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Abstract 27 

Conventional locomotor exercise, such as cycling or walking, induces motor learning-like 28 

neuroplastic changes (i.e., decreased cortical inhibition and/or increased facilitation, assessed in a 29 

muscle using transcranial magnetic stimulation). These effects seem to be a consequence of 30 

humoral processes notably resulting from hemodynamic solicitation. Unfortunately, pathological 31 

populations may not be capable of exercising at sufficient intensities to trigger these beneficial 32 

neuroplastic modulations and an alternative method is needed. As it can be inferred from non-33 

invasive brain and peripheral stimulation studies, a high neural activity can directly result in 34 

neuroplastic changes. Similarly, eccentric exercise (i.e., active lengthening of the muscle), during 35 

which individuals develop the same force or power as conventional exercise at lower 36 

cardiorespiratory intensities, requires a high brain neural activity. As single-joint eccentric exercise 37 

was decreased cortical inhibition and increased cortical facilitation, locomotor eccentric exercise 38 

may be even more potent by pooling neural and, maybe, hemodynamic neuroplastic processes. 39 

Further studies are required to understand the influence of locomotor exercise characteristics (e.g., 40 

intensity, duration) on exercise-induced neuroplasticity. 41 

 42 

Keywords 43 

Transcranial magnetic stimulation; Corticospinal excitability; Cortical inhibition; Cortical 44 

facilitation; Eccentric cycling 45 

 46 

Highlights: 47 

• Conventional locomotor task induces neuroplastic changes beneficial to patients. 48 

• These effects can come from either hemodynamic of neural mechanisms. 49 
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• Locomotor eccentric exercise may pool both processes at low respiratory intensity. 50 

• Studies are needed on the effects of exercise features on induced neuroplasticity. 51 
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Introduction 52 

During exercise, the primary motor cortex sends electrical impulses to trigger voluntary muscle 53 

contractions. The signal goes through nerves along the spinal cord (also termed corticospinal -CS- 54 

pathway), before reaching the alpha motoneuron, and then the muscle fibers it innervates. CS 55 

excitability, tested by transcranial magnetic stimulation (TMS) applied over the primary motor 56 

cortex, refers to “the efficacy of the corticospinal pathway to relay neural signals from higher brain 57 

areas to the muscle” [1]. For stimulation intensity higher than the motor threshold, single pulse 58 

TMS evokes an electrophysiological response in the targeted muscle, termed motor evoked 59 

potential (MEP). MEP amplitude indicates the level of excitation of cortical neurons mono- or 60 

trans-synaptically connected to spinal motoneurons [2]. During voluntary contraction, the MEP is 61 

followed by the absence of muscle activity -silent period-, that mirrors the duration of inhibitions 62 

located at the cortical [3] and spinal levels [4, 5]. Paired-pulse TMS protocols also evidenced that 63 

the recruitment of cortical neurons is mediated by inhibitory and facilitatory processes interacting 64 

at the cortical level (see [6] for a review). Any change in CS excitability, cortical inhibition or 65 

facilitation would reflect the occurrence of neuroplastic processes [7], by which the central nervous 66 

system modifies its structure and functioning to encode new experience [8]. Particularly, changes 67 

in the balance between cortical inhibition and facilitation could be determinant for ontogenetic 68 

development [9] or learning a simple motor task [10]. Moreover, individuals with 69 

neurodegenerative diseases (for a review see [11] or recovering from stroke (e.g. [12, 13]) also 70 

show changes in this balance, which could impair motor or executive functions. In this context, 71 

neurorehabilitation protocols using non-invasive brain stimulation techniques such as repetitive 72 

TMS or paired-associative stimulation have been developed in order to counteract deleterious 73 

neuroplasticity [14]. Despite a growing interest for these techniques in the past two decades, 74 

limitations such as their expensiveness and precautions of use in certain individuals (e.g., those 75 
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with epilepsy) hinder their use in a wide population. Physical activity has thus been considered as 76 

a promising alternative strategy to modulate neuroplasticity in rehabilitation protocols. 77 

