Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2020 d0i:10.20944/preprints202007.0275.v2

A W N

O 00 N o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Locomotor activities as a way of inducing neuroplasticity: insights and perspectives on

conventional and eccentric exercise approaches
Pierre Clos?, Romuald Lepers?, Yoann M Garnier®
2 INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport,

F-21000 Dijon, France
b Clermont-Auvergne University, AME2P, Clermont-Ferrand, France

Corresponding author: pierre.clos@u-bourgogne.fr (Pierre Clos)
ORCID: 0000-0002-9435-9991

Yoann Garnier: 0000-0001-5778-4684
Romuald Lepers: 0000-0002-3870-4017

Article type: Mini-review

WORD COUNT (without the abstract, the title and the references): 2933

Abstract word count; 228
Abstract word limit; 250

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


mailto:pierre.clos@u-bourgogne.fr
https://doi.org/10.20944/preprints202007.0275.v2
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2020 d0i:10.20944/preprints202007.0275.v2

28  Abbreviations

29  BDNF: Brain-derived neurotrophic factor
30 BOLD: blood-oxygen-level-dependent
31  GABA: Gamma aminobutyric acid

32 IGF1: Insulin-growth factor 1

33  TMS: Transcranial magnetic stimulation
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34  Abstract

35  Corticospinal excitability and particularly the balance between cortical inhibitory and excitatory
36 processes (assessed in a muscle using transcranial magnetic stimulation), are affected by
37 neurodegenerative pathologies or following a stroke. Non-fatiguing conventional locomotor
38  exercise, such as cycling or walking, decreases intracortical inhibition and/or increases intracortical
39 facilitation. These modifications notably seem to be a consequence of neurotrophic factors (e.g.,
40  brain-derived neurotrophic factors) resulting from hemodynamic solicitation. Furthermore, it can
41  be inferred from non-invasive brain and peripheral stimulation studies that repeated activation of
42 neural networks can endogenously shape neuroplasticity. Such mechanisms could also occur
43 following eccentric exercises (i.e., active lengthening of the muscle), during which motor-related
44  cortical potential is of greater magnitude and lasts longer (assessed by electroencephalography)
45 than during concentric exercises (i.e., muscle shortening). As single-joint eccentric exercise
46  decreased short- and long-interval intracortical inhibition and increased intracortical facilitation
47  (assessed by paired-pulse transcranial magnetic stimulation immediately after), locomotor
48  eccentric exercise may be even more potent by adding hemodynamic-related neuroplastic processes
49  to endogenous processes. Besides, eccentric exercise is especially useful to develop relatively high
50 force levels at low cardiorespiratory and perceived intensity, which can be a training goal in
51 addition to inducing neuroplastic changes. Further studies are required to understand how
52  neuroplasticity is 1) acutely influenced by locomotor exercise characteristics (e.g., intensity,
53  duration), 2) modulated by an exercise-based rehabilitation program, 3) related to functional
54  cognitive and motor outcomes relevant to pathological population.
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59 Introduction

60  During exercise, the primary motor cortex sends electrical impulses to trigger voluntary muscle
61  contractions. The signal travels through nerves along the spinal cord (also termed corticospinal
62 pathway), before reaching the alpha motoneuron, and then the muscle fibers it innervates.
63  Corticospinal excitability, tested by transcranial magnetic stimulation (TMS) applied over the
64  primary motor cortex, refers to “the efficacy of the corticospinal pathway to relay neural signals
65  from higher brain areas to the muscle” (Weavil and Amann, 2018). For stimulation intensities
66 higher than the motor threshold, single pulse TMS evokes an electrophysiological response in the
67  targeted muscle, termed motor evoked potential (MEP). MEP amplitude indicates the level of
68  excitation of cortical neurons mono- or trans-synaptically connected to spinal motoneurons
69 (Groppaetal., 2012). During voluntary contraction, the MEP is followed by the absence of muscle
70  activity -silent period-, that mirrors the duration of inhibitions located at the cortical (Farzan et al.,
71 2013) and spinal (Skarabot et al., 2019b; Yacyshyn et al., 2016) levels. Paired-pulse TMS
72 techniques also provide evidence that the recruitment of cortical neurons is mediated by inhibitory
73 and facilitatory processes interacting at the cortical level (for a review see Chen, 2004).
74  Particularly, the short-interval intracortical inhibition technigue is thought to reflect the activity of
75 gamma aminobutyric acid A (GABAAa) inhibitory neurotransmitters, while the long-interval
76 intracortical inhibition technique, as well as the silent period duration (when lasting more than 100
77 ms), would reflect the activity of GABAg inhibitors (Chen, 2004). The intracortical facilitation
78  technique informs on the activity of glutamatergic facilitatory networks (Chen, 2004). Any change
79 in corticospinal excitability, cortical inhibition or facilitation would reflect the occurrence of
80  neuroplastic processes (Mang et al., 2013), by which the central nervous system modifies its
81  structure and functioning to encode new experience (Kleim and Jones, 2008). In particular, changes

