

1 Article

2 Rapid Senectome and Alternative Splicing miRNAs 3 Changes With the Relaxation Response: A One Year 4 Follow-Up Study

5 Carlo Dal Lin ^{1*}, Mariela Marinova², Laura Brugnolo², Giorgio Rubino¹, Mario Plebani², Sabino
6 Iliceto¹; Francesco Tona¹

7 ¹ Department of Cardiac, Thoracic and Vascular Sciences, Padua University School of Medicine, Via
8 Giustiniani 2, 35100 Padua, Italy.

9 ² Department of Laboratory Medicine, Padua University School of Medicine, Via Giustiniani 2, 35100 Padua,
10 Italy

11 * Correspondence: Email: carlodallin@libero.it . Carlo Dal Lin, Department of Cardiac, Thoracic and
12 Vascular Sciences, Padua University School of Medicine, Via Giustiniani 2, 35100 Padua, Italy. Fax: +39-049
13 8211802 Phone: +39-049 8218642.

14

15 **Abstract:** Mental stress represents a pivotal factor in cardiovascular diseases. The mechanism by
16 which stress produces its deleterious effects is still under study but one of the most explored
17 pathway is cell senescence. In this scenario, circulating microRNAs appear to be mobile regulatory
18 elements of the telomerase activity and alternative splicing within the "senectome" network. Anti-
19 stress techniques seem to be able to slow-down aging process. As we have recently verified how the
20 practice of Relaxation Response (RR), counteracting psychological stress, determines favorable
21 changes of some inflammatory genes expression, of some neurotransmitters, hormones, cytokines
22 and inflammatory circulating microRNAs, we aimed to verify a possible change even in serum
23 levels of 4 senectome micro-RNAs (SE-miRNAs -20, -30, -410, -515), testing the activity of telomerase
24 in peripheral blood mononuclear cells-PBMCs. We analyzed also alternative splicing microRNAs
25 134 and 183. According to our data, miRNA-20 and -30 levels and PBMCs-telomerase activity
26 increase during the RR while -410 and -515 levels decrease. Moreover, during the RR sessions both
27 miRNA-134 and -183 decrease. The mediators considered in this work seem to vary rapidly
28 according to a (stress)-relaxation condition showing that psychic activity should be part of the study
29 of aging factors.

30 **Keywords:** cardiovascular disease; inflammation; aging; senectome, telomerase; alternative
31 splicing; Relaxation Response; microRNA.

32

33

34 1. Introduction

35 The close connection between chronic stress and deterioration of health has been amply
36 demonstrated with the relative increase in the risk of cardiovascular diseases and immune system
37 dysfunction[1,2]. It has already been widely confirmed that psychological stress determines
38 important changes in neural activity and in gene expression of multiple brain areas[3]. In particular,
39 the stress reaction involves amygdala hyperactivity associated with emotions of fear, anxiety or anger
40 [4,5][6] with the triggering of a low-grade chronic inflammatory process that determines important
41 negative cardiovascular consequences[7][8][9].

42 The exact mechanism by which stress produces such effects is still under study but one of the most
43 explored molecular pathways is linked to cell senescence[10]. The aging process involves the

44 coordination of various cellular mechanisms, from the balance of telomeres to DNA damage, the
45 increase of inflammatory signals and oxidative stress, up to metabolic and cytoskeletal
46 modifications[11].

47 Psychic activity seems able to influence these processes. Indeed, Epel et al. have described[10] how
48 psychological stress is closely linked to greater oxidative stress, lower telomerase activity and lower
49 telomere length in leukocyte precursors.

50 On the other hand, different techniques designed to counteract the adverse effects of stress[12] thanks
51 to specific changes in brain activity[13] (resulting, over time, in a change in brain structure[14–16]
52 and to "silence" the amygdala[13,17]) play a favorable role in preventive terms in many chronic-
53 degenerative pathologies[18].

54 Even a recent statement from the American Heart Association cautiously advises to implement
55 meditation in clinical practice *"as an adjunct to guideline-directed cardiovascular risk reduction by those*
56 *interested in this lifestyle modification with the understanding that the benefits of such intervention remain to*
57 *be better established"*[19].

58 Trying to answer this question by explaining some molecular mechanisms, we have recently verified
59 how the daily practice of Relaxation Response determines a favorable change in the expression of
60 some inflammatory genes in leukocyte precursors through the action of neurotransmitters,
61 hormones, cytokines[20] and circulating microRNAs[21].

62 Again, these mechanisms triggered by psychological activity seem to influence cellular aging
63 processes. Several researches have described the practice of meditation as correlating with an
64 improvement in telomerase activity in leukocyte precursors[22,23]-[24].

65 Since the simple identification of correlations does not imply a causal link between phenomena, to
66 study the complexity of the interaction between psychological orientation (stress or relaxation) and
67 aging, different researchers are trying to identify all the possible molecular protagonists in play,
68 tracing their reciprocal influences with the creation of a network called "senectome"[11].

