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Abbreviations 28 

BDNF: Brain-derived neurotrophic factor 29 

BOLD: blood-oxygen-level-dependent 30 

GABA: Gamma aminobutyric acid 31 

IGF1: Insulin-growth factor 1 32 

TMS: Transcranial magnetic stimulation 33 
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Abstract  34 

Corticospinal excitability and particularly the balance between cortical inhibitory and excitatory 35 

processes (assessed in a muscle using transcranial magnetic stimulation), are affected by 36 

neurodegenerative pathologies or following a stroke. Non-fatiguing conventional locomotor 37 

exercise, such as cycling or walking, decreases intracortical inhibition and/or increases intracortical 38 

facilitation. These modifications notably seem to be a consequence of neurotrophic factors (e.g., 39 

brain-derived neurotrophic factors) resulting from hemodynamic solicitation. Furthermore, it can 40 

be inferred from non-invasive brain and peripheral stimulation studies that repeated activation of 41 

neural networks can endogenously shape neuroplasticity. Such mechanisms could also occur 42 

following eccentric exercises (i.e., active lengthening of the muscle), during which motor-related 43 

cortical potential is of greater magnitude and lasts longer (assessed by electroencephalography) 44 

than during concentric exercises (i.e., muscle shortening). As single-joint eccentric exercise 45 

decreased short- and long-interval intracortical inhibition and increased intracortical facilitation 46 

(assessed by paired-pulse transcranial magnetic stimulation immediately after), locomotor 47 

eccentric exercise may be even more potent by adding hemodynamic-related neuroplastic processes 48 

to endogenous processes. Besides, eccentric exercise is especially useful to develop relatively high 49 

force levels at low cardiorespiratory and perceived intensity, which can be a training goal in 50 

addition to inducing neuroplastic changes. Further studies are required to understand how 51 

neuroplasticity is 1) acutely influenced by locomotor exercise characteristics (e.g., intensity, 52 

duration), 2) modulated by an exercise-based rehabilitation program, 3) related to functional 53 

cognitive and motor outcomes relevant to pathological population. 54 

 55 
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Introduction 59 

During exercise, the primary motor cortex sends electrical impulses to trigger voluntary muscle 60 

contractions. The signal travels through nerves along the spinal cord (also termed corticospinal 61 

pathway), before reaching the alpha motoneuron, and then the muscle fibers it innervates. 62 

Corticospinal excitability, tested by transcranial magnetic stimulation (TMS) applied over the 63 

primary motor cortex, refers to “the efficacy of the corticospinal pathway to relay neural signals 64 

from higher brain areas to the muscle” (Weavil and Amann, 2018). For stimulation intensities 65 

higher than the motor threshold, single pulse TMS evokes an electrophysiological response in the 66 

targeted muscle, termed motor evoked potential (MEP). MEP amplitude indicates the level of 67 

excitation of cortical neurons mono- or trans-synaptically connected to spinal motoneurons 68 

(Groppa et al., 2012). During voluntary contraction, the MEP is followed by the absence of muscle 69 

activity -silent period-, that mirrors the duration of inhibitions located at the cortical (Farzan et al., 70 

2013) and spinal (Škarabot et al., 2019b; Yacyshyn et al., 2016) levels. Paired-pulse TMS 71 

techniques also provide evidence that the recruitment of cortical neurons is mediated by inhibitory 72 

and facilitatory processes interacting at the cortical level (for a review see Chen, 2004). 73 

Particularly, the short-interval intracortical inhibition technique is thought to reflect the activity of 74 

gamma aminobutyric acid A (GABAA) inhibitory neurotransmitters, while the long-interval 75 

intracortical inhibition technique, as well as the silent period duration (when lasting more than 100 76 

ms), would reflect the activity of GABAB inhibitors (Chen, 2004). The intracortical facilitation 77 

technique informs on the activity of glutamatergic facilitatory networks (Chen, 2004). Any change 78 

in corticospinal excitability, cortical inhibition or facilitation would reflect the occurrence of 79 

neuroplastic processes (Mang et al., 2013), by which the central nervous system modifies its 80 

structure and functioning to encode new experience (Kleim and Jones, 2008). In particular, changes 81 

in the balance between cortical inhibition and facilitation could be a determinant of ontogenetic 82 
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development (Gu, 2002), and is altered along with motor executive functions in individuals with 83 

neurodegenerative diseases (for a review see Vucic and Kiernan, 2017) or recovering from stroke 84 