82 in the balance between cortical inhibition and facilitation could be a determinant of ontogenetic
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83  development (Gu, 2002), and is altered along with motor executive functions in individuals with
84  neurodegenerative diseases (for a review see Vucic and Kiernan, 2017) or recovering from stroke
85 (e.g. Dancause and Nudo, 2011; Hummel et al., 2009). Interestingly, this balance was also modified
86  with motor learning (Rozenkrantz et al. 2007).
87 In this context, neurorehabilitation protocols using non-invasive stimulation techniques such as
88  repetitive TMS or paired-associative stimulation have been developed in order to counteract
89  deleterious neuroplasticity (Nitsche et al., 2012). Despite a growing interest for these methods over
90 the past two decades, limitations such as their expensiveness and precautions of use in certain
91 individuals (e.g., those with epilepsy) hinder their utilization in a wide population. Physical activity
92  has thus been considered as a promising approach to modulate neuroplasticity in rehabilitation
93  protocols.
94  This article provides a narrative review of 1) the impact of conventional locomotor exercise on
95 neuroplasticity assessed in non-exercised or exercised muscles; 2) likely underlying neuroplastic
96  processes triggered in relation with hemodynamic flow; 3) insights from non-invasive brain and
97  peripheral stimulation studies on the nervous mechanisms resulting in neuroplastic changes; 4)
98 eccentric exercise and more specifically locomotor exercise within this category, as a way to merge
99  endogenous and hemodynamic-related neuroplastic mechanisms.

100

101 Physical exercise induces neuroplasticity

102  Physical exercise has consistently been reported as an efficient stimulus promoting neuroplasticity.

103 Aerobic exercise notably reduces intracortical inhibition related to GABAergic concentration in a

104  way similar to the leaning of a simple motor task (Floyer-Lea et al., 2006). This, among other

105  phenomena such as an increase in the number of synapses in the motor cortex (Kleim and Jones,

106  2008), could have accounted for improved motor skill retention in patients with chronic stroke
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107  (Nepveu et al., 2017) or Parkinson disease (Steib et al., 2018), when motor practice was
108  implemented in addition to aerobic exercise.

109 It is nonetheless challenging to prescribe exercise in order for neuroplastic modulations to benefit
110  patients, for at least five reasons: 1) Corticospinal responsiveness differs between populations (e.g.,
111  corticospinal excitability decreases and increases, in patients suffering from Huntington’s and
112 Alzheimer’s diseases, respectively, (Vucic et al., 2011). Certain neuroplastic modulations could
113  thus be beneficial to some populations but detrimental to others; 2) A given exercise may induce
114  distinct neuroplastic modulations in two pathological populations; 3) Two facilitating paired-
115  associative stimulation protocols applied successively had concurrent effects, depressing
116  corticospinal excitability (Mdller et al., 2007). These seem to be driven by homeostatic
117  mechanisms, whereby the effects of physical exercise or non-invasive brain stimulation on
118  neuroplasticity depends upon the effects induced by a precedent similar protocol (Abraham, 2008).
119  Performing an exercise could thus reverse the pro-excitability effect of another; 4) In addition,
120  inducing neuroplasticity is never the only focus of a physical exercise program; rather, prescription
121 must aim for a compromise between targeted several outcomes (e.g., decreasing cortical inhibition,
122 strengthening lower-limb muscles, improving respiratory fitness), 5) Finally, the influence of
123 exercise characteristics (e.g., duration, intensity) on neuroplasticity remain unclear (Mellow et al.,
124 2020).

