In transfusion-dependent thalassemia, increased iron overload is associated with lower serum alpha-klotho, which is strongly associated with lower total and ionized calcium concentrations.

Shatha Rouf Moustafaa, Hussein Kadhem Al-Hakeimb, Zainab Hussein Alhillawic, Michael Maesd,e,f.

a Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil, Iraq. E-mail: shatha003@yahoo.com.

b Department of Chemistry, College of Science, University of Kufa, Iraq. E-mail: headm2010@yahoo.com.

c Department of Chemistry, College of Science, University of Kufa, Iraq. E-mail: zainab.alhillawi@uokufa.edu.iq.

d *Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

e Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.

f IMPACT Strategic Research Centre, Deakin University, PO Box 281, Geelong, VIC, 3220, Australia.

Corresponding author

Prof. Dr. Michael Maes, M.D., Ph.D.

Department of Psychiatry,

Faculty of Medicine,
Chulalongkorn University,
Bangkok, Thailand

dr.michaelmaes@hotmail.com.

https://scholar.google.co.th/citations?user=1wzMZ7UAAAAJ&hl=th&oi=ao

Shatha Rouf Moustafa has no financial conflict of interests.

Hussein Kadhem Al-Hakeim has no financial conflict of interests.

Zainab Hussein Alhillawi has no financial conflict of interests.

Michael Maes has no financial conflict of interests.
Abstract

Background. Patients with transfusion-dependent thalassemia (TDT) show disorders in calcium metabolism. The α-klotho protein is predominantly expressed in tissues that are involved in calcium homeostasis, and lowered levels are associated with bone disease.

Aim of the study. To study the associations between low α-klotho status and calcium metabolism in relation to iron status in children with TDT.

Methods. α-klotho, calcium, parathyroid hormone (PTH), calcyphosin, vitamin D3, phosphorous, fibroblast growth factor receptor 2 (FGFR2), as well as iron and erythron biomarkers were measured in 60 children with TDT and 30 healthy control children.

Results. A meaningful part of TDT patients showed lowered α-klotho levels, and those children also showed low serum total and ionized calcium concentrations. TDT patients showed increased PTH, FGFR2, and calcyphosin and lowered vitamin D3 as compared with healthy children. The α-klotho levels were significantly correlated with total and ionized calcium (positively) and with iron overload biomarkers and the number of blood transfusions (inversely). Partial Least Squares path analysis showed that 40.1% of the variance in serum total calcium could be explained by the regression on α-klotho, vitamin D3 (both positively), and calcyphosin (inversely) and that the effects of the latter are mediated by iron overload and the number of blood transfusions.

Conclusion. In TDT, iron overload and its consequences may induce lowered levels of α-klotho which in turn may lead to lower calcium thereby explaining at least in part the effects of TDT on bone metabolism including spontaneous pathological fractures, osteoporosis, osteopenia, and skeletal deformities.
Keywords: Calcium, α-klotho, inflammation, oxidative stress, antioxidants, biomarkers.
Introduction

Beta-thalassemia major (β-TM) is a hematologic disorder caused by absent or severely reduced synthesis of the β-globin chain in the hemoglobin A molecule resulting in damage to the erythrocyte membrane and subsequent anemia. Patients with β-TM require lifelong blood transfusions to increase hemoglobin levels and minimize the detrimental effects of inefficient erythropoiesis. Patients with the latter condition, denoted as transfusion-dependent thalassemia (TDT), are prone to many complications due to the frequent blood transfusions. Chronic blood transfusions may cause severe iron overload, which may cause toxicity to various organs including the liver, heart, endocrine organs, bones and joints. The latter may be associated with severe consequences including spontaneous pathological fractures, osteoporosis, osteopenia, skeletal deformities, and bone pain.

Many bone-related biomarkers may be used for the early detection of changes in bone metabolism and calcium disorders including parathyroid hormone (PTH), vitamin D, calcitonin, and serum calcium, phosphorous, and alkaline phosphatase. Alternative biomarkers used to examine changes in bone turnover and calcium homeostasis in TDT comprise insulin-like growth factor-1 (IGF-1) and osteocalcin, sclerostin, thyroid hormones, osteoblast differentiation inhibitors, namely Dickkopf-1, tartrate-resistant acid phosphatase 5b, receptor activator of nuclear factor-kappa B ligand and osteoprotegerin.