69 Circulating microRNAs appear to be mobile regulatory elements of this senectome-network and,
70 currently, have been grouped into 4 families based on shared action targets: the microRNA family -
71 154, -17, -515 and -30[11].

72 Moreover, among the mechanisms of senescence alternative splicing is indicated[25,26]. It's known
73 that under stress, cholinergic transcription is modified[27] through post-transcriptional
74 mechanisms[28] involving the production of proteins with different and even opposite functions
75 starting from a common primary transcript, via alternative splicing[29,30]. This process would
76 appear to be regulated by microRNAs 134 and 183 through the SC35 splicing factor[31].

77 It is interesting to note that the same microRNAs are hyper-expressed during an acute coronary
78 syndrome[32]-[33] and in some oncologic pathologies[34].

79 Given these premises, as we have recently described how the expression of some circulating
80 microRNAs linked to inflammation varies in relation to psychological relaxation[21], we designed
81 this study to verify a possible change even in serum levels of 4 senectome micro-RNAs (SE-miRNAs),
82 representative of the 4 families described above (respectively miR-20 for -154 family, miR-30, miR-
83 410 for -17 family, and miR-515) [11].

84 To validate our observations we also tested the activity of telomerase in leukocyte precursors
85 (Peripheral blood mononuclear cells-PBMCs). We wondered if the practice of RR could also

86 determine a coherent change in the circulating levels of the alternative splicing microRNAs 134 and
87 183.

88 **2. Results**

89 In figures 3 to 9 are reported the variations of the microRNAs analyzed and telomerase activity in
90 PBMCs.

91 We want to highlight the opposite variations in miRNAs changes during the 20 minutes sessions
92 between RELAXATION RESPONSE group and CONTROL group ($p<0.01$, Mann-Whitney test of the
93 delta (PRE-POST) comparisons at every timepoint). On the other hand, similar behavior seems to be
94 present between patients and healthy volunteers performing the RR ($p>0.05$ Mann-Whitney test of
95 the delta (PRE-POST) comparisons at every timepoint).

96 **2.1 SE-miRNAs (miRNA-20, miRNA-30, miRNA-410, miRNA-515)**

97 The RR results in a significative increasing of miRNA-20 and -30 ($p<0.01$ Wilcoxon test at every time
98 point), and in a significant reduction of microRNA-410, -515 ($p<0.01$ Wilcoxon test at every time
99 point) both in patients and healthy volunteers, with opposite significant behavior in CONTROLS
100 ($p<0.01$ Wilcoxon test at every time point).

101 **2.2 Telomerase activity**

102 Telomerase activity seems to increase during the RR sessions ($p<0.01$ Wilcoxon test at every time
103 point) both in patients and in healthy volunteers. No significant variation happens in CONTROLS
104 ($p>0.05$ Wilcoxon test at every time point).

105 **2.3 Alternative splicing miRNAs (miRNA-134, miRNA-183)**

106 During the RR sessions both miRNA-134 and -183 seem to significantly decrease both in patients and
107 healthy volunteers ($p<0.01$ Wilcoxon test at every timepoint) with opposite behavior in CONTROLS
108 ($p<0.01$ Wilcoxon test at every time point).

109

110 **Figure 3 miRNA-20.** In light blue the results after the initial 4 days of RR training, in light violet after 6
 111 months of regular practice of RR at home and in orange after 12 months (boxes with dashed lines represent
 112 the values immediately after the RR session or 20 minutes of waiting in case of CONTROLS). It is possible to
 113 notice in every session the significant increasing of miRNA-20 with RR with opposite behavior in
 114 CONTROLS ($p<0.01$ Wilcoxon test at every timepoint).

115

116 **Figure 4 miRNA-30.** In light blue the results after the initial 4 days of RR training, in light violet after 6
 117 months of regular practice of RR at home and in orange after 12 months (boxes with dashed lines represent

118 the values immediately after the RR session or 20 minutes of waiting in case of CONTROLS). It is possible to
119 notice in every session the significant increasing of miRNA-30 with RR with opposite behavior in
120 CONTROLS ($p<0.01$ Wilcoxon test at every timepoint).

121

122 **Figure 5 miRNA-410.** In light blue the results after the initial 4 days of RR training, in light violet after 6
123 months of regular practice of RR at home and in orange after 12 months (boxes with dashed lines represent
124 the values immediately after the RR session or 20 minutes of waiting in case of CONTROLS). It is possible to
125 notice in every session the significant decreasing of miRNA-410 with RR with opposite behavior in
126 CONTROLS ($p<0.01$ Wilcoxon test at every timepoint).

127
128 **Figure 6 miRNA-515.** In light blue the results after the initial 4 days of RR training, in light violet after 6
129 months of regular practice of RR at home and in orange after 12 months (boxes with dashed lines represent
130 the values immediately after the RR session or 20 minutes of waiting in case of CONTROLS). It is possible to
131 notice in every session the significant decreasing of miRNA-515 with RR with opposite behavior in
132 CONTROLS ($p<0.01$ Wilcoxon test at every timepoint).

