Reniem

Cannabinoids for People with ASD: A Systematic Review of Published and Ongoing Studies

Laura Fusar-Poli¹, Vito Cavone¹, Silvia Tinacci¹, Ilaria Concas¹, Antonino Petralia¹, Maria Salvina Signorelli¹, Covadonga M. Díaz-Caneja², Eugenio Aguglia^{1*}

- ¹ Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, via Santa Sofia 78, 95123, Catania, Italy; laura.fusarpoli@gmail.com (L.F.-P.); vtcv87@gmail.com (V.C.); silvia.tinacci28@gmail.com (S.T.); ilariaconcas@ymail.com (I.C.); petralia@unict.it (A.P.); <a href="mailto:mail
- ² Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Centro de Investigación Biomédica en Red del área de Salud Mental (CIBERSAM), Calle Ibiza, 43, 28009, Madrid, Spain; covadonga.martinez@iisgm.com (C.M.D.-C.)

*Correspondence: eugenio.aguglia@unict.it; Tel.: +39 095 378 2470 (E.A.)

Abstract: The etiopathogenesis of autism spectrum disorder (ASD) remains largely unclear. Among other biological hypotheses, researchers have evidenced an imbalance in the endocannabinoid (eCB) system, which regulates some functions typically impaired in ASD, such as emotional responses and social interaction. Also, cannabidiol (CBD), the non-intoxicating component of Cannabis sativa, has been recently approved for treatment-resistant epilepsy. Seizures represent frequent medical comorbidities of ASD and could be responsible for the onset or worsening of behavioral problems. Thus, it has been hypothesized that cannabinoids could be useful in improving some ASD symptoms. Our systematic review was conducted according to the PRISMA guidelines and aimed to summarize the literature regarding the use of cannabinoids in ASD. After searching in Web of KnowledgeTM, PsycINFO, and Embase, we included ten studies (eight papers and two abstracts). Four ongoing trials were retrieved in ClinicalTrials.gov. Findings are promising, as cannabinoids appeared to improve problem behaviors, sleep, hyperactivity, and communication deficits, with limited cardiac and metabolic side effects. Interestingly, they generally allowed to reduce the number of prescribed medications and decreased the frequency of seizures in epileptic patients. Mechanisms of action could be linked to the excitatory/inhibitory imbalance found in people with ASD. However, further trials need to be implemented with better characterization and homogenization of samples, and well-defined outcomes.

Keywords: autism spectrum disorder; cannabinoids; cannabidiol; cannabidivarin; THC; problem behaviors; sleep; epilepsy; side effects

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication and social interaction and by a pattern of restricted interests and repetitive behaviors that may vary in severity [1]. It has been estimated that around 1.5% of the general population may belong to the autism spectrum [2]. Along with core symptoms, ASD may present with several associated problems, such as irritability, challenging behaviors [3], and self-injury [4], especially in presence of associated intellectual disability (ID), a condition which seems to regard at least one-third of the autistic population [5]. Conversely, individuals with higher cognitive abilities are more frequently burdened by psychiatric comorbidities, such as depression, anxiety, attention deficit-hyperactivity disorder (ADHD), or sleep problems [6-8].

2 of 17

Medical comorbidities are also highly prevalent among the ASD population [9-11]. In particular, epilepsy represents the most frequent co-occurring neurological condition, affecting 5 to 30% of individuals with ASD [12-15]. Even in absence of frank seizures, people with ASD seem to present subclinical electrical discharges with abnormalities in EEG patterns [16,17].

The etiopathogenesis of ASD still needs to be clarified. Several genetic [18], perinatal [19,20], and environmental factors [21,22] seem to be involved. Research has also evidenced an imbalance in some endogenous neurotransmission systems [23], such as the serotoninergic [24], GABAergic [17,25], and endocannabinoid (eCB) system [26-28]. Alterations of the eCB neurotransmission system have been found in animal models of ASD [29]. Additionally, lower serum levels of eCB have been detected in children with ASD compared to typically developing peers [30,31]. Notably, the eCB system is relevant, as it seems to regulate some of the functions typically impaired in ASD, such as the form of emotional responses and social interaction [32].

Given the alterations in the eCB systems, researchers have started to hypothesize that phytocannabinoids, which are naturally present in the plant of Cannabis sativa, may exert beneficial effects on ASD core and associated symptoms. First, multiple experimental studies conducted on mouse models have shown that cannabidiol (CBD), the non-intoxicating component of cannabis, affects social interaction [33,34], which is severely impaired in ASD. Although CBD does not exert psychomimetic properties or the ability to induce addiction, it indirectly affects the transmission of the cannabinoid-related signal, the degradation of the endocannabinoid anandamide, and thus act on autistic-like symptoms in rats [35]. Interestingly, in June 2019, the US Food and Drug Administration (FDA) approved Epidyolex, a CBD-based oral solution, for the treatment of seizures in Dravet and Lennox-Gastaut syndrome, two rare forms of epilepsy, in children older than two years of age [36]. As mentioned above, epilepsy is one of the most frequent co-occurrent conditions of ASD, and the presence of seizures or non-epileptic abnormalities in EEG patterns may be partially responsible for challenging behaviors or aggression in people with ASD. Thus, the correction of these abnormalities could improve, at least in part, the behavioral problems. CBD also exerts an agonist activity on the 5-HT1a receptors (i.e., serotoninergic system), an effect that could mediate pharmacological antidepressant, anxiolytic and pro-cognitive effects [37,38]. In fact, the therapeutic effects of CBD have been tested in patients suffering from anxiety disorder [39], a psychiatric comorbidity affecting at least 20% of people with ASD [8]. Possible benefits of CBD, due to its potential effects on the dopaminergic system, have also been studied on subjects suffering from psychosis, [40], which can also represent a mental health issue for autistic individuals [8].

The effects of other cannabinoids have been scarcely explored in clinical research. Cannabidivarin (CBDV) improved neurological and social deficits in early symptomatic Mecp2 mutant mice, a model of Rett syndrome [41]. Moreover, it has proven to be an effective anticonvulsant in several models of epilepsy [42]. Delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, may increase sleep duration [43], being thus a potential candidate for a sedative effect. Also, it seems to reduce locomotor activity, which is indicative of a decrease in anxiety-like behavior [44]. According to a recent pilot randomized trial [45], a cannabinoid compound containing 1:1 ratio of THC:CBD significantly improved symptoms of hyperactivity, impulsivity, and inhibition measures in adults with ADHD, a condition that seem to affect around 28% of autistic subjects [8].

As mentioned above, ASD presents serious deficits in social interaction and communication, as well as repetitive behaviors. However, up to date, no effective pharmacological treatment exists for ASD core symptoms, and only two atypical antipsychotics (i.e., risperidone and aripiprazole) have been approved by the FDA for the treatment of irritability in children and adolescents with ASD [46]. Nevertheless, psychotropic medications are frequently prescribed in everyday clinical practice, with the frequent onset of side effects [47]. Given their properties, cannabinoids have been proposed as candidate therapeutic options in patients with ASD. Two recent narrative reviews have been conducted on the topic [48,49]. However, to the best of our knowledge, no systematic reviews have comprehensively summarized the effects of cannabinoids for the treatment of individuals with ASD. The present paper aimed to describe the current state-of-the-art regarding the use of cannabinoids in individuals with ASD, focusing both on published and ongoing trials.

