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ABSTRACT

Nonhost disease resistance is the most common type of plant defense mechanism against
potential pathogens. In this study, the metabolic enzyme formate dehydrogenase (FDH1)
was identified to be involved in nonhost disease resistance in Nicotiana benthamiana and
Arabidopsis thaliana. In Arabidopsis, AtFDH1 was highly upregulated in response to
both host and nonhost bacterial pathogens. Arabidopsis Atfdhl mutants were
compromised in nonhost resistance, basal resistance, and gene-for-gene resistance. The
expression patterns of salicylic acid (SA) and jasmonic acid (JA) marker genes after
pathogen infections in Atfdhl mutant indicated that SA is most likely involved in the
FDH1-mediated plant defense response to both host and nonhost bacterial pathogens.
Previous studies reported that FDH1 localizes to only mitochondria, or both mitochondria
and chloroplasts. Our results showed that the AtFDH1 localized to mitochondria and the
amount of FDH1 localized to mitochondria increased upon infection with host or nonhost
pathogens. Interestingly, the subcellular localization of FDH1 was observed in both
mitochondria and chloroplasts after infection with a nonhost pathogen in Arabidopsis.
We speculate that FDH1 plays a role in cellular signaling networks between mitochondria
and chloroplasts to produce coordinated defense responses such as SA-induced reactive
oxygen species (ROS) generation and hypersensitive response (HR)-induced cell death

against nonhost bacterial pathogens.
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INTRODUCTION

Nonhost resistance provide basic protection to plants and are also the most durable form
of resistance to the majority of potential pathogens [1-5]. In general, both basal and
nonhost resistance are controlled by quantitative trait loci (QTL). Disease resistance traits
conferred by these QTLs have been widely used for developing new varieties for disease
resistance [4, 6-9]. In addition to QTLsS, a number of studies have identified major plant
genes involved in nonhost resistance against fungal and bacterial pathogens [4, 5, 9-11].
However, the mechanism of nonhost resistance is not well understood. Nonhost
resistance against bacterial pathogens can be broadly classified as two types; type | (no
visible hypersensitive response [HR] cell death) and type Il (HR cell death) nonhost
resistances [10]. The efficacy of nonhost disease resistance is based on the recognition of
pathogen-associated molecular patterns (PAMPSs) and/or pathogen effectors. PAMPs are
mainly located at the plasma membrane where the PAMP-triggered immunity (PTI)
could be induced as the first defense barrier against various pathogens [12, 13]. One
known PTI response is stomatal closure that is circumvented by the phytotoxin
coronatine (COR) produced by the host pathogen P. syringae pv. tomato DC3000 [14].
COR has structural and functional similarity to jasmonates and jasmonic acid-isoleucine
(JA-lle), and contributes to the virulence of P. syringae pv. tomato DC3000 [15, 16].
COR disrupts the accumulation of the plant defense hormone salicylic acid (SA) for
stomatal reopening and bacterial propagation in both local and systemic tissues of
Arabidopsis [17]. COR is also involved in promoting the entry of nonhost bacterial
pathogens via stomata and nonhost bacterial growth at the initial stage of infection [18].

In addition to PTI, a number of pathogen effectors secreted into host cells can also induce
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another type of defense response referred to as effector-triggered immunity (ETI) [19, 20].
ETI is typically associated with resistance proteins belonging to the nucleotide-binding
domain (NBD) and leucine-rich repeat-containing (NLR) family. ETI triggers a type of
cell death known as the HR [21]. Despite the plant immune systems, compatible host
bacterial pathogens in susceptible plants suppress both basal and nonhost resistance
responses to cause disease.

Formate dehydrogenase (FDH1) is a nicotinamide adenine dinucleotide (NAD+)-
dependent enzyme that catalyzes the NAD-linked oxidation of formate to carbon dioxide.
As a component of one-carbon metabolism in plants, most FDHs play an important role
in response to various stresses in higher plants [22-25]. A previous report has shown that
FDH1 regulates programmed cell death (PCD) in pepper against bacterial pathogens [23].
There is contradictory information regarding the localization of FDH1 in plant cell.
According to the study by Choi (2014), FDH1 localizes to mitochondria and plays a role
in hypersensitive cell death and defense signaling pathway against the bacterial
pathogens in pepper. Several other reports also suggest mitochondrial localization of
FDHL1 in tobacco [26, 27]. Interestingly, few reports described that FDH1 targets not only
mitochondria but also chloroplasts for its biological function [28, 29]. Chloroplast and
mitochondria are the major targets of plant pathogen effectors, and targeting of these
organelles by effectors inhibits the production of defense molecules including reactive
oxygen species (ROS) [30, 31]. Chloroplasts play a major role in generating ROS and
nitric oxide to trigger defense responses such as PCD and HR against bacterial pathogens
[32, 33]. Mitochondria and chloroplasts also have been reported as the initial organelle to

recognize bacterial effectors and to trigger plant immunity against bacterial pathogens
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[34, 35]. In other studies, the co-localizations of mitochondria with chloroplasts has been
well characterized [36-38]. The physical interactions between mitochondria and
chloroplasts would provide the means of transferring genetic information directly to the
organelle genome, as well as to mediate signaling transduction [39-42]. However, how
chloroplast and mitochondria are functionally integrated for bacterial disease resistance is
not well understood. Particularly, previous conflicting results regarding the cellular
localizations of FDH1 may suggest possible roles of FDH1 in the chloroplast as well as

mitochondria for bacterial disease resistance.

In the current study, we demonstrated a novel role of FDH1 in nonhost disease
resistance in Nicotiana benthamiana and Arabidopsis. The cellular localization of FDH1
was confirmed to be mitochondria, but it was also found that the protein targets to
chloroplasts for the defense responses against host and nonhost bacterial pathogens. We
speculate that FDH1 may coordinate mitochondria- and chloroplast-mediated defense

responses to bacterial pathogens in plants.

