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0. Introduction

The importance of the Laplace transform (LT) in many mathematical and scientific areas is
unquestionable. Motivated by the Heaviside’s operational calculus [1], the LT became an indispensable
tool, not only in mathematics, but also in physics and engineering. The unilateral version of the
LT has gained preference in a large part of the applications, but the bilateral LT has increased its
influence in the last 40 years in parallel with the development of the area of signals and systems. The
advantage of the unilateral (ULT) over the bilateral (BLT) version of the LT is the ability of introducing
the initial-conditions in differential equations. However, if this advantage can be overcome, there is no
other particular reason for using the ULT and the BLT seems an adequate strategy to follow.

In this paper, we compare the two versions of the LT by reviewing, step by step, the construction
of these transforms in the one-dimensional (1D) case. We show how to introduce the initial-conditions
without requiring the adoption of the ULT. Moreover, during the process we consider a new general
formulation including fractional order differential equations.

The formulation of the two-dimensional LT (2D-LT) is then essayed by following the steps
exercised for the 1D-BLT and their properties of the 2D-LT are discussed. Additionally, 2D differential
equations representing linear systems and the initial conditions for the 2D linear systems are also
analyzed.

The paper outlines as follows. Section 1 presents a brief historical review regarding the
developments of the ULT and BLT. Furthermore, proceed to their introduction, properties descriptions
and comparison. The initial-condition problem is studied and a general solution is proposed with base
on the BLT. Section 2 addresses the 2D-BLT and its properties. Section 3 discusses the definition of
2D linear systems, and the concept of 2D fractional derivatives. Moreover, the 2D initial-condition
problem is studied and a solution is proposed. Finally, Section 4 draws the conclusions.
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1. Continuous-time Laplace transforms

1.1. One-sided Laplace transform

The one-sided or unilateral Laplace transform (ULT) was conceived by Euler (1763) as a tool for
solving some differential equations [2–4]. Nonetheless, the first real use of such operator was brought
about by Laplace in the scope of several studies (1779-1812), with main focus on probability history.
This transform was studied and used by several other mathematicians like Lagrange, Lacroix, Fourier,
Cauchy, Abel, and Liouville [3,4]. It is interesting to point out that the first major application of the
2D-LT was developed by Cauchy [3]. It is also important to highlight the work of Liouville because
he used the ULT as a base for his definitions of fractional derivatives [5–7]. However, Liouville had a
limitation in his calculations since the inverse LT was not known at that time. We do not mean that
formulae similar to what is known today as inversion integral were not yet established. In fact, Petzval
and Riemann presented integral formulation very similar to the so-called Bromwich inversion formula,
but apparently they were not aware that it was really a LT inverse [3]. This fact was discovered in
1926, in the sequel of Bromwich’s work, by P. Lévy [8] and also by March (1927). In the last two
decades of the XIX century, the ULT was rediscovered by Poincaré and attracted the interest of other
mathematicians, being important to refer Pincherle that formulated his transform in the complex plane
(1887) [4]. Picard proposed a 2D-LT to solve partial differential equations (1888). Soon later, the unicity
and convergence problems associated to the LT were considered by Lerch (1892) [4]. Very important
are the works of Mellin in the last decade of the XIX century, addressing the relation between the
Laplace and the Mellin transforms. Meanwhile, the Heaviside’s Operational Calculus (1892-1912)
created a great stir, but in view of the quality and importance of its results, there was a need for a
solid mathematical justification [9]. To achieve such objective several researchers invested considerable
efforts. The most interesting were based on the LT. We highlight the works of Bromwich, with his
integral formulation, Lévy, as referred previously, Carson1, with ULT, Van Der Pol, with the two-sided
LT, and mainly Doetsch with a very critical view of Heaviside’s procedures. In 1937, Doetsch published
a very rigorous, coherent and clear formulation of the ULT and its applications, mainly to differential
equations [10,11]. This book became very popular and somehow imposed the ULT as a “standard”
tool for solving constant coefficient differential equations. We can say that it is “the” LT for most
mathematicians and scientists, even if it poses difficulties in the initial valued problems [12–14].