99 100

114

115

116

117

118 119

120

2. Materials and Methods

- 101 2.1. Search strategy
- We have followed the PRISMA Statement guidelines to perform a systematic search [50]. First, we
- 103 have searched the following databases from inception up to May 26, 2020: Web of Knowledge™
- 104 (including Web of Science, MEDLINE®, KCI Korean Journal Database, Russian Science Citation
- 105 Index and SciELO Citation Index), PsycINFO, Embase, and ClinicalTrials.gov, without any time or
- language restriction. We used the following search strategy: (cannab*) AND (autis* OR asperger OR
- $107 \qquad \textit{kanner OR "neurodevelop* disorder*"}). \ Second, we have reviewed all references of relevant reviews and$
- meta-analyses to find any additional eligible study.
- 109 2.2. Inclusion criteria
- 110 Two review authors (LF and VC) have screened, independently and in duplicate, all retrieved papers.
- Any doubt was solved by consensus. The authors have included all original studies written in
- English, published as full papers or abstracts in peer-reviewed journals, and meeting the following criteria:
 - 1) Participants: Individuals with a diagnosis of autism spectrum disorder (ASD), according to international valid criteria or measured by a validated scale, regardless of age.
 - 2) Intervention: *Cannabis sativa* or cannabinoids, such as, cannabidiol (CBD), cannabidivarin (CBDV), delta-9-tetrahydrocannabinol (THC) and others, administered at any dosage and any form.
 - 3) Comparison: Studies with or without a comparison group (placebo or other forms of treatment).
- 121 4) Outcomes: Any outcome.
- 5) Study design: Case report, case series, retrospective, observational longitudinal, randomized or controlled clinical trials, both parallel and crossover.
- 124 2.3. Data extraction
- Data were extracted by two authors (ST and IC) who have worked independently and in duplicate.
- 126 Any doubt was solved by consensus. A standardized form was used to extract data from the included
- studies. We have extracted information about study characteristics (first author, year, study design,
- country), characteristics of the ASD sample (sample size, age, presence of ID, presence of epilepsy,
- 129 concomitant medications), type and duration of the intervention and the comparison, outcomes and
- outcome measures, findings, and side effects. We have reported also data regarding ongoing studies,
- as retrieved in ClinicalTrials.gov. Results of the study were reported in a narrative summary that was
- organized around the study characteristics.

133

134

- 3. Results
- 135 3.1. Search results
- 136 Our search yielded a total of 767 studies, and four additional articles were found through other
- sources. After removing duplicates, we screened 604 titles and abstracts. After reading the full-texts
- of 15 papers, we have finally included 10 published works (eight full articles and two conference
- abstracts) in our systematic review. Additionally, we have selected four ongoing trials in
- 140 ClinicalTrials.gov. The selection procedure of the included studies has been reported in Figure 1.

Figure 1. PRISMA flow chart of study selection process.

3.2. Characteristics of studies and participants

We included three retrospective studies, three prospective cohort studies, one case report, and three randomized placebo-controlled crossover trials. Apart from the case report [51], all papers were published within the last three years. Studies were conducted in Israel (n = 3), United Kingdom (n = 3), Brazil, Chile, Austria, and United States (n = 1 each). Sample sizes ranged from one [51] to 188 [52]. Participants were mainly children, even if in two studies there were mixed samples [53,54]. The three studies conducted by Pretzsch and colleagues [55-57] included only adults with normal cognitive abilities (IQ>70). Interestingly, only another study [58] has specified the level of functioning, which was not reported in the remaining papers. Many participants were taking concomitant medications, and part of the samples had epilepsy. However, this information was not specified in two studies [51,53]. Study characteristics are reported in Table 1.

Peer-reviewed version available at Brain Sci. 2020, 10, 572; doi:10.3390/brainsci10090572

	Study characteristics				Characteristics of participants with ASD					Treatment characteristics			
Author	Year	Country	Study design	N of	Mean	Intellectual	Concomitant medication	Participants	Active treatment	Daily dosage	Control	Mean follow-	
				participants	age	disability, n		with epilepsy,			treatment	up, months	
				with ASD	(range)	(%)		n (%)				(range)	
Aran	2019	Israel	Retrospective	60	11.8	77% low	All medications (82%), Antipsychotics	14 (23.3)	Cannabinoid oil solution at	Sublingual assumption 2	None	10.9	
			cohort study		(5-17.5)	functioning	(72%), Mood stabilizers (17%),		a 20:1 ratio of CBD and	or 3 times/daily with CBD		(7-13)	
							Benzodiazepines (12%), SSRI (7%),		THC,	doses started at 1			
							Stimulants (7%),			mg/kg/day and titrated up			
										to 10 mg/kg/day.			
Barchel	2019	Israel	Prospective	53	11	Not reported	Atypical antipsychotics (58.4%), Anti-	Not reported	Cannabinoid oil solution at	CBD: 16 mg/kg (maximal	None	Median 66 days	
			cohort study		(4–22)		epileptic (15%), Typical antipsychotics		a concentration of 30% and	daily dose 600 mg), THC		(30–588)	
							(11.3%), Stimulants (9.4%), Melatonin		20:1 ratio of CBD and THC.	0.8 mg/kg (maximal daily			
							(7.5%), Other anti-muscarinic (5.6%),			dose of 40 mg).			
							Anti-depressant (3.7%), Alpha agonist						
							(1.8%)						
Fleury-	2019	Brazil	Prospective	18	10.9	Not reported	Any medication (66.7%), Antipsychotics	5 (27.7)	Cannabis Sativa extract	CBD: mean 175 mg/day	None	12.4 (6-39)	
Teixeira			cohort study	(15 analyzed)	(6-17)		(46.7%), Mood stabilizers (33%),		containing a 75:1	(100-350); THC: 2.33			
							Phenobarbital (6.7%),		CBD:THC ratio	mg/day (1.33-2.33).			
Kuester	2017	Chile	Retrospective	20	9.8	Not reported	Not reported	Part of the	71.5% of patients received	Not reported	None	7.6 (3-12)	
			case series		(2-22)			sample had	balanced CBD:THC				
			(abstract only)					seizures	extracts; 19% high-CBD;				
									and 9-5% high-THC				
									extracts.				

Peer-reviewed version available at Brain Sci. 2020, 10, 572; doi:10.3390/brainsci10090572

2 of 17

Kurz	2010	Austria	Case report	One	6	Not reported	None	Not reported	Dronabinol (delta-9-THC)	Initial dosage was one	None	6
			•			*		•	solved in sesame oil.	drop (0.62 mg) in the		
										morning which was		
										increased up to 3.62		
										mg/die		
McVige	2020	United	Retrospective	20	Not	Not reported	Each patient tried an average of 6.4 other	6 (30%)	Medical cannabis	Not reported	None	Not reported
		States	case series		reported		medications. Current medication not					
			(abstract only)				specified.					
Schleider	2019	Israel	Prospective	188	12.9	Not reported	Antipsychotics (56.9%), antiepileptics	27 (14.4%)	Most patients consumed	On average 79.5 ± 61.5 mg	None	6
			cohort study		(< 5-18)		(26.0%), hypnotics and sedatives		oil with 30% CBD and 1.5%	CBD and 4.0 ± 3.0 mg THC,		
							(14.9%), antidepressants (10.6%).		THC. Insomnia was	three times a day. Average		
									treated with an evening	additional 5.0 ± 4.5 mg		
									dose of 3% THC oil.	THC daily for insomnia.		
Pretzch	2019a	United	RCT crossover	17	31.3	0 (0)	No medication influencing on GABA+	0 (0)	CBD	600 mg	Placebo	Single
		Kingdom					levels. Methylphenidate (n = 1),					administration
							sertraline (n = 1)					
Pretzch	2019b	United	RCT crossover	17	31.3	0 (0)	No medication ingluencing on GABA+	0 (0)	CBDV	600 mg	Placebo	Single
		Kingdom					levels.					administration
Pretzch	2019c	United	RCT crossover	13	30.8	0 (0)	No medication influencing on GABA+	0 (0)	CBD	600 mg	Placebo	Single
		Kingdom					levels. Methylphenidate (n = 1),					administration
							sertraline (n = 1)					

Legend: CBD: Cannabidiol; CBDV: Cannabidivarin; GABA+: Gamma aminobutyric acid; RCT: randomized controlled trial; THC: delta-9-tetrahydrocannabinol.

