led to meteorological drought in some areas. The
546  disaster monitoring results extracted in 2011 primarily indicate drought in the east. In mid-September
547 2012, Typhoon ”Sanba” tracked northward, disturbing the normal conditions in the eastern part of
548  Heilongjiang Province. The associated precipitation from this system alleviated the previous drought
549  and water shortage of reservoirs in the eastern part of Heilongjiang Province. Furthermore, the
550  amount precipitation in September was high. From the disaster scope extraction map, it can be seen
551  that waterlogging resulted from serious river flooding. Since the rice crop was harvested early in
552 some areas, however, the disaster range of the phase extraction was large [33].
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Figure 6. Disaster classification in Heilongjiang Province

It can be seen from Figure 5, Figure 6, and the meteorological data analysis that according to the
distribution of disasters throughout the year, 2010, 2011, and 2012 were normal years, while the
disasters in 2014, 2015, 2017, and 2018 were relatively mild, and those in 2013, 2016, and 2019 were
serious.

By analyzing the meteorological disaster data, Figure 5, and Figure 6, as well as the above
discussion, we were able to summarize the spatial and temporal distribution characteristics of
disasters from 2010-2019 in Heilongjiang Province. In terms of time distribution, disasters occurred
frequently in July and August; spatially, disasters mainly took place in the central, eastern, and
southwestern regions from June—-August, including Qiqihar, Heihe, Suihua, Haerbin, Jiamusi, and
other locations.

Different disasters exhibited different spatial and temporal distribution characteristics.
Submersion was observed frequently in late June, although it also occurred in July and August, with
the exception of the northwest Greater Khingan Mountains. In some years, submersion was prevalent
in September. This type of disaster was primarily distributed in northeastern Heilongjiang Province,
in places such as Jiamusi, Tongjiang, Fuyuan, Fujin, and Suiling County in Hegang. In addition,
Shuangyashan in the east, Qiqihar in the west, and Daqing and Suihua in the southwest were also
frequently flooded. This is due to the fact that precipitation in Heilongjiang Province is concentrated
from June to August, and the terrain is high in the northwest, north, and southeast, and low in the
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573 northeast and southwest. This means that, in terms of precipitation, a substantial difference exists
574  between the eastern and western regions in Heilongjiang Province throughout the year, with large
575  amounts of precipitation in the eastern and western regions and small amounts in the central and
576  southern regions. The Songnen Plain and Sanjiang Plain comprise higher topographical terrain and
577  favorable water vapor conditions, making it easy for heavy precipitation to develop, and leading to
578 numerous flood disasters. At the same time, since the central and northwest areas of the province are
579  high while the northeast and west are low, flooding occurs readily.

580 Hail disasters occur frequently in June and July, and from late August to mid-September. Jiamusi
581  in the east is a frequent disaster site, as are Shuangyashan, Mudanjian, and Jixi. In the western part
582 of the province, hail disasters are concentrated in the Suihua, Heihe, and Qiqihar areas. The
583  mountainous area represented by the Greater Hinggan Mountains experiences low temperatures and
584  is prone to suffering from frost and hail disasters. These occur primarily as a result of orographic
585  lifting and the planting structure of crops.

586 Droughts in Heilongjiang Province generally occurred in July and September, with the July
587  droughts mainly developing in the southwest Suihua urban area and Harbin, as well as Daging in
588  Durbert Mongolian Autonomous County, Zhaozhou County, and Zhaoyuan County. In the
589  northwest, Baoqing County, Suibin County, Fujin, Tongjiang, and Fuyuan County are located on the
590  Sanjiang Plain. In September, droughts mainly occurred in the northeast, including Yichun and
591  Hegang in the north, as well as Lubei County, Suibin County, and Tongjiang. Qiqihar and the
592  Mudanjiang area experienced high temperatures and were prone to drought.

593 In Heilongjiang Province, wind damage was always observed in August and September, while
594  there were fewer windstorms in July. This type of disaster mainly occurred in the east and northeast
595  areas, as well as central and eastern regions such as Huachuan County, Suijiang County, Fujin,
596  Tongjiang, Fuyuan County in Jiamusi, Yilan County, Shuangyashan in Jixian, Baoqing, Raohe, and
597  Jidong County, as well as Jixi and Hulin.

598
599 4. Discussion
600 In general, the three disaster monitoring models exhibited high accuracy, although their

601  monitoring accuracy levels for various disasters were different. The monitoring accuracy levels of
602  hailstorms, droughts, and floods were higher. For insect and wind disasters, the real-time monitoring
603  accuracy levels were low, and the phenomenon of disaster lag usually appeared in the subsequent
604  images 16 days later. This is due to the fact that the disasters caused by hailstorms, floods, and
605  droughts are immediate and serious for crops, with short duration and clear changes in the satellite
606  images. The damage to crops from pests and windstorms, however, is continuous rather than short-
607  term, and does not immediately cause changes in the images.

608 The accuracy levels of the disaster extraction range of different phases were also different.
609  According to the extraction differences of the disaster ranges listed in Table 7, the disaster ranges on
610  DOY 130, 145, 167, and 273 presented great differences and the ranges themselves were large, with
611  consistency only occurring from DOY 177 to DOY 257. This was mainly due to the low crop coverage
612  and large bare soil area before mid-June; meanwhile, in September, when the rice and other crops
613  entered the tasseling stage, and some crops were premature, this led to the phenomenon of “no yield”
614  on the image after the large area of rice was harvested. Therefore, the vegetation index of the three
615  monitoring models in this area was relatively low. In late August, rice was harvested in advance in
616  some areas of Heilongjiang Province, but the range was small, leading to a large disaster scope being
617  extracted on DOY 241 in some small areas. On DOY 247, this range had expanded further, bringing
618 an additional increase in the disaster extraction range error. Among the three models, the Rnovi_amig)
619  ishighly sensitive to bare soil, and the disaster ranges that could be easily extracted on DOA 177 and
620  DOA 257 were relatively large.