(e.g. Dancause and Nudo, 2011; Hummel et al., 2009). Interestingly, this balance was also modified 85 

with motor learning (Rozenkrantz et al. 2007). 86 

In this context, neurorehabilitation protocols using non-invasive stimulation techniques such as 87 

repetitive TMS or paired-associative stimulation have been developed in order to counteract 88 

deleterious neuroplasticity (Nitsche et al., 2012). Despite a growing interest for these methods over 89 

the past two decades, limitations such as their expensiveness and precautions of use in certain 90 

individuals (e.g., those with epilepsy) hinder their utilization in a wide population. Physical activity 91 

has thus been considered as a promising approach to modulate neuroplasticity in rehabilitation 92 

protocols. 93 

This article provides a narrative review of 1) the impact of conventional locomotor exercise on 94 

neuroplasticity assessed in non-exercised or exercised muscles; 2) likely underlying neuroplastic 95 

processes triggered in relation with hemodynamic flow; 3) insights from non-invasive brain and 96 

peripheral stimulation studies on the nervous mechanisms resulting in neuroplastic changes; 4) 97 

eccentric exercise and more specifically locomotor exercise within this category, as a way to merge 98 

endogenous  and hemodynamic-related neuroplastic mechanisms. 99 

 100 

Physical exercise induces neuroplasticity 101 

Physical exercise has consistently been reported as an efficient stimulus promoting neuroplasticity. 102 

Aerobic exercise notably reduces intracortical inhibition related to GABAergic concentration in a 103 

way similar to the leaning of a simple motor task (Floyer-Lea et al., 2006). This, among other 104 

phenomena such as an increase in the number of synapses in the motor cortex (Kleim and Jones, 105 

2008), could have accounted for improved motor skill retention in patients with chronic stroke 106 
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(Nepveu et al., 2017) or Parkinson disease (Steib et al., 2018), when motor practice was 107 

implemented in addition to aerobic exercise. 108 

It is nonetheless challenging to prescribe exercise in order for neuroplastic modulations to benefit 109 

patients, for at least five reasons: 1) Corticospinal responsiveness differs between populations (e.g., 110 

corticospinal excitability decreases and increases, in patients suffering from Huntington’s and 111 

Alzheimer’s diseases, respectively, (Vucic et al., 2011). Certain neuroplastic modulations could 112 

thus be beneficial to some populations but detrimental to others; 2) A given exercise may induce 113 

distinct neuroplastic modulations in two pathological populations; 3) Two facilitating paired-114 

associative stimulation protocols applied successively had concurrent effects, depressing 115 

corticospinal excitability (Müller et al., 2007). These seem to be driven by homeostatic 116 

mechanisms, whereby the effects of physical exercise or non-invasive brain stimulation on 117 

neuroplasticity depends upon the effects induced by a precedent similar protocol (Abraham, 2008). 118 

Performing an exercise could thus reverse the pro-excitability effect of another; 4) In addition, 119 

inducing neuroplasticity is never the only focus of a physical exercise program; rather, prescription 120 

must aim for a compromise between targeted several outcomes (e.g., decreasing cortical inhibition, 121 

strengthening lower-limb muscles, improving respiratory fitness), 5)  Finally, the influence of 122 

exercise characteristics (e.g., duration, intensity) on neuroplasticity remain unclear (Mellow et al., 123 

2020). 124 

Despite this last point, modulations of corticospinal excitability by exercise are not region- or 125 

muscle specific and were reported in both exercised and remote (non-exercised) muscles. 126 

Transient changes in excitability of the corticospinal pathway have also been reported for muscles 127 

involved in exercise, yet they seem to depend on the features of the exercise performed. In most 128 

studies, corticospinal excitability increased following submaximal single-joint exercise performed 129 

with the upper- or lower-limb (Kotan et al., 2015; Pitman and Semmler, 2012; Williams et al., 130 
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2014). Nonetheless, similar exercises have led to unchanged (Finn et al., 2018), or depressed 131 

corticospinal excitability when exercise was carried-out until exhaustion (Brasil-Neto et al., 1993). 132 

Single-joint exercises have consistently depressed corticospinal excitability and increased silent 133 

period duration, when conducted at maximal intensity (e.g. Goodall et al., 2018; Kennedy et al., 134 