RESULTS

Formate dehydrogenase is involved in nonhost disease resistance

Using virus-induced gene silencing (VIGS)-based forward genetics screening in N.
benthamiana, we identified the clone 24E07 (NbME24EQ7) to be involved in nonhost
disease resistance against the bacterial pathogen Pseudomonas syringae pv. tomato T1
[43, 44]. The cDNA insert in 24EQ7 clone was sequenced. BLAST results of the

sequence showed that it was homologous to NbFDHL1. Protein sequence analysis showed
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that NbFDH1 is 96% identical to SIFDH1 and 80% identical to AtFDH1 (Supplementary
Figure 1). FDHL1 is a single copy gene in both monocot and dicot plants.

Tobacco rattle virus (TRV)-based VIGS of NbFDH1 in N. benthamiana plants
did not cause a visible phenotype regarding plant appearance. The downregulation of
NbFDH1 was about 50% in TRV::NbFDH1 inoculated plants when compared to TRV:00
(non-silenced control) inoculated plants (Supplementary Figure S2). NbFDH1-silenced
and non-silenced control plants were inoculated with host and nonhost pathogens. Upon
vacuum infiltration with the nonhost pathogen P. syringae pv. tomato T1 containing
pDSK-GFPuv (Wang et al., 2007) at 1<10* CFU/mI concentration, the bacteria multiplied
more in NbFDHZ1-silenced plants when compared to non-silenced control as visualized
by green fluorescence under UV light (Figure 1A). In correlation with the increased
nonhost bacterial multiplication, NoFDHL1 silenced plants also showed disease symptoms
characterized by necrosis and chlorosis. In contrast, no disease symptoms were observed
in the non-silenced control (Figure 1A). Further, the bacterial titer of nonhost pathogen P.
syringae pv. tomato T1 was measured for three consecutive days after inoculation in both
the NbFDH1-silenced and non-silenced control plants. Consistent with the disease
symptoms and green fluorescence observed, NoFDH1-silenced plants had more bacterial
titer compared to non-silenced control (Figure 1B). In contrary to nonhost pathogen,
multiplication of the host pathogen P. syringae pv. tabaci was not different in NbFDH1
silenced plants when compared to non-silenced control (Figure 1C).

To check if NbFDH1 has a role in nonhost HR, NbFDH1-silenced and non-
silenced control plants were syringe-infiltrated with a high level of inoculum (1x10°

CFU/ml) of the nonhost pathogen P. syringae pv. tomato T1. Non-silenced control
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showed a typical nonhost HR after 24 hours post inoculation (hpi) whereas in NoFDH1-
silenced lines, the HR was delayed until 48 hpi (Figure 1D). Taken together, these results
suggest that NbFDH1 plays a role in nonhost disease resistance against P. syringae pv.

tomato T1 in N. benthamiana.

Arabidopsis Atfdhl mutants show increased susceptibility to host-pathogen and
nonhost pathogens.

To check if the role of FDH1 in nonhost resistance is conserved in more than one plant
species, two Arabidopsis T-DNA insertion mutants for AtFDH1 gene (SALK118548:
Atfdh1l-1 and SALK118644: Atfdhl-3) were identified in the Arabidopsis T-DNA
insertion lines and were obtained from the Arabidopsis Biological Resource Center.
Homozygous T-DNA insertion lines were generated by selfing and confirmed by PCR.
When wild-type (Col-0) and Atfdhl mutants were flood inoculated [45, 46] with the
nonhost pathogen P. syringae pv. tabaci, Atfdhl mutants, but not Col-0 showed disease
symptoms characterized by chlorosis at 5-day post inoculation (dpi) (Figure 2A). In
addition, Atfdhl mutants had higher bacterial titer (approximately 18-fold) when
compared to Col-0 plants at 3 dpi (Figure 2B). In response to infection with a host
pathogen, P. syringae pv. maculicola, both Col-0 and the Atfdhl mutants showed similar
disease symptoms (Figure 2A). Interestingly, in contrast to the observation in NoFDH1-
silenced N. benthamiana where the host pathogen titer didn’t differ between silenced and
control plants, Arabidopsis host pathogen, P. syringae pv. maculicola, grew slightly more

in the Atfdh1l mutants when compared to Col-0 (Figure 2B).
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To check if AtFDH1 plays a role in gene-for-gene resistance, we infected
Arabidopsis Col-0 plants that carry many resistance (R) genes, including RPS4 with
avirulent P. syringae pv. tomato DC3000 (AvrRPS4). After 3 dpi, P. syringae pv. tomato
DC3000 (AvrRPS4) grew ~3 logs in wild-type Col-0, but a significantly higher growth of
bacteria was observed in the Atfdhl mutant lines (Figure 2C). This difference in growth
was likely related to a deficiency in the production of ROS in the Atfdhl mutant lines. It
has been known that the mutation of AtFDH1 delays the production of ROS in response
to P. syringae pv. tomato DC3000 (AvrRPM1) [23], and we also showed the delayed HR-
associated cell death in NbFDH1-silenced N. benthamiana plants (Figure 1D). These
results suggest that AtFDH1 confers plant defense through ROS dependent gene-for-gene

resistance mechanismes.

AtFDHL1 is induced in response to host and nonhost bacterial pathogens.