621 Examining the applicability and consistency of the three monitoring models for different
622 disasters, we discovered that the Rnovi_tva and Rnovi_zmayg) displayed higher monitoring precision and
623 a similar extraction range for hailstorms and windstorms; likewise for Rnovi_amag and Rnovizma in
624  terms of floods and droughts. Heilongjiang Province is vulnerable to flooding in August and
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625  September, resulting in a greater range of disasters than the Rxovitvq extraction. This may be due to
626  the varying mechanisms of the different monitoring models. At present, research on crop condition
627  monitoring has primarily focused on multi-year comparisons based on the NDVI. The difference
628  between the current value and the standard value is examined by taking the multi-year average value
629  or the value of a specific reference year as the standard value for crop growth monitoring and disaster
630  extraction [53]. This principle is thus the same as that of the Rxovi. v model. This standard value is
631  mainly reflected by the historical average crop growth. Its main disadvantage is that during a long
632 service life the crop planting structure may change, thus affecting the standard value. For example,
633  inthe research of Q. Huang et al., the NDVI value was compared with the average value of the NDVI
634 for the previous five years, and the application and effect of the NDVI in spring wheat, winter wheat,
635 spring corn, summer maize, cotton, soybean, and rice were investigated [38]; however, they failed to
636  quantify the applicability and accuracy of different disasters in crop monitoring. In their research
637  prospects, these scientists suggested that different remote sensing monitoring index systems should
638 be established for different agricultural divisions. In fact, the Rnovi_amag was proposed in terms of
639  phenology, and can effectively solve the above problems. By extracting the regional median value of
640  different phenological regions as the standard value, the average growth situations of crops in
641  various phenological areas are reflected, which are not affected by changes of crop planting structure.
642  In other studies, the pPNDVI has also been used to solve this problem [38], although the monitoring
643  accuracy of different disasters has not been quantified. Compared with the Rnovi_ameg, the Rnovi_zw)
644  cannot reflect the change of crop growth relative to the historical average. In order to solve this
645 problem, we introduced the Rnpvi_zmaj, which not only reflects the comparison of crop growth level
646  with the historical average level, but also reflects the average growth status of a given phenological
647 region. The Rnoviamiyj and Rnovi_zva)j models were less affected by changes of planting structure. By
648  comparing the applicability and accuracy of the three methods for different disasters, it was
649  discovered that the accuracy was higher for hailstorms, droughts, and waterlogging. In addition, the
650  model based on the GEE platform can be used for large-scale spatiotemporal pattern analysis and
651  real-time monitoring.

652 There are some common problems in the extraction of disaster scope by the three monitoring
653 models, namely, their low spatial resolution results in the existence of mixed pixels, which in turn
654  leads to the low detection accuracy of some small-scale agricultural disasters. Monitoring methods
655  with higher spatial and temporal resolution can be adopted in order to improve the monitoring
656  accuracy. Additionally, the growth period differences of different crop types were not fully
657  considered in this study

658 In future research, the planting structure data for the entire province should be combined in
659  order to perform further detailed analysis. In addition, investigations should continue to take
660  advantage of the rapidity, wide range, and good portability of GEE, and expand the study area in an
661 attempt to conduct disaster monitoring analysis on the global farmland scale or to compare the
662  differences of disasters at the same latitude, thereby determining the underlying laws governing
663  these events and the reasons for their occurrence. Higher-resolution images can also be utilized to
664  model the NDVI, as well as higher-resolution validation data. This research provides technical
665  support for disaster early warning, disaster prevention and mitigation, as well as post-disaster rescue
666  work through the extraction of such large-scale and long-duration series of disaster scope.

667

668

669 5. Conclusions

670

671 In this study, three models, i.e., Rnovivea), Rnoviamag, and Rnovizmeyg, were constructed using

672  the GEE platform to extract the scope of disasters in Heilongjiang Province from 2010-2019. In
673  addition, the spatiotemporal pattern changes and the applicability of the different models to various
674  disasters were studied in combination with meteorological data. The results revealed the following:

675 1. The Rnovi_ta), Rnovi_amj), and Rnovi_zmeg) models could all extract the spatiotemporal features
676  of large-scale disasters with high precision, which were consistent with the disaster situations and
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677  time variation trends reported across the entire province, and achieved the ideal result of disaster
678  range extraction based on MODIS data.

679 2. The Rnovi_mve), Rnovi_ameyg), and Rnovi_zmig models were shown to have different applicability
680 to hailstorms, floods, droughts, insect disasters, and windstorms, as well as different disaster
681  extraction ranges. In addition, there was a strong consistency from DOY 177 to DOY 257, and the
682  extraction disaster ranges were similar.

683 3. The disaster scopes extracted by the Rxovi_mve), Rnoviamayg), and Rnovi_zme models were found
684  to be in good agreement with the meteorological disaster data of Heilongjiang Province and can
685  therefore be used to analyze the spatiotemporal pattern of disasters and to provide support for
686  disaster risk partitioning.
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