125  Despite this last point, modulations of corticospinal excitability by exercise are not region- or
126 muscle specific and were reported in both exercised and remote (non-exercised) muscles.

127  Transient changes in excitability of the corticospinal pathway have also been reported for muscles
128  involved in exercise, yet they seem to depend on the features of the exercise performed. In most
129  studies, corticospinal excitability increased following submaximal single-joint exercise performed

130  with the upper- or lower-limb (Kotan et al., 2015; Pitman and Semmler, 2012; Williams et al.,
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131 2014). Nonetheless, similar exercises have led to unchanged (Finn et al., 2018), or depressed
132 corticospinal excitability when exercise was carried-out until exhaustion (Brasil-Neto et al., 1993).
133 Single-joint exercises have consistently depressed corticospinal excitability and increased silent
134  period duration, when conducted at maximal intensity (e.g. Goodall et al., 2018; Kennedy et al.,
135 2016).

136  Locomotor exercise, because it involves large muscle masses and leads to important hemodynamic
137  solicitation, has the potential to significantly modulate corticospinal excitability of exercised
138  muscles (Sidhu et al., 2013). It was indeed found that both maximal (Fernandez-del-Olmo et al.,
139  2013) and submaximal (Jubeau et al., 2014; Temesi et al., 2013) cycling exercise (from 30-s to 80-
140  min) can increase corticospinal excitability, assessed in exercised muscles. Findings are however
141  very heterogeneous: corticospinal excitability was depressed at the end of an exercise at supra-
142  maximal intensity, but unchanged at submaximal intensity (80% peak power output, Sidhu et al.,
143 2012). Despite unchanged corticospinal excitability, short-interval intracortical inhibition either
144  decreased immediately following self-selected low-intensity pedaling (Yamaguchi et al., 2012;
145  Yamazaki et al., 2019), increased after exhaustive cycling at severe intensity- although the silent
146  period was shorter- (92% peak oxygen uptake; O’Leary et al., 2016), or decreased after pedaling
147  until exhaustion at moderate intensity (52% peak oxygen uptake; O’Leary et al., 2016).

148  Corticospinal excitability, assessed in a remote hand muscle was unchanged following cycling
149  (Morris et al., 2019; Singh et al., 2014a; Smith et al., 2014; Walsh et al., 2019), but increased after
150  running (Garnier et al., 2017). It thus seems that the mode of exercise — cycling vs running — might
151  affect corticospinal excitability, yet more evidence is needed. All cycling studies, reported reduced
152  short-interval intracortical inhibition (Singh et al., 2014a; Smith et al., 2014), and increased
153  intracortical facilitation (Morris et al., 2019; Singh et al., 2014a) examined by paired-pulse TMS.

154  Such modifications in the balance between cortical facilitation and inhibition for a remote muscle
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155  make the case that locomotor exercise is a promising strategy to modulate neuroplasticity for motor
156  learning purposes.

157  As recently emphasized (Mellow et al., 2020), the diversity of experimental protocols makes it
158  difficult to highlight any exercise characteristic primary influencing exercise-induced
159  neuroplasticity. For instance, an exercise causing significant fatigue typically diminishes
160  corticospinal excitability by reducing motoneurons responsiveness and increasing inhibitory
161  nociceptive afferent feedback (Gandevia, 2001), masking the effects other characteristics such as
162  exercise intensity may have following a shorter exercise (i.e., too short to cause significant fatigue).
163  In however seems that cardiorespiratory intensity is a key parameter that influences neuroplastic
164  changes following locomotor exercise.

165

166  Exercise intensity affects hemodynamic-related processes underlying neuroplasticity

167  Mechanisms by which exercise triggers neuroplasticity may be linked with the increase in
168  circulating neurotrophic factors (e.g. the brain-derived neurotrophic factor; BDNF) and hormones
169  (e.g. Insulin-growth factor 1) in the systemic circulation, known to enhance cellular stress
170  resistance in the brain (van Praag et al., 2014). BDNF and Insulin-growth factor 1 are released in
171  the systemic blood circulation in response to muscle contraction (Berg and Bang, 2004; Matthews
172 et al., 2009). BDNF can also be secreted directly by neurons in response to an increase in their
173  activity, yet whether muscle BDNF somehow passes the brain-blood barrier or if the brain produces
174  all the BDNF concentrated in its tissues remains unclear (Marie et al., 2018).