In the publically available gene expression databases (TAIR), AtFDHL1 is strongly
expressed after 24h of inoculation with the virulent pathogen P. syringae pv. tomato
DC3000 and the avirulent pathogen P. syringae pv. tomato (AvrRPM1)
(https://www.arabidopsis.org/servlets/TairObject?id=136173&type=locus;
Supplementary Figure 3A). This agrees with the previous study of pepper mitochondrial
FDH1 [23]. We also found that AtFDH1 gene expression is induced after host or nonhost
pathogen inoculation (Supplementary Figure 3B). After inoculation with the virulent
pathogen P. syringae pv. maculicola, FDH1 expression was increased slightly (less than
0.5-fold) in comparison with mock-inoculated plants. Inoculation with the nonhost

pathogen P. syringae pv. tabaci caused a higher induction of FDH1 and its level of
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expression was about 2-fold higher than in mock-inoculated plants (Supplementary
Figure 3B). These results suggest that FDH1 may play a greater role in nonhost disease

resistance.

Mutation of AtFDH1 alters the SA-mediated defense hormonal pathway to bacterial
pathogens.

As shown above, Atfdhl mutants are compromised in nonhost disease resistance, basal
resistance, and gene-for-gene resistance. It was also found that the gene expression was
induced in response to both host and nonhost pathogens (Supplementary Figure 3A). To
examine if the resistance mechanism was related to a known common defense pathway
such as salicylic acid (SA) and Jasmonic acid (JA), we conducted quantitative RT-PCR
(RT-gPCR) for the gene expression of three representative genes related to SA pathway
(PAD4, EDS1, and NPR1) and a gene related to JA pathway (PDF1.2) in wild-type Col-0
and the Atfdhl mutant without any pathogen inoculation and at 24 hpi with the host
pathogen P. syringae pv. maculicola or the nonhost pathogen P. syringae pv. tabaci.
Without any pathogen infection, PAD4, EDS1, and NPR1, were not significantly different
between Col-0 and Atfdhl-1, while the expression of JA marker gene PDF1.2 was
remarkably increased in Atfdh1-1 (Supplementary Figure 3C). After 24 hpi with either
pathogen in Col-0, the SA marker genes, PAD4 and EDS1, and JA marker gene, PDF1.2,
were strongly induced, but the level of induction of these genes was significantly lower in
the Atfdhl mutant against both host and nonhost pathogens, comparing to Col-0 (Figure
3). NPR1 was significantly induced at 24 hpi with the host pathogen in wild-type Col-0

and significantly reduced (5-fold) in the Atfdhl mutant. NPR1 was not significantly
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induced after inoculation with the nonhost pathogen in both mutant and wild-type lines.
These results suggest that AtFDH1 plays a role in plant defense responses via SA and JA

mediated plant defense pathways.

AtFDHL1 localizes predominantly in mitochondria, but translocates to chloroplasts
in response to abiotic and biotic stresses.

Localization of FDH1 in mitochondria and/or chloroplast has been the subject of
extensive debate [23, 26-29]. We cloned AtFDH1 to be expressed under its native
promoter and fused it to the C-terminal of Green Fluorescent Protein (GFP) gene and
transiently expressed in N. benthamiana. The results showed that AtFDH1-GFP
predominantly localizes to mitochondria (Supplementary Figure 4). We generated
Arabidopsis stable lines expressing AtFDH1-GFP in Col-0, and the localization of
AtFDH1-GFP in mitochondria was confirmed using the live cell mitochondrial stain
MitoTracker (Figure 4). Upon challenging the plant with abiotic (wounding) and biotic
(host [P. syringae pv. tomato DC3000] and nonhost [P. syringae pv. tomato T1] bacterial
pathogens) stresses, AtFDH1-GFP signal was also found at the outer envelope membrane
of chloroplasts in addition to mitochondria (Figure 4). Similar results were observed with
another nonhost pathogen (P. syrinage pv. phaseolicola) (Supplementary Figure 5). The
bacterial phytotoxin, coronatine, which is known to suppress SA-mediated plant defense,
was used to examine if AtFDH1-GFP localizes to the chloroplast in the presence of
coronatine. AtFDH1-GFP localization in chloroplast was not observed in the samples
treated with coronatine (Figure 4). The expression of AtFDH1-GFP was remarkably

increased after nonhost (P. syringae pv. tomato T1 and P. syringae pv. phaseolicoa) and
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host (P. syringae pv. tomato DC3000) pathogen treatments than the expression in the
detached leaf sample without pathogen challenge (Figure 4; Supplementary Figure 5).
Using the light-sheet microscope, the movement and co-localization of
mitochondria with chloroplasts were observed after the inoculation of nonhost pathogen,
P. syrinage pv. tomato T1. By performing time lapse image of FDH1 localization in the
transgenic Arabidopsis line expressing FDH1-GFP, we found that mitochondrial specific
FDH1 localization was highly motile after inoculation with a nonhost pathogen. As
shown in the Figure 5, the majority of mitochondria localized FDH1 was in the vicinity
of chloroplasts in outer-membrane regions (Figure 5). The arrow in each image (every
1min:30sec) indicates that the mitochondria localized FDH1 move to chloroplasts and
attach there approximately for 1 min, and later goes apart from the chloroplast. After this
event, other mitochondria localized FDH1 translocate again to chloroplasts, and we
observed the event of co-localization continuously during the 15 min of time lapse
imaging. These results suggest that in response to nonhost pathogen FDH1 co-localizes to
both mitochondria and chloroplast and the localization of FDH1 in chloroplast is transient.
To further investigate the specific localization of AtFDH1 in mitochondria and
chloroplast upon host and nonhost pathogens, the protein of mitochondria and chloroplast
were isolated separately from AtFDH1-GFP expressing plants and examined for the
presence of AtFDH1 protein. Immunoblot analysis revealed that in total protein extract,
AtFDH1-GFP accumulates in response to host and nonhost pathogens at 2 and 4 hpi,
which agrees with the result of RT-gPCR (Figure 6 and Supplementary Figure 3). To
validate the localization of AtFDH1, we isolated mitochondria and chloroplasts from

AtFDH1-GFP expressing plants upon inoculation with host or nonhost pathogen.