Table 1. Characteristics of the included studies.

156

3.3. Characteristics of treatment

- The treatment was represented by a cannabinoid oil solution with a CBD:THC ratio of 20:1 in two
- studies [53,58] and with a 30:1.5 ratio in one study [52]. Fluery-Teixeira et al. [59] and Kuester et al.
- 162 [54], instead, used Cannabis sativa extracts with different compositions. Kurz and Blaas [51] reported
- the use of dronabinol (delta-9-THC) solved in sesame oil. McVige et al. [60] documented the use of
- medical cannabis with unspecified composition. Finally, Pretzsch and colleagues administered single
- doses of 600 mg of CBD or CBDV [55-57]. Only the studies by Pretzsch et al. used a control treatment
- 166 (placebo). The duration of treatment was extremely variable, ranging from single administrations
- 167 [55-57] to six months [51,52]. Of note, many studies were naturalistic and treatment duration was
- different among participants. Characteristics of treatment with cannabinoids have been reported in
- 169 Table 1.

159

170 3.4. Outcomes and findings

- 171 The results of the included studies have been reported in Table 2. It could be observed that studies
- 172 typically had multiple outcomes. The most investigated were global impression, sleep problems,
- 173 hyperactivity, problem behaviors, use of concomitant medications, and seizures. Parenting stress was
- measured in two studies. Anxiety, mood, and quality of life were evaluated in the context of global
- impression. Only one study [59] specifically evaluated socio-communication impairments, but the
- authors did not use a standardized measure. Surprisingly, none of the included studies aimed to
- evaluate changes in stereotypes. Of note, the three studies conducted by Pretzsch et al. [55-57]
- 178 investigated the acute effects of cannabinoids using neuroimaging techniques (magnetic resonance
- spectroscopy [MRS] and functional Magnetic Resonance Imaging [fMRI]). Outcomes and results have
- been reported in Table 2.

Author	Year	Outcome (measures)	Results	Side effects (%)	Drop out/Treatment discontinuation, n (%)
Aran	2019	-Problem behaviors (HSQ) -Parenting stress (APSI) -Caregiver Global Impression (CaGI): anxiety, behavior, communication -Medication	HSQ: improved by 29%. APSI: improved by 33%. CaGI-C: Behavior improved in 61%; anxiety improved in 39%; communication improved in 47% of the children. Following the cannabis treatment, 33% received fewer medications or lower dosage, 24% stopped taking medications and 8% received more medications or higher dose.	Any adverse event (51%), Sleep disturbances (14%), Restlessness (9%), Nervousness (9%), Loss of appetite (9%), Gastrointestinal symptoms (7%), Unexplained laugh (7%), Mood changes (5%), Fatigue (5%), Nocturnal enuresis (3.5%), Gain of appetite (3.5%), Weight loss (3.5%), Weight gain (3.5%), Dry mouth (3.5%), Tremor (3.5%), Sleepiness (2%), Anxiety (2%), Confusion (2%), Cough (2%), Psychotic event (2%)	1 (1.6%)
Barchel	2019	- Hyperactivity - Self-injury - Sleep - Anxiety - Global improvement	 Hyperactivity: Improvement: 68.4%; No change: 28.9%; Worsening: 2.6%; Self-Injury: Improvement: 67.6%; No change: 23.5%; Worsening: 8.8% Sleep Problems: Improvement: 71.4%; No change: 23.8%; Worsening: 4.7%; Anxiety: Improvement: 47.1%; No change: 29.4%; Worsening: 23.5%; Overall: Improvement: 74.5%; No change: 21.6%; Worsening: 3.9% 	Somnolence (22.6%), Appetite decrease (11.3%), Appetite increase (7.5%), Insomnia (3.7%), Sense abnormality response (to temperature) (3.7%), Eyes blinking (3.7%), Diarrhea (3.7%), Hair loss (1.8%), Nausea (1.8%), Confusion (1.8%), Acne (1.8%), Palpitations (1.8%), Urinary (1.8%), Incontinence (1.8%), Eye redness (1.8%), Constipation (1.8%)	5 (9.4%)
Fleury- Teixeira	2019	- Attention Deficit/Hyperactivity Disorder (ADHD) - Behavioral disorders (BD) - Motor deficits (MD) - Autonomy deficits (AD) - Communication and social interaction deficits (CSID) - Cognitive Deficits (CD) - Sleep Disorders (SD) - Seizures (SZ) - Concomitant medication	- ADHD: median perception of improvement: 30% - BD: median perception of improvement 20% - MD: median perception of improvement 20% - AD: median perception of improvement 10% - CSID: median perception of improvement 25% - CD: median perception of improvement 20% - SD: median perception of improvement 40% - SZ: three participants reported ≥50% of improvement; two participants reported 100% of improvement - Concomitant medication: complete withdrawal (n = 3), partial withdrawal (n = 1), partial withdrawal + dosage reduction (n = 3), dosage reduction (n = 2), no changes in medication use (n = 1)	Sleepiness, moderate irritability (n = 3); diarrhea, increased appetite, conjunctival hyperemia, and increased body temperature (n = 1). All these side effects were mild and/or transient. Nocturia (n = 2), which in one case appeared concomitantly to an improvement in sleep quality.	3 out of 18 (16.7%)
Kuester	2017	Global Impression (CGI-I) Parenting stress (APSI) Other variables (sensory difficulties, food acceptance, sleep, seizures)	CGI-I And APSI: 66.7% of patients had significant improvement. Most cases improved at least one of ASD core symptoms. Sensory difficulties, food acceptance, feeding and sleep disorders, and/or seizures were improved in most cases.	Two patients had more agitation and one had more irritability, effects that were solved by changing the strain.	None
Kurz	2010	- Problem behaviors (ABC)	Significant improvement in all subscales	None reported.	None
McVige	2020	Caregiver Global Impression (CaGI), including quality of life (QoL), activity limitations, symptoms, mood. Epilepsy Pain Other variables: sleep, aggression, communication, attention Medication use	- CaGI: improvement in all areas: QoL, activity limitations, symptoms, and mood - Improvement in seizure frequency and severity - Improvement in degree of overall pain - Improvement in sleep, mood, aggression towards self and/or others, communication abilities and attention/concentration - 50% of patients discontinued or reduced the use of other medications	Three patients reported mild adverse events (unspecified).	None
Schleider	2019	Quality of life Mood Adaptive abilities Sleep Concentration Symptom change: Restlessness, Rage attacks, Agitation, Sleep problems, Speech Impairment, Cognitive impairment, Anxiety, Incontinence, Seizures, Limited Mobility, Constipation, Tics,	- Quality of life: 66.8% improvement - Mood: 63.5% improvement - Adaptive abilities: 42.9% improvement - Sleep: 24.7% improvement - Concentration: 14% improvement	Restlessness (6.6%), sleepiness (3.2%), psychoactive effect (3.2%), increased appetite (3.2%), digestion problems (3.2%), dry mouth (2.2%), lack of appetite (2.2%).	23 (12.2%)

184

185

186

Peer-reviewed version available at Brain Sci. 2020, 10, 572; doi:10.3390/brainsci10090572