This article provides a review of 1) the impact of conventional locomotor exercise on 78 

neuroplasticity assessed in non-exercised or exercised muscles; 2) likely underlying neuroplastic 79 

processes triggered by the hemodynamic flow; 3) insights from non-invasive brain and peripheral 80 

stimulation studies on the nervous mechanisms resulting in neuroplastic changes ; 4) eccentric 81 

exercise and more specifically locomotor tasks within this category as a way to merge neural and 82 

hemodynamic factors associated with neuroplastic changes. 83 

 84 

1. Physical exercise induces neuroplasticity 85 

Physical exercise has consistently been reported as an efficient stimulus promoting neuroplasticity. 86 

Brain neural adaptations resulting from aerobic exercise appear to have similarities with those 87 

associated with the learning of a simple motor action, namely increased number of synapses in 88 

neural networks and reduced cortical inhibition [10]- the latter adaptation would be a prerequisite 89 

for neuroplasticity [15]. These mechanisms could have accounted for improved motor skills 90 

retention in patients with chronic stroke [16] or Parkinson disease [17], when motor practice was 91 

implemented in addition to aerobic exercise. While physical exercise appears as a potent 92 

neurorehabilitation tool, it is challenging to prescribe it so as to foster the specific modulations of 93 

CS excitability changes occurring during different phases of motor learning [10]. In particular, 94 

acute neuroplastic changes induced by a motor practice session decrease over a training period, 95 

and modulate subsequent changes in CS excitability induced by non-invasive brain stimulation 96 

protocols applied after a practice session [10]. In addition, cumulative effects of two facilitating 97 

paired-associative stimulation protocols applied successively did not result in an increase in CS 98 

excitability, but in depressed CS excitability [18]. These concurrent effects seem to be driven by 99 
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homeostatic mechanisms, whereby the effect of physical exercise or non-invasive brain stimulation 100 

on neuroplasticity depends upon the neuroplastic changes induced by a precedent similar protocol 101 

[19]. This phenomenon could thus reverse the pro-excitability effect of a stimulation protocol [18] 102 

and makes it crucial to first decipher the effect of different types of exercise on neuroplasticity. 103 

Moreover, modulations of CS excitability by exercise are not region- or muscle specific and were 104 

reported in both exercised and remote (non-exercised) muscles. 105 

 106 

1.1 Non-exercised muscles 107 

Inconsistent changes in CS excitability of a remote hand muscle (increase [20]- or stability [21–108 

24] have been reported following locomotor exercise. Despite few data, it seems that the mode of 109 

exercise – cycling vs running – might affect CS excitability, which increased following running 110 

exercise only [20]. Regardless of global CS excitability changes, studies using cycling consistently 111 

reported reduced cortical inhibition [21, 22, 25], and increased cortical facilitation [21, 24]. Such 112 

modifications in the balance between cortical facilitation and inhibition for a remote muscle make 113 

the case that locomotor exercise is a promising strategy to modulate neuroplasticity for motor 114 

learning purposes. As there is no data on the intracortical network changes induced by running, it 115 

remains to be determined whether the mode of locomotion influences neuroplastic changes 116 

occurring in a remote muscle. 117 

 118 

1.2 Exercised muscles 119 

Transient changes in excitability of the CS pathway have also been reported for muscles involved 120 

in exercise, yet they seem to depend on the features of the task performed. In most studies, CS 121 

excitability increased following submaximal single-joint tasks performed with the upper or the 122 

lower limb [25–27]. Nonetheless, similar exercises have led to unchanged [29], or depressed CS 123 
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excitability when exercise was carried-out until exhaustion [30]. Single-joint exercises consistently 124 

depressed CS excitability and increased GABAB mediated cortical inhibition when conducted at 125 

maximal intensity (e.g. [30, 31]. 126 

Locomotor exercise, because it involves large muscle masses and leads to important hemodynamic 127 

solicitation, has the potential to significantly modulate CS excitability of exercised muscles [33]. 128 