11
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Mitochondria and chloroplast proteins were individually extracted and subjected to
immunoblot analyses. AtFDH1-GFP protein was detected in mitochondria prior to
pathogen infection, and the protein amount increased significantly after host or nonhost
pathogen infection (Figure 6). By contrast, AtFDH1-GFP protein was not detected in the
chloroplast protein extract prior to pathogen infection. Consistent with the cell biology
data, AtFDH1-GFP was detected in the chloroplast protein extract after infection with
host or nonhost pathogen infection (Figure 6). More AtFDH1 protein was detected in the
chloroplast protein fraction after infection with nonhost pathogen when compared to host
pathogen (Figure 6). These findings suggest that the localization of FDH1 in
mitochondria may play a role for plant innate immunity against foliar bacterial pathogens,

and FDH1 localization to chloroplasts may be important for nonhost disease resistance.

Discussion

FDH enzyme is found in various organisms, such as bacteria, yeast, and plants. This
protein has been reported to function during various abiotic and biotic stress responses.
Expression of FDH is strongly induced during various abiotic and biotic stress responses
such as pathogen, hypoxia, chilling, drought, dark, wounding and iron deficiency [22-24,
47]. There is only one study showing that FDH1 is involved in regulating plant cell death
and defense responses against bacterial pathogens in pepper plants [23]. In this study,
mitochondrial targeting of FDH1 plays an important role in PCD- and SA-dependent
defense response, and silencing of FDH1 attenuates resistance against X. campestris pv.
vesicatoria pathogen in pepper plants. Our study demonstrates that FDH1 is required for

plant innate immunity against both host and nonhost bacterial pathogens. Nonhost disease

12
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resistance is the most common form of plant defense against various pathogens [5, 8, 48,
49]. HR cell death are typical symptoms in response to ETI-triggered nonhost resistance
in plants [50, 51]. ROS produced in various cellular compartments, including chloroplasts,
mitochondria, and peroxisomes have been proposed to act as signals for HR and PCD
[52]. Chloroplasts are the main source of ROS during various environmental stresses,
including plant-pathogen interactions [53]. In addition, ROS generated in mitochondria
(mtROS) has been described in several studies to be an important factor in inducing HR
cell death against plant pathogens [35]. Possibly both chloroplasts and mitochondria have
a role in nonhost resistance against invading bacterial pathogens. In this study, we
demonstrate that the protein encoded by a single FDH1 gene in the nuclear genome are
targeted to both mitochondria and chloroplasts in response to wounding and bacterial
pathogens. Chloroplast localization of FDH1 was more abundant after inoculation with
nonhost pathogens (Figure 4 and 5), thus suggesting a probable role of chloroplasts in
nonhost disease resistance. A previous study has shown that chloroplast generated ROS is
required for nonhost disease resistance in Arabidopsis [54]. In addition to nonhost
resistance, we also show that FDHL1 plays a role in basal and gene-for-gene resistance in
Arabidopsis. It is intriguing that the silencing of NbFDH1 did not compromise basal
resistance in N. benthamiana. Since the silencing of NbFDH1 decreased NbFDH1
transcripts by ~50%, we speculate that this is not sufficient to compromise basal
resistance. By contrast, the complete knockout of AtFDH1 in Arabidopsis compromised
basal resistance.

Our study identified a dual-targeting role for AtFDH1 during plant defense

responses against bacterial pathogens. Dual targeting of FDH1 to mitochondria and

13
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chloroplasts may be necessary for effective signaling during plant defense against
bacterial pathogens. In the Arabidopsis nuclear genome, approximately 20-25% of the
genes encode proteins that are targeted to either mitochondria or chloroplasts [55]. It has
been reported that some proteins target to both mitochondria and chloroplast, and might
be more common than thought but their functions are not well understood, especially for
plant disease resistance [56-60]. FDH1 has a putative mitochondrial signal peptide,
although AtFDH1 has been reported to localize to either mitochondria or chloroplasts [28,
61-63]. Therefore, FDH1 localization in plants remains controversial. There was one
study showing that the dual localization of AtFDH1 in both chloroplasts and
mitochondria when AtFDHL1 is overexpressed in transgenic Arabidopsis and tobacco
plants [64]. It is also reported that the N-terminal region of AtFDHL is predicted to
contain the signal peptide region that could target it to chloroplasts as well as
mitochondria [65]. This N-terminal sequence of AtFDH1 is quite different from potato,
barley, and rice, suggesting AtFDH1 localizing in chloroplast could occur under certain
conditions [63]. In our study, the localization of AtFDH1 in chloroplast was only
detected under the conditions of wounding and pathogen stresses (Figure 4 and 5). As
previously described, FDH1 is highly induced under various stress conditions [63]. We
speculate that the localization of FDH1 in chloroplast is too low and transient to be
detected under non-stress conditions, and this causes controversy of the FDH1
localization in mitochondria or chloroplasts or both.

There are few reports that suggest FDH1 may have a role in biotic stress response
in plants. As mention above, FDH1 has been shown to play a role in disease resistance in

pepper against a bacterial pathogen (Choi et al., 2014). FDH1 and Calreticulin-3
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precursor (CRT3) directly interacts with the helicase domain of Cucumber mosaic virus
(CMV) isolate-P1, suggesting that FDH1 has an important role in plant disease resistance
[66]. CRT3 is localized in the endoplasmic reticulum (ER) lumen, and has been known to
associate with abiotic stress response and plant immunity [67-69]. FDH1 directly
interacts with RING-type ubiquitin ligase Keep on Going (KEG), which is localized in
trans-golgi and early endosomes [70]. In Arabidopsis, the loss of function in KEG
disrupts the secretion of the apoplastic defense proteins such as pathogenesis-related PR1,
which indicates the involvement of KEG in plant immunity [71]. There are several
reports describing the ROS-based signal transmission between mitochondria and
chloroplasts [72-75]. Possibly, FDH1 protein could be transmitted to chloroplasts from
mitochondria to interact with outer membrane proteins of chloroplasts and initiate a
signal transduction pathway for the production of chloroplast-derived ROS.