Other biomarkers which play a role in bone disorders and are elevated in patients with TDT are calcyphosin (CAPS1) and fibroblast growth factor receptor 2 (FGFR2). Calcyphosin is a calcium-binding protein involved in both Ca^{2+}-phosphatidylinositol and
cAMP signal cascades. FGFR2 is expressed on preosteoblasts and osteoblasts during the later phase of bone formation. Dysregulation of FGFR2 results in a spectrum of bone pathologies. Other authors examined serum soluble α-Klotho in TDT, but could not find a difference between TDT and control groups. Klotho is a β-glucosidase-like membrane-bound protein that displays a secreted splice form. The α-Klotho gene is predominantly expressed in tissues that are involved in calcium homeostasis including the parathyroid glands, kidney and the choroid plexus. α-Klotho regulates calcium and phosphate reabsorption in the kidney and indirectly, as a cofactor for FGF23, regulates vitamin D metabolism. Moreover, α-Klotho promotes endothelial nitric oxide production and inhibits Wnt signaling and oxidative stress pathways, and inhibits intracellular insulin and IGF-1 signaling, which is an evolutionarily conserved pathway associated with an extended life span. Also, in animal models, α-Klotho may delay the ageing process in association with suppressing insulin and IGF-1 signaling and oxidative stress toxicity. However, there are no data whether α-Klotho in TDT is associated with aberrations in calcium homeostasis and iron overload.

Hence, the present study aims to examine whether TDT in children is accompanied by lowered serum α-Klotho and whether there are significant associations between serum α-Klotho and calcium concentrations or calcium-related biomarkers (Vitamin D3, PTH, calcyphosin, FGFR2, phosphate) and iron overload biomarkers (iron, ferritin, transferrin saturation).

Subjects and methods

Participants
This study recruited 90 participants, namely 30 healthy controls and 60 TDT children, aged 3-12 years old and of both sexes. The TDT patients were recruited at the Thalassemia Unit at Al-Zahra'a Teaching Hospital, Najaf, Iraq. Pediatricians and hematologists made the diagnosis of β-TM according to the criteria of 2019 ICD-10-CM Diagnosis Code D56.1. The diagnosis was based on the typical clinical symptoms (e.g. severe anemia, hepatosplenomegaly, and abnormal bone growth), hematological tests including hemoglobin <7g/dl and hypochromic microcytic RBCs with anisopoikilocytosis and high reticulocyte percentage, and by elevated HbA2 levels as assayed using HPLC (VARIANT TM β-Thalassemia Short Program). Thirty apparently healthy children were recruited as the control group. None of the controls was anemic or had an immune-inflammatory or systemic disease. We excluded any subject with splenectomy, systemic diseases such as renal failure, diabetes mellitus, or subjects with overt inflammation defined as serum C-reactive protein (CRP) levels > 6mg/l. The latter exclusion criterion was used to ascertain that the change in ferritin or other acute-phase reactant proteins is due to iron overload rather than to an acute phase response.

The frequency of administration of blood transfusions with packed RBCs at 2 or 4-week intervals was based on Hb levels that should be kept above 9 g/dL. Moreover, patients were on an iron-chelating therapy (3-5 times weekly) with deferoxamine mesylate USP (Desferal®) infusion at a dose range between 25-50 mg/kg/day over 8 hours/day depending on the ferritin levels. Folic acid was also given to most patients to reduce ineffective erythropoiesis. TDT patients were treated with vitamin C to assist the chelation of iron with deferoxamine through stimulation of iron release from the reticuloendothelial system. Written informed consent was obtained from the patient’s first-degree relatives (mother or
father) after appropriate oral explanation according to the Declaration of Helsinki. The study was approved by the IRB of the University of Kufa number 419/2018.

Measurements

Five mL of venous blood were drawn from all participants after an overnight fast. The patients' samples were collected just before their blood transfusion session. Blood was left at room temperature for 10 minutes for clotting, centrifuged 3000 rpm for 5 minutes, and then serum was separated and transported into Eppendorf tubes. Serum albumin, calcium, and phosphate were measured using a ready for use kit supplied by Biolabo® Co (Maizy France). Ionized calcium was calculated from the following formula: \(I.Ca^{2+} = 0.813 \times T.Ca^{0.5} - 0.006 \times \text{Albumin}^{0.75} + 0.079 \) \(^{36}\), which give the best approximate result. The amount of iron in sera was determined by colorimetric kits supplied by Spectrum® (Cairo, Egypt). Transferrin saturation percentage (TS%) was calculated from the following equation: \(\text{TS} = \frac{\text{Iron} \times 100}{\text{TIBC}} \) \(^{37}\). TIBC was measured by saturation of serum transferrin with iron, and the unbound iron portion is precipitated with magnesium carbonate, and then the iron was remeasured in the supernatant. Serum PTH and soluble α-Klotho levels were measured using ELISA kits supplied by MyBioSource® (San Diego, USA). Serum ferritin levels were measured by using ELISA kit supplied by Elabscience® (Wuhan, China). Serum calcyphosin and FGFR2 were measured using an enzyme-linked immunosorbent assay (ELISA) using kits supplied by Bioassay Technology Laboratory (Shangai, China). These kits were designed for human samples depending on the biotin double antibody sandwich technology. Hematological parameters were measured by a five-part differential Mindray BC-5000 hematology analyzer (Mindray Medical Electronics...
Vitamin D was determined by a fluorescence immunoassay (FIA) using kits designed for the I-Chroma™ instrument (BioLabs Diagnostics, Italy) to estimate total 25(OH)D2/D3 level in human serum.