It was indeed found that both maximal [34] and submaximal [34, 35] cycling exercise (from 30-s 129 

to 80-min) can increase CS excitability assessed in exercised muscles. Findings are however very 130 

heterogeneous: CS excitability was depressed at the end of an exercise at supra-maximal intensity, 131 

but unchanged at submaximal intensity [37]. Despite unchanged CS excitability, cortical inhibition 132 

either decreased following low-intensity pedalling [38, 39] or increased after exhaustive cycling at 133 

severe intensity [40], and decreased after pedaling until exhaustion at moderate intensity [40]. Such 134 

contrasting findings resulting from a wide variety of protocols limit our understanding of the effects 135 

of exercise characteristics on exercise-induced neuroplasticity. As recently emphasized by Mellow 136 

and colleagues [41], the diversity of experimental protocols makes it difficult to highlight any 137 

exercise characteristic primary influencing exercise-induced neuroplasticity [41]. For instance, the 138 

fatigue level induced by exercise directly affects CS excitability [40, 41]. It however seems that 139 

cardiorespiratory intensity is a key parameter that influences neuroplastic changes following 140 

locomotor exercise.  141 

 142 

2. Exercise intensity affects hemodynamic processes underlying neuroplasticity 143 

Mechanisms by which exercise triggers neuroplasticity may be linked with the increase in 144 

circulating neurotrophic factors (e.g. the Brain-Derived Neurotrophic Factor; BDNF) and 145 

hormones (e.g. Insulin-Growth Factor 1) in the systemic circulation, known to enhance cellular 146 

stress resistance in the brain [44]. BDNF and Insulin-Growth Factor 1 are released in the systemic 147 
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blood circulation in response to muscle contraction [43, 44], and BDNF can also be secreted 148 

directly by neurons in response to an increase in their activity [47]. Similarly to CS excitability 149 

modulations, the greatest increases in muscle BDNF levels were reported following high-intensity 150 

exercise [46, 47]. This intensity-dependent release of BDNF implies that practicing high-intensity 151 

exercise could benefit neuroplasticity in healthy subjects [48]. Nonetheless, high-intensity exercise 152 

also increases circulating levels of cortisol [50], a hormone known to impair neuroplasticity [51] 153 

and cancel the benefits from BDNF. This might explain why pedaling intensity was shown to have 154 

no influence on post-exercise CS excitability of a remote hand muscle [22, 50]. Even so, only high 155 

exercise intensity decreased cortical inhibition immediately after exercise cessation [22]. 156 

Consequently, it seems that in order to benefit neuroplasticity, exercise intensity should be high 157 

enough to increase BDNF levels, yet not too high in order to limit the release of cortisol. 158 

Unfortunately, moderate or even high exercise intensity relative to one’s limits, may not be enough 159 

to induce neuroplasticity in deconditioned or symptom-limited individuals. Indeed, those with 160 

neuromuscular or cardiorespiratory limitations may not be able to reach sufficient blood flow [53]. 161 

To circumvent this issue, studies investigated neuroplastic changes directly triggered by neural 162 

mechanisms, at lower cardiorespiratory intensities.  163 

 164 

3. Non-invasive stimulation studies hint at neural mechanisms of neuroplasticity 165 

Moderate intensity pedaling has been shown to cause neuroplastic changes when preceding non-166 

invasive brain stimulation protocols. For example, effects of paired-associative stimulation [52, 167 

53] or theta burst stimulation [52] on CS excitability assessed in a remote hand muscle were 168 

enhanced when preceded by low (~60% predicted maximal heart rate) to moderate (65 to 70% 169 

predicted maximal heart rate) pedaling exercise. Other research groups demonstrated the influence 170 

afferent muscle feedback exerts on acute neuroplasticity. Consistent findings also showed increases 171 
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in CS excitability after the application of peripheral electrical stimulation designed to imitate 172 

muscular contraction [54, 55]. Authors suggested reduced cortical inhibition, or unmasked silent 173 

synaptic connections to explain increases in CS excitability [56]. In addition, the connectivity 174 

between the primary sensory and the primary motor cortex was likely increased, due to afferent 175 

inputs elicited by mixed influence of muscle contraction and sensations from electrical stimulation 176 