In conclusion, we demonstrated a novel chloroplast-dependent pathway that
regulates plant innate immunity, most likely through mitochondria-to-chloroplast
integrated ROS signaling. Even though mitochondria is the main source of ROS,
chloroplast also plays a role in producing ROS during stress responses in plants. However,
the signal transduction between these organelles for coordinated production of ROS is not
well understood. Characterization of molecular functions of FDH1-interactors in both
mitochondria and chloroplasts would provide insight into the role of FDH1 in cross-talk

between these organelles during biotic and abiotic stress responses.

MATERIALS AND METHODS

Plant materials

15
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N. benthamiana plants were grown in 10-centimeter diameter round pots with BM7 soil
(SUNGRO Horticulture Distribution, Inc., Bellevue WA) in the greenhouse using the
condition described in the previous study [43]. Plants grown four weeks were used for
virus-induced gene silencing (VIGS) experiments as described below. The ecotype of
Arabidopsis thaliana, Col-0, was used as wild-type. Arabidopsis T-DNA knockout
mutants for AtFDH1 gene (At5g14780), SALK 118644 and SALK 118548, were
obtained from the Arabidopsis Biological Resource Center (Columbus, OH). To identify
the homozygous knockout T-DNA mutant plants, seedlings grown from the
SALK 118644 and SALK 118548 seeds and their progeny were harvested for PCR-
based genotyping. Primers were designed from SALK T-DNA verification primer design
(http://signal.salk.edu/tdnaprimers.2.html), and PCR was performed using REDEXxtract-
N-Amp™ Tissue PCR Kit (Sigma-Aldrich, St. Louis, MO). All mutant plants were made
homozygous for their respective T-DNA insertion, and seeds were harvested for further
experiments. For seedling-flood inoculation [45], Arabidopsis plants were grown in %
Murashige and Skoog (MS) agar medium plates at 25 <C under short day condition (12 h

light).

VIGS in Nicotiana benthamiana

VIGS in N. benthamiana was performed as described [43]. In brief, Agrobacterium
tumefaciens GV2260 containing TRV1, TRV2::00 and TRV2::NbFDH1 was grown
overnight on LB medium containing antibiotics (rifampicin, 25; kanamycin, 50) at 28 <C.
Bacterial cells were harvested and re-suspended in induction medium (10 mM MES, pH

5.5; 200 UM acetosyringone), and incubated at room temperature on an orbital shaker for
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5 hrs. Bacterial cultures containing TRV1 and TRV2 were mixed in equal ratios (ODsoo =
1) and infiltrated into N. benthamiana leaves using a 1 ml needleless syringe. The
infiltrated plants were maintained in a greenhouse and used for studies 15 to 21 days

post-infiltration.

Bacterial culture and inoculation

Bacterial pathogens, Pseudomonas syringae pv. tabaci (Pstab), P. syringae pv. tomato T1
(Pst T1), and P. syringae pv. maculicola (Psm) were grown in King’s B (KB) medium at
28 <C overnight. The bacterial culture was centrifuged at 5,000 rpm for 10 min, and the
cell pellet was re-suspended in 5 ml sterilized distilled water. For the inoculation assays
in N. benthamiana, bacterial vacuum infiltration was performed using the concentration
of 1 x10* CFU/ml for both N. benthamiana host (Pstab) and nonhost (Pst T1) pathogens.
For the inoculation assays in Arabidopsis, host (Psm) and nonhost (Pstab) pathogens

were used for the inoculation followed by the seedling flood-inoculation method [45, 46].

Bacterial disease assay in N. benthamiana and Arabidopsis

For disease assays in N. benthamiana, bacterial suspensions of host and nonhost
pathogens (1>10° CFU/mI) were vacuum-infiltrated in both silenced and control plants 2-
week after TRV infection. The fully expanded leaves were used for disease assays, and
the inoculated plants were kept in a growth chamber at 20-22 <C. The number of bacterial
cells in leaf apoplast were measured 1, 2, and 3 days after inoculation in N. benthamiana.
The bacterial population at 0 day was estimated from leaves harvested 1 hr after
inoculation. Two leaf discs (0.5 cm?) from each leaf were collected in 1.5 ml centrifuge
tube containing 100 ul of sterilized distilled water. Samples were homogenized and
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plated on KB agar medium for measuring colony-forming units (CFU) per cm? of leaf
area. A total of three leaves were used for each experiment. To visualize bacterial
colonization at infected sites in leaves, GFPuv-expressing P. syringae pv. tabaci and P.
syringae pv. tomato T1 were vacuum infiltrated, and plants were examined under UV
light 3 days after inoculation [76].

For disease assays in Arabidopsis, a flood inoculation method was used to infect
Arabidopsis [45, 46]. Disease symptoms were observed 3 days after inoculation. For
bacterial counting, leaves were surface-sterilized with 10% bleach for one min to
eliminate epiphytic bacteria and then washed with sterile distilled water twice. The leaves
were then homogenized in sterile distilled water, and serial dilutions were plated onto KB

plates. Bacterial growth was evaluated in three independent experiments.

Subcellular localization of FDH1 in N. benthamiana and Arabidopsis

The full-length sequence of AtFDH1 with native promoter was cloned into pMDC107 for
GFP expression (AtFDH1-GFP). Stable Arabidopsis transgenic lines for the expression
of AtFDH1-GFP were developed by floral dip transformation [77]. The subcellular
location of AtFDH1-GFP in epidermal cells was determined under the confocal
microscope.

