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Abstract: Increased data acquisition by uncalibrated, heterogeneous digital sensor systems such as 

smartphones present new challenges. Binary metrics are proposed for the quantification of cyber-

physical signal characteristics and features, and a standardized constant-Q variation of the Gabor atom 

is developed for use with wavelet transforms. Two different continuous wavelet transform (CWT) 

reconstruction formulas are presented and tested under different signal to noise ratio (SNR) conditions. 

A sparse superposition of Nth order Gabor atoms worked well against a synthetic blast transient using 

the wavelet entropy and an entropy-like parametrization of the SNR as the CWT coefficient-weighting 

functions. The proposed methods should be well suited for sparse feature extraction and dictionary-

based machine learning across multiple sensor modalities. 
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1. Introduction 

This paper applies the constant-Q standardized Infrasonic Energy, Nth Octave (Inferno) framework 

[1] to the Gabor wavelet [2] and proposes binary metrics for signature characterization. One of the 

primary motivations of this work is to facilitate the fusion of multi-modal data streams in sensor systems 

that collect information at different temporal and spatial granularities. Consider a cyber-physical sensor 

system that converts observables into digital time series data consisting of signals and noise. Signals of 

interest can be hypothetically described by sparse representations that define their signature. If the 

signature characteristics are sufficiently unique and recognizable from those of ambient coherent and 

incoherent noise, they can be used to identify and classify an object or process. 

The transformation of diverse digital measurements into robust, scalable, and transportable 

representations is a prerequisite for signal detection, source localization, and machine learning 

applications for signature classification. The challenge at hand is to construct sparse signal 

representations that contain sufficient information for classification. Unambiguous classification can be 

elusive; measurement artifacts, unexpected signal variability, and non-stationary noise often conspire to 

add uncertainty to our classifiers. As will be discussed in this paper, information and uncertainty 

quantification can be substantially simplified when using standardized wavelets and binary metrics. 

1.1. Binary Representations of Time and Frequency  

Oscillatory processes often exhibit spatial and temporal scalability and self-similarity. Although 

some physical processes scale linearly, many exhibit recurrent patterns that scale logarithmically and are 

well represented by power laws. Both linear and logarithmic scales can coexist. For example, overtones 

in harmonic acoustic systems are often linearly spaced in frequency, yet our sense of tone similarity is 

close to base 2 logarithmic (binary) octave scales. The term octave comes from the eight major notes in 
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12-tone musical notation, where every note frequency closely repeats with factors of two. This paper uses 

the term octave and binary interchangeably to denote the base 2 geometric scaling of frequency and time. 

The mapping between frequency (or pitch) and time (period) is direct for continuous tones, such as 

musical notes, or statistically stationary oscillations like the orbits of planets. Discrete Fourier transform 

methods are exceptionally well suited for the interpretation of steady tonal signals with linearly spaced 

harmonics. The Fourier transform deconstructs oscillations with distinct recurrent time periods into a 

spectral representation consisting of a set of discrete frequencies. The spectral transformation can be 

sparse because it removes time as a variable, facilitating the reconstruction of stable oscillations from a 

subset of coefficients in the Fourier spectrum. 

Stable oscillators can be even more succinctly represented by a fundamental frequency or period 

(exclusive or, as they are not independent). For many physical systems, a map can be constructed between 

the fundamental frequency and its harmonics. Signals where the fundamental and its harmonics (when 

they exist) are statistically stationary and easily discernible above noise can be referred to as the easy 

continuous wave (CW) problem, or the zeroth (trivial) class of CW problems. The trivial CW problem is 

well understood and should routinely be used as a speed and performance benchmark for detection and 

classification algorithms. 

The plot thickens when temporal variability is introduced in the signal or the noise. In the first class 

of CW problems, temporal variability is due to non-stationary broadband or band-limited noise. This is 

a chronic condition in infrasonic signal processing, where ambient noise can be coherent or incoherent 

across a dense sensor network [3] or an array aperture [4]. The first class of CW problems is also well 

understood when noise is predictable (e.g., normally distributed) over a time duration that is much 

longer or much shorter than the signal period in the detection band. However, this class of problems is 

not as well characterized when noise is not evenly distributed across the signal detection bandpass and 

can be particularly inconvenient when noise overwhelms the fundamental frequency band. 

In the second class of CW problems, temporal variability is introduced by a change in the temporal, 

spectral, and/or statistical properties of the signal. These changes can be due to aging, failure, motion, 

communication, or any other change in state. In a simple two-state problem, one may quantify the 

properties of the first state, the transition period between states, and the properties on the final state. In 

a multiple-state problem, such as with communication systems, speech, or music, the Short-Time Fourier 

Transform (STFT) is often used to characterize spectral variability. 

If the transition period between states is faster that the characteristic time scale of the initial state, 

the STFT does not always provide an accurate representation of this transient. For some signals, the details 

of the transient are not relevant and only the steady states are important. But a new class of signals 

emerges when the detection of transient anomalies is prioritized. 

The zeroth class of transient problems consist of delta functions with their integrals and derivatives. 

Such instantaneous spikes do not exist in the natural world but can be readily constructed digitally to 

evaluate the impulse response of a system or represent a neuromorphic network [5–6]. The first class of 

transient problems would consist of realistic variants of the delta function that may be observed in the 

wild when a rapid change of state becomes the signal of interest. Just like a single-tone sinusoid may be 

regarded as the prototype end member for the trivial CW problem, an explosive detonation could be 

considered as a prototype transient signal source [7]. A time series corresponding to a blast would vary 

from ambient noise to a brief blast transient that fades back to a possibly perturbed background noise 

state. The transition from noise to signal can be devastatingly fast. In general, poorly-conditioned STFTs 

provides inadequate representations of brief, rapidly changing signals because the signatures no longer 

resemble a CW and are not optimally represented by sinusoids. However, since a STFT is a windowed 

sinusoid, a well-conditioned STFT window at the peak frequency of a signal turns the waveform in the 

STFT window into a wavelet that is well-tuned for the main signal bandpass. 
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The concept of a windowed sinusoid to represent a transient signal was introduced by Gabor [2] in 

1946, and later mathematically formalized by others as wavelets. Variants of the Gabor wavelet are 

presented in the main text and the Appendices. 

The second class of transient problems overlaps with the second class of CW problems. It 

corresponds to transients of significant durations which could be addressed with STFTs, wavelets, or 

their combination. Very often a transient is imbedded in a noise field with band-limited harmonic 

structure. Or the transient itself is a sweep, characterized by a substantial frequency change in the 

fundamental frequency and its harmonic structure. 

The primary differences between STFTs and wavelet transform approaches are that the STFT uses a 

linear period mapping and a constant time window duration, while wavelets uses geometric pseudo-

period mapping and time window durations that scales with the pseudo-period. Whereas in the Fourier 

framework there is a one-to-one mapping between time and frequency, the wavelet mapping between 

time scale and frequency can be less evident and depends on the selected wavelet. 

This paper concentrates on developing highly standardized Gabor atoms [2] for the design and 

evaluation of transportable, sensor-agnostic transient signal detection, sparse feature extraction, and 

classification algorithms. 

1.2. Binary Representations of Energy and Information in Cyber-Physical Systems 

A Cyber-Physical System (CPS) is an algorithm-controlled computer system with physical inputs 

and outputs. A typical example of a mobile CPS is a smartphone with a microphone input (sound 

activation) that outputs a response (speech, music, or signal recognition) to a screen. Cyber-physical 

Measurement and Signature Intelligence (MASINT) is an emerging discipline that concentrates on 

phenomena transmitted through cyber-physical devices and their interconnected data networks. For 

smartphones and other multi-sensor mobile platforms connected to wireless networks, this includes 

digital noise, bit errors, and latencies internal to the device and its communication channels [8–10]. 

Data processed by the cyber part of CPSs are digital and represented as binary digits (bits). Although 

the precision of the data would be initially defined by its their allocated integer word size (16, 24 bit, etc.), 

the original data may be converted into floating point equivalents when an algorithms acts on them. For 

example, consider sound recorded by a smartphone at the standard rate of 48,000 samples per second. A 

typical sound record may have 16-bit resolution, so that its dynamic range in bits is 2-15 to 215 – 1. However, 

one may only be interested in the lower frequency components of the raw data, so one would implement 

a lowpass anti-aliasing filter before decimation. Such filters often require floating point arithmetic in 

double precision (52 bit mantissa re IEEE 754 at the time of this writing) to reduce instability. Therefore, 

the precision of the resulting lowpass filtered data would exceed the specification of the original 16-bit 

integral input. However, the theoretical dynamic range of the system would not exceed the specification 

of the integer 16 physical input. Furthermore, data compression can be more efficient on floats than 

integers, which leads us to the topic of fractional bits as a measure of CPS amplitude, power, and 

information. 

Many of the metrics we used in traditional physical and geophysical systems are inherited from the 

analog era. The base 10 decibel scale is a measure of power relative to a reference level, and is used 

extensively in telecommunications, acoustics, and electrical engineering. Let us estimate the hypothetical 

dynamic range of a 16-bit microphone record of a sinusoid at full scale. The peak rms amplitude would 

be 

𝑝𝑟𝑚𝑠 𝑠𝑖𝑔𝑛𝑎𝑙 =
216

2√2
 . (1) 

All systems have quantization and system noise, and the noise can have a positive or negative bias. 

This is not a noise paper; for the sake of illustration, I model the system noise as oscillating around a 

mean of zero and alternating between −1 and 1, 
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𝑝𝑟𝑚𝑠 𝑛𝑜𝑖𝑠𝑒 =
21

2√2
 . (2) 

The theoretical dynamic range of the system in dB for a sinusoid recorded with a 16-bit microphone 

and sound card combination with a one-bit noise floor could be characterized by the ratio of the power  

10 ∗ 𝑙𝑜𝑔10 [
𝑝𝑟𝑚𝑠 𝑠𝑖𝑔𝑛𝑎𝑙

𝑝𝑟𝑚𝑠 𝑛𝑜𝑖𝑠𝑒

]
2

= 20 ∗ 𝑙𝑜𝑔10[215] ≈ 90𝑑𝐵 (3) 

where a digital response is converted to the legacy base 10 logarithmic system. One advantage of the 

decibel approach is that it can be compared to the response of the human ear and other analog systems. 

However, analog comparisons are not necessary for many cyber physical applications. A more natural 

unit for CPS is the binary logarithm 

𝑙𝑜𝑔2 [
𝑝𝑟𝑚𝑠 𝑠𝑖𝑔𝑛𝑎𝑙

𝑝𝑟𝑚𝑠 𝑛𝑜𝑖𝑠𝑒

] = 𝑙𝑜𝑔2[215] ≈ 15.0 𝑓𝑏𝑖𝑡𝑠 (4) 

where the unit fbits corresponds to floating point representation of bits. For example, in 24-bit systems, 

present-day quantization error is ~3 bits, leading to an effective dynamic range of ~21 fbits. Likewise, a 

24-bit integer cast into a 32-bit symbol can have 8 + 3 bits of noise, and may be converted to a float that 

still has ~21 fbits of dynamic range. 

Another unit that is often specified is the ½  power point of the frequency response of a filter, which 

defines the quality factor of that filter. This is often referred to as the −3dB point, since 10 ∗

𝑙𝑜𝑔10(2)~3 𝑑𝐵. However, accurate filter bank reproductions require a clear specification of the ½  power 

point, and conversion from base 10 to base 2 specification can lead to computational errors. Plotting filter 

responses in floating point bits can be informative as it reveals the precision of the computation. Because 

it is awkward and there is already a precedent in information theory for using bits outside of their original 

definition as a binary digit, from here onwards in this paper the word bits will be used to represent either 

the floating point equivalent of bits or as a metric for information. 

Consider the communication channel capacity introduced by Shannon [11], which in its simplest 

form can be expressed as 

𝐶ℎ = 𝑊𝑙𝑜𝑔2 (
𝑆𝑔 + 𝑁𝑠

𝑁𝑠
) (5) 

where 𝐶ℎ is a measure of the differential entropy of a signal in the presence of noise, W is a measure of 

the bandwidth, 𝑆𝑔 is representative of the power of a signal, and Ns is representative of the noise power. 

The units of the channel capacity are in shannons per second, or bits per second, and represent the 

theoretical upper bound of the rate of information transfer in a communication channel. Since it is often 

impossible to separate noise embedded in a signal but it is often possible to construct a noise model, we 

can think the ratio (Sg+Ns)/Ns as a practical measure of the signal to noise ratio (SNR) of an observed 

signal that has been carried through a cyber-physical system or a medium. 