1.2. The bilateral transform

The two-sided or bilateral Laplace transform (BLT) emerged and developed in an independent
way, and is mainly the result of the efforts of Van der Pol and Bremmer [15]. Their work has several
interesting features:

1. Creates a unified framework that includes the ULT and the Fourier transform (FT) as particular
cases,

2. Gives a justification for Heaviside’s operations, while giving insights into generalizations to the
fractional case [13],

3. Introduces the theory of the 2D-LT.

However, their formulation had a drawback: they used a “p-multiplied” version 15. It is important to
refer two other contributions, one of Paley and Wiener on the FT in the complex plane [16] and another
by Widder that considered both the ULT and BLT in the framework of the Stieltjes integral [17]. These
works were fundamental in asserting the BLT as an independent operator alternative to the ULT. The

1 Carson and Van der Pol used the “p-multiplied” LT F(p) = p
∫

f (t)e−ptdt
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two contributions removed the multiplicative p factor used previously by Carson, Van der Pol and
Bremmer.

We can say that the BLT has several advantages over the ULT, namely [18]:

1. It is more general than the ULT that is a particular case of the first,
2. Offers insight into the nature of system characteristics such as stability, causality, and frequency

response,
3. Allows the study not only of causal systems, but also of the anti-causal and acausal,
4. Includes the FT as particular case.
5. The class of functions to which the BLT can be applied is much larger than the ones that have BLT,
6. Some properties, e.g. derivative and translation, become simplified, when compared with the

ones of ULT.

1.3. Constructing the BLT

The starting point to introduce the BLT is the Fourier identity [15]

h(t) =
1

2π

∫ ∞

−∞
dω eiωt

∫ ∞

−∞
dτ e−iωτh(τ), (1)

where i =
√
−1.

In applications, it is usual to decompose the relation (1) into

F [h(t)] = H(iω) =

∞∫
−∞

h(t)e−iωt dt, ω ∈ R, (2)

and

h(t) = F−1 [X(iω)] =
1

2π

∞∫
−∞

H(iω)eiωt dω, t ∈ R, (3)

that are called analysis equation and synthesis equation, respectively. The integration must be taken in
the sense of the Cauchy principal value. Relation (3) has an interesting interpretation that justifies
the name: a continuous-time function can be expressed as a continuous overlap of elemental sisoids with
infinitesimal complex amplitudes, 1

2π X(ω)dω, and frequencies, ω ∈ ]−∞,+∞[ infinitely close. The function
H(iω) in (42) is the (direct) FT, while h(t) given by (3) is the inverse FT. About the existence of the FT
(2) we can say that:

If h(t) is

1. piecewise continuous,
2. with bounded variation,
3. absolutely integrable (AI),

then the FT exists and the convergence of the integral in (1) is uniform on ω ∈ ]−∞,+∞[ [19,20].
In the scope of the introduction of the BLT, we take (3) and rewrite it as an integral along the

imaginary axis

h(t) =
1

2πi

i∞∫
−i∞

H(s)est ds, t ∈ R. (4)

Therefore, we can generalize it by integrating along any vertical straight line contained in a strip where
H(s) is analytic [16].
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Definition 1. We define the inverse LT by

h(t) = L−1F(s) =
1

2πi

a+i∞∫
a−i∞

H(s)est ds, t ∈ R, (5)

where a ∈ R is called abscissa of convergence. The right hand side represents the Bromwich integral. In the
following we may denote by γ the integration path.

If we interpret this integral as previously for expression (3), then we can say that a function h(t)
can be considered as a superposition of elemental complex exponentials, h(t) = 1

2πi
∫

γ F(s)ds · est. This
result is very interesting because the exponentials are the eigenfunctions of the linear systems.