To observe the localization of AtFDH1, Arabidopsis wild-type Col-0 and
AtFDH1-GFP expressing (under the control of AtFDH1 promoter) transgenic plants in
Col-0 were grown in %2 MS media for four weeks, and AtFDH1-GFP expression in
epidermal cells of Arabidopsis was visualized using a confocal microscope. The leaf

tissues were floated with the bacterial suspension of host pathogen P. syringae pv.
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maculicola (1x<10® CFU/mI) and nonhost pathogen P. syringae pv. tabaci (1x<10°
CFU/ml). After one hour inoculation, the leaf tissues were washed with distilled water,
and localization of FDH1-GFP was observed. For wounding stress, the adaxial epidermal
peels from wild-type Col-0 and AtFDH1-GFP expressing transgenic plants were prepared
in the MES buffer (10 mM, pH 6.5), and subcellular location of AtFDH1 was imaged

under the confocal microscope.

Isolation of chloroplast and mitochondria

Arabidopsis leaves (10 g) were homogenized in 100 ml of grinding buffer containing 50
mM HEPES (pH 8.0), 2 mM EDTA, 1 mM MgClz, 0.33 M sorbitol, and 0.5 g/L BSA by
using a motor-driven blender (WARING 51BL30, two 5 s bursts at maximum speed).
The homogenate was filtered through 3 layers of miracloth (Sigma-Aldrich, St. Louis
MO, USA). The cleared homogenate was centrifuged at 1,500 g for 10 min at 4 <C. The
supernatant was used for isolation of mitochondria, and the pellet was used for
chloroplast extraction. For the isolation of chloroplast, the pellet was re-suspended in 3
ml of grinding buffer with a paint-brush. The chloroplast suspension was then loaded on
top of linear Percoll gradient (2 ml of 70% PBF-Percoll (v/v), 4 ml of 50% PBF-Percoll
(v/v), and 4 ml of 40% PBF-Percoll (v/v)) and centrifuged at 16,000 g for 20 min at 4 <C.
The lower green bands were collected for intact chloroplasts with glass pipette, washed
twice with wash buffer (50 mM HEPES, pH 8.0, 2 mM EDTA, 1 mM MgCl, 0.33 M
sorbitol), and centrifuged at 1,500 g for 10 min at 4 <C. The supernatant was discarded

and the washed chloroplast pellet was collected for chloroplast protein extraction.

19


https://doi.org/10.20944/preprints202007.0272.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2020 doi:10.20944/preprints202007.0272.v1

For the isolation of mitochondria, the supernatant was centrifuged at 3,000 g for 5
min at 4 <C. The supernatant was transferred into a fresh centrifuge tube and centrifuged
at 18,000 g for 20 min at 4 <C. The greenish mitochondrial pellet was re-suspended
carefully in 1 ml wash buffer with a fine paint brush and adjusted the final volume to 4.8
ml. 1.2 ml of 100% Percoll (Sigma-Aldrich, St. Louis, MO) was added and the total 6 ml
of mitochondria homogenate was then loaded on top of linear Percoll gradient (5ml of
80% PBF-Percoll (v/v), 5ml of 33% PBF-Percoll). The mitochondria homogenate was
centrifuged at 18,000 g for 1 hr and greenish upper band was collected. Mitochondria was
rinsed twice with 15 ml wash buffer and centrifuged at 18,000 g for 20 min at 4 <C. The

supernatant was removed and the pellet was saved for mitochondria protein extraction.

Protein extraction from chloroplast and mitochondria

The mitochondrial and chloroplast proteins were isolated [78] in protein
extraction buffer; 50 mM Tris-HCL, pH 7.5, 75 mM NaCl, 0.2% Triton X-100, 5 mM
EDTA, 5 mM EGTA, 1 mM DTT, 100 uM MG132, 10 mM NaF, 2 mM Na2Vv04, and
1% protease inhibitor cocktail (Sigma Aldrich, St. Louis, USA). The extracted proteins
were quantified using Bradford method [79], and equal known concentrations were taken
for the assay. Proteins were blotted on polyvinylidene fluoride (PVDF) membrane and
Cox Il antibody (Agrisera, Sweden, cat no. AS04 053A) for mitochondria and Rubisco or
RBCL (Abiocode, CA, USA, cat.no. R3352-2) for chloroplast was used as markers to
confirm the proteins. GFP antisera (Miltenyl Biotec, San Diego, CA, USA cat. no. 130-

091-833) was used to detect the FDH1 protein levels. The primary HRP-conjugated GFP
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antisera were diluted to 1:10,000 and visualized using ECL solution (GE Healthcare Bio-

Sciences, Pittsburgh, USA) and protein gel blots were imaged.

Quantitative real-time PCR (RT-gPCR) analysis

Total RNA was extracted from Arabidopsis leaves infiltrated with water (mock control),
host pathogen (P. syringae pv. maculicola) and nonhost pathogen (P. syringae pv. tabaci),
sampled at 0, 12 and 24 hrs post-inoculation (hpi). RNA samples were treated with
DNAsel (Ambion, Austin, TX) and used for cDNA synthesis using SuperScript 11
reverse transcriptase (Invitrogen, Grand Island, NY, USA). The cDNA was diluted to
1:20 and used for RT-gPCR using Power SYBR Green PCR master mix (Applied
Biosystems, Foster City, CA, USA) with an ABI Prism 7900 HT sequence detection
system (Applied Biosystems, Foster City, CA, USA). Arabidopsis Ubiquitin 5 (UBQ5)
and Elongation factor la (EFIla) were used as internal controls to ensure an equal
amount of cDNA in individual reactions. Average Cycle Threshold (Ct) values calculated
using Sequence Detection Systems (version 2.2.2; Applied Biosystems) from duplicate
samples and were used to determine the fold expression relative to controls. Two
biological replicates of each sample and three technical replicates of each biological

replicate were analyzed for RT-gPCR analysis.
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Figure Legends