The inter-assay CV% of ferritin, PTH, and soluble α-Klotho kits were <15%, <10%, and <10%, respectively, and the sensitivities of the ferritin, PTH and α-Klotho assays were 10.0 ng/ml, 15.6 pg/ml, and <56.25 pg/ml, respectively. The inter-assay CV% of iron was <2.19%. The inter-assay CV of calcyphosin was <10%, and sensitivity= 0.026 mM, while the inter-assay CV% of FGFR2 was <10%, and sensitivity=0.09 ng/ml. For samples with highly concentrated analytes, we employed sample dilutions. We computed a z unit-weighted composite score which reflects iron overload as z iron + z transferrin saturation % + z ferritin (IO index). CRP was measured using a kit supplied by Spinreact®, Spain, which is based on latex agglutination.

Statistical analysis

Analysis of contingency tables (χ^2 test) was employed to assess associations between nominal variables while analysis of variance (ANOVAs) was used to assess differences in continuous variables among diagnostic groups. Associations between scale variables were computed using Pearson’s product-moment correlation coefficients. Multivariate general linear model (GLM) analysis followed by tests of between-subject effects and pairwise comparisons among treatment groups were used to examine the associations between TDT (versus controls) and the biomarkers. A false-discovery rate (FDR) procedure was employed to control for type I errors when performing multiple comparisons. Simple boxplots with the minimum, Q1, median, Q3, and maximum
values, and out- and far-out values were employed to display the results of α-Klotho assays. All tests were two-tailed, and a p-value of 0.05 was used for statistical significance. We used IBM SPSS 25 windows version to analyze the data.

Partial Least Squares (PLS) structural equation modelling was employed using the Smart PLS software \(^3\)\(^9\) to assess the causal paths from the number of blood transfusions and iron overload to different calcium homeostasis-related molecules (α-Klotho, CAPS, vitamin D3, PTH and FGFR2) and the final output variable was total calcium. All variables were entered as single indicators except the iron overload index which was constructed as a latent vector (LV) extracted from iron, TS%, and ferritin \(^4\)\(^0\). Complete PLS analysis was performed when the outer model complied with quality data, namely the LV displays excellent composite reliability (> 0.7), and adequate Cronbach’s alpha (> 0.7), rho_A (> 0.8) and average variance extracted (AVE > 0.5) values, and when all loadings on the LV are > 0.6 (p<0.001). Moreover, the model fit should be adequate with an SRMR value < 0.080 \(^3\)\(^9\). Consequently, we perform complete PLS path modelling on 5000 samples and compute path coefficients with exact p-values and direct and (specific) indirect effects.

Results

Demographic and Clinical data

The socio-demographic and clinical data in TDT and healthy control children are presented in Table 1. The patient group was further divided into two groups, namely those with normal α-Klotho (n=30) concentrations and those with low α-Klotho (n=30) levels using the median split method (median=350.3 pg/mL). There were no significant differences in age, sex ratio, and rural/urban ratio between the three study groups.
Biomarkers and diagnostic groups

Univariate GLM analysis showed that (after controlling for age and sex) α-Klotho was significantly (F=8.24, df=1/86, p=0.005) lower in TDT (mean ±SE=344.9 ±32.7 pg/mL) than in normal control children (508.9 ±46.5 pg/mL). **Figure 1** shows the box plot of the α-Klotho values in both TDT and control children and that there are no out- and far-out values in the data set. TDT patients showed lower total (F=9.77, df=1/86, p=0.002) and ionized (F=13.67, df=1/86, p<0.001) calcium levels than normal control children. Patients allocated to the low α-Klotho group showed significantly lower total and ionized calcium as compared with the two other groups. Both TDT subgroups also showed significant increases in serum iron, TS%, and ferritin and iron overload index. Patients with TDT also show increases in serum PTH, FGFR2, and calcyphosin as compared with control children, while vitamin D3, RBCs and Hb were decreased in TDT patients as compared with the control group. No significant differences in serum phosphate were detected between the study groups. A multivariate GLM analysis with age and sex as covariates did not change these results and showed no significant effects of these covariates on the biomarkers except phosphate (F=8.45, df=1/85, p=0.005), which was higher in girls than in boys.