133
134 **Figure 7 Telomerase activity in PBMCs.** In light blue the results after the initial 4 days of RR training, in
135 light violet after 6 months of regular practice of RR at home and in orange after 12 months (boxes with dashed
136 lines represent the values immediately after the RR session or 20 minutes of waiting in case of CONTROLS).
137 It is possible to notice in every session the significant increasing of telomerase activity with RR ($p<0.01$)

138 Wilcoxon test at every timepoint). No significant variation seems to happen in CONTROLS ($p>0.05$)
139 Wilcoxon test at every timepoint).

140
141 **Figure 8 miRNA-134.** In light blue the results after the initial 4 days of RR training, in light violet after 6
142 months of regular practice of RR at home and in orange after 12 months (boxes with dashed lines represent
143 the values immediately after the RR session or 20 minutes of waiting in case of CONTROLS). It is possible to
144 notice in every session the significant decreasing of miRNA-134 with RR with opposite behavior in
145 CONTROLS ($p < 0.01$ Wilcoxon test at every timepoint).

146
147 **Figure 9 miRNA-183.** In light blue the results after the initial 4 days of RR training, in light violet after 6
148 months of regular practice of RR at home and in orange after 12 months (boxes with dashed lines represent
149 the values immediately after the RR session or 20 minutes of waiting in case of CONTROLS). It is possible to
150 notice in every session the significant decreasing of miRNA-183 with RR whit opposite behavior in
151 CONTROLS ($p<0.01$ Wilcoxon test at every timepoint).

152 **3. Discussion**

153 The “stress response” and the RR represent two sides of the same coin: the continuous process of
154 adaptation to the environment that the brain must organize. The mechanism that connects the mind
155 to cellular functions is still unknown but recently it has been seen that a process of cellular senescence
156 can be favored by a condition of psychological stress or slowed down by relaxation. The orientation
157 of mental processes, either towards stress or towards relaxation, can impact cellular aging through at
158 least 3 main recognized pathways: the immune system[35,36], the oxidative balance[37,38]-[39] and
159 the activity of telomerase[40].

160 Telomerase is a cellular enzyme that adds the necessary telomeric DNA (T₂AG₃ repeats) to the 3'-end
161 of the telomeres, protecting their degeneration[41].

162 The activity of this enzyme, together with the length of the telomeres, represent consolidated markers
163 of cellular aging[42]. However, compared to telomere length, telomerase function seems to correlate
164 more faithfully with stress-related psychological mechanisms[42]. Stress leads to a decrease in its
165 activity[10] while relaxation favors its functioning[43], as our results seem to confirm.

166 Recently, a substantial role for circulating microRNAs in regulating senescence has emerged[11],
167 although we are only at the beginning of the discoveries[44] about their precise action of co-regulation
168 of multiple target genes in different metabolic pathways[45]. They are 20-28 nucleotide non-coding
169 RNAs encoded in the genome able to repress or degrade target mRNAs of proteins responsible for
170 different signaling pathways[46], finely regulating various biological processes[47].

171 Currently, there seem to be 4 families of SE-miRNAs (-154, -17, -515 and -30) that regulate the
172 senescence process by modifying the expression of genes related to growth, cell differentiation and

173 migration, angiogenesis, apoptosis, DNA repair, calcium metabolism, oxidative stress and telomere
174 homeostasis[11].

175 In our work we considered one representative SE-miRNAs for each of these families (respectively
176 miR-20 for -154 family, miR-410 for -17 family, miR-30 and miR-515) and our data seem to describe a
177 rapid change in their expression according to the psychological orientation of an individual (in our
178 case as a function of relaxation). This variation, reverberating in specific signaling pathways (still
179 under study[47]), including that of telomerase, could likely alter the cellular behavior favoring its
180 homeostasis or its functional degeneration and senescence.

181 Among the mechanisms of senescence alternative splicing is indicated[25,26]. As it has been
182 demonstrated, in the animal model, that miRNAs 134 and 183 vary in acute stress and can alter
183 cholinergic neurotransmission via alternative splicing[31], our data seem to further expand this
184 evidence by describing a counter-regulation of the same microRNAs with relaxation in humans. We
185 speculate that this variation could in turn act on the SC35 factor favoring in the brain the alternative
186 splicing of the acetylcholesterase transcript associated to the synapse instead of the soluble form
187 linked to stress[31]. This can be very interesting if we consider that it has already been shown that
188 during relaxation the levels of cholinergic neurotransmitters vary[48].

189 Moreover, the action of microRNAs 134 and 183 does not stop only at the brain but involves different
190 organs in different pathologies (<http://mirandola.iit.cnr.it/visualizations.php>).