Figure 1. Virus-induced gene silencing of NboFDH1 compromises nonhost resistance
and elicitation of hypersensitive response in N. benthamiana. (A) GFP fluorescence
associated with bacterial multiplication of nonhost bacteria in NbFDH1 silenced N.
benthamiana leaves. Two weeks old N. benthamiana seedlings were inoculated with
TRV1 + TRV:00 (control) or TRV1 + TRV:NbFDH1. Three weeks after TRV
inoculation, nonhost bacterial pathogen P. syringae pv. tomato T1 expressing pDSK-
GFPy, was vacuum infiltrated at 1>10* CFU/mI concentration. The photograph was taken
under UV light 2 days post infection (dpi) as show in the upper panel. Visual disease
symptoms were photographed at 5 dpi (lower panel). An increase in GFP fluorescence
and disease symptoms were observed in TRV::NbFDH1 inoculated but not in the
TRV::00 inoculated plants. (B and C) Bacterial titer of host and nonhost pathogens in

both NbFDH1-silenced and control plants. TRV inoculated plants (described above) were
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vacuum inoculated with host (P. syringae pv. tabaci) or nonhost (P. syringae pv. tomato
T1) bacterial pathogens (1x<10* CFU/mI), and bacteria were quantified by plating serial
dilutions of leaf extracts. Asterisks indicate a significant difference from the control using
Student’s t test (P < 0.01). Bars represent mean, and error bars represent the standard
deviation of three biological replicates (three technical replicates were used for each
biological replicate). Each experiment showed similar results. (D) HR-related cell death
in NbFDH1-silenced and control plants. High concentration (1>10® CFU/mI) of nonhost
pathogen P. syringae pv. tomato T1 was infiltrated using a needless syringe into fully
expanded N. benthamiana leaves, three weeks after TRV inoculation. Cell death due to

nonhost HR was observed and photographed 24 and 48 hpi.

Figure 2. Arabidopsis Atfdhl mutants are compromised in basal, nonhost, and gene-
for-gene resistance. (A) Disease symptoms of Atfdhl-1 mutant after inoculation with
host or nonhost pathogens. Two-week-old Arabidopsis wild-type (Col-0) and Atfdh1-1
mutants grown in 1/2 strength MS under short-day conditions (8 hrs of daylight) were
flood-inoculated with host (P. syringae pv. maculicola) or nonhost (P. syringae pv. tabaci)
pathogens at 3x10° CFU/mI. Photographs were taken at four days post inoculation (dpi).
(B) Bacterial titer of host and nonhost pathogens in Atfdhl mutants. Two-week-old
Arabidopsis Col-0 and two Atfdhl mutant alleles (Atfdhl-1 and Atfdh1-3) were flood-
inoculated with host (P. syringae pv. maculicola) or nonhost (P. syringae pv. tabaci)
pathogens at 1x<10° CFU/mI. Bacterial titers at 0 to 3 dpi were measured by taking leaf
disks from four inoculated plants for each line. (C) Quantification of host bacterial

multiplication during gene-for-gene resistance. Leaves from 6-week-old plants of Col-0
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and Atfdhl mutant alleles were syringe-infiltrated with avirulent (P. syringae pv. tomato
DC3000 [AvrRps4]) bacterial strain at 2.8>10° CFU/mI concentration. Bacterial titer was
measured at 0 and 3 dpi. Bars represent mean, and error bars represent standard deviation
for four biological replicates with two independent experiments. The bacterial growth
was similar between the experiments. Asterisks above bars represent statistically
significant differences in comparison with wild-type plants using Student’s t-test (P <

0.05).

Figure 3. Patterns of gene expression associated with SA-mediated defense signaling
pathways in wild type (Col-0) and Atfdhl mutant (Atfdhl-1). The expression of SA-
mediated defense-related genes were examined after 24 hrs (hpi) in response to host, P.
syringae pv. maculicola, and nonhost pathogen, P. syringae pv. tabaci. The 4-week-old
Seedlings flood-inoculated with the concentration of 1x10° CFU/mI bacterial suspension.
Each column is the fold change of gene expression as determined by RT-gPCR at 24 hpi
in pathogen-inoculated samples. The relative gene expression values normalized by
Ubiquitin5 (UBQ5) and Elongation factor 1 alpha (EFla) are represented as n-fold
compared to the mock-treated plants. Fold changes are over the non-treated Col-0 or
mutants. Asterisks above bars represent statistically significant differences in comparison
with wild-type using Student’s t-test (P < 0.05). The gene expression was examined with
four biological samples (three technical repeats for each sample). Psm24: 24 hours after
the inoculation of P. syringae pv. maculicola, Pst24: 24 hours after inoculation of P.

syringae pv. tabaci.
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Figure 4. Subcellular localization of AtFDHL1 in Arabidopsis leaves. The expression and
localization of AtFDH1-GFP was observed in detached (no stress) and peeled adaxial
epidermal cells (wounding stress) from leaves of transgenic Arabidopsis lines expressing
AtFDH1-GFP. The protein localization was also examined in detached leaf samples after
the treatment of P. syringae pv. tomato DC3000 (1x<10° CFU/ml), P. syringae pv. tomato
T1 (1x10° CFU/mI), and coronatine (50 uM) under a confocal microscope for wounding
stress. MitoTracker red dye was used to stain mitochondria. Bars = 10 pum. For
MitoTracker Red, a 561 nm excitation, 570-620 nm emission filter was used. Red
channel shows chlorophyll auto fluorescence in chloroplasts of epidermal cells (yellow
arrow). Green channel, shows the fluorescence signal of AtFDH-1GFP in mitochondria
and outer membrane of chloroplast (white arrows). The pink arrows represent a merged

signal of FDH1-GFP localization in mitochondria and chloroplast.