The effective SNR and therefore the detectability of a compressed pulse (such as a wavelet) is the 

product of the bandwidth, the signal to noise ratio, and the time duration of a signal [12]. When using 

constant-Q Gabor wavelet with fractional octave (binary) bands n of order N and center frequency 𝑓𝑛 to 

process a signal in the presence of noise, the next section shows that for 

𝑆𝑁𝑅𝑛 =
𝑁𝑠𝑛 + 𝑆𝑔𝑛

𝑁𝑠𝑛

= 1 +
𝑆𝑔𝑛

𝑁𝑠𝑛

 (6) 

the signal detectability per band can be represented by 

𝑏𝑆𝑁𝑅𝑛 =
1

2
 𝑙𝑜𝑔2(𝑆𝑁𝑅𝑛)  (7) 
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and the upper limit on rate of information in bits per second for a band-limited pulse with center 

frequency 𝑓𝑛 can be estimated from 

𝐶ℎ𝑛 =  
𝑓𝑛

𝑁
 𝑏𝑆𝑁𝑅𝑛 . (8) 

Energy and Shannon entropies using the binary log are constructed for both the wavelet coefficients 

and SNR in Section 2.5. 

2. Methods 

This is an algorithmic paper providing foundational methods to construct standardized Gabor 

wavelets within a binary framework. No materials are included or required; all the algorithms required 

to reproduce the results are presented, with recommendations for specific existing functions in open-

source software frameworks. 

Although the methods are intended to be sensor-agnostic and transportable across diverse domains, 

the selection of the Gabor mother wavelet does define the optimal applicability of the algorithms: the 

methods in this paper will work best with a transient, or a portion of a transient, that can be well 

represented by a superposition of Gabor wavelets. Fortunately, this covers a fairly wide range of transient 

signature types. The fundamental principles in this work are expandable to other wavelets as well as to 

four-dimensional spatiotemporal representations. 

2.1. Transforming Time and Frequency to Scale 

A digital time series is constructed by collecting digital measurements at discrete times separated 

by a nominal sample interval  ∆𝜏𝑠. One may estimate a standard deviation from nominal 𝜎𝜏𝑠
 associated 

with the sample interval; when this error is a very small percent of the sample interval (e.g., parts per 

million) it is generally treated as a constant. Some variability in the sample rate should be expected in 

cyber-physical sensing systems under different conditions (temperature, battery level, power load, data 

throughput, etc.) even when the systems have the same hardware configurations. This can have an 

impact when attempting high-accuracy time synchronization. If adequate performance metrics are 

collected, the sample rate error can be quantified and potentially compensated by an additional time-

varying correction to the clock drift. 

In many scientific domains, such as astronomy and climatology, the sample interval may be greater 

than one second. Domains where the phenomena of interest change more rapidly use the equivalent 

metric of samples per second, referred to as the sample rate and often expressed in units of Hertz. The 

relationship between the sample interval   ∆𝜏𝑠  and its standard deviation 𝜎𝜏𝑠
 and the sample rate 𝑓𝑠 

and its associated error can be expressed as 

1

  ∆𝜏𝑠 + 𝜎𝜏𝑠

=
1

  ∆𝜏𝑠

(1 +
𝜎𝜏𝑠

  ∆𝜏𝑠

)
−1

≈  𝑓𝑠 (1 −
𝜎𝜏𝑠

  ∆𝜏𝑠

)   if  
𝜎𝜏𝑠

  ∆𝜏𝑠

≪ 1 . (9) 

Although time is the primary discrete sampling parameter, system requirements are often provided 

as frequency specifications within the context of Fourier transforms. The nominal sample rate sets the 

maximum upper edge of the bandpass of the system; there should be negligible energy at the Nyquist 

frequency, which is half of the sample rate. The actual bandpass of a system is set by the low- and high- 

frequency cutoffs of a cyber-physical system, which may include the sensor response, hardware 

specifications, firmware and software modifications (such as anti-aliasing filtering), and data 

compression. 

The mapping between frequency and period is simple for a continuous wave tone; the tone period 

is the inverse of the tone frequency. It is not so clear for transients. Following [7], a transient with a single 

spectral peak at a center frequency 𝑓𝑛 may be associated with a pseudo-period 𝜏𝑛 = 1/𝑓𝑛. This mapping 

is important as the scale of wavelet representations is linearly proportional to the pseudo-period, which 
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is also referred to as the scale period. A high-level overview of the Appendixes is provided in this section 

for ease of reference. 

Constant quality factor (𝑄) bands with constant proportional bandwidth are traditionally defined as 

[1] 

∆𝑓

𝑓𝑛

=
1

𝑄
 (10) 

where ∆𝑓 is the bandwidth centered on 𝑓𝑛. The 𝑄 is a measure of the number of cycles needed to reach 

the ½  power point at the bandwidth edges. Appendix A shows that the bandwidth edges are well defined 

in fractional octave band representations of order 𝑁 so that the quality factor can be evaluated precisely 

as, 

𝑄𝑁 = [ 2
1

2𝑁 –  2−
1

2𝑁]
−1

. (11) 

From [1], and as shown in Appendices B and C, the characteristic time duration of the Gabor atom 

can be represented as 

𝑇𝑛 = 𝑀𝑁 𝜏𝑛 (12) 

where 𝑀𝑁 is a measure of the number of oscillations in the characteristic time duration of a wavelet. For 

efficient computation all physical times are nondimensionalized and converted to equivalent sample 

points by multiplying by the sample rate. If 𝑡 is the time in seconds, the nondimensionalized time 𝑚 is 

𝑚 = 𝑓𝑠 𝑡 . (13) 

The approach is wavelet-agnostic up to this stage. Direct application of the ½  power points of the 

spectrum of Gabor-Morlet wavelet (Appendix B) at the band edges (Appendix C) yields 

𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁 ≈ 2√2𝑙𝑛2 𝑁 (14) 

where 𝑀𝑁 controls the duration of the wavelet to match the order’s Q. This last step can be tailored to 

other wavelet types to produce constant-Q variants. Adherence to the specifications in Equations (10)–

(14) yield standardized and well-constrained quantized Gabor atoms.   

2.2. Binary Quantized Constant-Q Gabor Atoms 

Gabor [2] extended the Heisenberg principle to define the time-frequency uncertainty principle, and 

further proposed deconstructing signals into elementary waveforms referred to as time-frequency atoms 

[2,13]. These atoms provide the optimum compromise between time and frequency resolution and thus 

maximize information density. The Morlet wavelet [14,15], functional kin to the Gabor atom, was 

developed for seismic applications and is much beloved by mathematicians. Much has been said and 

written over the last 75 years about the merits, and limitations, e.g., [16], of the Gabor atom in diverse 

fields of applied science ranging including quantum mechanics, e.g., [17], neurophysiology, e.g., [18] and 

radar target recognition, e.g., [19].  

Consider the translation and dilation of the familiar Gabor-Morlet mother wavelet 

Ψ𝑁(𝑚) =
1

𝜋
1

4⁄
𝑒𝑥𝑝 (−

𝑚2

2
)  exp (𝑖𝑀𝑁𝑚) (15) 

with dictionary [13] 

Ψ𝑛[𝑚 − 𝑚′] =
1

√𝓈𝑛

Ψ𝑁 (
𝑚 − 𝑚′

𝓈𝑛

) (16) 

which can be fully expressed as 
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Ψ𝑛(𝑚 − 𝑚′) =
1

𝜋
1

4⁄

1

√𝓈𝑛

𝑒𝑥𝑝 {−
1

2
[
𝑚 − 𝑚′

𝓈𝑛

]

2

} 𝑒𝑥𝑝 {𝑖𝑀𝑁 [
𝑚 − 𝑚′

𝓈𝑛

]} (17) 

where the mapping between the nondimensional scale 𝓈𝑛 and the band period is 

𝓈𝑛 =  
𝑀𝑁

2𝜋
 𝑓𝑠𝜏𝑛 . (18) 

The constant-Q Gabor atoms are constrained to the discrete set of values 

𝓈𝑛 =  𝓈02
𝑛

𝑁 =
𝑀𝑁

2𝜋
 𝑓𝑠𝜏02

𝑛

𝑁,     𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁   (19) 

with quality factor 

𝑄𝑁 = [ 2
1

2𝑁  −  2−
1

2𝑁]
−1

≈ √2𝑁 (20) 

defined by the ½  power points of the Fourier spectrum, quantized order 𝑁. For this functional form, 

the wavelet admissibility condition can be represented as 

𝑀𝑁
2  ≫ 1 . (21) 

By quantizing constant-Q bands and the resulting wavelet scales it is possible to also discretize the 

uncertainty in time and frequency of the resulting analyses. Gaussian pulses in general [12] and Gabor 

atoms in particular are well-known to have the lowest time-frequency uncertainty [2,13], making them 

natural building blocks for uncertainty quantification. The Gabor atom has the minimal value of the 

Heisenberg-Gabor uncertainty (Appendix D), where the nondimensionalized temporal standard 

deviation 𝜎𝑡 and angular frequency standard deviation 𝜎𝜔 over all time and frequency satisfy 

𝜎𝑓𝑠𝑡  =  
1

√2
𝓈𝑛  ⇒   𝜎𝑡𝑛

 =  
1

√2

𝑀𝑁

2𝜋
𝜏𝑛 (22) 

𝜎𝜔/𝑓𝑠
=  

1

√2
𝓈𝑛

−1 (23) 

𝜎𝑡𝜎𝜔 =  
1

2
 (24) 

which quantify time and frequency uncertainty discretely, minimally, and unambiguously. 

Converting to physical time with 𝑚 = 𝑓𝑠 𝑡 yields a more familiar Morlet representation 

Ψ𝑛(𝑡 − 𝑡′) =
1

(𝜋𝓈𝑛
2)

1
4⁄

𝑒𝑥𝑝 {−
1

2
[
 𝑓𝑠(𝑡 − 𝑡′)

𝓈𝑛

]

2

} 𝑒𝑥𝑝 {𝑖
2𝜋𝑓𝑛

 𝑓𝑠

[ 𝑓𝑠(𝑡 − 𝑡′)]} (25) 

where the scale 𝓈𝑛 may be readily recognized as the standard deviation of a Gaussian envelope with 

integration variable 𝑚 =  𝑓𝑠𝑡. This is very similar to the original form proposed by Gabor [2], and makes 

intuitive sense as the oscillatory term is clearly exposed. However, the additional factor of 𝑓𝑠 required to 

nondimensionalize the numerator of the Gaussian envelope for numerical computation has indubitably 

been an initial source of confusion amongst some physical scientists, author included. 

2.3. Quantum Order 

The recommended quanta for the Gabor atoms are positive integer band numbers 𝑛  and the 

preferred orders 𝑁 as in [1] 

𝑛 = 0, 1, 2 … ,   𝑁 = 1, 3, 6, 12, 24 … (26) 
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though the special orders N = 0.75 and 1.5 are considered. The mother wavelet is uniquely defined (and 

can be quantized) by the order N, although it is often specified by the more accessible variable 𝑀𝑁. The 

mother wavelet is scale invariant. Each discrete atom in its dictionary is defined by its order N, its band 

number n, and a refence scale at n = 0. If the Gabor atoms remain within their quanta, there is only one 

degree of freedom: the reference scale. The reference scale can be set by the data acquisition system (e.g., 

the Nyquist frequency) or a standard reference frequency. The scale schema can also be set by a signal 

tuning frequency; the theoretical peak acoustic frequency for the detonation of one metric ton of TNT is 

used in Section 3. When integrating multi-sensor time series with different evenly and unevenly sampled 

data, it would be preferrable to either use a standard reference frequency or time scale (e.g., 1 kHz for 

audio, 1 Hz for infrasound [1]) or a shared target frequency. The resulting frequency bands will be evenly 

spaced logarithmically to standardize and facilitate multi-sensor cross-correlations and data fusion. It is 

important to reinforce that the mapping from physical time scale to nondimensional scale depends on 

the sample rate. Specifying a nominal sample rate  𝑓𝑠 or sample interval   ∆𝜏𝑠 = 1/𝑓𝑠 as in Equation (9) 

permits conversion to physical time 𝑡 and scale pseudo-period  𝜏𝑛 from the wavelet parameters, 

𝑡 =
𝑚

 𝑓𝑠

,      𝜏𝑛 =
2𝜋

𝑀𝑁

𝓈𝑛

 𝑓𝑠

,   (27) 

and map to the physical scale center frequencies 

𝑓𝑛 =
1

𝜏𝑛

,   𝜔𝑛 = 2𝜋𝑓𝑛 . (28) 

It may be useful to think of the binary (base 2) order N as the quantized time and bandwidth stretch 

factor of the Gabor atom; as the order increases, the wavelet stretches in time and narrows in bandwidth, 

with each frequency band occupying a constant proportional frequency bandwidth that produces 𝑄𝑁 

oscillations at the band frequency in the time domain. Although in theory it is possible to use any integer 

band indexes n, for computational implementation it is practical to use only nonnegative integers to 

represent temporal scales [Equation (26)], with 𝜏0  corresponding to the smallest scale and 𝑓0  to the 

highest center frequency below the Nyquist frequency.  

This paper recommends atom quantization using the well-established fixed order 𝑁 and quality 

factor 𝑄𝑁 values of standard geometric binary intervals referred to as fractional octave bands in acoustic 

and infrasound applications (Table 1). 