[57]. On the other hand, protocols that elicited nociceptive sensory stimulation without voluntary 177 

contraction, depressed CS excitability of the stimulated muscle [54–56], irrespective of stimulation 178 

frequency. Then, non-invasive muscle stimulation techniques appear to be efficient only when 179 

resembling muscle contraction. 180 

Altogether, these results seem to indicate that locomotor exercise and non-invasive stimulation 181 

mainly trigger neuroplasticity via hemodynamic and neural processes, respectively. Even though 182 

combining the two methods allowed neuroplastic changes at moderate exercise intensity, the 183 

aforementioned drawbacks of stimulation techniques restrict the applicability of this approach. It 184 

is thus of greatest importance to find an alternative that is readily implementable yet provides 185 

similar benefits; locomotor eccentric exercise may prove useful. 186 

 187 

4. Locomotor eccentric exercise to pool neural and hemodynamic neuroplastic processes 188 

Certain individuals are unable to exercise at sufficient absolute cardiorespiratory intensities to 189 

trigger the hemodynamic mechanisms underlying neuroplastic adaptations. Eccentric exercise- an 190 

active lengthening of the muscle- may therefore allow to bypass this issue by a neural path towards 191 

neuroplasticity. Eccentric exercise is known for permitting to exercise at the same work rate than 192 

conventional exercise for a lower cardiorespiratory demand [57–59] and perceived effort [60–63]. 193 

Eccentric contractions also allow to perform tasks at moderate-to-high force levels while inducing 194 

limited muscle damage in pathological populations, such as individuals suffering from chronic 195 
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obstructive pulmonary disease [64, 65] or obesity [66, 67]. In addition, the specific neural control 196 

of eccentric contractions could prove beneficial to neuroplasticity [68, 69]. When planning or 197 

executing eccentric muscle actions, the motor cortex is activated earlier, to a greater extent, and 198 

over a broader area than during concentric contraction- an active shortening of the muscle-[72]. 199 

Imagined eccentric actions also exhibited greater activity from pre-frontal brain regions compared 200 

with imagined concentric actions [73]. These specific cortical activities before movement onset 201 

would reflect the necessity of a greater neural control to perform eccentric actions [74]- probably 202 

serving to limit the mechanical strain exerted on the muscle-tendon complex in order to preserve it 203 

from damages [70, 71]. 204 

As conventional exercise, the features of eccentric exercise would influence its neuroplastic effect, 205 

specifically whether it involves only one of several joints. During eccentric single-joint [75] or 206 

locomotor [76] exercises, cortical activity was greater and cortical inhibition less [77] than during 207 

concentric contraction. Consistent findings also reported lower CS excitability in eccentric 208 

compared with concentric single-joint contractions [70, 76]. Greater spinal inhibition mediated by 209 

supraspinal mechanisms was thus proposed to regulate the motor command, in order to preserve 210 

the integrity of the muscle-tendon complex [76, 77]. The mode of muscle contraction did not affect 211 

CS excitability changes evaluated after elbow flexions [78, 79] or knee extensions [82]. Some 212 

authors measured reductions in cortical inhibition and increase in cortical facilitation immediately 213 

and until two hours after the completion of single-joint eccentric contractions [26, 78], and 214 

suggested it to be the consequence of an impaired motor control resulting from muscle damage [26, 215 