Figure 5. Time lapse imaging of co-localization of AtFDH1 in mitochondria and
chloroplasts in response to nonhost pathogen. Detached leaves from transgenic
Arabidopsis plants expressing AtFDH1-GFP driven by AtFDH1 promoter were treated
with P. syrinage pv. tomato T1 (1x10° CFU/mI). AtFDH1 expression was monitored 40
min after the pathogen infection by using a light-sheet fluorescence microscope (Carl
Zeiss, Germany). The images were observed for 15 min by time lapse imaging at 30
second intervals in Z-stack mode. For every 30 sec, the AtFDH1-GFP and chlorophyll
fluorescence of chloroplast was captured and both live streaming videos were merged to

generate time lapse video simultaneously. Images were taken from detached leaf samples
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60 min after treatment of P. syrinage pv. tomato T1. Times shown at bottom-right of each

image are in minutes:seconds.

Figure 6. Accumulation of AtFDH1 protein in response to host or nonhost pathogens in
mitochondria and chloroplasts. The 8-week-old Arabidopsis wild-type (Col-0) were
flood-inoculated with the concentration of 1x10° CFU/ml bacterial suspension of P.
syringae pv. maculicola (host) or P. syringae pv. tabaci (nonhost) pathogens. Leaf
samples were collected at 0, 2, and 4 hpi for the protein extraction, and 3 g protein from
mitochondria or chloroplast was used for the immunoblot assay. Because no AtFDH1-
GFP was visible in chloroplast samples with 3 |y total protein, a total of 28 g was used.
Rubisco: internal control for total protein (BPB stained gel), COXII: mitochondria
marker protein detected using polyclonal COXII antisera (Agrisera), RBCL: chloroplast

marker protein detected using polylonal Rbcl antisera (Abiocod).

Supplementary Figure Legend

Supplementary Figure 1. Sequence alignment of FDH1 protein from N. benthamiana
(NbFDHL1), tobacco (NtFDH1), tomato (SIFDHL1), and Arabidopsis (AtFDH1). Sequence
information was obtained from the public database; TAIR, NCBI GenBank, and Sol
Genomics Network. The software MEGA-X [80] was used for sequence alignment. The
colors amino acids were according to the default coloring schemes of ClustalX alignment,
which depends on both residue type and the pattern of conservation within a column

(http://www.clustal.org/clustal2/).
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Supplementary Figure 2. The expression of NbFDH1 gene is reduced in NbFDH1-
silenced N. benthamiana plants. Two weeks old N. benthamiana seedlings were
inoculated with TRV1 + TRV::00 (control) or TRV1 + TRV::NbFDH1. Three weeks
after TRV inoculation, leaf samples from three different biological replicates for each
construct were collected, and gene expression was measured by RT-gPCR. NbActin was
used as internal control for normalization. Bars represent mean, and error bars represent
standard deviation for three biological replicates (four technical replicates for each
biological sample). Asterisk represents statistical significance that was determined using

Student’s t-test, (P < 0.01).

Supplementary Figure 3. AtFDH1 is upregulated upon inoculation with host and
nonhost pathogens in wild-type Col-0, and some defense-related genes are differentially
expressed in Atfdhl mutant. (A) Gene expression patterns of AtFDH1 against P. syringae
bacterial pathogen in Arabidopsis. This data was obtained from Arabidopsis eFP Browser
at bar.utoronto.ca [81]. (B) AtFDH1 is induced by host and nonhost pathogen
inoculations. Four-weeks-old Arabidopsis wild-type (Col-0) were flood-inoculated with
host (P. syringae pv. maculicola, Psm) or nonhost (P. syringae pv. tabaci, Pstab)
pathogens. The 24 hours after inoculation, leaves were harvested, total RNA was
extracted, and subject to RT-gqPCR using AtFDHL1 specific primers. AtActin was used as
an internal control for normalization. (C) Gene expression patterns of defense-related
genes in wild-type and the Atfdh1l mutant without any biotic or abiotic stresses. Leaves of

four weeks old Arabidopsis wild-type (Col-0) and Atfdhl mutant (fdh1l-1) plants were
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collected, total RNA was isolated, and subject to RT-gPCR to measure the transcripts of
PAD4, EDS1, NPR1, and PDF1.2. Bars represent mean, and error bars represent standard
deviation for three biological replicates (four technical replications for each biological
replicate). Asterisks represent statistical significance as determined using Student’s t-test,

(P < 0.01).

Supplementary Figure 4. Subcellular localization of AtFDH1 in N. benthamiana. For
Agrobacterium-mediated transient assay, a binary vector containing GFP gene fused to
the C-terminal of AtFDH1 was transformed into the A. tumefaciens strain GV3101. The
Agrobacterium suspension was (510" CFU/ml) was infiltrated using a needle-less
syringe into N. benthamiana leaves, and the green fluorescence representing AtFDH1
localization was observed 3 days after the agroinfiltration. Red channel (a 561 nm
excitation, 570-620 nm emission filter) shows mitochondria stained with MitoTracker

dye and green channel shows AtFDH1-GFP localization. Bars = 10 um.

Supplementary Figure 5. Subcellular localization of AtFDH1 in Arabidopsis leaves.
The expression and localization of AtFDH1-GFP was observed in detached (no stress)
and peeled adaxial epidermal cells (pathogen stress) from leaves of transgenic
Arabidopsis lines expressing AtFDH1-GFP in Col-0. The protein localization was also
examined in detached leaf samples 1-hr after the treatment of P. syringae pv. tomato
DC3000 (1x<10° CFU/mI) and P. syringae pv. phaseolicola (1><10° CFU/mI). Red channel
(a 561 nm excitation, 570-620 nm emission filter), showing chloroplast; green channel

showing AtFDH1-GFP. Bars = 10 pm.
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