Table 1. Quality factor Q and 𝑀𝑁 for standard fractional octave bands of order N 1. 

N 𝑸𝑵 𝑀𝑁 

1 1.4142 2.3548 

3 4.3185 7.1907 

6 8.6514 14.4055 

12 17.3099 28.8229 

24 34.6235 57.6519 

48 69.2488 115.3067 

96 138.4984 230.6150 

1 Dyadic base, G = 2. 

Appendix A develops a useful approximation for the quality factor 𝑄𝑁 of order N, 

𝑄𝑁 ≈ √2𝑁 ≈ 1.414 𝑁,      𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁 ≈ 2√2𝑙𝑛2 𝑁 ≈  2.355 𝑁 (29) 

with exact equivalence for octave bands at N = 1 (Table 2). 
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Table 2. Exact and approximate quality factor Q for standard fractional octave bands of order N 1. 

N 𝑸𝑵 𝑸𝑵 ≈ √𝟐𝑵 

1 1.4142 1.4142 

3 4.3185 4.2426 

6 8.6514 8.4853 

12 17.3099 16.9706 

24 34.6235 33.9411 

48 69.2488 67.8823 

96 138.4984 135.7645 

1 Dyadic base, G = 2. 

These relations are seldom made explicit for constant-Q wavelet representations, which often leads 

to inadvertently creative interpretations and implementations. In traditional fractional octave bands, 𝑁 

is an integer with preferred numbers 1, 3, 6, 12, 24 and its half-power (−3 dB) band edges and center 

frequencies are well established so their Q can be readily computed (Tables 1 and 2). The band spectrum 

will overlap at the half-power point band edges to reduce (or at least regulate) spectral leakage and 

improve energy estimation. Dyadic wavelets use order N = 1 and are weakly admissible ( 𝑀𝑁
2  ~5.54 ); 

carefully handled they do lead to very sparse and fast computational implementations (e.g., [13]).  

The estimate for 𝑄𝑁 in terms of the order 𝑁 is useful for practical application where we wish to 

specify the number of oscillations 𝑄𝑁 in a window. If one abandons the bounds of the preferred bands, 

one can estimate the order for a wavelet that has any number of oscillations in its support window. Once 

N is estimated, exact values for the center frequencies and band edges can be computed from the 

expressions in Appendix A. These bespoke constant-Q bands will not meet binary (factor of two) center 

frequency recursions with ½  power band edge overlap, but may be useful for highly customized tuning. 

Examples are provided in Table 3. 

Table 3. Approximate quality factor Q and 𝑀𝑁 for non-integer order N 1. 

𝑸𝑵 𝑵 ≈ 𝑸𝑵 √𝟐⁄  𝑴𝑵 

1 0.7071 1.6651 

2 1.4142 3.3302 

4 2.8284 6.6604 

8 5.6569 13.3209 

16 11.3137 26.6417 

32 22.6274 53.2835 

64 45.2548 106.5670 

128 90.5097 213.1340 

1 Dyadic base, G = 2. 

Consider the curious case of a single oscillation in the window, where 

𝑁 =
3

4
= 0.75, 𝑄0.75 = 1.04,              𝑀0.75 = 2√𝑙𝑛2 𝑄0.75 ≈ 1.73 (30) 

and Q is evaluated more precisely from the order N. Although intuitive and compact, the resulting 

wavelets are marginally admissible ( 𝑀0.75
2  ~3 ) and produce oddly spaced, but legitimate, constant-Q 

frequency bands that grow rapidly and hit only every fourth standard octave every three bands. The 
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window duration will be only 1.74 periods long and the spectral resolution of the Fourier transform will 

be exceedingly sparse. Adding another oscillation per window (increasing the quality factor to 

approximately two), would correspond to 

𝑁 =
3

2
= 1.5, 𝑄1.5 = 2.14,             𝑀1.5 = 2√𝑙𝑛2 𝑄1.5 ≈ 3.56 . (31) 

The resulting wavelets that are more admissible ( 𝑀1.5
2 ~13 ) but also produce oddly spaced constant-Q 

frequency bands that land on every second standard octave every three bands. Third order bands hit 

exact powers of two every third band and have around four oscillations per window (Appendix C). 

Although it is possible to force center frequency scales, if best practices for band overlap are ignored one 

will have a set of wavelet filter banks with substantial spectral leakage or gaps between adjacent bands, 

and the possibility for excessively overdetermined or underdetermined results. This is what usually 

happens with default parameters on most continuous or discrete wavelet transform algorithms. This 

paper standardizes and regulates band spacing by asserting the relationship between order, bandwidth, 

and duration. Since it is both silly and mathematically inadvisable (even inadmissible) to construct a 

wavelet with less than one oscillation in its window, it is recommended that 𝑄 ≥ 1. This suggests a 

minimum order number (quantum) of N = 3/4 for stable Gabor atoms, with N = 1 yielding value exact 

power of two (binary) bands. 

It is possible to estimate the smallest possible universal binary scale from the Planck time, the 

smallest measurable time scale 

∆𝜏𝑃𝑙𝑎𝑛𝑐𝑘 = 10−43𝑠 ~ 2−142𝑠 . (32) 

Since the Planck time would be the smallest possible sample interval, the smallest oscillation that 

could be observed would be at the universal Nyquist period 

𝜏𝑚𝑖𝑛 = 2∆𝜏𝑃𝑙𝑎𝑛𝑐𝑘~ 2−141𝑠 . (33) 

At the other end of the timeline, the age of the universe is estimated to be 13.8 billion years, or 

𝜏𝑚𝑎𝑥~258 𝑠, (34) 

so that all time scales in the known universe can be encompassed within ~200 temporal octave bands. 

Computationally speaking, this is a small range of octaves that can be spanned by 200 Gabor atoms. Earth 

is estimated to be ~4.6 billion years old, covering around about 57 of those temporal binary bands. The 

oldest bones associated with Homo Sapiens-Sapiens are ~200,000 years old and within the last 42 

temporal sub-bands since Earth’s inception. The human voice for average individuals ranges between 

one and two octaves, and five octaves species-wide. The nondimensionalized scale 𝓈𝑁𝑦𝑞𝑢𝑖𝑠𝑡 of the binary 

(N = 1) Gabor atom at the Nyquist frequency is always the same whether one uses the Plank scale or a 

sample rate of 48 kHz  

 𝑄1 = √2, 𝑀1 = 2√2𝑙𝑛2 (35) 

𝓈𝑁𝑦𝑞𝑢𝑖𝑠𝑡 =
𝑀1

2𝜋

𝑓𝑠

𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡

=
𝑀1

2𝜋

𝜏𝑚𝑖𝑛

∆𝜏𝑃𝑙𝑎𝑛𝑐𝑘

=  
2√2𝑙𝑛2

𝜋
 ≈ 0.75. (36) 

However, it is inadvisable make observations at the Nyquist limit, and it would be preferable to consider 

the starting center scale at one quarter of the sample rate, or four times the sample period. It would be 

possible to construct universal time scales with 𝜏0 =  2−140𝑠 , whereas all timescales would occupy 

temporal sub-bands. The corresponding sensor-agnostic nondimensionalized scale would be 2 𝓈𝑁𝑦𝑞𝑢𝑖𝑠𝑡. 

A third order representation (N = 3) of all the times scales in the universe can be represented by 600 

temporal Gabor atoms. The beauty of the third order representation is that it is very close to the decimal 

representation, with every ten 1/3 octaves producing a decade (210/3~10) , and thus provide a 

geometrically elegant compromise between ten-digit humans and binary digit machines. In addition to 
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better meeting the admissibility condition, third order bands will contain over 99% of the information 

within their octave (Appendix D), making them compact temporal carriers. If the third order 

representation is used as the base order (N = 3), the preferred numbers are binary multiples (N = 3, 6, 12, 

24 in Table 1), with a proportional elongation in the wavelet support and increase in spectral resolution. 

Many software packages readily produce a Gabor-Morlet wavelet with default parameters 

(Appendix E). One of the most common values is 𝑀𝑁 = 5, which is close to order 𝑁 = 2 (Table 4). Other 

common values of the wavelet support correspond to 𝑀𝑁 = 4, 𝑁 = 1.7 and the more reasonable 𝑀𝑁 =

8 which is close to preferred order 𝑁 = 3. 

 Table 4. Approximate quality factor Q and order N for integer values of 𝑀. 

𝑴𝑵 ~𝑸𝑵 𝑵 

1 0.600561204 0.4246609 

2 1.201122409 0.8493218 

4 2.402244818 1.698643601 

5 3.002806022 2.123304501 

6 3.603367226 2.547965401 

8 4.804489635 3.397287201 

1 Dyadic base, G = 2. 

Because none of these specifications correspond to standard orders, the resulting wavelets will tend 

to either overestimate (due to spectral leakage) or underestimate (due to spectral gaps between bands) 

the energy within adjacent constant-Q bands if binary center frequencies are forced, or will produce non-

standard center frequencies. 

Although it is possible to quantize the constant-Q Gabor atoms using the order N, the quality factor 

Q, or the multiplier 𝑀𝑁, the order is the most logical way to define the quanta of the wavelet. Describing 

the proposed wavelet dictionaries of preferred orders as the quantized constant-Q Gabor atoms with 

binary bases and overlapping ½  power points is rather awkward, and this paper proposes referring to 

these constructs as quantized wavelets, quantum wavelets of order N, or Nth order Gabor atoms. 

Although N=1 provides a sparse clean binary (with power of two steps in frequency) representation with 

the tightest windows, the admissibility condition coupled with the better reconstruction capability 

presented in the next section suggests that using N = 3 as the base order is preferable, with the added 

advantage that all subsequent preferred orders in Table 1 are binary factors of base order 3. 

2.4. Continuous Wavelet Transform Deconstruction and Reconstruction 

The continuous wavelet transform (CWT) of a function 𝑔(𝑥) is represented in [13] (Equation 1.13) 

as 

𝒲(𝑔, 𝑢, 𝓈 ) = 〈𝑔, Ψ𝑢,𝑛〉 = ∫ 𝑔(𝑥)
1

√𝓈
Ψ∗ (

𝑥 − 𝑢

𝓈
)

∞

−∞

𝑑𝑥 (37) 

Where the asterisk (*) represents the complex conjugate. The equivalent CWT for a discrete sequence of 

observations (or a synthetic time series) 𝑔(𝑚)  is the convolution of 𝑔 with a scaled and translated 

version of Ψ(𝑚). Consider the nondimensional Quantum mother wavelet of order N, 

Ψ𝑁(𝑚) =
1

𝜋
1

4⁄
𝑒𝑥𝑝 (−

𝑚2

2
)  exp (𝑖𝑀𝑁𝑚) (38) 
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Ψ𝑛[𝑚] =
1

√𝓈𝑛

Ψ𝑁 (
𝑚

𝓈𝑛

) . (39) 

The discrete CWT can be expressed as 

𝒲𝑛[𝑚] = ∑ 𝑔(𝑚′)Ψ𝑛
∗(𝑚′ − 𝑚)

𝑀𝑝−1

𝑚′=0

= 𝑔 ⊛ Ψ𝑛
∗[𝑚] (40) 

where the symbol ⊛ denotes a convolution [13], often computed using the discrete Fourier transform. 

This is comparable to the expression in [20], although their convolution has no amplitude scaling as it is 

corrected afterwards. The CWT coefficients 𝒲𝑚,𝑛 provide a measure of the degree of similarity between 

the time series and the wavelet of scale index n while translating along the time index m. While exact 

waveform reconstruction from the CWT is challenging (e.g., [21,22]), reference [20] provides an 

approximate expression for the wavelet-filtered time series 𝑔(𝑚′). The reconstruction filter from the Nth 

order Gabor atoms becomes, 

𝑔[𝑚] ≈
𝜋

1
4

𝑁

1

𝐶𝛿

∑
𝑅𝑒{𝒲𝑛[𝑚]}

√𝓈𝑛

𝑁𝑝−1

𝑛=0

 (41) 

where Re{ } denotes the real part of the coefficients and the reconstruction factor 𝐶𝛿 is scale independent 

and constant for wavelet function with fixed 𝑀𝑁 . The reconstruction factor can be estimated by 

comparing against known test functions. Reference [20] empirically computed a reconstruction 

coefficient of 𝐶𝛿 = 0.776 with 𝑀𝑁 = 6, and [23] provides other estimates. Numerical evaluation shows 

the product 𝑁𝐶𝛿  ~2, and the reconstruction approximation for the analytic (Appendix F) quantum 

wavelet of arbitrary order is 

𝑔ℂ [𝑚] ≈
𝜋

1
4

2
 ∑

𝒲𝑛[𝑚]

√𝓈𝑛
 .