2 of 17

		Digestion Problems, Increased Appetite, Lack of Appetite, Depression			
Pretzsch	2019a	MRS, effects of Glx and GABA+	CBD increased subcortical, but decreased cortical, Glx. CBD decreased GABA+ in ASD.	None reported	None
Pretzsch	2019b	MRS, effects of Glx and GABA+	CBDV significantly increased Glx in the basal ganglia. In the ASD group, the 'shift' in Glx correlated negatively with baseline Glx concentration. , CBDV had no significant impact on Glx in the DMPFC, or on GABA+.	None reported	None
Pretzsch	2019c	fMRI, measure of fractional amplitude of low-frequency fluctuations' (fALFF) and, functional connectivity (FC)	CBD significantly increased fALFF in the cerebellar vermis and the right fusiform gyrus in the ASD group. CBD also significantly altered vermal FC with several of its subcortical (striatal) and cortical targets, but did not affect fusiform FC with other regions.	None reported	None

Legend: *ABC*: Aberrant Behavior Checklist; *APSI*: Autism Parenting Stress Index; *CBD*: Cannabidiol; *CBDV*: Cannabidivarin; *CGI-I*: Clinical Global Impression-Improvement; *fMRI*: functional Magnetic Resonance Imaging; *GABA*+: Gamma aminobutyric acid; *Glx*: glutamate + glutamine; *HSQ*: Home situation Questionnaire; *MRS*: Magnetic Resonance Spectroscopy.

Table 2. Efficacy and safety of cannabinoids in people with ASD.

3.5. Ongoing trials

187

188

189

190

191

192

193

194

195

196

197

198

199

In ClinicalTrials.gov we retrieved four ongoing studies, of which two were randomized controlled trials and two open label trials. Three of these studies are being conducted in the United States, and one in Israel. Researchers have mainly planned to recruit children (except for the trial NCT02956226 which have planned to extend the administration of treatment up to the age of 21). Two studies will test the effects of CBDV, one study will examine the effects of CBD at different dosages, and one the effects of a combination of CBD and THC (ratio 20:1). Duration of trials will be from 6 to 52 weeks. All trials have planned to administer multiple outcome measures to both patients and caregivers. Interestingly, specific tools measuring changes in ASD core symptoms have been inserted, comprehensive of the evaluation of repetitive behaviors and stereotypes. Adaptive abilities, aberrant behaviors, and sleep disturbances will be other target symptoms of the studies. The characteristics of ongoing trials have been summarized in Table 3.

Study characteristics Participants Treatment characteristics Outcomes characteristics Registration Principal Study Active Control Duration Outcome Age participants Investigator design range treatment treatment with ASD NCT03202303 Hollander United RCT 100 5-18 10 mg/kg/day 10 mg/kg/day 12 weeks - ABC-I Ongoing CBDV - RBS-R - ABC-SW - PedsOL - Vineland - CGI-I NCT03849456 Ongoing 30 4-18 CBDV at a None TEAEs Open dose of 2.5 CCC-2 mg/kg/day Vineland and titrate to a NIH target dose of 10 mg/kg/day RBS-R or 800 mg/day CSHQ ABC during the first 4 week. If CGI-I intolerance during titration, participant may be maintained on a dose below 10 mg/kg/day. Maximum dose: 20 mg/kg/day or 1600 mg/day NCT03900923 Castellanos 30 7-17 Cohorts of size None 6 weeks - CGI-I Ongoing United 3 receiving - BOSCC doses of 3, 6, - RBS-R or 9 - SRS-2 mg/kg/day of - ABC-SW - ABC-I CBD, - CCC-2 depending on - SCARED - SDSC response of participants in - Vineland prior cohorts. - CGI-S - AFEO - ASC-ASD-P Anxiety Scale ASC-ASD-C - OSUS - OSUI BIS NCT02956226 150 RCT 5-21 Oral olive oil Aran Ongoing Israel Oral 3 months HSOcannabinoids ASD and flavors that mimic in CGI-I mix (CBD:THC in SRS-2 texture and APSI a 20:1 ratio] at 1 mg/kg CBD

Peer-reviewed version available at Brain Sci. 2020, 10, 572; doi:10.3390/brainsci10090572

2 of 17

			per day, up-	cannabinoids'	- HSQ	Q-
			titrated until	solution.	ASI)
			intolerance or		- LAI	ΞP
			to a maximum			
			dose of 10			
			mg/kg CBD			
			per day,			
			divided to 3			
			daily doses.			

Legend: ABC: Aberrant Behavior Checklist; ABC-I: Aberrant Behavior Checklist-Irritability Subscale; ABC-SW: Aberrant Behavior Checklist-Social Withdrawal Subscale; AFEQ: Autism Family Experience Questionnaire; APSI: Autism Parenting Stress Index; ASC-ASD-C: Anxiety Scale for Children - Autism Spectrum Disorder - Child Versions; ASC-ASD-P: Anxiety Scale for Children - Autism Spectrum Disorder - Parent Versions; BIS: Behavioral Inflexibility Scale; BOSCC: Brief Observation of Social Communication - Change; CBD: Cannabidiol; CBDV: Cannabidivarin; CCC-2: Change from Baseline in Children's Communication Checklist-2; CGI-I: Clinical Global Impressions-Improvement; CGI-S: Clinical Global Impression-Severity; CSHQ: Change from Baseline in Children's Sleep Habits Questionnaire; HSQ-ASD: Home Situations Questionnaire-Autism Spectrum Disorder; LAEP: Modified Liverpool Adverse Events Profile; NIH: Change from Baseline in National Institutes of Health; OSUI: Autism Clinical Global Impressions: Improvement; OSUS: OSU Autism Clinical Global Impressions: Severity; PedsQL: Pediatric Quality of Life Inventory - Family Impact Module; RBS-R: Repetitive Behavior Scale-Revised; RCT: randomized controlled trial; SCARED: Screen for Child Anxiety Related Disorders; SDSC: Sleep Disturbance Scale for Children; SRS-2: Social Responsiveness Scale, 2nd Edition; TEAEs: Number of Participants Who Experienced Severe Treatment-Emergent Adverse Events; THC: delta-9-tetrahydrocannabinol; Vineland 3: Vineland Adaptive Behavior Scale-3.

Table 3. Characteristics of ongoing trials testing cannabinoids in people with ASD.

4. Discussion

In the present systematic review, we found preliminary evidence showing that cannabinoids (compounds with different ratios of CBD and THC), may exert beneficial effects on some core and associated ASD symptoms, such as behavioral problems, hyperactivity, sleep disorders, anxiety, mood, and even socio-communication, with a lower number of metabolic and neurological side effects than medications. Importantly, treatment with cannabinoids allowed to reduce the number of prescribed medication and to significantly improved the frequency of seizure in participants with comorbid epilepsy. We will now reflect in-depth on some critical points related to main findings, mechanisms of action of cannabinoids, and methodology of included studies.

4.1. Efficacy and safety of cannabinoids in ASD

The majority of available interventions for ASD are based on behavioral, psychoeducational, and pharmacological therapies [61]. Up to date, the FDA has approved only two medications for the treatment of children and adolescents with ASD: risperidone and aripiprazole. Such medications are mostly used for irritability, aggressiveness, and self-injurious behaviors, but, unfortunately, there is no evidence of efficacy on core symptoms [62]. However, many drugs, such as antipsychotics, mood stabilizers, antidepressants, and stimulants, are prescribed off-label in clinical practice [47,63].