Intercorrelation matrix

Table 2 shows the intercorrelations between α-klotho, number of blood transfusion, the iron overload index, and the other biomarkers. In the whole study group, serum α-Klotho was significantly correlated with total and ionized calcium and negatively with PTH. There was a significant inverse correlation between α-Klotho levels and iron, TS%,
and ferritin, and the iron overload index. α-Klotho levels were also significantly and positively correlated with Hb and negatively with the number of blood transfusions. In the control group, α-Klotho was significantly correlated with total calcium (r=0.380, p=0.039) and calcyphosin (r=0.523, p=0.003). In TDT patients, α-Klotho was significantly and positively correlated with total calcium (r=0.617, p<0.001) and ionized calcium (r=0.610, p<0.001), and inversely with Hb (r=-0.301, p=0.020), whereas no significant correlations with calcyphosin could be found (r=-0.066, p=0.617). In the whole study group, the number of blood transfusion and iron overload were strongly intercorrelated and showed similar correlations with the other biomarkers.

Results of multiple regression analysis

Table 3 shows the results of different multiple regression analyses with total and ionized calcium levels as dependent variables and other biomarkers as explanatory variables while allowing for the effects of age and sex. Regression #1 shows that 40.1% of the variance in total calcium could be explained by α-Klotho, vitamin D (both positively), and calcyphosin (inversely). Figure 2 shows the partial regression of total calcium on α-Klotho after adjusting for the variables listed in Table 3, regression #1. We found that 42.5% of the variance in ionized calcium (Regression #2) was explained by α-Klotho, vitamin D (both positively), and calcyphosin (inversely). In the healthy children control group, 14.9% of the variance of total calcium could be explained by serum albumin (regression #3). In TDT patients, 38.1% of the variance in total calcium was explained by α-Klotho, and vitamin D. Figure 3 shows the partial regression of total calcium on α-Klotho in TDT after adjusting for the variables listed in Table 3.
Results of PLS analysis

Figure 4 shows the results of the PLS analysis. The model quality data were more than adequate with an SRMR value of 0.012 while the LV showed composite reliability of 0.979, Cronbach alpha=0.968, rho_A=0.968, and AVE=0.939. We found that 40.1% of the variance in total calcium could be explained by the regression on α-Klotho and vitamin D3 while calcyphosin was not significant at the alpha=0.05 level. The iron overload LV was a significant predictor of α-Klotho, vitamin D3, calcyphosin, PTH, and FGFR2. There were significant specific indirect effects of number of blood transfusions on calcyphosin (t=9.94, p<0.001), FGFR2 (t=5.31, p<0.001), α-Klotho (t=2.63, p=0.008), PTH (t=8.13, p<0.001), and vitamin D3 (t=5.13, p<0.001), which were all mediated by the iron overload LV. Furthermore, there were significant specific indirect effects of blood transfusions on total calcium mediated by the path from iron overload to α-Klotho (t=2.54, p=0.011) and the path from iron overload to vitamin D3 (t=2.18, p=0.029). As such, there were strong effects of blood transfusions (t=4.35, p<0.001) and iron overload (t=4.48, t<0.001) on total calcium. All other paths were non-significant and thus deleted from the study, e.g. between calcium and PTH, and between α-Klotho and vitamin D3, PTH, FGFR2, and calcyphosin.