𝑁𝑝−1
𝑛=0    (42) 

It is important to note how substantially different this expression is to the inverse discrete Fourier 

transform, where 

𝑔𝐷𝐹𝑇[𝑚] =
1

√𝑁𝑝
 ∑ 𝑔̂𝐷𝐹𝑇[𝑛]

𝑁𝑝−1

𝑛=0

𝑒𝑥𝑝(𝑗2𝜋𝑚𝑛 𝑁𝑝⁄ ) (43) 

and 𝑔̂𝐷𝐹𝑇[𝑛] are the Fourier coefficients. Unlike the discrete Fourier transform, the standard wavelet 

reconstruction does not require multiplication by the mother wavelet. For the special case where the 

atoms are well matched to the signal of interest, consider the sparse set of coefficients corresponding the 

complex time indexes 𝑚𝑛 ℂ 𝑚𝑎𝑥 of the maximum energy, entropy, or SNR at each scale 

𝑔ℂ [𝑚] ≈
𝜋

1
4

2
 ∑

𝒲𝑛[𝑚𝑛 ℂ 𝑚𝑎𝑥]

√𝓈𝑛

𝑁𝑝−1

𝑛=0

𝑅𝑒{Ψ𝑛[𝑚 − 𝑚𝑛 ℂ 𝑚𝑎𝑥]} (44) 

where the maximum coefficient indexes can be computed separately for real and imaginary components. 

This has the form of a sum over the dominant Gabor atoms for each scale. Since one is only considering 

the maxima in a given record window, this is a very sparse representation consisting of the coefficient 

and the time offset corresponding to the peak energy or entropy estimate. Numerical evaluation shows 

that this last expression can be used to estimate the full analytic function representation as long as 

reconstruction uses the complex coefficients but only the real atom function since the time shifts in the 

Hilbert transform already include the 𝜋/2 time shift. 

2.5. Wavelet Information and Entropy 
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One advantage of the constant Q wavelet representation is that it is possible to estimate the 

information content and detectability of a signal in a band by applying the same set of wavelet transforms 

to the signal and comparing them to the transform of a noise segment or model. Consider the definition 

for Shannon’s channel capacity [11], with 

𝑆𝑁𝑅𝑛 =
𝑁𝑠𝑛 + 𝑆𝑔𝑛

𝑁𝑠𝑛

= 1 +
𝑆𝑔𝑛

𝑁𝑠𝑛

 (45) 

𝐶ℎ𝑛 =  𝑊𝑙𝑜𝑔2(𝑆𝑁𝑅𝑛) (46) 

where Sg is the wavelet-transformed signal power and Ns is the wavelet-transformed noise power in a 

band. Consider two possible estimates for the bandwidth W (Shannon [11] left some room for 

interpretation). The first estimate approximates W by the ½  power point bandwidth 

∆𝑓𝑛 =
𝑓𝑛

𝑄𝑁

≈
1

√2

𝑓𝑛

𝑁
≈ 0.7071 

𝑓𝑛

𝑁
 . (47) 

The second estimates W using the Gabor box standard deviation for the angular frequency 

𝜎𝜔 =
1

√2

𝜔𝑛

𝑀𝑁

≈
1

4√𝑙𝑛2 

𝜔𝑛

𝑁
  ≈  

𝜋

2√𝑙𝑛2 

𝑓𝑛

𝑁
≈ 1.8867 

𝑓𝑛

𝑁
 (48) 

so that 

𝜎𝑓 =
𝜎𝜔

2𝜋
 =

1

4√𝑙𝑛2 

𝑓𝑛

𝑁
≈ 0.3003 

𝑓𝑛

𝑁
 . (49) 

Taking the average of ∆𝑓𝑛 and 𝜎𝑓 provides a compromise between the two possible estimates, and a 

returns a tidy factor of ~0.5 

𝐶ℎ𝑛 ≈  
1

2

𝑓𝑛

𝑁
𝑙𝑜𝑔2(𝑆𝑁𝑅𝑛) . (50) 

The effective 𝑆𝑁𝑅𝐺 and therefore the “detectability” of a bandwidth-limited compressed pulse [12] 

can be represented by the product of the Gabor time-bandwidth product (Appendix C) and the signal to 

noise ratio  

 𝑆𝑁𝑅𝐺 = 𝜎𝑡  𝜎𝜔 × 𝑆𝑁𝑅𝑛 . (51) 

Since the time-bandwidth product for the Gaussian wavelet is constant 

𝜎𝑡𝜎𝑤 =
1

2
   (52) 

and the uncertainty of its Gabor box is at the minimum, the likelihood of the detection of a signal of 

interest in a given band 𝑛 is only proportional to its SNR. 

Shannon’s definition of the channel capacity was intended to represent the highest theoretical 

transfer rate of information through an analog line. Since SNR is given in power, which is typically the 

square of the signal amplitude, an unscaled binary log is off by a factor of two from the original data in 

bits. To reconcile this definition with the original collection of a time series signal in floating point bits 

(fbits), I define the binary SNR to match the signal rms amplitude as well as Shannon’s units for the 

information rate per band 𝐶ℎ𝑁,𝑛 of the quantum compressed pulse as 

𝑏𝑆𝑁𝑅𝑛 =
1

2
𝑙𝑜𝑔2(𝑆𝑁𝑅𝑛) = 𝑙𝑜𝑔2(√𝑆𝑁𝑅𝑛),    𝑓𝑏𝑖𝑡𝑠 (53) 

𝐶ℎ𝑁,𝑛 =
𝑓𝑛

𝑁
× 𝑏𝑆𝑁𝑅𝑛,     𝑠ℎ𝑎𝑛𝑛𝑜𝑛𝑠/𝑠 = 𝑓𝑏𝑖𝑡𝑠/𝑠. (54) 

The increase in higher information delivery rate with increasing frequency is intuitive as more cycles are 

transferred per second. As the order number increases, the bandwidth narrows and so the potential 
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information rate decreases. Less obvious is the decrease in high-frequency information with increasing 

distance in a lossy transmission channel. Assuming the noise power remains unchanged, the decrease in 

SNR with increasing scaled distance 𝑟  from the source origin on a lossy acoustic channel can be 

represented as 

𝑆𝑁𝑅 = 𝑆𝑁𝑅𝑜  
𝑒𝑥𝑝(−𝛾𝑓2𝑟)

𝑟𝑛𝑔 . (55) 

where 𝑛𝑔 = 2 for spherical geometric spreading in free space and 𝑛𝑔 = 1 for cylindrical spreading in a 

waveguide. The binary SNR can be represented as 

𝑆𝑁𝑅 = [𝑏𝑆𝑁𝑅0 −
𝑛𝑔

2
𝑙𝑜𝑔2𝑟 ]  − 𝑓2𝑟 (𝛾 𝑙𝑜𝑔2𝑒).   (56) 

The term in parenthesis shows the expected reduction of one bit per doubling of distance for spherical 

spreading (𝑛𝑔 = 2). The last term suggests the frequency dependence of the channel capacity in a lossy 

acoustic medium may have the general form 

𝐶ℎ𝑛~ 𝛼(𝑙𝑜𝑔2𝑟) 𝑓 − 𝛽(𝑟) 𝑓3 (57) 

so that with increasing range the optimal information transmission frequency shifts to lower frequencies. 

One may readily extend the binary SNR definition to the measure of relative power 

𝑏𝑅 = 𝑙𝑜𝑔2 (√
𝑆

𝑆𝑚𝑎𝑥

) =
1

2
𝑙𝑜𝑔2 (

𝑆

𝑆𝑚𝑎𝑥

) ,   𝑓𝑏𝑖𝑡𝑠 (58) 

and the −3dB half-power point becomes the −1/2 bit power point. 

The entropy of a signal of interest can be estimated by the wavelet coefficients. A practical approach 

is described in [24]. The information content of each scale n at the time step m can be estimated from the 

wavelet energy. First estimate the complex wavelet coefficient energy from 

𝐸𝑚,𝑛 = |𝑅𝑒{ 𝒲𝑚,𝑛}|
2

+ 𝑗 |𝐼𝑚{ 𝒲𝑚,𝑛}|
2

 . (59) 

The total energy in a given record can be estimated from 

𝐸 =  ∑ ∑ √𝐸𝑚,𝑛𝐸𝑚,𝑛
∗

𝑛𝑚

 . (60) 

The complex probability of 𝒲𝑚,𝑛 in the record is 

  𝑝𝑚,𝑛 =
𝐸𝑚,𝑛

𝐸
 (61) 

where 

∑ ∑ 𝑝𝑚,𝑛

𝑛𝑚

𝑝𝑚,𝑛
∗ = 1 (62) 

The log energy entropy (lee) per coefficient can be defined by the binary logarithm 

𝑒𝑙𝑒𝑒 = 𝑙𝑜𝑔2(𝑝𝑚,𝑛
2 ) = 2𝑙𝑜𝑔2(𝑝𝑚,𝑛) (63) 

where it should be noted that the factor of two scaling coefficient does not alter the relative weight of 

each coefficient. The Shannon entropy (se) per CWT coefficient is defined as 

𝑒𝑠𝑒 = −𝑝𝑚,𝑛𝑙𝑜𝑔2(𝑝𝑚,𝑛) (64) 

with corresponding complex versions that separate the real and imaginary components. These entropies 

can be readily evaluated to construct noise models from the lowest entropy components. If a stable noise 

model can be constructed from the record or from prior knowledge of the environment and transmission 
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channel, SNR estimates can be computed and the process repeated to evaluate the dimensionless binary 

log of the SNR 

𝑏𝑆𝑁𝑅𝑚,𝑛 =
1

2
𝑙𝑜𝑔2(𝑆𝑁𝑅𝑚,𝑛) (65) 

and the product of the ratio and the binary ratio (RbR), an entropy-like nondimensional metric of the 

SNR that can be readily evaluated to identify and extract the wavelet coefficients would be most 

representative of a signal of interest, 

𝑅𝑏𝑅𝑚,𝑛 =  𝑆𝑁𝑅𝑚,𝑛 × 𝑏𝑆𝑁𝑅𝑚,𝑛 . (66) 

3. Discussion: Explosion Signature 

The methods presented in this paper are foundational: the intention is to use the Gabor atoms as 

fundamental building blocks with minimal time-frequency uncertainty and high information density. 

These methods are illustrated and discussed in the context of a blast pressure pulse. Consider a 

normalized transient wave function characteristic of an explosion. Suppose one wanted to construct a 

sparse wavelet representation of a blast pulse with peak energy at 6.3 Hz, corresponding to the 

detonation of one metric ton of TNT observed at 1 km. It is known [7] that at some distance from the 

source this center frequency may drop by an octave (factor of two in frequency) or more, as well as 

become stretched out (dispersed) in time due to propagation effects. A theoretical source pressure 

function for the detonation of high explosives was developed in some detail in [7] with one kiloton as the 

case study, and is used here to construct a representative synthetic waveform for a one (metric) ton 

detonation. Define 𝜏𝑐 

𝜏𝑐 = 4𝜏𝑝 ,      𝑓𝑐 =
1

𝜏𝑐

,      𝜔𝑐 = 2𝜋𝑓𝑐 (67) 

as the pseudo-period of a blast pulse corresponding to the peak spectral energy at the frequency 𝑓𝑐 and 

angular frequency 𝜔𝑐, where 𝜏𝑝 is the time duration of the initial positive phase traditionally used in 

blast physics. The nondimensionalized time scale is 

𝜏̂ =
𝑡

𝜏𝑝

= 4
𝑡

𝜏𝑐

 . (68) 

The form of the amplitude-normalized source pressure function for an explosive blast [7] can be 

represented as 

𝑔(𝜏̂) = (1 − 𝜏̂),     0 ≤ 𝜏̂ ≤ 1 (69) 

𝑔(𝜏̂) =
1

6
(1 − 𝜏̂)(1 + √6 − 𝜏̂)

2
,      1 < 𝜏̂ ≤ 1 + √6 .  (70) 

This pulse has an associated analytic function 𝑔ℂ(𝜏̂) discussed in Appendix F. Since the theoretical 

Hilbert transform has some unresolved issues, the numerical Hilbert transform [25] is used for 

comparison. 

Note that the amplitude is not used in this exercise because in some cyber-physical systems, such as 

smartphones, the amplitude response of on-board sensors may not be known. However, sensor dynamic 

range is usually specified and available (e.g., int16, float32) and can be used for signal scaling relative to 

the full range or the noise. 

The normalized pulse has zero mean (conservation of momentum) and its theoretical variance is 

𝜎𝑝
2 = ∫ 𝑔2(𝜏̂)

∞

−∞

𝑑𝑡 = 0.95
𝜏𝑐

8
 (71) 

The complex Fourier transform 𝑔̂(𝑗𝜔̂) of this pulse is  
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𝑔̂(𝑗𝜔̂) =
π

2𝜔𝑛 
[
1 − 𝑗𝜔̂ − 𝑒−𝑗𝜔̂

𝜔̂2
+ 

𝑒−𝑗𝜔̂(1+√6)

3𝜔̂4
{𝑗𝜔̂√6 + 3 + 𝑒𝑗𝜔̂√6[3𝜔̂2 + 𝑗𝜔̂2√6 − 3]}] (72) 

where 𝜔̂ =
𝜋

2

𝜔

𝜔𝑐
=

𝜏𝑐

4
𝜔 = 𝜏𝑝𝜔 and the peak in the spectrum is at 𝜔 = 𝜔𝑐 . Note there are at least two 

pseudoperiods of importance evident in the main blast pulse: the main spectral pseudoperiod 𝜏𝑐 and 

the positive phase pseudoperiod of 2𝜏𝑝. Near the source the positive phase pseudoperiod will dominate 

as it has the highest energy and bandwidth. With increasing distance and high-frequency attenuation the 

main pseudoperiod becomes more prominent and may also be downshifted in frequency [7]. However, 

additional scales can be introduced by reflection and refraction in the transmission channel that can 

induce phase shifts often modeled with Hilbert transforms (Appendix F). 