191 Therefore, the specific action of the mediators considered in this work and the fact that they seem to
192 vary according to a (stress)-relaxation condition, could also mean that the structural alteration of the
193 proteins underlying many chronic-degenerative pathologies could be linked not to alleged "errors in
194 the genome" but to post-transcriptional epigenetic mechanisms partly linked to individual
195 psychological activity[49].

196 The results described in this paper could be very important from a preventive and therapeutic point
197 of view. In fact, chronic/degenerative diseases represent one of the main challenges of modern
198 medicine and one of the most significant costs for world health systems[50]. Many of these conditions,
199 characterized by early cellular senescence, recognize a condition of chronic stress at their origin[8].
200 In perspective, the evidence of a possible reversibility or at least of a slowing of this condition could
201 be really considerable, even if the actual clinical implications of our observations remain to be
202 extensively verified further[51].

203 Finally, our data seem to highlight the absolute need to pay close attention to the possible post-
204 transcriptional regulation of the genome linked to the psychic activity of a subject involved in any
205 future scientific study in order not to create false data associations. It seems that we cannot properly
206 understand the functioning of the body without the mind and of the mind without the body.

207 4. Materials and Methods

208 4.1 Study Design

209 We collected a serum samples of 120 subjects following an approved protocol (Comitato Etico
210 per la Sperimentazione Clinica-Azienda Sanitaria di Padova; protocol number 3487/AO/15 -
211 13/7/2015)[20]. Briefly, we enrolled 90 consecutive patients after myocardial infarction and 30 healthy
212 controls. 30 patients were taught to meditate, 30 to appreciate music and 30 did not carry out any
213 intervention and served as controls. In order to rule out that the disease state could interfere with the
214 relaxation effect, we enrolled 30 healthy volunteers (15 were trained to meditate and 15 had music
215 appreciation). The practices of meditation and music appreciation are able to produce the so called

216 Relaxation Response (RR) in the same way[52]. The details of the RR techniques that we used and the
217 description of their pathophysiological mechanism is described in our previous works [20][21].

218 After the initial four-days-training, after 6 and 12 months of RR practice, we collected a blood
219 sample immediately before and after the relaxation session (according to the scheme reported in
220 figure 1) in order to describe any variation of the markers object of this study.

221

222 **Figure 1 The study design.** Explanation in the text. RR: Relaxation Response. RR 20 min: after 4 days of
223 training, each subject relaxes through meditation or music appreciation for 20 minutes. A blood sample is
224 taken immediately before and immediately after. The acute variation of the studied parameters can be
225 attributed to the practice of relaxation according to the used methods because the precise timing of blood
226 sampling (before and immediately after the end of the session) prevents any other influences. All groups were
227 subjected to the same environmental conditions: in particular, also the control patients were taken in our
228 classroom for 20 minutes and were not subjected to any intervention. We simply asked them to relax and
229 most of them sat down with eyes closed. For more details please see our previous works[20,21].

230 Clear variation of the physical characteristics of the serum samples (figure 2), was observed.

231

232 *Figure 2. Variation of the physical characteristics of the plasma of the same patient during 20 min*
233 *of meditation. On the left: the blood sample (after 4 min of centrifugation at 5000 rpm) before meditation is*
234 *opalescent. On the right, the blood sample immediately after meditation is clearer. The patient was fasting for*
235 *more than 5 h before meditating.*

236 According to Benson's researches[52] and to our previous study [20,21], there are no significant
237 differences between relaxation techniques. Therefore, we merged into a single "intervention" group
238 (called "RELAXATION RESPONSE") all patients treated with meditation and music and into a single
239 "intervention healthy controls" group (called "RELAXATION RESPONSE HEALTHY CONTROLS")
240 all healthy subjects. Finally, the patients that did not carry out any intervention constituted the
241 "CONTROLS" group. We emphasize that our work aims to study the RR using two conditioning
242 techniques, meditation and music, which have to be considered as two ways leading to the same
243 relaxation effect[52]. Therefore, even from a strictly methodological point of view, we used a unique
244 technique -precisely the RR-, from which also the need to unite in a single "intervention group" the
245 treated subjects.

246 Indeed, all subjects enrolled in the study have continued the practice at home, twice a day, as they
247 taught. During the follow-up period, each subject reported to have pleasantly performed more than
248 80% of the meditation or music listening sessions.