Discussion

The first major finding of this study is that TDT patients have lower α-Klotho levels than controls and that a meaningful part (around 50%) of TDT patients show low α-Klotho levels. In one study, serum α-Klotho levels tended to be lower in TDT patients as compared with controls, although the difference was not statistically significant 26. Our PLS analysis
showed that the number of blood transfusions significantly predicted lowered α-Klotho and that this effect was mediated by iron overload. Previously, it was shown that serum iron overload is accompanied by decreased expression of α-Klotho in the kidneys and that iron chelation may attenuate the angiotensin-II-associated decreases in α-Klotho expression \(^{41}\). It is interesting to note that, in patients with chronic kidney disease, iron deficiency may lead to increased α-Klotho expression \(^{41}\). α-Klotho deficiency may cause activation of hypoxia-inducible factors (HIF) which regulate serum iron, which in turn negatively affect α-Klotho levels \(^{42}\). Nevertheless, the associations established in our study between α-Klotho and iron overload may, in theory, also be explained by the consequences of iron overload including chelation treatment, activated immune-inflammatory and oxidative stress pathways \(^{40}\). In this respect, it was shown that the type of chelation treatment did not affect α-Klotho levels \(^{26}\). In animal studies, iron overload may trigger down-regulation of α-Klotho expression while iron chelation may reverse this down-regulation, suggesting that abnormal iron metabolism is implicated \(^{43}\). TDT is associated with inflammation and oxidative stress toxicity as a direct consequence of iron toxicity \(^{44}\). Su and Yang concluded that α-Klotho might behave as an acute phase response since restraint stress is accompanied by a downregulation of α-Klotho mRNA and increased serum α-Klotho protein \(^{45}\). Importantly, α-Klotho acts as an anti-inflammatory modulator through regulation of the production of nuclear factor-κB associated inflammatory proteins thereby reducing the production of several pro-inflammatory cytokines and oxidative stress toxicity \(^{34}\). At the cellular and organismal level, α-Klotho confers protection against oxidative stress \(^{46-48}\) whereby α-Klotho attenuates superoxide production, oxidative damage, and apoptosis.
through the cAMP/PKA pathway \(^{49}\) while \(\alpha\)-Klotho deficiency may increase endogenous generation of reactive oxygen species \(^{50}\).

Moreover, lowered \(\alpha\)-Klotho may have other detrimental effects which could play a role in TDT. For example, \(\alpha\)-Klotho modulates hematopoietic stem cell differentiation and erythroid cell generation and development \(^{51}\). In mice, \(\alpha\)-Klotho insufficiency may increase erythropoiesis through the HIF signaling pathway with consequent synthesis and secretion of renal erythropoietin \(^{51}\). Experimental deletion of \(\alpha\)-Klotho results in stimulation of erythropoietin production in the kidney, which in turn induces abnormal generation of erythrocytes in the bone marrow and spleen \(^{51}\). \(\alpha\)-Klotho-induced inhibition of the HIF pathway and erythropoietin expression may be associated with reduced osteoblast numbers and osteopenia \(^{51}\). Finally, loss of \(\alpha\)-Klotho is known to cause endothelial dysfunction by promoting oxidative stress \(^{52}\), which may adversely affect hematopoiesis \(^{53}\).

The second major finding of this study is that \(\alpha\)-Klotho levels are strongly associated with total/ionized calcium levels and that TDT children belonging to the low \(\alpha\)-Klotho group show deficient calcium levels. Previous studies showed that, in \(\beta\)-TM patients, \(\alpha\)-Klotho correlated with serum and urine calcium \(^{54}\). \(\alpha\)-Klotho participates in the regulation of calcium homeostasis in cerebrospinal fluid and blood by effects in the choroid plexus, parathyroid glands, and distal tubules \(^{55,56}\). In this regard, \(\alpha\)-Klotho is a critical player that integrates “a multi-step regulatory system of calcium homeostasis”, which continually adjusts calcium concentrations and maintains calcium within a narrow physiological range \(^{57}\). Reabsorption of calcium in the distal tubule of the kidney is facilitated by specific channels \(^{58}\) which are activated by \(\alpha\)-Klotho \(^{59}\). As such, \(\alpha\)-Klotho
expression responds to Ca2+ concentration through Na+, K+-ATPase in the order of seconds, indicating that α-Klotho is a fast regulator of Ca2+ absorption 60. Moreover, α-Klotho regulates vitamin D3 production, which is a major regulator of intestinal calcium absorption 55.

Lowered α-Klotho expression may have some detrimental effects which are relevant to calcium metabolism and TDT. First, low α-Klotho may increase cytosolic Ca2+ activity, which is associated with enhanced translocation of cell membrane phospholipids and shrinkage of RBCs membrane, suggesting that α-Klotho deficiency may accelerate eryptosis 61. Second, in humans, α-Klotho deficiency or functional variants of α-Klotho are associated with the development of vascular calcification 62,63 and osteoporosis 64.