The findings of the studies included in the present systematic review are promising, as cannabinoids seem to improve core and associated symptoms in many individuals with ASD, such as communication, behavioral problems, and sleep. Of note, in individuals with comorbid epilepsy, the use of cannabinoids has significantly reduced the frequency and intensity of seizures. Also, the number and dosage of used medications were reduced after the treatment with cannabinoids. This is a secondary, but extremely important finding. In fact, pharmacological therapies commonly prescribed to individuals with ASD are frequently burdened by side effects, such as weight gain, dyslipidemia, diabetes, and metabolic syndrome. These adverse events are frequent also in children, given the sensory difficulties, food selectivity, and rigidity in eating behaviors, which can lead to an increased risk for weight gain and poor nutritional habits [64-67]. For this reason, the correct management of pharmacological treatment should try to prevent the onset of side effects, through reviewing and identifying the risk factors, monitoring metabolic markers, promoting potential modifiers of the course of metabolic syndrome (i.e. lifestyle, polypharmacy) [68]. For example, patients with a history of weight gain and/or diabetes may avoid medications known to increase the risk of these side effects such as risperidone and olanzapine [69,70]. Some cardiovascular risk factors

3 of 17

(QTc prolongation, diabetes, and weight gain) also seem to have dose-dependent side effect profiles that may require monitoring at dose changes [64,70,71].

We found that the most common side effects of cannabinoids were somnolence, increased appetite, and irritability. As many patients were taking concomitant medications, it is not possible to determine if these adverse events were caused by the cannabinoids or by other drugs. Only Aran et al. [58] reported a severe adverse event (a psychotic episode) which resolved after stopping the cannabinoid oil solution and treating the patient with an antipsychotic (i.e., ziprasidone). None of the included studies have reported cardiac adverse events (i.e., QTc prolongation) or severe metabolic side effects (i.e., hyperlipidemia, diabetes, hyperprolactinemia), which could depose for a better safety profile in cannabinoids than antipsychotics.

4.2. Mechanisms of action: the role of excitatory/inhibitory system

The three papers published by Pretzsch et al. [55-57] have primarily investigated the modulation of brain's primary excitatory and inhibitory systems in adults with ASD and neurotypical controls after a single of 600 mg of cannabinoids (CBD and CBDV). The findings evidenced a CBD-related increase of glutamate (excitatory system) in subcortical regions (i.e. basal ganglia) and a decrease in cortical regions (i.e. dorso-medial prefrontal cortex), both in subjects with and without ASD. Conversely, CBD increased GABA transmission (inhibitory system) in critical and subcortical regions of neurotypical subjects, while decreased it in the same areas of the ASD group. This confirms the hypothesis that GABA transmission could be altered in people with ASD [17,72,73]. Moreover, CBD modulated low-frequency activity, used as a measure of spontaneous regional brain activity, and functional connectivity in the brain of adults with ASD [57]. The experiment with CBDV seems to replicate the findings of the CBD study for glutamate transmission, but not for GABA [56].

Such findings may further explain the link between autism and seizures. About 25% of children with treatment-resistant epilepsy are comorbid with ASD and often present other severe comorbidities such as sleep disturbances, intellectual disability, or other psychiatric conditions [74]. Additionally, as mentioned above, epilepsy is one of the main medical comorbidities in people with ASD [12-15], and has also been found to be more common in those patients with autism-like behaviors as part of phenotypes of genetic syndromes (i.e. Angelman, Rett syndrome, etc.) [75]. This overlap may be explained by common biological mechanisms. Like ASD, in fact, epilepsy is characterized by an imbalance between excitatory and inhibitory transmission in the central nervous system [76]. The presence of seizure in ASD could also be responsible for the onset of challenging behaviors [77]. Therefore, it could be hypothesized that treating seizures with cannabinoids may exert a significant impact also on externalizing symptoms.

Unfortunately, the action of cannabinoid administration on other neurotransmission systems has not been investigated in autistic individuals. As mentioned in the introduction, studies on animal models have provided evidence for the role of serotoninergic [78] [38,79] and dopaminergic systems [80]. However, their role in the etiology of ASD still need to be clarified.

4.3. Limitation: heterogeneity of studies

The present systematic review included ten published studies (of which two conference abstracts) and four ongoing trials. Looking at Table 1, which summarizes the characteristics of the studies, it is possible to notice that the works conducted to the present date are highly mixed in terms of study design and participants. Some studies included both children and adults, other participants with and without epilepsy (which is not irrelevant, as cannabinoids act on the excitatory/inhibitory system, altered in epilepsy). Also, the intake of concomitant medications acting on the GABAergic system may represent a bias. Finally, the level of functioning or the intelligence quotient (IQ) was specified only in four studies [55-58]. The characterization of samples is fundamental as target symptoms may vary. Individuals with associated intellectual disability (ID) typically present more severe behavioral problems that could benefit from the use of cannabinoids. People with higher levels of functioning, instead, could present more frequently co-occurrent anxiety disorders. This is important because different target symptoms need different outcome measures.

Other caveats rely, in fact, on the heterogeneity of outcomes and administered treatment. It appears evident that studies were mainly explorative and did not report a differentiation between primary and secondary outcomes. Moreover, measures were often multiple and targeted both core and associated ASD symptoms. Standardized measures were used only in few studies, and in some cases, authors have reported only the proportion of improvement for each symptom. This important issue confirms the findings of a recent systematic review of 406 clinical trials [81], which has pointed out that the tools used in autism research are heterogeneous and non-specific. This fragmentation may significantly hamper the comparison between studies and the understanding of the real effectiveness of cannabinoids in the ASD population. In addition, the majority of studies used combinations of CBD and THC in different concentrations and ratios, even in the same study sample. It is indisputable that the dosage of cannabinoids needs to be calibrated on individual characteristics (e.g. weight), but again, the use of different concentrations/ratios does not allow to compare studies and find the optimal therapeutic range.

Importantly, seven of the included studies did not have a control group. Only the three studies conducted by Pretzsch et al. [55-57] administered a control treatment (placebo), using also a control group (healthy subjects). However, these studies principally aimed to explore the neural modifications induced by the assumption of CBD or CBDV in individuals with ASD, evaluating also the differences with neurotypical subjects. Even if not directly designed to study the efficacy and safety of cannabinoids in ASD, the completion of similar studies appears fundamental as they may elucidate the neurochemical functioning of the autistic brain.

5. Conclusions

Our systematic review is the first to critically summarize the published and ongoing studies investigating the use of cannabinoids in the ASD population. The main limitation of the present paper is the absence of a statistical analysis of results that was hampered by the heterogeneity of study design, populations, type of cannabinoid, and particularly, outcomes and measures. Future studies investigating the acute effects of cannabinoids in people with ASD on neurotransmitters levels could clarify the mechanisms of action of cannabinoids. Moreover, the comparison with healthy samples might clarify at least some aspects of the etiopathology of ASD and laying the ground for potential treatments for core and associated symptoms. Even if some clinical trials are ongoing, there is the need for further long-term studies, with homogeneous samples in terms of age, medication use, level of functioning, and presence/absence of seizures. Of great importance would be the choice of specific primary and secondary outcomes, focused on the cluster of symptoms that could benefit from the use of cannabinoids.

- 331 Author Contributions: Conceptualization, L.F.-P., V.C., S.T., and I.C.; methodology, L.F.-P.; investigation, L.F.-332 P., V.C., S.T., and I.C.; data curation, L.F.-P., V.C., S.T., and I.C.; writing—original draft preparation, L.F.-P., V.C., S.T., and I.C.; writing—review and editing, A.P., M.S.S., C.M.D.-C., and E.A.; supervision, A.P., M.S.S., C.M.D.-C., and E.A.; All authors have read and agreed to the published version of the manuscript.
- Funding: This research received no external funding.
- 336 Acknowledgments: None.
- **Conflicts of Interest:** The authors declare no conflict of interest.