249 **4.2 Markers analysis**

250 MicroRNAs were analyzed following the same procedure previously described[21]. Briefly, total
251 RNA was isolated from plasma by miRCURY™ RNA Isolation kit-Biofluids (Exiqon, Denmark),
252 following the manufacturer's instructions. RNA was treated with rDNase (Exiqon) before reverse
253 transcription (RT). For miRNAs expression, 10 ng of RNA was reversely transcribed using miRCURY
254 LNATM Universal RT microRNA PCR reverse transcription kit (Exiqon) according to the given
255 protocol. miRNAs were detected using ExiLENT SYBR® Green master mix (Exiqon) and miRCURY

256 LNATM Universal RT microRNA PCR LNATM PCR primers set (Exiqon) in a Bio-Rad CFX96 Real
257 Time PCR detection system. A negative control containing all reagents but no cDNA template was
258 included in all runs. The specific primers were (Exiqon): hsa-miR-20-3p, has-miR-30-5p, hsa-miR-410-
259 5p, hsa-miR-515-5p, hsa-miR-134-5p, hsa-miR-183-5p. We used hsa-miR-103a-3p as stably expressed
260 miRNA and reference gene based on the advice given by the primer manufacturer. Validation of
261 specificity of Real-Time PCR assay was performed by melt-curve analysis. For each target miRNA, a
262 calibration curve was generated with threshold cycle (Cq) values from serial dilutions of cDNA (from
263 106 to 10 copies/reaction) to determine reaction efficiencies, linearity, detection and quantification
264 limits. Data analyses were performed with the Bio-Rad CFX Manager. The comparative cycle
265 threshold method ($\Delta\Delta Cq$), which compares the difference between groups in cycle threshold values,
266 was used to obtain the relative fold change of miRNA expression.

267 PBMCs were obtained from fresh whole blood as described previously in detail[20], and telomerase
268 activity was assayed with the commercially available kit, TRAPeze® (Chemicon, USA). The reaction
269 was carried out according to the TRAPeze kit manual following strictly the procedure described in
270 literature by Jacobs et al[22].

271 4.3 Statistical analysis

272 Data are expressed as median and interquartile range (variables don't have a normal distribution as
273 assessed by the Shapiro-Wilk test). The comparison between the pre-post intervention changes was
274 performed by means of Wilcoxon test. The comparison between RELAXATION RESPONSE group
275 and CONTROLS and RELAXATION RESPONSE group and RELAXATION RESPONSE HEALTHY
276 CONTROLS was performed by means of the Mann-Whitney test. An initial comparison between
277 groups was performed by means of Kruskal-Wallis test for independent samples or by Friedman test
278 for paired data. Bivariate correlation was performed by Spearman test. Statistical significance was
279 assumed if the null hypothesis could be rejected at $p=0.05$. The statistical analysis was performed
280 using software SPSS version 22.0 (Chicago, SPSS, Inc., Chicago, IL).

281 We focused our analysis on the single follow-up sessions and we did not compare the basal values of
282 the markers over time because other factors (other than RR) could have influenced the one year trend
283 of the markers (alimentation, physical activity, smoking, different levels of stress between people
284 etc.).

285

286 **Author Contributions:** "Conceptualization, CDL.; methodology, CDL.; formal analysis, CDL, FT.; investigation:
287 CDL, LB, MM; resources: FT, SI, MP.; data curation, CDL, LB, MM; writing—original draft preparation, CDL;
288 writing—review and editing, CDL, FT.; supervision, FT, SI; funding acquisition, FT, SI. All authors have read
289 and agreed to the published version of the manuscript.

290 **Funding:** this research received no external funding, the entire study was funded by the Department of Cardiac,
291 Thoracic and Vascular Sciences, Padua University School of Medicine.

292 **Acknowledgments:** we thank the Pneumomeditazione© teachers and the Entolé staff for the recording of audio
293 files used for meditation and for their support; the meditation music used in this study was composed by Paolo
294 Spoladore.

295 **Conflicts of Interest:** the authors declare no conflict of interest.

296 References

- 297 1. McEwen, B.S. Protective and damaging effects of stress mediators. *N. Engl. J. Med.* **1998**, *338*, 171–9,
298 doi:10.1056/NEJM199801153380307.
- 299 2. Segerstrom, S.C.; Miller, G.E. Psychological Stress and the Human Immune System: A Meta-Analytic
300 Study of 30 Years of Inquiry. *Psychol. Bull.* **2004**, *130*, 601–630, doi:10.1037/0033-2909.130.4.601.

301 3. McEwen, B.S. Physiology and Neurobiology of Stress and Adaptation: Central Role of the Brain. *Physiol.*
302 *Rev.* **2007**, *87*, 873–904, doi:10.1152/physrev.00041.2006.

303 4. Vyas, A.; Mitra, R.; Shankaranarayana Rao, B.S.; Chattarji, S. Chronic stress induces contrasting patterns
304 of dendritic remodeling in hippocampal and amygdaloid neurons. *J. Neurosci.* **2002**, *22*, 6810–8,
305 doi:20026655.

306 5. Walker, D.L.; Davis, M. Role of the extended amygdala in short-duration versus sustained fear: a tribute
307 to Dr. Lennart Heimer. *Brain Struct. Funct.* **2008**, *213*, 29–42, doi:10.1007/s00429-008-0183-3.

308 6. Wood, G.E.; Young, L.T.; Reagan, L.P.; McEwen, B.S. Acute and chronic restraint stress alter the
309 incidence of social conflict in male rats. **2003**, doi:10.1016/S0018-506X(02)00026-0.