The third major finding of our study is that TDT is accompanied by lower total and ionized calcium, and vitamin D3, but increased PTH, FGFR2, and calcyphosin levels while there are no significant differences in phosphate levels. These results extend those of previous papers which reported reduced levels of serum calcium and vitamin D3 and increased levels of calcyphosin, FGFR2 and PTH in thalassemia 15,65,66. One hypothesis is that some of those changes could be induced by the effects of lower α-Klotho since a deficiency in α-Klotho was proposed to induce high serum PTH, phosphate, and FGF23 levels 67-73. In addition, α-Klotho is a significant regulator of vitamin D biosynthesis 56. Nevertheless, in our study no significant associations between α-Klotho, on the one hand, and PTH, FGFR2 and vitamin D3, on the other hand, could be detected after considering the effects of iron overload. The latter was significantly associated with PTH, FGFR2, calcyphosin, (positively) and vitamin D3 (negatively), suggesting that mechanism related
to iron overload may be involved. Previously, higher PTH levels were detected in β-TM patients, and these were positively associated with increased ferritin, one of the indicators of iron overload \(^7^4\). Chronic inflammation with increased levels of IL-1β and iron deficiency increase ferritin and FGF23 cleavage levels \(^7^5\). In thalassemia patients, increased iron overload and ferritin levels are associated with lowered vitamin D \(^7^6\).

Furthermore, the strong effects of iron overload in our PLS analysis on all these biomarkers may suggest that, in TDT, the fine-tuning feedback systems between α-Klotho and calcium, vitamin D3, FGFR2 and PTH are overwhelmed by the iron overload (or its consequences). For example, vitamin D3 may upregulate α-Klotho expression \(^7^7\) explaining that PTH may indirectly upregulate α-Klotho by mediating increases in vitamin D3 \(^7^8\). In addition, vitamin D may stimulate the expression of FGF23 and α-Klotho, while vitamin D3 formation is limited by a negative feedback regulation \(^7^9,^8^0\). Also, the α-Klotho/FGF23 signaling pathway regulates the vitamin D/PTH signaling pathway and vice versa \(^7^7\). Although α-Klotho regulates intestinal phosphate absorption, thereby maintaining circulating phosphate in the physiological range \(^8^1\), we could not detect hyperphosphatemia in TDT patients. This may be explained by the counterbalancing activities of iron chelators which increase renal phosphate excretion \(^8^2\). Future studies should investigate the effects of iron overload and accompanying inflammation and oxidative stress on PTH, calcyphosin, vitamin D3, phosphate, and FGFR2.

The results of our study should be interpreted with reference to its limitations. First, this is a case-control study and, therefore, no firm causal conclusions can be made. Second, it would have been more interesting if we had used advanced bone health imaging
techniques, including Dual-energy X-ray absorptiometry (DEXA) to measure bone density in association with α-Klotho levels.

Conclusion

α-Klotho and total/ionized calcium levels are significantly lower in TDT than in healthy control children. TDT patients show increased PTH, FGFR2, and calcyphosin and lowered vitamin D3 as compared with healthy children. α-Klotho levels are significantly and positively associated with total/ionized calcium, the iron overload index, and the number of blood transfusions. A large part of the variance in serum calcium may be explained by the regression on α-Klotho, vitamin D3 (both positively), and calcyphosin (inversely). The effects of the three latter biomarkers on total calcium are mediated by iron overload and the number of blood transfusions.

Acknowledgements

We acknowledge the highly skilled work of the staff of Asia Laboratory in measuring the biomarkers.

Declaration of interest

The authors have no financial conflict of interests.

Funding

There was no specific funding for this specific study.
Authorships.

All authors contributed significantly to the paper and approved the final version.

References

10. Saboor M, Qudsi F, Qamar K, Moiinuddin MJHTD. Levels of calcium, corrected calcium, alkaline phosphatase and inorganic phosphorus in patients’ serum with β-thalassemia major on subcutaneous deferoxamine 2014;2: 2.
15. Al-Hakeim HK, Ridha MAS, Muhammed ZH. Calcium status in severe iron overload Iraqi thalassemia major patients

78. Lips P. Vitamin D physiology. Prog Biophys Mol Biol 2006;92: 4-8.

Table 1. Sociodemographic and biomarkers data in children with transfusion-dependent thalassemia (TDT) with (TDT+Klotho<median) or without (TDT+Klotho>median) lowered α-Klotho and in healthy control children (HCC).