The power spectra of real digital signals are usually expressed using only the positive frequencies 

up to the Nyquist frequency, where the unilateral spectral density 𝑃𝑔(𝜔̂) is defined as  

𝑃𝑔(𝜔̂) = 2|𝑔̂(𝑗𝜔̂)|2 = 2 𝑔̂(𝑗𝜔̂)𝑔̂∗(𝑗𝜔̂).   (73) 

Since the target signature corresponds to a one tonne (1000 kg) detonation, the analysis concentrates 

on a target frequency of 6.3 Hz [7]. The general procedure for constructing target-tuned fractional binary 

bands of order N is to define a set of base 2 scales around the center or reference frequency 

𝑓𝑐 = 6.3 Hz,   𝑓𝑗 = 𝑓𝑐2
𝑗

𝑁 . (74) 

The upper limit is set by the Nyquist frequency, which means that the center frequency and its band 

edges should be below the Nyquist and the ½  power point of the anti-aliasing filter. A conservative 

estimate is 

𝑓𝑗 𝑚𝑎𝑥 = 𝑓𝑡𝑔2
𝑗 𝑚𝑎𝑥

𝑁 <
𝑓𝑠

2
  ⇒   𝑗 𝑚𝑎𝑥 < 𝑓𝑙𝑜𝑜𝑟 (𝑁𝑙𝑜𝑔2 [

𝑓𝑠

2𝑓𝑡𝑔

]) . (75) 

The lower limit is set by the largest data window duration 𝑇 

𝑓𝑗 𝑚𝑖𝑛 = 𝑓𝑡𝑔2
𝑗 𝑚𝑖𝑛

𝑁 >
2

𝑇
   ⇒   𝑗 𝑚𝑖𝑛 > 𝑐𝑒𝑖𝑙 (𝑁𝑙𝑜𝑔2 [

2

𝑇𝑓𝑡𝑔

])   (76) 

so that the center frequencies are defined by 

𝑓𝑗 = 𝑓𝑐2
𝑗
𝑁 , 𝑗 ∈ [𝑗 𝑚𝑖𝑛, 𝑗 𝑚𝑎𝑥] (77) 

which will be sufficient information to compute the Morlet scale 𝓈𝑛. If one must convert to a sorted, 

monotonically increasing pseudoperiod, let 

𝜏𝑗 =
1

𝑓𝑗

, 𝜏0 = 𝑚𝑖𝑛(𝜏𝑗) (78) 

and restart the counter for the period 

𝜏𝑛 = 𝜏02
𝑛

𝑁, 𝑛 ∈ [0, 𝑗 𝑚𝑎𝑥 − 𝑗 min = 𝑙𝑒𝑛𝑔𝑡ℎ (𝑓𝑗)] . (79) 

This re-indexing is much easier to do numerically than to describe algorithmically. For the purposes 

of illustration and demonstration, let us choose a signal frequency that exactly matches the target 

frequency; if this example fails there is no purpose in continuing. A sample rate of 200 Hz will be more 

than sufficient for this example. Gaussian noise with a standard deviation that is one bit below the signal 
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standard deviation (factor of 1/2) is superposed, and then anti-alias filtered for all frequencies below 

Nyquist. The analytic function is computed numerically from the real pulse for later comparisons with 

the wavelet-reconstructed signal. 

The CWT scalogram is computed using the complex nondimensional mother quantum wavelet of 

order N. The complex Gabor-Morlet wavelet in SciPy [25] is represented by the function 

scipy.signal.morlet2, and has the desired canonical form, 

Ψ𝐻(𝑚) =
1

𝜋
1

4⁄
𝑒𝑥𝑝 (−

𝑚2

2
)  exp (𝑖M𝑁𝑚) (80) 

Ψ𝑢,𝑛(𝑚) =
1

√𝓈𝑛

Ψ𝐻 (
𝑚 − 𝑢

𝓈𝑛

) (81) 

𝓈𝑛 = 𝓈0 2
𝑛
𝑁 = [

𝑀𝑁

2𝜋
𝑓𝑠𝜏0]  2

𝑛
𝑁 =

𝑀𝑁

2𝜋

𝑓𝑠

𝑓𝑛

 (82) 

𝑇𝑛 = [𝑀𝑁𝜏0 ]2
𝑛

𝑁 =
𝑀𝑁

𝑓𝑛
  (83) 

𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁 (84) 

𝑄𝑁 = [ 2
1

2𝑁  −  2−
1

2𝑁]
−1

 . (85) 

The only free variables are the order N, the smallest time scale 𝜏0, and the sample rate 𝑓𝑠. Although 

the nondimensionalized scale will change with the sample rate, the final results can always be returned 

to the physical domain frequencies 𝑓𝑛. The nominal number of points per window can be estimated from 

𝑓𝑠𝑇𝑛. The complex wavelet coefficients can be readily computed from the real part of the discrete version 

of the blast source-time function 𝑝(𝑚) 

𝒲𝑛[𝑚] = ∑ 𝑝(𝑚′)Ψ𝑛
∗(𝑚′ − 𝑚)

𝑀𝑝−1

𝑚′=0

= 𝑝 ⊛ Ψ𝑛
∗[𝑚] (86) 

After minor conditioning, the SciPy CWT function [25] promptly invokes the convolution function. 

This is computationally expensive: we have turned a time series with Mp points into a complex 2[Mp x 

Nbands] array of band-passed waveforms. The terms wavelets and wavelet filter banks are often used 

interchangeably in the context of the CWT.  

The wavelet-filtered reconstructed complex analytical signal can be approximated from 

𝑔ℂ 𝑖𝑗[𝑚𝑘: 𝑚𝑙] ≈
𝜋

1
4

2
 ∑

𝒲𝑛[𝑚𝑘: 𝑚𝑙]

√𝓈𝑛

𝑗

𝑛=𝑖

 (87) 

where the 𝑖, 𝑗 indexes indicate that one may choose selected scales for the reconstruction over selected 

time indexes 𝑚𝑘: 𝑚𝑙  corresponding to the wavelet coefficients that best represent a signal of interest 

during the time interval of relevance. The wavelet CWT coefficients for the binary band decomposition 

are shown in Figure 1; the CWT coefficients are scaled by the reconstruction coefficients. A comparison 

of the input synthetic analytic record and the analytic signal reconstruction (summed over all scales) for 

the octave band representation is shown in Figure 2. 
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Figure 1. Analytic signal from mathematical equation, computation with SciPy Hilbert, and the 

continuous wavelet transfer (CWT) reconstruction. (a) Real part; (b) imaginary part. The wavelets were 

evaluated in binary bands (N = 1) and constructed around the target frequency of 6.3 Hz, which scales 

frequency and time. The real input waveform and its computed Hilbert transform are displayed in blue 

at the zero frequency. 

 

Figure 2. Wavelet reconstruction with binary bands. (a) Real part; (b) imaginary part. The Equation 

waveform has no noise and is not filtered, whereas Hilbert has Gaussian noise and has been anti-aliased 

filtered. 

(a)          (b) 

(a)           (b) 
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The reconstruction process recovers the original dimensionality of the time series but returns its 

Hilbert transform, so the total dimensionality may be doubled (2Mp sample points). If only the original 

real signal is desired, then the dimensionality is unchanged. 

The next steps estimate entropy and SNR, and consider sparse signal representation. Although 

binary bands are adequate for characterizing this signal, and are routinely used in the discrete wavelet 

transform, I take advantage of the flexibility offered by the CWT and use third order bands (N = 3) for 

the examples that follow. One of the benefits of third order bands is that the admissibility condition is 

better met and scales are recursive in powers of 2 and 10 ([1]). As presented in Appendix D, third order 

bands will contain over 99% of the Gabor box variance within an octave and within 80% of the full 

window 𝑇𝑛, reducing spectral leakage. If, in addition, one wants a factor of two accuracy in explosive 

yield estimates, 1/3 octave resolution is a minimum requirement. A third order band wavelet 

reconstruction is shown in Figure 3 and corresponds to the CWT decomposition presented in Figure 4. 

The wire mesh representation is the equivalent of the scalograms usually represented as color mesh plots, 

and illustrates the simplicity of the CWT decomposition. The primary difference between Figure 4 and 

Figure 5 is that the first scales the raw CWT coefficients by the reconstruction scaling, whereas Figure 5 

shows the raw coefficients.  

 

Figure 3. Wavelet reconstruction with 1/3 octave bands. (a) Real part; (b) imaginary part. 

 

(a)               (b) 
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Figure 4. Wavelet decomposition with 1/3 octave bands, with CWT amplitudes scaled by the 

reconstruction coefficients. (a) Real part; (b) imaginary part. As with Figure 1, the input waveform is 

displayed at the zero frequency. 

 

Figure 5. Wavelet decomposition in order 3 binary bands, raw CWT amplitudes. (a) Real part; (b) 

imaginary part. 

The energy probability distribution is constructed from the wavelet coefficients to estimate entropy, 

as discussed in the previous section. The log energy entropy looks like any other scalogram and does not 

(a)          (b) 

(a)              (b) 
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add much value, but the Shannon entropy plot is interesting and well scaled (Figure 6). The peak entropy 

is at the scaled blast center frequency of unity, as expected. 

 

Figure 6. Shannon entropy in order 3 bands from raw CWT amplitudes. (a) Real part; (b) imaginary part. 

Next a noise model is constructed to build the SNR and to establish criteria for standardized and 

reproducible sparse signal representation. Many are the ways to characterize noise, and few of them 

accurately characterize non-stationary noise over brief observation windows. An incorrect noise model 

can penalize the signal passband and degrade the signal SNR. For the white noise model with variance 

that is one bit below the signal variance, the CWT of the noise (Figure 7) shows how the high-frequency 

oscillations are adequately sampled whereas the low-frequency oscillations are undersampled. This leads 

to instability if the noise is only estimated over a brief observation record. In principle, one may build a 

noise model over a substantial time period to improve statistical significance under the assumption that 

the noise is statistically stationary. This can be a tenuous assumption in some circumstances. Noise 

studies are beyond the scope of this paper; the noise spectrum is flattened by using the mean of the noise 

coefficients to estimate the band-averaged noise level. 

 

(a)              (b) 
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Figure 7. Raw CWT of noise in 1/3 octave bands. (a) Real part; (b) imaginary part. 

As anticipated, the binary SNR appears much like the log energy entropy since they are both scaled 

by a constant value, with the former over the band-averaged noise and the latter over the total energy. 

The SNR RbR, as described in the previous section, should also look very much like the entropy, except 

it would be zero for SNR of unity and positive for SNR > 1. The SNR RbR is shown in Figure 8 and indeed 

matches the Shannon entropy plot. This is encouraging; the entropy plot requires constructing an energy 

distribution that scales with the record, whereas the SNR requires constructing a noise model that is 

mostly independent of the record and should have more stability—as long as the ambient noise is 

approximately stationary or can at least be adequately modeled. If one is curating data for machine 

learning training, the entropy would be a good metric for picking and annotating possible signals as well 

as for refining noise models. If one is trying to trigger or detect signals operationally, the SNR may be a 

preferable metric since it makes no assumptions about the total energy in a record and only scales relative 

to a (preferably) stable noise representation. 

(a)              (b) 
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Figure 8. SNR RbR in 1/3 octave bands. (a) Real part; (b) imaginary part.  

One may use the CWT coefficient energy, the Shannon entropy, or the SNR RbR to test the feasibility 

of the sparse Gabor atom superposition. Suppose we use any of these Np scales x Mpoint time matrices 

to identify the peak contributions over the record, and define the complex time indexes as 𝑚ℂ 𝑚𝑎𝑥. The 

quantum wavelet superposition would be expressed as 

𝑔ℂ 𝑖𝑗[𝑚𝑘: 𝑚𝑙] ≈
𝜋

1
4

2
 ∑

𝒲𝑛[𝑚𝑛 ℂ 𝑚𝑎𝑥]

√𝓈𝑛

𝑗

𝑛=𝑖

𝑅𝑒{Ψ𝑛[𝑚𝑘: 𝑚𝑙 − 𝑚𝑛 ℂ 𝑚𝑎𝑥]} (88) 

where the dimensionality of the representation is reduced to the complex coefficients and time indexes. 