310 7. Tawakol, A.; Ishai, A.; Takx, R.A.; Figueroa, A.L.; Ali, A.; Kaiser, Y.; Truong, Q.A.; Solomon, C.J.;
311 Calcagno, C.; Mani, V.; et al. Relation between resting amygdala activity and cardiovascular events: a
312 longitudinal and cohort study. *Lancet* **2017**, *389*, 834–845, doi:10.1016/S0140-6736(16)31714-7.

313 8. Chrousos, G.P. Stress and disorders of the stress system. *Nat. Rev. Endocrinol.* **2009**, *5*, 374–381,
314 doi:10.1038/nrendo.2009.106.

315 9. Steptoe, A.; Kivimäki, M. Stress and cardiovascular disease. *Nat. Rev. Cardiol.* **2012**, *9*, 360–370,
316 doi:10.1038/nrcardio.2012.45.

317 10. Epel, E.S.; Blackburn, E.H.; Lin, J.; Dhabhar, F.S.; Adler, N.E.; Morrow, J.D.; Cawthon, R.M. Accelerated
318 telomere shortening in response to life stress. *Proc. Natl. Acad. Sci. U. S. A.* **2004**, *101*, 17312–5,
319 doi:10.1073/pnas.0407162101.

320 11. Bilsland, A.E.; Revie, J.; Keith, W. MicroRNA and senescence: the senectome, integration and distributed
321 control. *Crit. Rev. Oncog.* **2013**, *18*, 373–90.

322 12. Dal Lin, C.; Poretto, A.; Scodro, M.; Perazzolo Marra, M.; Iliceto, S.; Tona, F. Coronary microvascular
323 and endothelial function regulation: Crossroads of psychoneuroendocrine immunitary signals and
324 quantum physics [Part A-B and C]. *J. Integr. Cardiol.* **2015**, *1*, 132–209, doi:10.15761/JIC.1000135.

325 13. Fox, K.C.R.; Dixon, M.L.; Nijeboer, S.; Girn, M.; Floman, J.L.; Lifshitz, M.; Ellamil, M.; Sedlmeier, P.;
326 Christoff, K. Functional neuroanatomy of meditation: A review and meta-analysis of 78 functional
327 neuroimaging investigations. *Neurosci. Biobehav. Rev.* **2016**, *65*, 208–228,
328 doi:10.1016/j.neubiorev.2016.03.021.

329 14. Lazar, S.W.; Bush, G.; Gollub, R.L.; Fricchione, G.L.; Khalsa, G.; Benson, H. Functional brain mapping of
330 the relaxation response and meditation. *Neuroreport* **2000**, *11*, 1581–1585, doi:10.1097/00001756-
331 200005150-00042.

332 15. Lazar, S.W.; Kerr, C.E.; Wasserman, R.H.; Gray, J.R.; Greve, D.N.; Treadway, M.T.; McGarvey, M.;
333 Quinn, B.T.; Dusek, J.A.; Benson, H.; et al. Meditation experience is associated with increased cortical
334 thickness. *Neuroreport* **2005**, *16*, 1893–1897, doi:10.1097/01.wnr.0000186598.66243.19.

335 16. Hölzel, B.K.; Carmody, J.; Vangel, M.; Congleton, C.; Yerramsetti, S.M.; Gard, T.; Lazar, S.W.
336 Mindfulness practice leads to increases in regional brain gray matter density. *Psychiatry Res.* -
337 *Neuroimaging* **2011**, *191*, 36–43, doi:10.1016/j.pscychresns.2010.08.006.

338 17. Hölzel, B.K.; Carmody, J.; Evans, K.C.; Hoge, E.A.; Dusek, J.A.; Morgan, L.; Pitman, R.K.; Lazar, S.W.
339 Stress reduction correlates with structural changes in the amygdala. *Soc. Cogn. Affect. Neurosci.* **2009**, *5*,
340 11–17, doi:10.1093/scan/nsp034.

341 18. Bottaccioli, F.; Bottaccioli, A.G. *Psiconeuroendocrinologia e scienza della cura integrata. Il manuale*;
342 Edra S.p.A, 2017; ISBN 978-88-214-3766-3.

343 19. Levine, G.N.; Lange, R.A.; Bairey-Merz, C.N.; Davidson, R.J.; Jamerson, K.; Mehta, P.K.; Michos, E.D.;
344 Norris, K.; Ray, I.B.; Saban, K.L.; et al. Meditation and Cardiovascular Risk Reduction. *J. Am. Heart Assoc.*
345 **2017**, *6*, e002218, doi:10.1161/JAHA.117.002218.

346 20. Dal Lin, C.; Marinova, M.; Rubino, G.; Gola, E.; Brocca, A.; Pantano, G.; Brugnolo, L.; Sarais, C.; Cucchini,
347 U.; Volpe, B.; et al. Thoughts modulate the expression of inflammatory genes and may improve the
348 coronary blood flow in patients after a myocardial infarction. *J. Tradit. Complement. Med.* **2018**, *8*, 150–
349 163, doi:10.1016/j.jtcme.2017.04.011.