<table>
<thead>
<tr>
<th>Variables</th>
<th>HCC A N=30</th>
<th>TDT+Klotho > median B (n=30)</th>
<th>TDT+Klotho < median C (n=30)</th>
<th>F/χ²</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>7.13(2.49)</td>
<td>7.83(3.50)</td>
<td>8.07(2.79)</td>
<td>0.81</td>
<td>2/87</td>
<td>0.448</td>
</tr>
<tr>
<td>Sex (Female/Male)</td>
<td>13/17</td>
<td>18/12</td>
<td>13/17</td>
<td>2.22</td>
<td>2</td>
<td>0.329</td>
</tr>
<tr>
<td>Residency (Rural / Urban)</td>
<td>4/26</td>
<td>11/19</td>
<td>5/25</td>
<td>5.53</td>
<td>2</td>
<td>0.063</td>
</tr>
<tr>
<td>Number of blood transfusions</td>
<td>-</td>
<td>93.00(66.40)</td>
<td>102.00(51.98)</td>
<td>0.34</td>
<td>1/57</td>
<td>0.564</td>
</tr>
<tr>
<td>Iron (µM)</td>
<td>15.24(3.43) B,C</td>
<td>44.32(9.08) A</td>
<td>42.29(6.79) A</td>
<td>169.06</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Transferrin saturation %</td>
<td>26.66(9.63) B,C</td>
<td>85.82(12.08) A,C,C</td>
<td>80.06(10.74) A,B</td>
<td>270.37</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Ferritin (ng/ml)</td>
<td>153.43(44.21) B,C</td>
<td>3214.32(1488.48) A</td>
<td>3381.98(2159.44) A</td>
<td>43.21</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Iron Overload Index (z scores)</td>
<td>-1.36(0.31) B,C</td>
<td>0.72(0.21) A</td>
<td>0.64(0.22) A</td>
<td>655.21</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td>3.91(0.36) B,C</td>
<td>4.31(0.56) A</td>
<td>4.47(0.61) A</td>
<td>9.03</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Total Calcium (mM)</td>
<td>2.26(0.21) C</td>
<td>2.20(0.24) C</td>
<td>1.99(0.22) A,B</td>
<td>12.39</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Ionized Calcium (mM)</td>
<td>1.21(0.06) C</td>
<td>1.18(0.06) C</td>
<td>1.12(0.07) A,B</td>
<td>16.00</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Phosphate (mM)</td>
<td>1.54(0.31)</td>
<td>1.60(0.29)</td>
<td>1.59(0.33)</td>
<td>0.31</td>
<td>2/87</td>
<td>0.738</td>
</tr>
<tr>
<td>α-Klotho (pg/ml)</td>
<td>512.78(313.28) B,C</td>
<td>511.45(167.13) C</td>
<td>174.41(77.83) A,B</td>
<td>25.89</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Vitamin D3 (ng/ml)</td>
<td>8.85(2.38) B,C</td>
<td>7.15(1.34) A</td>
<td>6.91(1.37) A</td>
<td>10.85</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Parathyroid hormone (pg/ml)</td>
<td>111.65(63.82) B,C</td>
<td>240.03(98.69) A</td>
<td>211.71(100.12) A</td>
<td>17.18</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>FGFR2 (ng/ml)</td>
<td>4.08(2.67) B,C</td>
<td>7.72(4.31) A</td>
<td>9.11(4.12) A</td>
<td>14.24</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Calcyphosin (mM)</td>
<td>2.45(1.31) B,C</td>
<td>9.59(3.92) A</td>
<td>9.26(5.91) A</td>
<td>28.13</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Red blood cells (10⁶/µl)</td>
<td>4.49(0.62) B,C</td>
<td>3.69(0.57) A</td>
<td>3.86(0.57) A</td>
<td>15.54</td>
<td>2/87</td>
<td><0.001</td>
</tr>
<tr>
<td>Hemoglobin (g/dl)</td>
<td>14.11(1.41) B,C</td>
<td>7.67(1.58) A</td>
<td>8.18(1.11) A</td>
<td>201.91</td>
<td>2/87</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Results are shown as mean (SD). A,B,C: Pairwise comparison among group mean differences.
Iron overload index: computed as z iron + z TS% + z ferritin, FGFR2: Fibroblast growth factor receptor 2.
Table 2. Correlation matrix between α-Klotho, number of blood transfusions, iron overload and calcium-associated biomarkers.