Since the wavelet function can be reproduced for any time index, the time array need not be stored. In 

other words, if there are 20 scales, there will be 20 real coefficients and time offsets and 20 imaginary 

coefficients and time offsets, with total dimensionality of 4 × 20 = 80 parameters. If there is sufficient SNR 

and the signal is band limited it is possible to further reduce dimensionality by removing any coefficients 

below a specified threshold that may be fitting to noise (e.g., overfitting). Figure 9 shows the result of 

reconstruction from the superposition of all the top atoms of the 20 scales, and Figure 10 shows 

reconstruction from a sparser set of 12 scales with the highest SNR RbR. Similar results were obtained 

using the Shannon entropy. The Gaussian noise standard deviation for these two runs was one bit below 

the signal standard deviation. 

(a)              (b) 
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Figure 9. Superposition of largest SNR entropy coefficients per band using all twenty 1/3 octave bands. 

(a) Real part; (b) imaginary part. The noise standard deviation is one bit below the signal’s. Dimensionality 

is reduced to the number of coefficients and their corresponding time shifts. 

 

Figure 10. Superposition of largest coefficients per band within 4 bits of the peak SNR entropy. (a) Real 

part; (b) imaginary part. Dimensionality is further reduced by applying the cutoff. 

Increasing the noise standard deviation by a factor of two (one bit) still permits reconstruction from 

superposition (Figure 11), and increasing by another bit also allowed atomic reconstruction (Figure 12). 

(a)               (b) 

(a)               (b) 
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Figure 11. (a) Real part and (b) imaginary part of the original and reconstructed waveform. Increasing the 

noise amplitude so that its variance is the same as the signal variance still permitted reconstruction from 

the superposition of the largest atoms per band. 

 

Figure 12. (a) Real part and (b) imaginary part of the original and reconstructed waveform. Increasing the 

noise standard deviation is one bit above the signal standard deviation also allowed reconstruction from 

the quantum wavelet superposition. 

There is no end to the number of sensitivity studies that can be performed; in addition to other SNR 

tests, shifting the peak blast frequency away from the nominal target frequency still returned a stable 

(a)               (b) 

(a)               (b) 
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reconstruction. Increasing the order past N > 6 only worsened the fit to the target waveform, increasing 

dimensionality and computational cost while decreasing reconstruction fidelity. This is expected from 

using a wavelet that does not match the target signature. 

4. Concluding Remarks 

This paper proposes a transition to binary metrics for digital data and introduces a standardized, 

quantized variation of the Gabor atoms with binary bases, optimal time-frequency resolution, and clear 

spectral energy containment. A binary entropy-like metric for the SNR is proposed and used to extract 

the peak coefficients to evaluate the performance of the superposition of Gabor atoms against the more 

traditional CWT reconstruction. Although the immediate application is the analysis of time series data 

collected with cyber-physical systems such as smartphones, the methods presented in this paper should 

be transportable to other types of digital records and can be extended to other wavelet families. 

I used a synthetic pressure pulse corresponding to the detonation of one metric ton if TNT in 

Gaussian noise as an example, and did not include the blast amplitude as a key parameter in order to 

concentrate on the entropy and SNR, which are both dimensionless scaled quantities. Observations 

collected close to an explosion should have brief durations and a high SNR; for short pulses it is advisable 

to use Gabor atoms of small order (N = 1 − 6). Due to cube root yield scaling, the third order bands will 

provide a yield resolution—and uncertainty—of a factor of two, and one-sixth order bands will return 

square root of two yield resolution. In other words, the uncertainty of yield estimates obtained with the 

quantum wavelet would be inversely proportional to the cube root of the band order. Acceptable signal 

reconstructions were obtained from the CWT coefficients as well as the superposition of the peak third 

order Gabor atoms for the blast signature. At increasing distance from the source, the peak frequency is 

expected to drop [7] and the pulse disperses over time. This opens up the possibility for stable 6 and 12 

order analyses with a corresponding improvement in yield resolution. Future work will concentrate on 

such dispersed signatures as well as consider other types of CW signatures that would be well matched 

to higher-order Gabor atoms. 

The methods developed have the goal of providing a tunable, standardized framework for signature 

feature extraction that can be used for signal classification and which should be well suited for dictionary 

learning [13]. 
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Appendix A. Generalized Constant Q Bands 

This work builds on the Infrasonic Energy, Nth Octave (Inferno) framework [1], which has been 

implemented in infrasound array processing algorithms for nuclear monitoring applications [3–4] 

Logarithmic constant-bandwidth, also referred to as proportional frequency or constant quality factor 

(Q) bands, are traditionally defined by their scaled bandwidth 
∆𝑓

𝑓𝑛

=
𝑓𝐻 − 𝑓𝐿

𝑓𝑛

=  
1

𝑄
 (A1) 

where 𝑓𝑛 is the center frequency of band number n and 𝑓𝐻 and 𝑓𝐿 are referred to as the upper and lower 

band edge frequency, respectively. Defining the center, upper, and lower band edge periods 

𝜏𝑛 , 𝜏𝐻 , 𝑎𝑛𝑑 𝜏𝐿 as 

 

𝜏𝑛 =
1

𝑓𝑛

,  𝜏𝐻 =
1

𝑓𝐿

,  𝜏𝐿 =
1

𝑓𝐻

, (A2) 

the 
∆𝜏

𝜏𝑛

=
𝜏𝐻 − 𝜏𝐿

𝜏𝑛

=
∆𝑓

𝑓𝑛

=
∆𝜔

𝜔𝑛

=  
1

𝑄
  .  (A3) 

In this section we generalize the constant-Q framework to the logarithmic discretization of 

evaluation intervals relative to a given reference scale and base. For a given reference scale 𝜏0, which 

could be time, frequency, spatial length, wavenumber, or any other useful metric, we define a logarithmic 

scale base G > 1 and center scale 𝜏𝑛 as 

 
𝜏𝑛

𝜏0

= 𝐺
𝑛
𝑁 (A4) 

where n is the band number and N is the band order, subject to the constraints 𝑛 ∈ ℤ, 𝑁 ≥ 1. 

The natural base for both contemporary and quantum computers is base 2, and analysis windows 

with powers of two are recommended for complex computations at large scales. Many efficient 

algorithms are based on binary (base two) filter banks. Selecting G = 2 yields  

𝜏𝑛

𝜏0
= 2

𝑛

𝑁 ,           
𝜏𝐻

𝜏𝑛
= 2

1

2𝑁,
𝜏𝐿

𝜏𝑛
= 2−

1

2𝑁 ,         
𝜏𝐻𝜏𝐿

𝜏𝑛
2 = 1       (A5) 

𝑄𝑁 = [ 2
1

2𝑁  −  2−
1

2𝑁]
−1

.         (A6) 

Note that center and band edge scales attached to a given band n change with the order N, reference 

scale 𝜏0, and the reference base G. If the reference scale and base are standardized, all bands are invariant. 

For example, the concert A pitch standard is fixed at 440 Hz and may be used to tune other instruments 

anywhere and at any time. 

The next step substantially simplifies the estimation of constant-Q bands with a minimal 

introduction of a 2% computational error. To the author’s knowledge, this is the first time this expression 

is presented (and he would be most grateful to be informed otherwise). Numerical evaluation shows that 

lim
𝑁→∞

𝑄𝑁

𝑄1
= lim

𝑁→∞
( 𝐺

1

2  −  𝐺−
1

2) ( 𝐺
1

2𝑁  −  𝐺−
1

2𝑁)
−1

≈ 𝑁
𝐺−1

√𝐺𝑙𝑛(𝐺)
≈ (1.02 )𝑁 ≈ 𝑁   (A7) 

𝑄𝑁 ≈ 𝑁𝑄1 = 𝑁 [
√𝐺

𝐺−1
] .         (A8) 

The center frequencies and band edges, and thus the quality factor, of traditional fractional octave 

bands are well known and can be readily computed for all the standard bands. The primary value of the 
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expression for 𝑄𝑁 is that it provides a simple, explicit estimate of the relation between the quality factor 

and the band order, which in turn permits an estimate of the support window duration for a given 

wavelet in terms of the band order. Numerical inspection shows that for most practical applications and 

for 𝐺 = 2 ≈ 10
3

10, even those when 𝑁 is non integer, we can use the expression 

𝑄𝑁 =
𝑓𝑛

∆𝑓𝑛
≈ √2𝑁          (A9)  

to estimate the relationship between the band order and the quality factor. 

Although the center frequency is traditionally defined as the geometric mean of the band edges, the 

½  power spectral points at the band edges are only symmetric around the arithmetic mean of the center 

frequency. The relation between the arithmetic mean 𝑓𝑛𝑎 = (𝑓𝐿 + 𝑓𝐻) 2⁄  and the geometric mean 𝑓𝑛𝑔 =

√𝑓𝐿𝑓𝐻 of the center frequency of fractional binary bands is 

 

𝑓𝑛𝑎

𝑓𝑛𝑔 
 ≅ √1 + 

1

8𝑁2 ≈ 1 + 
1

16𝑁2        (A10) 

where the approximation uses the binomial expansion. The arithmetic and geometric center frequencies 

are close to each other, and for fractional octave bands (N>1) get ever tighter. However, the band edge 

power levels at the half band width ∆𝑓𝑛/2 should be considered to be relative to the arithmetic mean 

rather than the geometric mean. In general practice it is easier to use the arithmetic frequency as 𝑓𝑛, with 

the understanding that the fractional octave specifications are defined by geometric scaling. 

As an extension of the Inferno framework [1] the nominal duration of the Gabor atom window 𝑇𝑛 

may be defined as a multiple 𝑀𝑁 of the scale as 

𝑇𝑛(𝑁, 𝑛) ≝ 𝑀𝑁𝜏𝑛 = 𝑀𝑁𝜏0𝐺
𝑛

𝑁        (A11) 

where the scale multiplier 𝑀𝑁 is set by the half power points of the wavelet. Traditional constant-Q 

frameworks in acoustics and music applications match the 12-tone equal temperament system (𝑁=12) for 

𝐺 = 2 or 𝐺 = 10
3

10 ≈ 2 and are consistent with the Renard series recommended in ISO3 for 𝑁=1, 3, 6, 12, 

24. 

Appendix B. The Gabor Atom 

Different disciplines call the same things different names; many of the challenges in present-day 

data science are often due to divergent lexicon and the diversity of applications specific to each field. The 

idea of using a windowed sinusoid as a basis function for signal representation was developed in detail 

in Gabor’s [2] landmark paper, where he also introduced the time-frequency uncertainty principle. 

Gabor’s atoms were further developed by Grossman and Morlet [14] and P. Goupillaud et al. [15] 

(amongst others), who formalized and popularized what we now know as wavelet transforms. Mallat [13] 

presents a lucid overview of the complementary nature of Fourier and wavelet representations in his 

Wavelet Tour of Signal Processing; the serious student would be wise to consider it required reading. 

The Gabor wavelet is a special case of a wavelet-modulated window ([13] Equations 4.60–4.62) and 

is representative of a bandwidth-limited compressed pulse [12]. For a physical scientist, its most intuitive 

form is 

Ψ(𝑥) =
1

[𝜋𝜎2]
1

4⁄
𝑒𝑥𝑝 (−

𝑥2

2𝜎2)  exp (𝑖𝜂𝑛 𝑥),       (B1) 

representing a sinusoid with scaled time 𝑥 =  𝑓𝑠𝑡 and scaled angular frequency 𝜂𝑛 (or linear space and 

wavenumber) modulated by Gaussian window with standard deviation 𝜎 . Comparison with the 

canonical expression  
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Ψ𝑛(𝑥) =
1

(𝜋𝓈𝑛
2 )

1
4⁄

𝑒𝑥𝑝 {−
1

2
[

𝑥

𝓈𝑛
]

2

} 𝑒𝑥𝑝 {𝑖 [
2𝜋𝑓𝑛

 𝑓𝑠
] 𝑥}      (B2) 

shows that the scaled angular frequency and standard deviation are 

𝜂𝑛 =
2𝜋𝑓𝑛

 𝑓𝑠
,      𝜎 = 𝓈𝑛,     𝜎𝜂 = 𝑀𝑁

𝑓

𝑓𝑛
 .       (B3) 

The Fourier transform of the mother wavelet is 

Ψ̂(𝜂) = [4𝜋𝜎2]
1

4⁄  𝑒𝑥𝑝 {−
1

2
𝜎2[𝜂 − 𝜂𝑛]2} = [4𝜋𝓈𝑛

2]
1

4⁄  𝑒𝑥𝑝 {−
1

2
𝑀𝑁

2 [
𝑓

𝑓𝑛
− 1]

2

},   (B4) 

has unit second moment 

∫ Ψ(𝑥)Ψ∗(𝑥)𝑑𝑥 = 1  
∞

−∞
,         (B5) 

and it first moment vanishes in the limit  

  ∫ Ψ(𝑡)𝑑𝑡 → 0 for 
∞

−∞
 𝜎2𝜂𝑐

2 ≫ 1 .        (B6) 

 

Another important representation of the Gabor wavelet [26–27] is 

𝜓 = (4𝜋𝜎2)−
1

4 Ψ         (B7) 

  𝜓(𝑥) =
1

[2𝜋𝜎2]
1
2

 𝑒𝑥𝑝 {−
𝑥2

2𝜎2} 𝑒𝑥𝑝{𝑖𝜂c𝑥}       (B8) 

with the advantage that its Fourier transform 

𝜓̂(𝜂) =  𝑒𝑥𝑝 {−
1

2
𝜎2[𝜂 − 𝜂c]2} =  𝑒𝑥𝑝 {−

1

2
𝑀𝑁

2 [
𝑓

𝑓𝑛
− 1]

2

}       (B9) 

has a peak amplitude of unity and yields equal-amplitude filter banks. 