175  Similar to corticospinal excitability modulations, the greatest increases in muscle BDNF levels
176 were reported following high-intensity exercises (Knaepen et al., 2010). A likely explanation is
177  that high-intensity exercise is accompanied by a proportional important blood flow and endothelial

178  shear stress, responsible for BDNF release (Cefis et al., 2019). While high-intensity exercise could
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179  prompt neuroplasticity in healthy subject, it can also increase circulating levels of cortisol (Rojas
180  Vega et al., 2006), a hormone known to impair neuroplasticity (Sale et al., 2008) and hinder the
181  effects from BDNF. This might explain why pedaling intensity was shown to have no influence on
182  post-exercise corticospinal excitability of a remote hand muscle (McDonnell et al., 2013; Smith et
183  al., 2014). Consequently, it seems that in order to promote neuroplasticity, exercise intensity should
184  be high enough to increase BDNF levels, yet not too high in order to limit the release of cortisol.
185  Even so, only high exercise intensities (80% of heart rate reserve) decreased short-interval
186 intracortical inhibition immediately after exercise cessation (Smith et al., 2014). While symptom-
187  limited individuals are unable to exercise at a sufficient intensity to achieve a relatively high blood
188  flow (Barak et al., 2017), they seem to release significant amounts of BDNF at low intensity levels
189  (Knaepen et al., 2010).

190 It is possible to induce neuroplastic changes directly via endogenous mechanisms (i.e., resulting
191  from repeated activation of neural networks), at low cardiorespiratory intensities. The presence of
192  such mechanisms is evidenced by non-invasive stimulation studies (see section “Non-invasive
193  stimulation studies hint at endogenous mechanisms of neuroplasticity”), and it may be possible to
194  take advantage of them using eccentric exercise, which is already employed as a rehabilitation tool
195 for other reasons (see section "Locomotor eccentric exercise to pool endogenous and
196  hemodynamic-related neuroplastic processes™).

197

198  Non-invasive stimulation studies hint at endogenous mechanisms of neuroplasticity

199  Moderate intensity pedaling has been shown to promote neuroplasticity when preceding non-
200 invasive brain stimulation protocols. For example, effects of paired-associative stimulation (Mang
201 etal., 2014; Singh et al., 2014b) or theta burst stimulation (McDonnell et al., 2013) on corticospinal

202  excitability assessed in a remote hand muscle were enhanced when preceded by low (~60%
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203  predicted maximal heart rate) to moderate (65 to 70% predicted maximal heart rate) pedaling
204  exercise. Other research groups demonstrated the influence afferent muscle feedback exerts on
205 acute neuroplasticity, namely increases in corticospinal excitability after the application of
206  peripheral electrical stimulation designed to imitate muscular contraction (Chipchase et al., 2011;
207  Schabrun et al., 2012). Authors have proposed reduced cortical inhibition, or unmasked silent
208  synaptic connections to explain this modification (Chipchase et al., 2011). In addition, the
209  connectivity between the primary sensory and the primary motor cortex was likely increased, due
210 to afferent inputs, elicited by mixed influence of muscle contraction and sensations from electrical
211 stimulation (Schabrun et al., 2012). On the other hand, protocols that elicited nociceptive sensory
212 stimulation without voluntary contraction, depressed corticospinal excitability of the stimulated
213 muscle (Chipchase et al., 2011; Mang et al., 2010; Schabrun et al., 2012), irrespective of stimulation
214  frequency.

215  Altogether, these results seem to indicate that locomotor exercise and non-invasive stimulation
216  mainly trigger neuroplasticity via hemodynamic-related processes or repeated activation of
217  exercise-related neural networks, respectively. Even though combining the two methods allowed
218  neuroplastic changes at moderate exercise intensities, the aforementioned drawbacks of stimulation
219  techniques restrict the applicability of this approach. It is thus of greatest importance to find a
220 readily implementable method providing similar benefits; eccentric exercise (i.e., an active
221  lengthening of the muscle), especially when locomotor, may prove efficient.