2016). 135 

Locomotor exercise, because it involves large muscle masses and leads to important hemodynamic 136 

solicitation, has the potential to significantly modulate corticospinal excitability of exercised 137 

muscles (Sidhu et al., 2013). It was indeed found that both maximal (Fernandez-del-Olmo et al., 138 

2013) and submaximal (Jubeau et al., 2014; Temesi et al., 2013) cycling exercise (from 30-s to 80-139 

min) can increase corticospinal excitability, assessed in exercised muscles. Findings are however 140 

very heterogeneous: corticospinal excitability was depressed at the end of an exercise at supra-141 

maximal intensity, but unchanged at submaximal intensity (80% peak power output, Sidhu et al., 142 

2012). Despite unchanged corticospinal excitability, short-interval intracortical inhibition either 143 

decreased immediately following self-selected low-intensity pedaling (Yamaguchi et al., 2012; 144 

Yamazaki et al., 2019), increased after exhaustive cycling at severe intensity- although the silent 145 

period was shorter- (92% peak oxygen uptake; O’Leary et al., 2016), or decreased after pedaling 146 

until exhaustion at moderate intensity (52% peak oxygen uptake; O’Leary et al., 2016).  147 

Corticospinal excitability, assessed in a remote hand muscle was unchanged following cycling 148 

(Morris et al., 2019; Singh et al., 2014a; Smith et al., 2014; Walsh et al., 2019), but increased after 149 

running (Garnier et al., 2017). It thus seems that the mode of exercise – cycling vs running – might 150 

affect corticospinal excitability, yet more evidence is needed. All cycling studies, reported reduced 151 

short-interval intracortical inhibition (Singh et al., 2014a; Smith et al., 2014), and increased 152 

intracortical facilitation (Morris et al., 2019; Singh et al., 2014a) examined by paired-pulse TMS. 153 

Such modifications in the balance between cortical facilitation and inhibition for a remote muscle 154 
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make the case that locomotor exercise is a promising strategy to modulate neuroplasticity for motor 155 

learning purposes.  156 

As recently emphasized (Mellow et al., 2020), the diversity of experimental protocols makes it 157 

difficult to highlight any exercise characteristic primary influencing exercise-induced 158 

neuroplasticity. For instance, an exercise causing significant fatigue typically diminishes 159 

corticospinal excitability by reducing motoneurons responsiveness and increasing inhibitory 160 

nociceptive afferent feedback (Gandevia, 2001), masking the effects other characteristics such as 161 

exercise intensity may have following a shorter exercise (i.e., too short to cause significant fatigue). 162 

In however seems that cardiorespiratory intensity is a key parameter that influences neuroplastic 163 

changes following locomotor exercise. 164 

 165 

Exercise intensity affects hemodynamic-related processes underlying neuroplasticity 166 

Mechanisms by which exercise triggers neuroplasticity may be linked with the increase in 167 

circulating neurotrophic factors (e.g. the brain-derived neurotrophic factor; BDNF) and hormones 168 

(e.g. Insulin-growth factor 1) in the systemic circulation, known to enhance cellular stress 169 

resistance in the brain (van Praag et al., 2014). BDNF and Insulin-growth factor 1 are released in 170 

the systemic blood circulation in response to muscle contraction (Berg and Bang, 2004; Matthews 171 

et al., 2009). BDNF can also be secreted directly by neurons in response to an increase in their 172 

activity, yet whether muscle BDNF somehow passes the brain-blood barrier or if the brain produces 173 

all the BDNF concentrated in its tissues remains unclear (Marie et al., 2018). 174 

Similar to corticospinal excitability modulations, the greatest increases in muscle BDNF levels 175 

were reported following high-intensity exercises (Knaepen et al., 2010). A likely explanation is 176 

that high-intensity exercise is accompanied by a proportional important blood flow and endothelial 177 

shear stress, responsible for BDNF release (Cefis et al., 2019). While high-intensity exercise could 178 
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prompt neuroplasticity in healthy subject, it can also increase circulating levels of cortisol (Rojas 179 

Vega et al., 2006), a hormone known to impair neuroplasticity (Sale et al., 2008) and hinder the 180 

effects from BDNF. This might explain why pedaling intensity was shown to have no influence on 181 

post-exercise corticospinal excitability of a remote hand muscle (McDonnell et al., 2013; Smith et 182 

al., 2014). Consequently, it seems that in order to promote neuroplasticity, exercise intensity should 183 

be high enough to increase BDNF levels, yet not too high in order to limit the release of cortisol. 184 

