Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Carbon Nanotube Modified by (O, N, P) Atoms as Effective Catalysts for Electroreduction of Oxygen in Alkaline Media

Version 1 : Received: 13 July 2020 / Approved: 14 July 2020 / Online: 14 July 2020 (11:16:31 CEST)

A peer-reviewed article of this Preprint also exists.

Bogdanovskaya, V.; Vernigor, I.; Radina, M.; Andreev, V.; Korchagin, O.; Novikov, V. Carbon Nanotube Modified by (O, N, P) Atoms as Effective Catalysts for Electroreduction of Oxygen in Alkaline Media. Catalysts 2020, 10, 892. Bogdanovskaya, V.; Vernigor, I.; Radina, M.; Andreev, V.; Korchagin, O.; Novikov, V. Carbon Nanotube Modified by (O, N, P) Atoms as Effective Catalysts for Electroreduction of Oxygen in Alkaline Media. Catalysts 2020, 10, 892.

Abstract

The influence of the type and amount of oxygen (O), nitrogen (N), and/or phosphorus (P) heteroatoms on the surface of carbon nanotube (CNT) on stability and catalytic activity in the oxygen reduction reaction (ORR) was investigated in alkaline media. It is shown that the functionalization of CNT leads to the growth of the electrochemically active surface and to an increase in the activity in ORR. At the same time, a decrease in stability is observed after the functionalization of CNT under accelerated corrosion testing in an alkaline media. These results are most significant on CNT after functionalization in HNO3 due to the formation of a large number of structural defects. However, the subsequent doping by N and / or P atoms provides a further activity increase and enhances the corrosion stability of CNT. Thus, as shown by the studies of characteristic parameters (SEAS, E1/2, corrosion stability), CNT doped with N and NP are a promising catalytic system that can be recommended for use as fuel cell cathodes. An important condition for effective doping is the synthesis of carboxyl and carbonyl oxygen containing group on the surface of CNT.

Keywords

Carbon nanotube; Functionalization; Heteroatoms; Electrochemically active surface; Oxygen reduction reaction; Corrosion stability; Alkaline media

Subject

Chemistry and Materials Science, Electrochemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.