350 21. Dal Lin, C.; Gola, E.; Brocca, A.; Rubino, G.; Marinova, M.; Brugnolo, L.; Plebani, M.; Iliceto, S.; Tona, F.
351 miRNAs may change rapidly with thoughts: The Relaxation Response after myocardial infarction. *Eur.*
352 *J. Integr. Med.* **2018**, *20*, 63–72, doi:10.1016/j.eujim.2018.03.009.

353 22. Jacobs, T.L.; Epel, E.S.; Lin, J.; Blackburn, E.H.; Wolkowitz, O.M.; Bridwell, D.A.; Zanesco, A.P.; Aichele,
354 S.R.; Sahdra, B.K.; MacLean, K.A.; et al. Intensive meditation training, immune cell telomerase activity,
355 and psychological mediators. *Psychoneuroendocrinology* **2011**, *36*, 664–81,
356 doi:10.1016/j.psyneuen.2010.09.010.

357 23. Conklin, Q.A.; King, B.G.; Zanesco, A.P.; Lin, J.; Hamidi, A.B.; Pokorny, J.J.; Álvarez-López, M.J.; Cosín-
358 Tomás, M.; Huang, C.; Kaliman, P.; et al. Insight meditation and telomere biology: The effects of
359 intensive retreat and the moderating role of personality. *Brain. Behav. Immun.* **2018**, *70*,
360 doi:10.1016/j.bbi.2018.03.003.

361 24. Lavretsky, H.; Epel, E.S.; Siddarth, P.; Nazarian, N.; Cyr, N.S.; Khalsa, D.S.; Lin, J.; Blackburn, E.; Irwin,
362 M.R. A pilot study of yogic meditation for family dementia caregivers with depressive symptoms: effects
363 on mental health, cognition, and telomerase activity. *Int. J. Geriatr. Psychiatry* **2013**, *28*, 57–65,
364 doi:10.1002/gps.3790.

365 25. Deschênes, M.; Chabot, B. The emerging role of alternative splicing in senescence and aging. *Aging Cell*
366 **2017**, *16*, 918–933, doi:10.1111/acel.12646.

367 26. Meshorer, E.; Soreq, H. Pre-mRNA splicing modulations in senescence. *Aging Cell* **2002**, *1*, 10–16,
368 doi:10.1046/j.1474-9728.2002.00005.x.

369 27. Soreq, H.; Seidman, S. Acetylcholinesterase — new roles for an old actor. *Nat. Rev. Neurosci.* **2001**, *2*, 294–

370 302, doi:10.1038/35067589.

371 28. Meshorer, E.; Bryk, B.; Toiber, D.; Cohen, J.; Podoly, E.; Dori, A.; Soreq, H. SC35 promotes sustainable
372 stress-induced alternative splicing of neuronal acetylcholinesterase mRNA., doi:10.1038/sj.mp.4001735.

373 29. Meshorer, E.; Soreq, H. Virtues and woes of AChE alternative splicing in stress-related
374 neuropathologies. *Trends Neurosci.* **2006**, *29*, 216–224, doi:10.1016/j.tins.2006.02.005.

375 30. Stamm, S.; Ben-Ari, S.; Rafalska, I.; Tang, Y.; Zhang, Z.; Toiber, D.; Thanaraj, T.A.; Soreq, H. Function of
376 alternative splicing. *Gene* **2005**, *344*, 1–20, doi:10.1016/J.GENE.2004.10.022.

377 31. Meerson, A.; Cacheaux, L.; Goosens, K.A.; Sapolsky, R.M.; Soreq, H.; Kaufer, D. Changes in Brain
378 MicroRNAs Contribute to Cholinergic Stress Reactions. *J. Mol. Neurosci.* **2010**, *40*, 47–55,
379 doi:10.1007/s12031-009-9252-1.

380 32. Gacorń, J.; Kabłak-Ziembicka, A.; Stępień, E.; Enguita, F.J.; Karch, I.; Derlaga, B.; Żmudka, K.; Przewłocki,
381 T. Decision-making microRNAs (miR-124,-133a/b,-34a and-134) in patients with occluded target vessel
382 in acute coronary syndrome. *Kardiol. Pol.* **2016**, *74*, 280–288, doi:10.5603/KP.a2015.0174.

383 33. Tong, K.-L.; Mahmood Zuhdi, A.; Wan Ahmad, W.; Vanhoutte, P.; de Magalhaes, J.; Mustafa, M.; Wong,
384 P.-F. Circulating MicroRNAs in Young Patients with Acute Coronary Syndrome. *Int. J. Mol. Sci.* **2018**, *19*,
385 1467, doi:10.3390/ijms19051467.

386 34. Yuan, D.; Li, K.; Zhu, K.; Yan, R.; Dang, C. Plasma miR-183 predicts recurrence and prognosis in patients
387 with colorectal cancer. *Cancer Biol. Ther.* **2015**, *16*, 268–75, doi:10.1080/15384047.2014.1002327.