Even so, only high exercise intensities (80% of heart rate reserve) decreased short-interval 185 

intracortical inhibition immediately after exercise cessation (Smith et al., 2014). While symptom-186 

limited individuals are unable to exercise at a sufficient intensity to achieve a relatively high blood 187 

flow (Barak et al., 2017), they seem to release significant amounts of BDNF at low intensity levels 188 

(Knaepen et al., 2010). 189 

It is possible to induce neuroplastic changes directly via endogenous mechanisms (i.e., resulting 190 

from repeated activation of neural networks), at low cardiorespiratory intensities. The presence of 191 

such mechanisms is evidenced by non-invasive stimulation studies (see section “Non-invasive 192 

stimulation studies hint at endogenous mechanisms of neuroplasticity”), and it may be possible to 193 

take advantage of them using eccentric exercise, which is already employed as a rehabilitation tool 194 

for other reasons (see section "Locomotor eccentric exercise to pool endogenous and 195 

hemodynamic-related neuroplastic processes"). 196 

 197 

Non-invasive stimulation studies hint at endogenous mechanisms of neuroplasticity 198 

Moderate intensity pedaling has been shown to promote neuroplasticity when preceding non-199 

invasive brain stimulation protocols. For example, effects of paired-associative stimulation (Mang 200 

et al., 2014; Singh et al., 2014b) or theta burst stimulation (McDonnell et al., 2013) on corticospinal 201 

excitability assessed in a remote hand muscle were enhanced when preceded by low (~60% 202 
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predicted maximal heart rate) to moderate (65 to 70% predicted maximal heart rate) pedaling 203 

exercise. Other research groups demonstrated the influence afferent muscle feedback exerts on 204 

acute neuroplasticity, namely increases in corticospinal excitability after the application of 205 

peripheral electrical stimulation designed to imitate muscular contraction (Chipchase et al., 2011; 206 

Schabrun et al., 2012). Authors have proposed reduced cortical inhibition, or unmasked silent 207 

synaptic connections to explain this modification (Chipchase et al., 2011). In addition, the 208 

connectivity between the primary sensory and the primary motor cortex was likely increased, due 209 

to afferent inputs, elicited by mixed influence of muscle contraction and sensations from electrical 210 

stimulation (Schabrun et al., 2012). On the other hand, protocols that elicited nociceptive sensory 211 

stimulation without voluntary contraction, depressed corticospinal excitability of the stimulated 212 

muscle (Chipchase et al., 2011; Mang et al., 2010; Schabrun et al., 2012), irrespective of stimulation 213 

frequency. 214 

Altogether, these results seem to indicate that locomotor exercise and non-invasive stimulation 215 

mainly trigger neuroplasticity via hemodynamic-related processes or repeated activation of 216 

exercise-related neural networks, respectively. Even though combining the two methods allowed 217 

neuroplastic changes at moderate exercise intensities, the aforementioned drawbacks of stimulation 218 

techniques restrict the applicability of this approach. It is thus of greatest importance to find a 219 

readily implementable method providing similar benefits; eccentric exercise (i.e., an active 220 

lengthening of the muscle), especially when locomotor, may prove efficient. 221 

 222 

Locomotor eccentric exercise to pool endogenous and hemodynamic-related neuroplastic 223 

processes? 224 

Eccentric exercise may be an alternative to conventional exercise, inducing neuroplasticity through 225 

endogenous mechanisms. It is known to elicit a lower cardiorespiratory demand (Abbott et al., 226 
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1952; Garnier et al., 2019; Lemire et al., 2019) and perceived effort (Clos et al., 2019; Elmer and 227 

Martin, 2010) than conventional exercise at the same work rate. It has also been shown to induce 228 

limited muscle damage in pathological populations, such as individuals suffering from chronic 229 

obstructive pulmonary disease (Pageaux et al., 2019; Vieira et al., 2011) or obesity (Julian et al., 230 

2018; Thomazo et al., 2019), while exercising at high-to-moderate force levels. In addition, the 231 

“challenging” brain control of eccentric contractions (Perrey, 2018) could foster neuroplasticity. 232 