Definition 2. The direct LT, corresponding to the synthesis equation (5), is obtained from (2) by the substitution
s for iω:

L [h(t)] = H(s) =
∞∫
−∞

h(t)e−st dt, s ∈ C. (6)

We can obtain existence conditions for the BLT, from those of the FT [15,19,21].
Let h(t) be a function

1. Piecewise continuous;
2. With bounded variation;
3. Locally integrable, in the sense that the function is absolutely integrable in any real interval [a, b],

so that
∫ b

a |h(t)|dt < ∞;
4. Of exponential order, or loosely speaking, so that the function does not “grow faster” than a

given exponential, on each side. This means two things. First, that there are real constants A,
a > 0 such that |h(t)| < A · eat, when t is large and negative (say, for t < t1 ∈ R). Second, that
there are real constants B, b > 0 such that |h(t)| < B · ebt, when t is large (say, for t > t2 ∈ R). It
also has to be true that b < a.

Under these conditions, the integral in (6) converges absolutely and uniformly in a vertical strip
in the complex plane defined by b < Re(s) < a where H(s) is analytic. This strip is called region of
convergence (ROC), and the values of the constants a and b are the abscissas of convergence. It is possible
to show that the inversion integral (5) converges to the half sum of the lateral values h(t) = h(t+)+h(t−)

2 ,
for any t ∈ R [15].

Remark 1. The most usual procedure for computing H(s) is based on the decomposition of the integral (6) in
two parts:

L [h(t)] =
∞∫
−∞

h(t)e−st dt =
0∫

−∞

h(t)e−st dt +
∞∫

0

h(t)e−st dt. (7)

Both integrals on the right hand side are one-sided LT. In particular,
∞∫
0

h(t)e−st dt is the common LT

and will be denoted by ULT (1.4). It must be referred that the first and second transforms are convergent for
Re(s) < a, and Re(s) > b, respectively. Therefore, there will exist the BLT of h(t) iff b < a.

Since Euler’s introduction and 1925, the ULT was used without the inversion integral, but
nowadays (5) is the base for solving some non elemental problems. This implies that it is advisable we
show that (5) is really the inverse of (42).
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Theorem 1. Under the existence conditions, expression (5) inverts (6), that is, we have:

1
2πi

a+i∞∫
a−i∞

∞∫
−∞

h(τ)e−sτ dτ est ds = h(t), t ∈ R. (8)

Proof. The inner integral converges absolutely and uniformly for any s in the ROC. Therefore, we can
interchange the operations of integration:

∞∫
−∞

h(τ)
1

2πi

a+i∞∫
a−i∞

e−sτest ds dτ.

Let us consider the inner integral. We can write it as:

1
2πi

a+i∞∫
a−i∞

es(t−τ) ds =
1

2π
ea(t−τ)

+∞∫
−∞

eiω(t−τ) dω = δ(t− τ).

Attending to the properties of the delta distribution, the convolution yields h(t) ∗ δ(t) = h(t) (neutral
element) and we obtain the result.

Remark 2. We can define different time functions f (t) from the same F(s), since we only have to choose
different regions of analyticity for locating the integration path. For example, if F(s) = s

(s−1)(s+2) , then we can
find three analyticity regions, <(s) < −2, −2 < Re(s) < 1, Re(s) > 1 and consequently (5) defines three
different functions.

Remark 3. Let h(t) = 0, t < T ∈ R (called right signal). If we choose t < t1 < 0, then a = ∞ and the
ROC is Re(s) > b. Therefore, the ROC corresponding to a right signal is a right half plane. Similarly, if
h(t) = 0, t > T ∈ R (left signal), then the ROC is a left half plane.

The works of Paley and Wiener [16] aimed to generalize the FT, and that is the reason why they
did not use the name BLT. In fact, they adopted “Fourier transform in the complex domain” and were
paying attention to the behavior in the transform domain. They started from the Plancherel theorem,
that generalizes the FT to functions in L2 (squared integrable), for defining a transform coinciding with
the BLT. However, instead of operational aspects they studied its convergence properties, from which
we must refer [16]:

1. If the region of convergence of F(s) includes the frontiers b ≤ Re(s) ≤ a, then F(s) is completely
defined in that region by the values at that lines, F(a + it) and F(b + it), t ∈ R.