81]. The long-lasting influence of eccentric contractions on cortical processes might also result 216 

from the greater motor control required to perform these tasks [80].  217 

Less is known about how the mode of muscle contraction affects neuroplastic changes following 218 

locomotor exercises. But as aforementioned, locomotor eccentric exercise has the advantage of 219 
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combining a challenging neural control with a low- but existing- hemodynamic solicitation. This 220 

might explain the increase in CS excitability in after running but not cycling mentioned earlier (see 221 

the section “Physical exercise induces neuroplasticity”), the latter exercise modality comprising 222 

short eccentric contractions. Despite this rationale, the mode of muscle contraction does not seem 223 

to affect the global changes in CS excitability of exercised lower limb or remote upper limb 224 

muscles, regardless of whether CS excitability increased [20, 57] or remained unaffected [23]. 225 

Locomotor eccentric exercise may nevertheless have the potential to stimulate brain plasticity in a 226 

way partly similar to motor training [10, 15]. In fact, studies from our laboratory suggested that 227 

decline walking could specifically modulate the excitability of transcerebellar sensory pathway  228 

when associated with paired-associative stimulation [20], and decrease cortical inhibition assessed 229 

in an exercised muscle when implemented alone [59]. The subsequent use of various exercise 230 

protocols during a training period could nonetheless yield distinct or opposite neuroplastic 231 

adaptations [19], depending on exercise features. The influence of locomotor eccentric exercise 232 

characteristics on neuroplasticity should thus be further studied. 233 

Furthermore, eccentric cycling, whose effects on neuroplasticity are mostly unknown [23, 60], is 234 

increasingly available in rehabilitation centers. This exercise modality allows those unable to walk 235 

due to joint pathologies or obesity, to complete locomotor eccentric task. In addition to allowing 236 

force gains [84], and decreasing fat mass and increasing lean mass [68] while being well tolerated 237 

in patients [64, 83], eccentric cycling might enhance neuroplasticity and thus deserves its own set 238 

of investigations. 239 

 240 

Conclusion 241 

Conventional and eccentric locomotor exercises both showed beneficial neuroplastic effects 242 

similar to those associated to simple motor learning (i.e., decreased cortical inhibition and/or 243 
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increase cortical facilitation). The changes induced by the former seem to originate from mainly 244 

hemodynamic mechanisms, while those triggered by the latter seem to be the result of neural, and 245 

maybe hemodynamic processes. Furthermore, the low cardiorespiratory response to eccentric 246 

contractions adds to the relevance of this exercise modality as an alternative to conventional 247 

rehabilitation protocols in weak patients. Future studies are nonetheless required to 1) describe the 248 

influence of conventional and locomotor eccentric exercise characteristics such as intensity, 249 

duration, or induced-fatigue, on the acute and chronic neuroplasticity, in order to optimise 250 

rehabilitation exercise protocols; 2) verify whether the hemodynamic solicitation of a locomotor 251 

eccentric exercise contributes to the resulting neuroplastic changes; and 3) look further into the 252 

neural hypothesis of eccentric exercise-induced neuromodulations, and try to fathom the respective 253 

influences of the complexity of the motor command and of the integration of muscle afferent 254 

feedback. 255 

 256 

Funding source 257 

This research work was supported by the French National Research Agency (ANR-15-CE19-0023) and 258 

the Région Bourgogne Franche-Comté (2018-BFCO-SR-P51). 259 

 260 

Figure caption 261 

Fig.1: Overview of the neuroplastic effects (assessed via changes in corticospinal excitability and 262 

activity of intracortical networks) of locomotor exercises and likely underlying mechanisms. Data 263 

related to conventional (i.e., concentric) and eccentric exercise are in blue and red font, 264 

respectively. Superscript numbers refer to the studies that provided the results featured below. 265 
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Panel a: Summary of the neuroplastic effects for locomotor exercises (conventional vs eccentric) 266 

conducted at low, moderate (mod) or high cardiorespiratory intensity. # indicates that exercises 267 

were carried-out until exhaustion.  268 

Panel b: Summary of the mechanisms (neural and/ or hemodynamic) suggested to induce 269 

neuroplasticity after each type of locomotor exercise. 270 

 271 
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