339 References

- 340 1. American Psychiatric Association. *Diagnostic and statistical manual of mental disorders* (dsm-5®). American Psychiatric Pub: 2013.
- Baxter, A.J.; Brugha, T.; Erskine, H.E.; Scheurer, R.W.; Vos, T.; Scott, J.G. The epidemiology and global burden of autism spectrum disorders. *Psychological medicine* **2015**, *45*, 601-613.
- 3. Hill, A.P.; Zuckerman, K.E.; Hagen, A.D.; Kriz, D.J.; Duvall, S.W.; Van Santen, J.; Nigg, J.; Fair, D.; Fombonne, E. Aggressive behavior problems in children with autism spectrum disorders: Prevalence and correlates in a large clinical sample. *Research in autism spectrum disorders* **2014**, *8*, 1121-1133.
- 347 4. Steenfeldt-Kristensen, C.; Jones, C.A.; Richards, C. The prevalence of self-injurious behaviour in autism: A meta-analytic study. *Journal of autism and developmental disorders* **2020**.
- Maenner, M.J.; Shaw, K.A.; Baio, J. Prevalence of autism spectrum disorder among children aged 8
 years—autism and developmental disabilities monitoring network, 11 sites, united states, 2016. MMWR
 Surveillance Summaries 2020, 69, 1.
- Hollocks, M.J.; Lerh, J.W.; Magiati, I.; Meiser-Stedman, R.; Brugha, T.S. Anxiety and depression in adults with autism spectrum disorder: A systematic review and meta-analysis. *Psychological medicine* **2019**, 49, 559-572.
- Lugo-Marín, J.; Magán-Maganto, M.; Rivero-Santana, A.; Cuellar-Pompa, L.; Alviani, M.; Jenaro-Rio,
 C.; Díez, E.; Canal-Bedia, R. Prevalence of psychiatric disorders in adults with autism spectrum disorder: A systematic review and meta-analysis. *Research in Autism Spectrum Disorders* 2019, 59, 22-33.
- Lai, M.-C.; Kassee, C.; Besney, R.; Bonato, S.; Hull, L.; Mandy, W.; Szatmari, P.; Ameis, S.H. Prevalence of co-occurring mental health diagnoses in the autism population: A systematic review and meta-analysis. *The Lancet Psychiatry* **2019**, *6*, 819-829.
- 361 9. Brondino, N.; Fusar-Poli, L.; Miceli, E.; Di Stefano, M.; Damiani, S.; Rocchetti, M.; Politi, P. Prevalence of medical comorbidities in adults with autism spectrum disorder. *Journal of general internal medicine* 2019, 34, 1992-1994.
- Doshi-Velez, F.; Ge, Y.; Kohane, I. Comorbidity clusters in autism spectrum disorders: An electronic health record time-series analysis. *Pediatrics* **2014**, *133*, e54-e63.
- 366 11. Muskens, J.B.; Velders, F.P.; Staal, W.G. Medical comorbidities in children and adolescents with autism spectrum disorders and attention deficit hyperactivity disorders: A systematic review. *European child & adolescent psychiatry* **2017**, *26*, 1093-1103.
- Besag, F.M. Epilepsy in patients with autism: Links, risks and treatment challenges. *Neuropsychiatric disease and treatment* **2018**, *14*, 1.
- Lewis, M.L.; Kesler, M.; Candy, S.A.; Rho, J.M.; Pittman, Q.J. Comorbid epilepsy in autism spectrum disorder: Implications of postnatal inflammation for brain excitability. *Epilepsia* **2018**, *59*, 1316-1326.
- Lukmanji, S.; Manji, S.A.; Kadhim, S.; Sauro, K.M.; Wirrell, E.C.; Kwon, C.-S.; Jetté, N. The co-occurrence of epilepsy and autism: A systematic review. *Epilepsy & Behavior* **2019**, *98*, 238-248.
- Zhang, A.; Li, J.; Zhang, Y.; Jin, X.; Ma, J. Epilepsy and autism spectrum disorder: An epidemiological study in shanghai, china. *Frontiers in psychiatry* **2019**, *10*, 658.
- Frye, R.E. Prevalence, significance and clinical characteristics of seizures, epilepsy and subclinical electrical activity in autism. *North American Journal of Medicine and Science* **2016**, *8*.
- 379 17. Brondino, N.; Fusar-Poli, L.; Panisi, C.; Damiani, S.; Barale, F.; Politi, P. Pharmacological modulation of gaba function in autism spectrum disorders: A systematic review of human studies. *Journal of autism and developmental disorders* **2016**, 46, 825-839.
- 382 18. Grove, J.; Ripke, S.; Als, T.D.; Mattheisen, M.; Walters, R.K.; Won, H.; Pallesen, J.; Agerbo, E.; 383 Andreassen, O.A.; Anney, R. Identification of common genetic risk variants for autism spectrum disorder. *Nature genetics* 2019, 51, 431-444.
- Wang, C.; Geng, H.; Liu, W.; Zhang, G. Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. *Medicine* **2017**, *96*.
- Getahun, D.; Fassett, M.J.; Peltier, M.R.; Wing, D.A.; Xiang, A.H.; Chiu, V.; Jacobsen, S.J. Association of perinatal risk factors with autism spectrum disorder. *American journal of perinatology* **2017**, *7*, 295-304.
- 21. Emberti Gialloreti, L.; Mazzone, L.; Benvenuto, A.; Fasano, A.; Garcia Alcon, A.; Kraneveld, A.;
 390 Moavero, R.; Raz, R.; Riccio, M.P.; Siracusano, M. Risk and protective environmental factors associated
 391 with autism spectrum disorder: Evidence-based principles and recommendations. *Journal of clinical medicine* 2019, 8, 217.
- 393 22. Kim, J.Y.; Son, M.J.; Son, C.Y.; Radua, J.; Eisenhut, M.; Gressier, F.; Koyanagi, A.; Carvalho, A.F.; Stubbs, B.; Solmi, M. Environmental risk factors and biomarkers for autism spectrum disorder: An umbrella review of the evidence. *The Lancet Psychiatry* **2019**, *6*, 590-600.