The Inferno framework was developed with the introduction of multiresolution array processing in 

the field of infrasound. The time duration of an analysis window at a specific period is represented as 

𝑇𝑛 = 𝑀𝑁 𝜏𝑛 .          (B10) 

This time window generally sets the temporal resolution of the resulting data products. In the case 

of the STFT, the fixed-duration analysis window can be referred to as the window of integration. In other 

words, the integration window 𝑇𝑛  is defined as a multiple 𝑀𝑁  of the pseudo period. This window 

immediately constrains the lowest frequency 𝑓𝑚𝑖𝑛  that can be represented and the resolution of a 

spectral representation, 

𝑓𝑚𝑖𝑛 =
1

𝑇𝑛
 .           (B11) 

The upper bandwidth of the analysis window can be set by the Nyquist frequency, which is half of 

the sampling frequency of the digital time series. In practice the upper bandwidth is close to one quarter 

of Nyquist. Although this representation is simple and tidy, it is not particularly informative. A more 

useful representation of window duration is the number of wavelet oscillations in the window, which 

can be estimated from the quality factor 𝑄𝑁  of the wave function. As presented in Appendix C, the 

relation between the scale multiplier 𝑀𝑁 and the quality factor can be estimated by the ½  power (−3dB, 

or half bit) points on the power spectrum, 

𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁  .          (B12) 

The wavelet admissibility condition for the for this wavelet is equivalent to the zero mean, or 

𝑀𝑁
2  ≫ 1           (B13) 
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which is essentially met by the standard bands presented in Table 1. Although traditionally the Nth 

octave frequencies are represented by the geometric mean of the band edge frequencies (Appendix A), 

in the evaluation of spectral power losses it is important to use the arithmetic mean for 𝑓𝑛 which would 

be centered in the bandwidth ∆𝑓𝑛  in linear frequency space. Since the ratios of the arithmetic and 

geometric means are constant and set by the band order N, the geometric scaling is still preserved. 

The canonical form for computational evaluation is: 

Ψ𝑛(𝑥 − 𝑥′) =
1

𝜋
1

4⁄

1

√𝓈𝑛
𝑒𝑥𝑝 {−

1

2
[

𝑥−𝑥′

𝓈𝑛
]

2

} 𝑒𝑥𝑝 {𝑖𝑀𝑁 [
𝑥−𝑥′

𝓈𝑛
]} .    (B14) 

The second b-type form has a different structure 

𝜓𝑛(𝑥)  =  Ψ𝑥′,𝑛(𝑥)(4𝜋)−
1

4 𝓈𝑛

−
1

2        (B15) 

𝜓𝑛(𝑥 − 𝑥′) = (2𝜋)−
1

2 𝓈𝑛
−1 𝑒𝑥𝑝 {−

1

2
[

𝑥−𝑥′

𝓈𝑛
]

2

} 𝑒𝑥𝑝 {𝑖2𝜋
 𝑓𝑛

 𝑓𝑠
(𝑥 − 𝑥′)}    (B16) 

applying 

𝓈𝑛 =  𝓈0 2
𝑛

𝑁,            (B17) 

yields  

𝜓𝑛(𝑥 − 𝑥′) = (π 2𝓈𝑜
2)−

1

2 [𝑠𝑛]−1 𝑒𝑥𝑝 {−
1

2𝓈𝑜
2 [

𝑥−𝑥′

𝑠𝑛
]

2

} 𝑒𝑥𝑝 {𝑖
𝑀𝑁

𝓈0
[

𝑥−𝑥′

𝑠𝑛
]}    (B18) 

which has the form 

𝜓𝑁(𝜇) =
1

√𝜋𝑏
 𝑒𝑥𝑝 {−

𝜇2

𝑏
} 𝑒𝑥𝑝 {𝑖

𝑀𝑁

𝓈0
 𝜇}       (B19) 

𝜓𝑛(𝜇) =
1

𝑠𝑛
𝜓𝑁 (

𝜇−𝜇′

𝑠𝑛
)        (B20) 

with 

𝑠𝑛 =
𝓈𝑛

𝓈0
 = 2

𝑛

𝑁,   𝑛 ≥ 0,            𝓈0 = 𝑀𝑁
 𝑓𝑠𝜏0

2𝜋
      (B21) 

𝑏 = 2𝓈𝑜
2 = 2 [𝑀𝑁

 𝑓𝑠𝜏0

2𝜋
]

2

.         (B22) 

Note that since 

𝑏 = 8𝑙𝑛2 (
 𝑓𝑠

Δ𝜔0
)

2

         (B23) 

the “bandwidth” 𝑏 is inversely proportional to the actual bandwidth of the highest frequency. 

Appendix C. The Q of the Quantum Wavelet 

The power spectral density of the Gabor wavelet is: 

Ψ̂2
𝑛(𝑓) = [4𝜋𝓈𝑛

2]
1

2⁄  𝑒𝑥𝑝 {−𝑀𝑁
2 [

𝑓−𝑓𝑛

𝑓𝑛
]

2

},       (C1) 

Ψ̂2
𝑢,𝑛(𝑓𝑛 ± ∆𝑓𝑛/2)

Ψ̂2
𝑢,𝑛(𝑓𝑛)

=  𝑒𝑥𝑝 {−𝑀𝑁
2 [

∆𝑓𝑛

2𝑓𝑛
]

2

} = 𝑒𝑥𝑝 {− [
𝑀𝑁

2𝑄𝑁
]

2

} =
1

𝑌
     (C2) 

where Y is the fractional power loss. There exist various definitions of the quality factor of a system. This 

paper defines 𝑄𝑁  by 1/2 of the spectral power relative to the peak spectral power, where 𝑌 = 2 . 

Therefore, for the Gabor wavelet, 

𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁  .          (C3) 
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Consider the decay of the spectrum relative with distance 𝛿 from the peak frequency 

Ψ̂2
𝑢,𝑛(𝑓𝑛+ 𝛿∆𝑓𝑛/2)

Ψ̂2
𝑢,𝑛(𝑓𝑛)

 = 𝑒𝑥𝑝 {− [
𝛿𝑀𝑁

2𝑄𝑁
]

2

} = 𝑒𝑥𝑝 {−[𝛿√𝑙𝑛2]
2

} = 2−𝛿2
.    (C4) 

The loss in dBs and binary bits can be expressed as 

𝑑𝐵 =  10 ∗ 𝑙𝑜𝑔10(2−𝛿2
) =  −𝛿210 ∗ 𝑙𝑜𝑔10(2) ≈ −3𝛿2     (C5) 

𝑏𝑅 =  
1

2
𝑙𝑜𝑔2(2−𝛿2

) =  
−𝛿2

2
 .         (C6) 

There is a loss of 3 dB, 12 dB, 27 dB, and 48 dB, and a binary power loss of ½ , 2, 4.5, and 8 fbits, for 

integer multiples of the bandedge 𝛿 = 1, 2, 3, 4, respectively. 

It is worth considering an alternate definition for the quality factor of an oscillator. Consider the time 

required for the amplitude to drop to 1/e of its peak value. In the case of the Quantum wavelet this is set 

by the Gaussian envelope, and this particular definition is best suited for the real part of the wavelet 

which is symmetric about the origin. By applying this definition, 

𝑒𝑥𝑝 {−
1

2
[

𝑥

𝓈𝑛
]

2

} = 𝑒𝑥𝑝 {−
1

2
[

𝑓𝑠𝜏𝑒

𝓈𝑛
]

2

} = 𝑒𝑥𝑝 {−
1

2
[

𝜔𝑛𝜏𝑒

𝑀𝑁
]

2

} = 𝑒𝑥𝑝{−1}     (C7) 

𝜏𝑒 =
√2

𝜋

𝑇𝑛

2
≈ 0.45

𝑇𝑛

2
 .         (C8) 

Since the wavelet is symmetric, this states that the portion of the wavelet contained within 2𝜏𝑒  of the 

window has an amplitude above 1/e of the peak. The quality factor associated with this type of oscillator 

is  

 𝑄𝑒 =
𝜔𝑛𝜏𝑒

2
=

𝑀𝑁

√2
          (C9) 

and comparison with the half power point quality factor shows 

 𝑄𝑒 = √2𝑙𝑛2  𝑄𝑁   ≈ 1.1774 𝑄𝑁        (C10) 

and they are sufficiently close to each other to be equivalent for descriptive purposes. The time duration 

of the quantum wavelet is defined by 

𝑇𝑛 = 𝑀𝑁 𝜏𝑛 = 2√𝑙𝑛2  𝑄𝑁𝜏𝑛         (C11) 

where  𝑄𝑁 ≈  𝑄𝑒  can be interpreted as the number of oscillations in a little less than half of the total 

window 𝑇𝑛 with amplitude above 1/e of the maximum amplitude. The remaining half of the window is 

useful to allow the wavelet to settle down and meet the desirable condition of a vanishing first moment. 

Practical implementations of Gabor wavelets and their variants often have to make some 

compromises in the application of the wavelet duration 𝑇𝑛, especially if the window is required to be a 

power of two. Direct integration of the wavelet power over the window 𝑇𝑛  shows that it contains 

99.999% of all the power. Integration over 2𝜏𝑒 will be insufficient (Appendix D). However, there exists 

a third quality factor defined by 

𝑒𝑥𝑝 {−
1

2
[

𝜔𝑛𝜏𝜋

𝑀𝑁
]

2

} = 𝑒𝑥𝑝{−𝜋}         (C12) 

where  

 𝑄𝜋 =
𝜔𝑛𝜏𝜋

2
           (C13) 

 𝑄𝜋 = √𝜋  𝑄𝑒 ≈ 1.7724 𝑄𝑒         (C14) 

 𝜏𝜋 = √𝜋  𝜏𝑒 = √
2

𝜋

𝑇𝑛

2
≈ 0.7978

𝑇𝑛

2
 .         (C15) 
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In other words, 2𝜏𝜋 encompasses ~80% of the window, and integration of the wavelet power over 

2𝜏𝜋 returns 99.96% of the total power. Therefore 2𝜏𝜋 = 0.8𝑇𝑛 may be a reasonable lower bound for the 

wavelet duration. This is further considered in Appendix D. 

Appendix D. The Gabor Box 

Gabor introduced the time-frequency uncertainty principle in his landmark paper [2]. It is not 

possible to observe for all time and reach zero frequency. It is also impossible to sample infinitely fast 

and reach infinite frequency. All observations require a restriction in the observation time and the 

observation rate, and this places hard limits on the observable bandwidth of a process. The fundamental 

discretization interval scale invokes the Gabor uncertainty principle, which states the time and period of 

a signal cannot be known exactly but can be contained inside the box defined by the temporal and 

frequency variance of the probability distribution of the wave function. 

This section follows the generalized mathematical formalism of [13, Section 2.3.2, Uncertainty 

Principle]. As in [13] and [7] the Fourier Transform pair used in this work is 

𝑓(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡∞

−∞
𝑑𝑡          (D1) 

𝑓(𝑡) =
1

2𝜋
∫ 𝑓(𝜔)𝑒𝑗𝜔𝑡∞

−∞
𝑑𝜔,         (D2) 

where 𝑓(𝜔) and 𝑓(𝑡) may be complex, and 𝑡 and 𝜔 are nondimensionalized time [Equation (13)]. 