Indeed, when executing eccentric contractions, the movement-related cortical potential, as assessed 233 

using electroencephalography, was of greater magnitude and started earlier before the movement 234 

(Fang et al., 2004, 2001) than when performing concentric contractions. Other studies reported 235 

greater rises in blood-oxygen-level-dependent (BOLD) signal in the primary sensory cortex (Yue 236 

et al., 2000) and in the supplementary motor area (Kwon and Park, 2011) during wrist flexion 237 

movement, or in pre-frontal cortex during imagined eccentric than concentric elbow flexions 238 

(Olsson et al., 2012). Finally, near-infraread spectroscopy revealed a greater activation of the 239 

contralateral primary motor cortex during eccentric than concentric elbow flexions (Borot et al., 240 

2018). These specific cortical activations before the onset of movement were proposed to have a 241 

role in limiting the mechanical strain exerted on the muscle-tendon complex in order to preserve it 242 

from damage (Fang et al., 2004; Olsson et al., 2012). 243 

As for conventional exercise, the features (e.g, volume, intensity) of eccentric exercise likely 244 

influence the way it modulates corticospinal excitability, notably whether the exercise involves a 245 

single joint or is locomotor. 246 

Short-interval intracortical inhibition was lower  during eccentric than concentric index finger 247 

abduction (Opie and Semmler, 2016). Consistent findings also reported lower corticospinal 248 

excitability in eccentric compared with concentric single-joint contractions (Fang et al., 2004; 249 

Sekiguchi et al., 2003). Greater spinal inhibition, mediated by supraspinal mechanisms, was thus 250 
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proposed to regulate the motor command, again in order to preserve the integrity of the muscle-251 

tendon complex (Sekiguchi et al., 2003, 2001). The mode of muscle contraction did not affect 252 

corticospinal excitability changes evaluated after elbow flexions (Latella et al., 2018; Löscher and 253 

Nordlund, 2002) or knee extensions (Clos et al., 2020; Garnier et al., 2018). Some authors 254 

nevertheless reported  reductions in short-interval intracortical inhibition (lasting two hours, Pitman 255 

and Semmler, 2012), long-interval intracortical inhibition and silent period duration (Škarabot et 256 

al., 2019a), and increases in intracortical facilitation (lasting one hour Latella et al., 2018). These 257 

changes were suggested to be the consequence of an impaired motor control resulting from muscle 258 

damage (Pitman and Semmler, 2012; Škarabot et al., 2019a). The long-lasting influence of 259 

eccentric contractions on cortical processes might also result from the complexity of the motor 260 

control required to perform these exercises- greater than for concentric contractions (Latella et al., 261 

2018).  262 

Less is known about how the mode of muscle contraction affects neuroplastic changes following 263 

locomotor eccentric exercise, which should combine a longer and more pronounced activation of 264 

motor and sensory cortical networks than its concentric counterpart (as shown in single-joint 265 

exercises), with a low- but potentially significant- hemodynamic solicitation. Despite this rationale, 266 

the mode of muscle contraction does not seem to affect the global changes in corticospinal 267 

excitability measured in exercised lower limb or remote upper limb muscles, regardless of whether 268 

corticospinal excitability increased (Garnier et al., 2019, 2017) or remained unaffected (Walsh et 269 

al., 2019). Locomotor eccentric exercise may nevertheless have the potential to stimulate brain 270 

plasticity in a way partly similar to motor learning (Floyer-Lea et al., 2006; Rosenkranz et al., 271 

2007). In fact, studies from our laboratory suggested that decline walking could specifically 272 

modulate the excitability of transcerebellar sensory pathway when associated with paired-273 
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associative stimulation (Garnier et al., 2017), and decrease short-interval intracortical inhibition 274 

assessed in an exercised muscle when implemented alone (Garnier et al., 2019). 275 

Furthermore, eccentric cycling, whose effects on neuroplasticity are mostly unknown (Clos et al., 276 

2019; Walsh et al., 2019), is increasingly available in rehabilitation centers. This exercise modality 277 

allows those unable to walk due to joint pathologies or obesity, to complete locomotor eccentric 278 

exercises. In addition to allowing force gains (Hoppeler, 2016), and decreasing fat mass and 279 

increasing lean mass (Julian et al., 2018) while being well tolerated in patients (LaStayo et al., 280 