- 396 23. Marotta, R.; Risoleo, M.C.; Messina, G.; Parisi, L.; Carotenuto, M.; Vetri, L.; Roccella, M. The neurochemistry of autism. *Brain Sciences* **2020**, *10*, 163.
- Muller, C.L.; Anacker, A.M.; Veenstra-VanderWeele, J. The serotonin system in autism spectrum disorder: From biomarker to animal models. *Neuroscience* **2016**, *321*, 24-41.
- 400 25. Lee, E.; Lee, J.; Kim, E. Excitation/inhibition imbalance in animal models of autism spectrum disorders. 401 Biological psychiatry 2017, 81, 838-847.
- 402 26. Chakrabarti, B.; Persico, A.; Battista, N.; Maccarrone, M. Endocannabinoid signaling in autism. *Neurotherapeutics* **2015**, 12, 837-847.
- Zamberletti, E.; Gabaglio, M.; Parolaro, D. The endocannabinoid system and autism spectrum disorders: Insights from animal models. *International Journal of Molecular Sciences* **2017**, *18*.
- Schultz, S.; Siniscalco, D. Endocannabinoid system involvement in autism spectrum disorder: An overview with potential therapeutic applications. *Aims Molecular Science* **2019**, *6*, 27-37.
- 408 29. Kerr, D.; Downey, L.; Conboy, M.; Finn, D.; Roche, M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. *Behavioural brain research* **2013**, 249, 124-132.
- 410 30. Karhson, D.S.; Krasinska, K.M.; Dallaire, J.A.; Libove, R.A.; Phillips, J.M.; Chien, A.S.; Garner, J.P.; Hardan, A.Y.; Parker, K.J. Plasma anandamide concentrations are lower in children with autism spectrum disorder. *Molecular Autism* **2018**, 9.
- 413 31. Aran, A.; Eylon, M.; Harel, M.; Polianski, L.; Nemirovski, A.; Tepper, S.; Schnapp, A.; Cassuto, H.; 414 Wattad, N.; Tam, J. Lower circulating endocannabinoid levels in children with autism spectrum disorder. *Molecular Autism* 2019, 10.
- 416 32. Marco, E.M.; MacRì, S.; Laviola, G. Critical age windows for neurodevelopmental psychiatric disorders: Evidence from animal models. *Neurotoxicity Research* **2011**, *19*, 286-307.
- 418 33. Cheng, D.; Low, J.K.; Logge, W.; Garner, B.; Karl, T. Chronic cannabidiol treatment improves social and object recognition in double transgenic app swe/ps1Δ e9 mice. *Psychopharmacology* **2014**, 231, 3009-3017.
- 420 34. Osborne, A.L.; Solowij, N.; Babic, I.; Huang, X.-F.; Weston-Green, K. Improved social interaction, recognition and working memory with cannabidiol treatment in a prenatal infection (poly i: C) rat model. *Neuropsychopharmacology* **2017**, *42*, 1447-1457.
- 423 35. Servadio, M.; Melancia, F.; Manduca, A.; Di Masi, A.; Schiavi, S.; Cartocci, V.; Pallottini, V.; 424 Campolongo, P.; Ascenzi, P.; Trezza, V. Targeting anandamide metabolism rescues core and associated 425 autistic-like symptoms in rats prenatally exposed to valproic acid. *Translational Psychiatry* **2016**, *6*.
- 426 36. Chen, J.W.; Borgelt, L.M.; Blackmer, A.B. Cannabidiol: A new hope for patients with dravet or lennox-gastaut syndromes. *Annals of Pharmacotherapy* **2019**, *53*, 603-611.
- 428 37. Linge, R.; Jiménez-Sánchez, L.; Campa, L.; Pilar-Cuéllar, F.; Vidal, R.; Pazos, A.; Adell, A.; Díaz, Á. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-ht/glutamate neurotransmission: Role of 5-ht1a receptors. *Neuropharmacology* **2016**, 103, 16-26.
- 431 38. Russo, E.B.; Burnett, A.; Hall, B.; Parker, K.K. Agonistic properties of cannabidiol at 5-ht1a receptors. *Neurochemical research* **2005**, *30*, 1037-1043.
- Skelley, J.W.; Deas, C.M.; Curren, Z.; Ennis, J. Use of cannabidiol in anxiety and anxiety-related disorders. *Journal of the American Pharmacists Association* **2020**, *60*, 253-261.
- 435 40. Davies, C.; Bhattacharyya, S. Cannabidiol as a potential treatment for psychosis. *Therapeutic advances in psychopharmacology* **2019**, *9*, 2045125319881916.
- 437 41. Zamberletti, E.; Gabaglio, M.; Piscitelli, F.; Brodie, J.S.; Woolley-Roberts, M.; Barbiero, I.; Tramarin, M.; 438 Binelli, G.; Landsberger, N.; Kilstrup-Nielsen, C. Cannabidivarin completely rescues cognitive deficits and delays neurological and motor defects in male mecp2 mutant mice. *Journal of Psychopharmacology* 440 2019, 33, 894-907.
- 441 42. Hill, A.; Mercier, M.; Hill, T.; Glyn, S.; Jones, N.; Yamasaki, Y.; Futamura, T.; Duncan, M.; Stott, C.; Stephens, G. Cannabidivarin is anticonvulsant in mouse and rat. *British journal of pharmacology* **2012**, 167, 1629-1642.
- 44. Chagas, M.H.N.; Crippa, J.A.S.; Zuardi, A.W.; Hallak, J.E.; Machado-de-Sousa, J.P.; Hirotsu, C.; Maia, L.; Tufik, S.; Andersen, M.L. Effects of acute systemic administration of cannabidiol on sleep-wake cycle in rats. *Journal of Psychopharmacology* **2013**, *27*, 312-316.
- 44. Bruijnzeel, A.W.; Qi, X.; Guzhva, L.V.; Wall, S.; Deng, J.V.; Gold, M.S.; Febo, M.; Setlow, B. Behavioral characterization of the effects of cannabis smoke and anandamide in rats. *PloS one* **2016**, *11*.
- 449 45. Cooper, R.E.; Williams, E.; Seegobin, S.; Tye, C.; Kuntsi, J.; Asherson, P. Cannabinoids in attention-deficit/hyperactivity disorder: A randomised-controlled trial. *European Neuropsychopharmacology* **2017**, 451 27, 795-808.
- 452 46. Howes, O.D.; Rogdaki, M.; Findon, J.L.; Wichers, R.H.; Charman, T.; King, B.H.; Loth, E.; McAlonan, 453 G.M.; McCracken, J.T.; Parr, J.R. Autism spectrum disorder: Consensus guidelines on assessment,