2. F(s) is bounded in the strip a + ε ≤ Re(s) ≤ b− ε, with ε > 0.

The BLT enjoys several properties, most of them easily deduced from the inversion integral. If
F(s) is the LT of f (t), (L f (t) = F(s)) with a given region of convergence, Rc, then the LT has the
following properties2:

1. Linearity/homogeneity
This is obvious, if we consider other function (Lg(t) = G(s))

L [a f (t) + bg(t)] = aF(s) + bG(s), s ∈ Rc. (9)

2 In all the properties the ROC is not defined, since it depends on the function at hand, although the properties are general.
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2. Time derivative
This property depends on the way how we define derivative and its action over the exponential.
As we are working on R we assume that, Grünwad-Letnikov, Liouville (regularized), or
Liouville-Caputo derivatives are used, meaning that, if α ∈ R, then Dαest = sα for Re(s) > 0 or
Re(s) < 0 depending on the causality of the derivative [22]. From (6) we obtain

Dα f (t) =
1

2πi

∫
γ

sαF(s)estds, t ∈ R, (10)

from which we deduce that,
L [Dα f (t)] = sαF(s). (11)

This property is valid for any α complex. The dual of this property reads

L [(−t)α f (t)] = F(α)(s). (12)

This dual property creates a difficulty: the singularity at t = 0.
3. Scale change

It is almost immediate with the substitution of at, a ∈ R, into (5)

L [ f (at)] =
1
|a| F(s/a) (13)

4. Time reversion

L [ f (−t)] = F(−s) (14)

This is a consequence of (13), obtained with a = −1.
5. Time shift

Let a ∈ R. Then
L [ f (t− a)] = e−asF(s) (15)

6. Modulation
This is the dual of the previous property,

L
[
eat f (t)

]
= F(s− a). (16)

Example 1. If f (t) = cos(ω0t), then 1
2 F(s− iω0) +

1
2 F(s + iω0).

7. Convolution
Define, with all the generality, the convolution between two functions f (t) and g(t) by:

f (t) ∗ g(t) =
∫ ∞

−∞
f (τ)g(t− τ)dτ (17)

and insert there (15) to get

f (t) ∗ g(t) =
∫ ∞

−∞
f (τ)

1
2πi

∫
γ

G(s)este−sτdsdτ =
1

2πi

∫
γ

G(s)
[∫ ∞

−∞
f (τ)e−sτdτ

]
ds

suggesting

F(s) = L f (t) =
∫ ∞

−∞
f (τ)e−sτdτ,
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to obtain
L [ f (t) ∗ g(t)] = L [ f (t)]L [g(t)] . (18)

The expression (6) is the analysis equation corresponding to the synthesis equation (5) and is
exactly the BLT.

8. The Abelian initial value theorem

The initial value theorem (IVT) is a very important result when dealing with the LT [11,17,23].
This theorem relates the asymptotic behavior of a causal signal, f (t), as t→ 0+, to the asymptotic
natureof its LT, F(s) = L[ f (t)], as σ = Re(s)→ ∞.

Theorem 2. Suppose that there are two real functions, f (t) and ϕ(t), defined and continuous in a given
interval 0 < t < T, where ϕ(t) is assumed to be positive. The LT of the two functions, denoted F(s) and
Φ(s), respectively, have the right half planes as ROC. Let σ = Re(s). We conclude that:

f (t) ∼ Aϕ(t) for t→ 0 =⇒ F(σ) ∼ AΦ(σ), for σ→ ∞ (19)

In particular, when ϕ(t) = tαε(t) we obtain the following result.

Theorem 3 (The initial-value theorem). Assume that f (t) is a causal signal such that:

• in some neighborhood of the origin, it is a regular distribution, corresponding to an integrable function
• its LT is F(s), with ROC Re(s) > 0.