388 35. Fleshner, M. Stress-evoked sterile inflammation, danger associated molecular patterns (DAMPs),
389 microbial associated molecular patterns (MAMPs) and the inflammasome. *Brain. Behav. Immun.* **2013**, *27*,
390 1–7, doi:10.1016/j.bbi.2012.08.012.

391 36. Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. *Nat. Rev. Immunol.* **2010**,
392 10, 826–837, doi:10.1038/nri2873.

393 37. Wadley, A.J.; Veldhuijzen van Zanten, J.J.C.S.; Paine, N.J.; Drayson, M.T.; Aldred, S. Underlying
394 inflammation has no impact on the oxidative stress response to acute mental stress. *Brain. Behav. Immun.*
395 **2014**, *40*, 182–90, doi:10.1016/j.bbi.2014.03.009.

396 38. Sivoňová, M.; Žitňanová, I.; Hlinčíková, L.; Škodáček, I.; Trebatická, J.; Ďuračková, Z. Oxidative Stress
397 in University Students during Examinations. *Stress* **2004**, *7*, 183–188, doi:10.1080/10253890400012685.

398 39. Huang, C.-J.; Franco, R.L.; Evans, R.K.; Acevedo, E.O. Effects of mental challenge on neurovascular
399 responses in healthy male subjects. *Int. J. Psychophysiol.* **2010**, *78*, 225–230,
400 doi:10.1016/j.ijpsycho.2010.08.001.

401 40. Epel, E.S. Psychological and metabolic stress: A recipe for accelerated cellular aging? *Hormones* **2009**, *8*,
402 7–22.

403 41. Chan, S.R.W.L.; Blackburn, E.H. Telomeres and telomerase. *Philos. Trans. R. Soc. London. Ser. B Biol. Sci.*
404 2004, 359, 109–122, doi:10.1098/rstb.2003.1370.

405 42. Wolkowitz, O.M.; Mellon, S.H.; Lindqvist, D.; Epel, E.S.; Blackburn, E.H.; Lin, J.; Reus, V.I.; Burke, H.;
406 Rosser, R.; Mahan, L.; et al. PBMC telomerase activity, but not leukocyte telomere length, correlates with
407 hippocampal volume in major depression. *Psychiatry Res. Neuroimaging* 2015, 232, 58–64,
408 doi:10.1016/j.psychresns.2015.01.007.

409 43. Schutte, N.S.; Malouff, J.M. A meta-analytic review of the effects of mindfulness meditation on
410 telomerase activity. *Psychoneuroendocrinology* 2014, 42, 45–48, doi:10.1016/j.psyneuen.2013.12.017.

411 44. Feliciano, A.; Sánchez-Sendra, B.; Kondoh, H.; LLeonart, M.E. MicroRNAs Regulate Key Effector
412 Pathways of Senescence. *J. Aging Res.* 2011, 2011, 1–11, doi:10.4061/2011/205378.

413 45. Kosik, K.S. MicroRNAs and cellular phenotypy. *Cell* 2010, 143, 21–26.

414 46. Li, Q.J.; Chau, J.; Ebert, P.J.R.; Sylvester, G.; Min, H.; Liu, G.; Braich, R.; Manoharan, M.; Soutschek, J.;
415 Skare, P.; et al. miR-181a Is an Intrinsic Modulator of T Cell Sensitivity and Selection. *Cell* 2007, 129, 147–
416 161, doi:10.1016/j.cell.2007.03.008.

417 47. Russo, F.; Di Bella, S.; Nigita, G.; Macca, V.; Laganà, A.; Giugno, R.; Pulvirenti, A.; Ferro, A. miRandola:
418 Extracellular Circulating MicroRNAs Database. *PLoS One* 2012, 7, doi:10.1371/journal.pone.0047786.

419 48. Wallace, R.K. *Physiology of Consciousness*. Maharishi International University Press, Fairfield, Iowa.; 1993;

420 49. Capitanio, J.P. Personality and disease. *Brain. Behav. Immun.* 2008, 22, 647–50,
421 doi:10.1016/j.bbi.2008.02.002.

422 50. Fani Marvasti, F.; Stafford, R.S. From Sick Care to Health Care — Reengineering Prevention into the U.S.
423 System. *N. Engl. J. Med.* 2012, 367, 889–891.

424 51. Pavanello; Campisi; Tona; Dal Lin, C.; Iliceto Exploring Epigenetic Age in Response to Intensive
425 Relaxing Training: A Pilot Study to Slow Down Biological Age. *Int. J. Environ. Res. Public Health* 2019, 16,
426 3074, doi:10.3390/ijerph16173074.

427 52. Benson, H.; Proctor, W. *Relaxation Revolution. Enhancing your personal health through the science and genetics*
428 *of mind body healing.*; Scribner, Ed.; 1 edition.; 2011;

429