- treatment and research from the british association for psychopharmacology. *Journal of Psychopharmacology* **2018**, 32, 3-29.
- 456 47. Fusar-Poli, L.; Brondino, N.; Rocchetti, M.; Petrosino, B.; Arillotta, D.; Damiani, S.; Provenzani, U.; 457 Petrosino, C.; Aguglia, E.; Politi, P. Prevalence and predictors of psychotropic medication use in adolescents and adults with autism spectrum disorder in italy: A cross-sectional study. *Psychiatry research* 2019, 276, 203-209.
- 460 48. Agarwal, R.; Burke, S.L.; Maddux, M. Current state of evidence of cannabis utilization for treatment of autism spectrum disorders. *BMC Psychiatry* **2019**, *19*.
- 462 49. Poleg, S.; Golubchik, P.; Offen, D.; Weizman, A. Cannabidiol as a suggested candidate for treatment of autism spectrum disorder. *Progress in Neuro-Psychopharmacology and Biological Psychiatry* **2019**, 89, 90-96.
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. *PLoS med* **2009**, *6*, e1000097.
- Kurz, R.; Blaas, K. Use of dronabinol (delta-9-thc) in autism: A prospective single-case-study with an early infantile autistic child. *Cannabinoids* **2010**, *5*, 4-6.
- Bar-Lev Schleider, L.; Mechoulam, R.; Saban, N.; Meiri, G.; Novack, V. Real life experience of medical cannabis treatment in autism: Analysis of safety and efficacy. *Scientific reports* **2019**, *9*, 200.
- 470 53. Barchel, D.; Stolar, O.; De-Haan, T.; Ziv-Baran, T.; Saban, N.; Fuchs, D.O.; Koren, G.; Berkovitch, M. Oral cannabidiol use in children with autism spectrum disorder to treat related symptoms and comorbidities. *Frontiers in Pharmacology* **2019**, 9.
- 473 54. Kuester, G.; Vergara, K.; Ahumada, A.; Gazmuri, A.M. Oral cannabis extracts as a promising treatment for the core symptoms of autism spectrum disorder: Preliminary experience in chilean patients. *Journal of the Neurological Sciences* **2017**, *381*, 932-933.
- 476 55. Pretzsch, C.M.; Freyberg, J.; Voinescu, B.; Lythgoe, D.; Horder, J.; Mendez, M.A.; Wichers, R.; Ajram, 477 L.; Ivin, G.; Heasman, M., *et al.* Effects of cannabidiol on brain excitation and inhibition systems; a randomised placebo-controlled single dose trial during magnetic resonance spectroscopy in adults with 479 and without autism spectrum disorder. *Neuropsychopharmacology* **2019**, *44*, 1398-1405.
- 480 56. Pretzsch, C.M.; Voinescu, B.; Lythgoe, D.; Horder, J.; Mendez, M.A.; Wichers, R.; Ajram, L.; Ivin, G.; 481 Heasman, M.; Edden, R.A.E., *et al.* Effects of cannabidivarin (cbdv) on brain excitation and inhibition systems in adults with and without autism spectrum disorder (asd): A single dose trial during magnetic resonance spectroscopy. *Translational Psychiatry* **2019**, 9.
- 484 57. Pretzsch, C.M.; Voinescu, B.; Mendez, M.A.; Wichers, R.; Ajram, L.; Ivin, G.; Heasman, M.; Williams, S.; 485 Murphy, D.G.M.; Daly, E., et al. The effect of cannabidiol (cbd) on low-frequency activity and functional connectivity in the brain of adults with and without autism spectrum disorder (asd). *Journal of Psychopharmacology* 2019, 33, 1141-1148.
- 488 58. Aran, A.; Cassuto, H.; Lubotzky, A.; Wattad, N.; Hazan, E. Brief report: Cannabidiol-rich cannabis in children with autism spectrum disorder and severe behavioral problems-a retrospective feasibility study. *Journal of Autism and Developmental Disorders* **2019**, 49, 1284-1288.
- Fleury-Teixeira, P.; Caixeta, F.V.; da Silva, L.C.R.; Brasil-Neto, J.P.; Malcher-Lopes, R. Effects of cbdenriched cannabis sativa extract on autism spectrum disorder symptoms: An observational study of 18 participants undergoing compassionate use. *Frontiers in Neurology* **2019**, *10*.
- 494 60. McVige, J.; Headd, V.; Alwahaidy, M.; Lis, D.; Kaur, D.; Albert, B.; Mechtler, L. Medical cannabis in the treatment of patients with autism spectrum disorder (1648). AAN Enterprises: 2020.
- 496 61. Lai, M.-C.; Lombardo, M.V.; Baron-Cohen, S. Autism. *The Lancet* **2014**, 383, 896-910.
- Baribeau, D.A.; Anagnostou, E. An update on medication management of behavioral disorders in autism. *Current psychiatry reports* **2014**, *16*, 437.
- Hsia, Y.; Wong, A.Y.; Murphy, D.G.; Simonoff, E.; Buitelaar, J.K.; Wong, I.C. Psychopharmacological prescriptions for people with autism spectrum disorder (asd): A multinational study. *Psychopharmacology* **2014**, 231, 999-1009.
- 502 64. Simon, V.; Winkel, R.v.; Hert, M.d. Are weight gain and metabolic side effects of atypical antipsychotics dose dependent? A literature review. *Journal of Clinical Psychiatry* **2009**, *70*, 1041-1050.
- 504 65. Adams, J.B.; Audhya, T.; McDonough-Means, S.; Rubin, R.A.; Quig, D.; Geis, E.; Gehn, E.; Loresto, M.; 505 Mitchell, J.; Atwood, S. Nutritional and metabolic status of children with autism vs. Neurotypical children, and the association with autism severity. *Nutrition & metabolism* **2011**, *8*, 34.
- 507 66. Marí-Bauset, S.; Zazpe, I.; Mari-Sanchis, A.; Llopis-González, A.; Morales-Suárez-Varela, M. Food selectivity in autism spectrum disorders: A systematic review. *Journal of child neurology* **2014**, 29, 1554-1561.

- Panerai, S.; Ferri, R.; Catania, V.; Zingale, M.; Ruccella, D.; Gelardi, D.; Fasciana, D.; Elia, M. Sensory profiles of children with autism spectrum disorder with and without feeding problems: A comparative study in sicilian subjects. *Brain Sciences* **2020**, *10*, 336.
- Garcia, G. Antipsychotics medication use and its metabolic challenges for autism spectrum disorders.

 North American Journal of Medicine and Science 2012, 5.
- Maayan, L.; Correll, C.U. Weight gain and metabolic risks associated with antipsychotic medications in children and adolescents. *Journal of child and adolescent psychopharmacology* **2011**, 21, 517-535.
- 517 70. Yood, M.U.; DeLorenze, G.N.; Quesenberry, C.P.; Oliveria, S.A.; Tsai, A.-L.; Kim, E.; Cziraky, M.J.; 518 McQuade, R.D.; Newcomer, J.W.; Gilbert, J.L. Association between second-generation antipsychotics and newly diagnosed treated diabetes mellitus: Does the effect differ by dose? *BMC psychiatry* **2011**, 11, 197.
- 521 71. Zemrak, W.R.; Kenna, G.A. Association of antipsychotic and antidepressant drugs with qt interval prolongation. *American Journal of Health-System Pharmacy* **2008**, *65*, 1029-1038.
- Rubenstein, J.; Merzenich, M.M. Model of autism: Increased ratio of excitation/inhibition in key neural systems. *Genes, Brain and Behavior* **2003**, *2*, 255-267.
- Nelson, S.B.; Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. *Neuron* **2015**, *87*, 684-698.
- 527 74. Anderson, C.L.; Evans, V.F.; DeMarse, T.B.; Febo, M.; Johnson, C.R.; Carney, P.R. Cannabidiol for the treatment of drug-resistant epilepsy in children: Current state of research. *Journal of Pediatric Neurology* 2017, 15, 143-150.
- 530 75. Gu, B. Cannabidiol provides viable treatment opportunity formultipleneurological pathologies of autism spectrum disorder. 2017.
- 532 76. Bozzi, Y.; Provenzano, G.; Casarosa, S. Neurobiological bases of autism–epilepsy comorbidity: A focus on excitation/inhibition imbalance. *European Journal of Neuroscience* **2018**, *47*, 534-548.
- Hartley-McAndrew, M.; Weinstock, A. Autism spectrum disorder: Correlation between aberrant behaviors, eeg abnormalities and seizures. *Neurol Int* **2010**, 2, e10-e10.
- 536 78. Hill, M.N.; Sun, J.C.; Tse, M.T.; Gorzalka, B.B. Altered responsiveness of serotonin receptor subtypes following long-term cannabinoid treatment. *International Journal of Neuropsychopharmacology* **2006**, *9*, 277-286.
- 539 79. Campos, A.C.; de Paula Soares, V.; Carvalho, M.C.; Ferreira, F.R.; Vicente, M.A.; Brandão, M.L.; Zuardi, 540 A.W.; Zangrossi, H.; Guimarães, F.S. Involvement of serotonin-mediated neurotransmission in the dorsal periaqueductal gray matter on cannabidiol chronic effects in panic-like responses in rats. Psychopharmacology 2013, 226, 13-24.
- Renard, J.; Norris, C.; Rushlow, W.; Laviolette, S.R. Neuronal and molecular effects of cannabidiol on the mesolimbic dopamine system: Implications for novel schizophrenia treatments. *Neuroscience & Biobehavioral Reviews* **2017**, *75*, 157-165.
- 546 81. Provenzani, U.; Fusar-Poli, L.; Brondino, N.; Damiani, S.; Vercesi, M.; Meyer, N.; Rocchetti, M.; Politi, P. What are we targeting when we treat autism spectrum disorder? A systematic review of 406 clinical trials. *Autism* **2020**, *24*, 274-284.