222

223 Locomotor eccentric exercise to pool endogenous and hemodynamic-related neuroplastic
224  processes?

225  Eccentric exercise may be an alternative to conventional exercise, inducing neuroplasticity through

226 endogenous mechanisms. It is known to elicit a lower cardiorespiratory demand (Abbott et al.,

11
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227  1952; Garnier et al., 2019; Lemire et al., 2019) and perceived effort (Clos et al., 2019; Elmer and
228  Martin, 2010) than conventional exercise at the same work rate. It has also been shown to induce
229 limited muscle damage in pathological populations, such as individuals suffering from chronic
230  obstructive pulmonary disease (Pageaux et al., 2019; Vieira et al., 2011) or obesity (Julian et al.,
231  2018; Thomazo et al., 2019), while exercising at high-to-moderate force levels. In addition, the
232 “challenging” brain control of eccentric contractions (Perrey, 2018) could foster neuroplasticity.
233 Indeed, when executing eccentric contractions, the movement-related cortical potential, as assessed
234  using electroencephalography, was of greater magnitude and started earlier before the movement
235  (Fang et al., 2004, 2001) than when performing concentric contractions. Other studies reported
236  greater rises in blood-oxygen-level-dependent (BOLD) signal in the primary sensory cortex (Yue
237 et al,, 2000) and in the supplementary motor area (Kwon and Park, 2011) during wrist flexion
238  movement, or in pre-frontal cortex during imagined eccentric than concentric elbow flexions
239  (Olsson et al., 2012). Finally, near-infraread spectroscopy revealed a greater activation of the
240  contralateral primary motor cortex during eccentric than concentric elbow flexions (Borot et al.,
241  2018). These specific cortical activations before the onset of movement were proposed to have a
242  role in limiting the mechanical strain exerted on the muscle-tendon complex in order to preserve it
243  from damage (Fang et al., 2004; Olsson et al., 2012).

244  As for conventional exercise, the features (e.g, volume, intensity) of eccentric exercise likely
245  influence the way it modulates corticospinal excitability, notably whether the exercise involves a
246  single joint or is locomotor.

247  Short-interval intracortical inhibition was lower during eccentric than concentric index finger
248  abduction (Opie and Semmler, 2016). Consistent findings also reported lower corticospinal
249  excitability in eccentric compared with concentric single-joint contractions (Fang et al., 2004;

250  Sekiguchi et al., 2003). Greater spinal inhibition, mediated by supraspinal mechanisms, was thus

12
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251  proposed to regulate the motor command, again in order to preserve the integrity of the muscle-
252 tendon complex (Sekiguchi et al., 2003, 2001). The mode of muscle contraction did not affect
253  corticospinal excitability changes evaluated after elbow flexions (Latella et al., 2018; Ldscher and
254  Nordlund, 2002) or knee extensions (Clos et al., 2020; Garnier et al., 2018). Some authors
255  nevertheless reported reductions in short-interval intracortical inhibition (lasting two hours, Pitman
256  and Semmler, 2012), long-interval intracortical inhibition and silent period duration (Skarabot et
257 al.,, 2019a), and increases in intracortical facilitation (lasting one hour Latella et al., 2018). These
258  changes were suggested to be the consequence of an impaired motor control resulting from muscle
259  damage (Pitman and Semmler, 2012; Skarabot et al., 2019a). The long-lasting influence of
260  eccentric contractions on cortical processes might also result from the complexity of the motor
261  control required to perform these exercises- greater than for concentric contractions (Latella et al.,
262 2018).

263  Less is known about how the mode of muscle contraction affects neuroplastic changes following
264  locomotor eccentric exercise, which should combine a longer and more pronounced activation of
265 motor and sensory cortical networks than its concentric counterpart (as shown in single-joint
266  exercises), with a low- but potentially significant- hemodynamic solicitation. Despite this rationale,
267 the mode of muscle contraction does not seem to affect the global changes in corticospinal
268  excitability measured in exercised lower limb or remote upper limb muscles, regardless of whether
269  corticospinal excitability increased (Garnier et al., 2019, 2017) or remained unaffected (Walsh et
270 al., 2019). Locomotor eccentric exercise may nevertheless have the potential to stimulate brain
271 plasticity in a way partly similar to motor learning (Floyer-Lea et al., 2006; Rosenkranz et al.,
272 2007). In fact, studies from our laboratory suggested that decline walking could specifically

273  modulate the excitability of transcerebellar sensory pathway when associated with paired-
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274  associative stimulation (Garnier et al., 2017), and decrease short-interval intracortical inhibition
275  assessed in an exercised muscle when implemented alone (Garnier et al., 2019).