Also assume that there is a real number β > −1 such that lim
t→0+

f (t)tβ exists and is a finite complex value.

Then

lim
t→0+

f (t)
tβ

= lim
σ→∞

σβ+1F(σ)
Γ(β + 1)

. (20)

The proof of this Theorem can be found in [23] (section 8.6, pages 243–248)
9. The final value theorem

The Abelian final value Theorem (FVT) is the dual of the IVT [11,17,23].

Theorem 4 (The final-value theorem). Under the same assumptions of the IVT, we can state

lim
t→∞

f (t)
tβ

= lim
σ→0+

σβ+1F(σ)
Γ(β + 1)

. (21)

For proof, see [23] (section 8.7, pages 249–251). This result is useful in studying transient responses
of systems. In particular, notice that lim

t→∞
f (t) = lim

σ→0+
σF(σ) that expresses the classical FVT.
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Table 1. Table with BLT pairs.

g(t) Lg(t) = G(s) ROC
δ(t) 1 C

δ(n)(t) sn C
ε(t) 1

s Re(s) > 0
ε(−t) − 1

s Re(s) < 0
tε(t) 1

s2 Re(s) > 0
tN

N! eatε(t) 1
(s−a)N+1 Re(s) > Re(a)

− tN

N! eatε(−t) 1
(s−a)N+1 Re(s) < Re(a)

ta

Γ(a+1) ε(t) 1
sa+1 Re(s) > 0

− ta

Γ(a+1) ε(−t) 1
sa+1 Re(s) < 0

e−|t| 2
1−s2 |Re(s)| < 1

sgn(t)e−|t| − s
1−s2 |Re(s)| < 1

eatε(t) 1
s−a Re(s) > Re(a)

−eatε(−t) 1
s−a Re(s) < Re(a)

ε(t)− ε(t− T) 1−e−sT

s C
cos(ω0t)ε(t) s

s2+ω2
0

Re(s) > 0

sin(ω0t)ε(t) ω0
s2+ω2

0
Re(s) > 0

e−at cos(ω0t)ε(t) (s+a)
(s+a)2+ω2

0
Re(s) > −Re(a)

e−at sin(ω0t)ε(t) ω0
(s+a)2+ω2

0
Re(s) > −Re(a)

1.4. Constructing the ULT

As referred previously in 1.4, the ULT is a particular case of the BLT valid for functions identically
null on R− (frequently using an imprecise term called as “causal functions”). The ULT is defined by

Fu(s) = Lu f (t) =
∫ ∞

0
f (τ)e−sτdτ. (22)

However, its inverse is also given by the Bromwich integral

f (t) =
1

2πi

∫
γ

Fu(s)estε(t)ds, (23)

where the Heaviside unit step, ε(t), is used to highlight that f (t) is defined on R+
0 .

Some properties of the ULT are slightly different from those of the BLT and can be read as:

1. Time derivative
This property is rather different from the corresponding of BLT. Let N be an integer positive
number. We have

LuDN f (t) = sN F(s)−
N−1

∑
k=0

sN−1−k f (k)(0+). (24)

This result has been used to solve initial value problems. In the integral case, we obtain

LD−N f (t) = s−N F(s) (25)

2. Scale change
This property is only valid for a > 0,

L [ f (at)] =
1
a

F(s/a) (26)
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3. Time shift
As the previous property, this is only valid fo a > 0. If a < 0, the property in not valid, which is
inconvenient in applications.