<table>
<thead>
<tr>
<th>Biomarkers</th>
<th>α-Klotho</th>
<th>Number of blood transfusions</th>
<th>Iron overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Calcium</td>
<td>0.555**</td>
<td>-0.297**</td>
<td>-0.0271**</td>
</tr>
<tr>
<td>Ionized Calcium</td>
<td>0.552**</td>
<td>-0.365**</td>
<td>-0.322**</td>
</tr>
<tr>
<td>Phosphate</td>
<td>0.059</td>
<td>0.094</td>
<td>0.078</td>
</tr>
<tr>
<td>Vitamin D3</td>
<td>0.068</td>
<td>-0.381**</td>
<td>-0.421**</td>
</tr>
<tr>
<td>Parathyroid hormone</td>
<td>-0.219*</td>
<td>0.399**</td>
<td>0.480**</td>
</tr>
<tr>
<td>FGFR2</td>
<td>-0.180</td>
<td>0.422**</td>
<td>0.499**</td>
</tr>
<tr>
<td>Calcyphosin</td>
<td>-0.176</td>
<td>0.510**</td>
<td>0.591**</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>0.228*</td>
<td>-0.802**</td>
<td>-0.872**</td>
</tr>
<tr>
<td>Red blood cell number</td>
<td>0.076</td>
<td>-0.480**</td>
<td>-0.476**</td>
</tr>
<tr>
<td>Iron</td>
<td>-0.301**</td>
<td>0.789**</td>
<td>0.979**</td>
</tr>
<tr>
<td>Transferrin saturation %</td>
<td>-0.265*</td>
<td>0.788**</td>
<td>0.976**</td>
</tr>
<tr>
<td>Ferritin</td>
<td>-0.285**</td>
<td>0.802**</td>
<td>0.953**</td>
</tr>
<tr>
<td>Number of blood transfusions</td>
<td>-0.269*</td>
<td>-</td>
<td>0.818**</td>
</tr>
<tr>
<td>Iron overload index</td>
<td>-0.293**</td>
<td>0.818**</td>
<td>-</td>
</tr>
</tbody>
</table>

All n=90, *p<0.05, **p<0.01
FGFR2: Fibroblast growth factor receptor 2, Index of iron overload index: computed as z iron + z transferrin saturation % + z ferritin)
Table 3. Multiple regression analysis with total or ionized calcium levels as dependent variables.

<table>
<thead>
<tr>
<th>Dependent variables</th>
<th>Explanatory variables</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>F model</th>
<th>df</th>
<th>p</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1. Total Calcium</td>
<td>α-Klotho</td>
<td>0.510</td>
<td>6.02</td>
<td><0.001</td>
<td>19.23</td>
<td>3/86</td>
<td><0.001</td>
<td>0.401</td>
</tr>
<tr>
<td></td>
<td>Vitamin D3</td>
<td>0.199</td>
<td>2.24</td>
<td>0.027</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcyphosin</td>
<td>0.179</td>
<td>-2.00</td>
<td>0.049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2. Ionized Calcium</td>
<td>α-Klotho</td>
<td>0.502</td>
<td>6.05</td>
<td><0.001</td>
<td>21.18</td>
<td>3/86</td>
<td><0.001</td>
<td>0.425</td>
</tr>
<tr>
<td></td>
<td>Vitamin D3</td>
<td>0.236</td>
<td>2.72</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcyphosin</td>
<td>0.191</td>
<td>-2.18</td>
<td>0.032</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3. Total Calcium in controls</td>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td>0.386</td>
<td>2.22</td>
<td>0.035</td>
<td>4.91</td>
<td>1/28</td>
<td>0.035</td>
<td>0.149</td>
</tr>
<tr>
<td>#4. Total Calcium in TDT patients</td>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>α-Klotho</td>
<td>0.551</td>
<td>5.50</td>
<td><0.001</td>
<td>24.05</td>
<td>2/57</td>
<td><0.001</td>
<td>0.381</td>
</tr>
<tr>
<td></td>
<td>Vitamin D3</td>
<td>0.285</td>
<td>2.85</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TDT: transfusion-dependent thalassemia
Figure 1. Box plot of α-Klotho values in children with transfusion-dependent thalassemia (TDT) and healthy control children (HCC)
Figure 2. Partial regression of total calcium on α-Klotho in the total sample of patients and controls after adjusting for the effects of vitamin D3 and calcyphosin.
Figure 3. Partial regression of total calcium on α-Klotho in patients with transfusion-dependent thalassemia after adjusting for the effects of vitamin D3 and calcyphosin.
Figure 4. Results of Partial Least Squares (PLS) path analysis. Total calcium (output variable) and α-Klotho, calcyphosin, vitamin D3, parathyroid hormone (PTH), Fibroblast Growth Factor Receptor 2 (FGFR2) (input variables) were entered as single indicators, while iron overload was constructed as a latent vector extracted from iron (Fe), ferritin and transferrin saturation percentage (TS\%). A complete PLS path modelling on 5000 samples was conducted. Shown are path coefficients with exact p-values for the inner model and loadings with p-values for the outer model. The figures in the blue circles denote the explained variance.