2013; Pageaux et al., 2019), eccentric cycling might enhance neuroplasticity and thus deserves its 281 

own set of investigations. 282 

 283 

Conclusion 284 

Conventional and eccentric locomotor exercises can both lead to decreases in intracortical 285 

inhibition and increases in intracortical facilitation, which is also the case of the learning of a basic 286 

motor task. The changes induced by conventional exercise seem to originate mainly from 287 

hemodynamic mechanisms causing the release of neurotrophic factors, while those triggered by 288 

locomotor eccentric exercise seem to be the result of repeated activation of neural networks, and 289 

maybe of hemodynamic processes as well. Furthermore, the low cardiorespiratory response to 290 

eccentric contractions adds to the relevance of this exercise modality as an alternative to 291 

conventional rehabilitation protocols in weak patients. Regardless of the strategy employed, the 292 

assessment of locomotor exercise-induced neuroplasticity is seldom accompanied by a functional 293 

evaluation (e.g., cognitive or motor task), and the influence of a locomotor exercise program alone 294 

(i.e., without associated stimulation) on the plasticity of brain neural networks has not been tested. 295 

These two aspects should be investigated. In addition, future studies should further describe the 296 

influence of conventional and locomotor eccentric exercise characteristics such as intensity, 297 
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duration, or induced-fatigue (related to training status), in order to optimize clinical exercise 298 

protocols. 299 
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 304 

Figures 305 

 306 

 307 

Fig.1: Overview of the neuroplastic effects (assessed via changes in corticospinal excitability and 308 

activity of intracortical networks) of locomotor exercises. Data related to conventional (i.e., 309 

concentric) and eccentric exercise are in blue and red font, respectively. Superscript numbers refer 310 

to the studies that provided the results featured below. 311 
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Summary of the neuroplastic effects for locomotor exercises (conventional vs eccentric) conducted 312 

at low, moderate (mod) or high cardiorespiratory intensity. # indicates that exercises were carried-313 

out until exhaustion.  314 

Reference numbers: 1: Fernandez-del-Olmo et al. (2013), Scand. J. Med. Sci. Sports; 2: Jubeau et 315 

al. (2014), PLoS One; 3: Temesi et al. (2013), Med. Sci. Sports Ex.; 4: Sidhu et al. (2012), J 316 

Neurophysiol; 5: Yamaguchi et al. (2012), Exp. Brain Res.; 6: Yamakazi et al. (2019), Front 317 

Physiol; 7: O’Leary et al. (2016), Scand. J. Med. Sci. Sports; 8: Pitman and Semmler (2012), J App 318 

Physiol; 9: Williams et al. (2014), PLoS One; 10: Garnier et al. (2017), Brain Behav. Res.; 11: 319 

Singh et al. (2014), BMC Sports Sci. Med. Rehabil; 12: Smith et al. (2014), Exp. Brain Res.; 13: 320 

Walsh et al. (2019), Sci. Rep; 14: Morris et al. (2019), Eur. J. Neurosci; 15: Mang et al. (2016) ; 321 

16: Garnier et al. (2019), Exp. Brain Res. 322 

 323 

 324 

Fig.2: Summary of the mechanisms (endogenous and/ or hemodynamic-related) suggested to 325 

induce neuroplasticity after each type of locomotor exercise. Data related to conventional (i.e., 326 
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concentric) and eccentric exercise are in blue and red font, respectively. Superscript numbers refer 327 

to the studies that provided the results featured below. 328 

Reference numbers: Neural Plast; 17: Berg and Bang (2004), Horm. Res; 18: Matthews et al. 329 

(2009), Diabetologia; 19: Marie et al. (2018), J. Cereb. Blood Flow Metab;; 20: Knaepen et al. 330 

(2010), Sports Med.; 21: Céfis et al. (2019), Brain Struct. Funct.; 22: Mang et al. (2014), JAP; 23: 331 

Singh et al. (2014), Exp. Brain Res.; 24: Chipchase et al. (2011), Arch. Phys. Med. Rehabil; 25: 332 

Schabrun et al. (2012), PLoS One; Exp. Brain Res.; 26: Fang et al. (2004), Brain Res.; 27: Olsson 333 

et al. (2012), Front. Hum. Neurosci; 28: Fang et al. (2001), J. Neurophysiol; 29: Borot et al. (2018), 334 

Brain Sci. 335 

 336 
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