276 Furthermore, eccentric cycling, whose effects on neuroplasticity are mostly unknown (Clos et al.,
277  2019; Walsh et al., 2019), is increasingly available in rehabilitation centers. This exercise modality
278  allows those unable to walk due to joint pathologies or obesity, to complete locomotor eccentric
279  exercises. In addition to allowing force gains (Hoppeler, 2016), and decreasing fat mass and
280 increasing lean mass (Julian et al., 2018) while being well tolerated in patients (LaStayo et al.,
281  2013; Pageaux et al., 2019), eccentric cycling might enhance neuroplasticity and thus deserves its
282  own set of investigations.

283

284  Conclusion

285  Conventional and eccentric locomotor exercises can both lead to decreases in intracortical
286 inhibition and increases in intracortical facilitation, which is also the case of the learning of a basic
287 motor task. The changes induced by conventional exercise seem to originate mainly from
288  hemodynamic mechanisms causing the release of neurotrophic factors, while those triggered by
289  locomotor eccentric exercise seem to be the result of repeated activation of neural networks, and
290 maybe of hemodynamic processes as well. Furthermore, the low cardiorespiratory response to
291  eccentric contractions adds to the relevance of this exercise modality as an alternative to
292  conventional rehabilitation protocols in weak patients. Regardless of the strategy employed, the
293  assessment of locomotor exercise-induced neuroplasticity is seldom accompanied by a functional
294  evaluation (e.g., cognitive or motor task), and the influence of a locomotor exercise program alone
295  (i.e., without associated stimulation) on the plasticity of brain neural networks has not been tested.
296  These two aspects should be investigated. In addition, future studies should further describe the

297 influence of conventional and locomotor eccentric exercise characteristics such as intensity,
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298  duration, or induced-fatigue (related to training status), in order to optimize clinical exercise
299  protocols.
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308  Fig.1: Overview of the neuroplastic effects (assessed via changes in corticospinal excitability and
309 activity of intracortical networks) of locomotor exercises. Data related to conventional (i.e.,
310 concentric) and eccentric exercise are in blue and red font, respectively. Superscript numbers refer

311  to the studies that provided the results featured below.
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312 Summary of the neuroplastic effects for locomotor exercises (conventional vs eccentric) conducted
313 at low, moderate (mod) or high cardiorespiratory intensity. # indicates that exercises were carried-
314  out until exhaustion.

315  Reference numbers: 1: Fernandez-del-Olmo et al. (2013), Scand. J. Med. Sci. Sports; 2: Jubeau et
316 al. (2014), PLoS One; 3: Temesi et al. (2013), Med. Sci. Sports Ex.; 4: Sidhu et al. (2012), J
317  Neurophysiol; 5: Yamaguchi et al. (2012), Exp. Brain Res.; 6: Yamakazi et al. (2019), Front
318  Physiol; 7: O’Leary et al. (2016), Scand. J. Med. Sci. Sports; 8: Pitman and Semmler (2012), J App
319  Physiol; 9: Williams et al. (2014), PLoS One; 10: Garnier et al. (2017), Brain Behav. Res.; 11:
320 Singh et al. (2014), BMC Sports Sci. Med. Rehabil; 12: Smith et al. (2014), Exp. Brain Res.; 13:
321 Walsh et al. (2019), Sci. Rep; 14: Morris et al. (2019), Eur. J. Neurosci; 15: Mang et al. (2016) ;

322 16: Garnier et al. (2019), Exp. Brain Res.

323
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induced by conventional or locomotor eccentric exercise
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325  Fig.2: Summary of the mechanisms (endogenous and/ or hemodynamic-related) suggested to

326 induce neuroplasticity after each type of locomotor exercise. Data related to conventional (i.e.,
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327  concentric) and eccentric exercise are in blue and red font, respectively. Superscript numbers refer
328  to the studies that provided the results featured below.

329  Reference numbers: Neural Plast; 17: Berg and Bang (2004), Horm. Res; 18: Matthews et al.
330 (2009), Diabetologia; 19: Marie et al. (2018), J. Cereb. Blood Flow Metab;; 20: Knaepen et al.
331  (2010), Sports Med.; 21: Céfis et al. (2019), Brain Struct. Funct.; 22: Mang et al. (2014), JAP; 23:
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