The Parseval-Plancherel identity asserts that 

‖𝑓‖2 = ∫ |𝑓(𝑡)|2∞

−∞
𝑑𝑡 =

1

2𝜋
∫ |𝑓(𝜔)|

2∞

−∞
𝑑𝜔 =  

1

2𝜋
‖𝑓‖

2
      (D3) 

where 

|𝑓|2 = 𝑓 ∙ 𝑓∗           (D4) 

and the asterisk denotes complex conjugation. A related identity is routinely used in Fourier and Wavelet 

analyses and the application of filter banks 

∫ 𝑓(𝑡)𝑔∗(𝑡)
∞

−∞
𝑑𝑡 =

1

2𝜋
∫ 𝑓(𝜔)𝑔̂∗(𝜔)

∞

−∞
𝑑𝜔 .        (D5) 

The Gabor uncertainty principle constrains uncertainty to Gabor box defined by the variance in time 

and frequency. It is equivalent to the Heisenberg uncertainty principle for position and momentum 

extended to time and frequency, or space and wavenumber. Let a one-dimensional signal of interest be 

represented by a wave function 𝑓(𝑡). The probability density that a signal can be localized in time at a 

given time 𝑡 is 

|𝑓(𝑡)|2

‖𝑓‖2 =
2𝜋|𝑓(𝑡)|2

‖𝑓̂‖
2 ,          (D6) 

and the probability density that its angular frequency is 𝜔 is 

|𝑓̂(𝜔)|
2

‖𝑓̂‖
2 =

|𝑓̂(𝜔)|
2

2𝜋‖𝑓‖2.          (D7) 

The variance in the time localization of the signal as 

𝜎𝑡
2 =

1

‖𝑓‖2 ∫ (𝑡 − 𝑢)2 |𝑓(𝑡)|2∞

−∞
𝑑𝑡.        (D8) 

and the variance in the frequency localization of the signal as 

𝜎𝜔
2 =

1

‖𝑓̂‖
2 ∫ (𝜔 − 𝜉)2 |𝑓(𝜔)|

2∞

−∞
𝑑𝜔.        (D9) 

Reference [13] uses these expressions to rederive the Heisenberg-Gabor uncertainty principle, which 

states that the temporal and angular frequency variance satisfy: 
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𝜎𝑡
2𝜎𝜔

2 ≥
1

4
 .          (D10) 

In the special case of the Gabor-Morlet wavelet and its Quantum spawn, where the wave function 

is symmetric and centered around the time-shift 𝑢 and the spectrum is symmetric relative to the peak 

frequency 𝜔𝑛 , the variance for the time and frequency distribution of the signal wave function can be 

readily evaluated. 

𝜎𝑡
2 =

1

‖𝜓𝐻‖2 ∫ (𝑡 − 𝑢)2 |𝜓𝐻(𝑡 − 𝑢)|2∞

−∞
𝑑𝑡 =  

1

2
𝓈𝑛

2      (D11) 

𝜎𝜔𝑛
2 =

1

‖𝜓̂𝐻‖
2 ∫ (𝜔 − 𝜔𝑛)2 |𝜓̂𝐻(𝜔 − 𝜔𝑛)|

2∞

−∞
𝑑𝜔 =  

1

2
𝓈𝑛

−2     (D12) 

and the Gabor box defined by the variance is minimal, 

𝜎𝑡
2𝜎𝜔𝑛

2 =
1

4
,          (D13) 

which is another reason for this wavelet’s popularity. Equations (D11)-(D12) are converted to physical 

time in Equation (22) of the main text. 

Consider the standard deviation for time integrated over the scaled window ϵ𝑇𝑛  

𝜎𝑡
2(ϵ) =

1

‖𝜓𝐻‖2 ∫ (𝑡 − 𝑢)2 |𝜓𝐻(𝑡 − 𝑢)|2
𝑢+

𝜖𝑇𝑛
2

u−
𝜖𝑇𝑛

2

𝑑𝑡 =  
1

√𝜋
[

𝑀𝑁

𝜔𝑛
]

2

∫ 𝑥2 𝑒−𝑥2
 

ϵπ

−ϵπ
𝑑𝑥   (D14) 

∫ 𝑥2 𝑒−𝑥2
 

a

−a
𝑑𝑥 =

√𝜋

2
[𝑒𝑟𝑓(a) −

2

√𝜋
𝑎 𝑒−𝑎2

] .      (D15) 

For ϵ ≥
3

2π
 

𝜎𝑡
2(ϵ) ≅  

1

2
𝓈𝑛

2 𝑒𝑟𝑓(ϵπ) .         (D16) 

For ϵ = [1.0, 0.8, 0.45]   

𝜎𝑡
2(ϵ) ≅  

1

2
𝓈𝑛

2  [0.9999, 0.9996, 0.9544 ] ,      (D17) 

where ϵ corresponds to integration over 𝑇𝑛, 2𝜏𝜋 ≈ 0.8𝑇𝑛, 𝑎𝑛𝑑  2𝜏𝑒 ≈ 0.45𝑇𝑛, corresponding to the full 

window, the decay time associated with 𝑄𝜋 , and the e-folding time associated with 𝑄𝑒 , respectively 

(Appendix C). 

Next, consider the standard deviation for time integrated over the scaled window ϵ𝑇𝑛  

𝜎𝜔𝑛
2 (δ) =

1

‖𝜓̂𝐻‖
2 ∫ (𝜔 − 𝜔𝑛)2 |𝜓̂𝐻(𝜔 − 𝜔𝑛)|

2𝜔𝑛+
𝛿∆𝜔𝑛

2

𝜔𝑛−
𝛿∆𝜔𝑛

2

𝑑𝜔 = =  
1

√𝜋
[

𝑀𝑁

𝜔𝑛
]

−2

∫ 𝑥2 𝑒−𝑥2
 

δ√𝑙𝑛2

−δ√𝑙𝑛2
𝑑𝑥 (D18) 

𝜎𝜔𝑛
2 (δ) ≅  

1

2
𝓈𝑛

−2  [𝑒𝑟𝑓(δ√𝑙𝑛2) −
2

√𝜋
(δ√𝑙𝑛2) 2−𝛿2

] .     (D19) 

For δ = [1, 2, 3, 4]   

𝜎𝜔𝑛
2 (δ) ≅  

1

2
𝓈𝑛

−2  [0.2912, 0.8640, 0.9941, 0.9999]      (D20) 

where 𝛿 corresponds to integration over ∆𝜔𝑛 , 2∆𝜔𝑛, 3∆𝜔𝑛 , 𝑎𝑛𝑑  4∆𝜔𝑛, respectively. These results show 

that the Gabor box can be well approximated (>99% of the variance) by a window of duration 2𝜏𝜋 =

0.8𝑇𝑛  and a bandwidth of 3∆𝜔𝑛,  and over 99.99% of the variance is contained by a Gabor box of 

dimensions 𝑇𝑛 ,  4∆𝜔𝑛. In other words, third octave bands will contain over 99% of the variance within its 

octave and within 80% of the full window 𝑇𝑛. 

Appendix E. The Gabor Family 

A few variations of the Gabor-Morlet wavelet are available in present-day computing environments. 

One of the more familiar forms of the mother wavelet used in modern computations [26,27] is  
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𝜓(𝜇) =
1

√𝜋𝑏
 𝑒𝑥𝑝 {−

𝜇2

𝑏
} 𝑒𝑥𝑝{𝑖2π𝑓𝑏̅ 𝜇}        (E1) 

ψ𝜇′,𝑛(𝑡) =
1

𝑠𝑛
ψ (

𝜇−𝜇′

𝑠𝑛
) .          (E2) 

This form is found in the Matlab “cmor” function as well as the Python Pywavelets [28] “cmorB-C” 

function with 𝐶 = 𝑓𝑏̅ . The term b is referred to as the “bandwidth parameter” of the wavelet. The 

Quantum wavelet has the equivalence 

𝑠𝑛 =  2
𝑛

𝑁,   𝑛 ≥ 0,           (E3) 

𝜏n = 𝜏0𝑠𝑛 =
1

𝑓0
𝑠𝑛          (E4) 

𝑏 = 2 [𝑀𝑁
 𝑓𝑠𝜏0

2𝜋
]

2

          (E5) 

𝐶 = 𝑓𝑏̅ =
 𝑓0

 𝑓𝑠
=

1

 𝑓𝑠𝜏0
          (E6) 

where 𝑓0, the highest center frequency, is used as the starting point. The scaled wavelet duration is 𝑀𝑁
𝑓𝑠

𝑓𝑛 
 

and can be rounded to approximate the number of points for each scale.  

Foster [29] expresses the abbreviated Morlet wavelet as 

𝐹(𝑧) = 𝑒𝑖𝑧−𝑐𝑧2
= 𝑒𝑥𝑝 {𝑖𝜔𝑛𝑡 −

1

2𝑀𝑁
2 𝜔𝑛

2𝑡2}       (E7) 

so that 𝑧 = 𝜔𝑛𝑡 and now 𝑐 =
1

2𝑀𝑁
2  is inversely proportional to the Q of the wave function. The beauty of 

Foster’s approach is that it can be used for unevenly sampled data. A modernization of this algorithms 

can be found at [30]. 

Appendix F. The Analytic Function of a Blast Pulse 

The reconstruction coefficients of the complex Morlet CWT return the imaginary part of the analytic 

signal. The complex analytic signal corresponding to the real signal 𝑔(𝜏̂) is 

𝑔ℂ(𝜏̂) = 𝑔(𝜏̂) + 𝑗 ℋ[𝑔(𝜏̂)]         (F1) 

where ℋ denotes the Hilbert transform, a recurrent topic in wave propagation as reflection introduces 

phase shifts that are often modeled as Hilbert transforms of the original signal [31]. For example, some 

of the U-shaped infrasound waveforms associated with thermospheric returns resemble the Hilbert 

transform of an explosion pulse [3]. The Hilbert transform is also useful for estimating instantaneous 

frequency and in the computation of the Hilbert-Huang transform [32]. 

Let 𝑔(𝜏̂) represent the Granström Triangular (GT) pulse [7], 

𝑔(𝜏̂) = (1 − 𝜏̂),     0 ≤ 𝜏̂ ≤ 1         (F2) 

𝑔(𝜏̂) =
1

6
(1 − 𝜏̂)(1 + √6 − 𝜏̂)

2
,    1 < 𝜏̂ ≤ 1 + √6 .      (F3) 

The Hilbert transform of the canonical GT blast pulse is rather unwieldy, but can be evaluated from 

𝑔ℋ(𝜏̂) = ℋ[𝑔(𝜏̂)] = 𝒫 
1

𝜋
∫

𝑔(𝑥)

𝑡−𝑥
𝑑𝑥

∞

−∞
       (F4) 

where the 𝒫 in front of the integral denotes the Chaucy principal value. Multiple integration by parts 

over the interval of the GT pulse yields 

𝑔ℋ(𝜏̂) =
1

𝜋
[1 + (1 − 𝜏̂)𝑙𝑛(−𝜏̂) − (1 − 𝜏̂)𝑙𝑛(1 − 𝜏̂)],        0 ≤ 𝜏 ≤ 1    (F5) 

𝑔ℋ(𝜏̂) =
1

6𝜋

(𝑎−1)

6
[𝑎(2𝑎 + 5) − 1 + 6𝜏̂2 − 3𝜏̂(1 + 3𝑎)]       
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+ 
1

6𝜋
[(𝜏̂ − 1)(𝑎 − 𝜏̂)2][𝑙𝑛(𝑎 − 𝜏̂) − 𝑙𝑛(1 − 𝜏̂)],    1 < 𝜏 ≤ 𝑎 = 1 + √6 .  (F6) 

Since 

lim
𝑥→0

𝑥 𝑙𝑛(𝑥) = 0 , lim
𝑥→0

𝑥2 𝑙𝑛(𝑥) = 0         (F7) 

the solutions are well behaved near the zero crossings. However, there are some issues in this solution. 

First, there are the two troublesome implicitly complex terms. The first is 

𝑙𝑛(−𝜏̂) = 𝑙𝑛(𝜏̂) + 𝑗𝜋, 0 ≤ 𝜏 ≤ 1        (F8) 

where 𝑙𝑛(𝜏̂) tends to negative infinity at 𝜏̂ = 0. The second tricky term is 

𝑙𝑛(1 − 𝜏̂) = 𝑙𝑛(𝜏̂ − 1) + 𝑗𝜋, 1 < 𝜏 ≤ 1 + √6 .      (F9) 

The complex terms are awkward; fortunately, multiplication and division by zero can be readily 

avoided numerically by adding the smallest floating point value (float epsilon) to arguments in 

logarithmic computations so it is possible to evaluate the real part of the solution. Another inconvenience 

is the discontinuity in 𝑔ℋ and its slope as 𝜏̂ → 1. Rewriting the first term as  

𝑔ℋ(𝜏̂)𝜏̂<1 =
1

𝜋
[1 + (1 − 𝜏̂)𝑙𝑛(𝜏̂) − (1 − 𝜏̂)𝑙𝑛(1 − 𝜏̂)] + 𝑗(1 − 𝜏̂),         𝜏̂ → 1 𝑓𝑟𝑜𝑚 𝑏𝑒𝑙𝑜𝑤 (F10) 

𝑔ℋ(𝜏̂ → 1) =
1

𝜋
 .          (F11) 

Evaluating the second term yields  

𝑔ℋ(𝜏̂ = 1) =
1

𝜋

√2

√3
=

1

𝜋
[1 −

√3−√2

√3
] ,           𝜏̂ → 1 𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒.    (F12) 

These deficiencies are suboptimal, and not altogether surprising given that the waveform did not 

design integrability into the GT pulse [7]. Fortunately, these inadequacies are deemed computationally 

irrelevant by using the numerical convolution provided by the SciPy [25] signal.hilbert, which returns 

the analytic function for a real input waveform. The comparison between the synthetic theoretical 

analytic signals, the CWT reconstruction, and the numerical Hilbert transform are presented in the 

figures in the main text. 
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