L [ f (t− a)] = e−asF(s) (27)

1.5. The initial condition problem

1.5.1. Solution with the ULT

The derivative property of the ULT is considered as important when solving initial value problems.
In fact, since the works of Doetsch [10,11], the ULT has been used to solve linear differential equations
under a given set of initial-conditions (IC), due to the derivative property (24).
Let us consider a causal stable linear system with transfer function H(s) and assume that the input
is an anti-causal function, g(t) = 0 for t > 0. The output, f (t) is the inverse LT of H(s)G(s). The
initial value problem consists in computing f (t) for t > 0 from the values of g(t) and f (t) and their
derivatives at t = 0 (i.e., the free response). If there is no other input, then we can readily verify that
f (0−) = f (0+), but in general we have g(0−) 6= g(0+) = 0. In case of existing another input for t ≥ 0,
(i.e., forced response) we must compute the outputs separately.

Let us analyze the free response case. Traditionally, the problem has been solved with the help of
(24). However, this relation was obtained under a classic approach and leads to strange results if we
try to use with distributions.

Example 2. Compute the ULT of the derivative of the Heaviside unit step.
From (24), we have

Lu [Dε(t)] = s
1
s
− 1 = 0,

which is obviously an unacceptable result.

Example 3. Let f (t) =
tα−1

Γ(α)
ε(t) with 1

2 < α < 1. Its LT is, for both transforms, equal to F(s) =
1
sα

, Re(s).

Let 0 < β < 1
2 . What is the LT of g(t) = Dβ f (t)?

Using the BLT we deduce immediately that G(s) =
sβ

sα
= sα−β from where we conclude that g(t) =

tα−β−1

Γ(α− β)
ε(t).

The result is not so obvious when we use the ULT, because f (0+) = ∞

Besides this problem, (24) uses expressly the values of the function taken at t = 0+ that is not the
correct option in practical applications. These difficulties led some researchers to propose a redefinition
of the transform as [12,19]

Fu(s) = Lu f (t) =
∫ ∞

0−
f (τ)e−sτdτ, (28)

that leads to

LDN f (t) = sN Fu(s)−
N−1

∑
k=0

sN−1−k f (k)(0−). (29)

However, such formulation is, in the fractional case, incompatible with the Riemann-Liouville and
Caputo derivatives that are defined only for t = 0+ and does not generalize (29) for any real order.
This means that the possible advantage of the ULT over the BLT disappears. On the other hand, (28) is
incoherent with regard to the inversion transform. In fact, to compute the integral using the Cauchy
residue theorem, we need to close the integration path: on the left for t > 0 and on the right for t < 0.
This last case gives a null function, since the integrand is analytic and, consequently, its limit is always
0 as t approaches 0−.
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1.5.2. Solution with the BLT

For now, let us put aside the t = 0+ versus t = 0− problem and consider an application to give
some additional insight for finding the most adequate formulation. Therefore, we have to avoid
becoming tied to a formula that depends on a transform with limitations. Let us return to the general
framework defined by the BLT where a function null for t < 0 can be set as f (t)ε(t). In general, this
function is discontinuous at the origin, having a jump at t=0 with amplitude equal to f (0)3. When we
try to compute the derivative of this function, we need to remove such ‘jump’ to obtain a continuous
function f (t)ε(t)− f (0)ε(t) that has f ′(t)ε(t)− f (0)δ(t) for the first order derivative. The repetition
of this procedure leads to so-called jump formula [25] that relates the derivative of a truncated function
with the truncation of the N-th order derivative:

DN [ f (t) · ε(t)] =
[

DN f (t)
]
· ε(t) +

N−1

∑
i=0

[
DN−1−k f (0)

]
· δ(k)(t) , N ∈ N (30)

Applying the BLT to this expression, we obtain

L
[

DN f (t) · ε(t)
]
= sNL [ f (t) · ε(t)]−

N−1

∑
k=0

[
DN−1−k f (0)

]
sk (31)

that is exactly the formula obtained with the unilateral LT, but without the constraint t = 0+ vs t = 0−.
The jump formula was generalized to the fractional case in [13].

Theorem 5. Consider an increasing sequence of positive real numbers γk, k = 0, 1, · · · , N. The fractional
jump formula reads [13]

f (t)(γN) · ε(t) = [ f (t) · ε(t)](γN) −
N−1

∑
0

y(γm)(0)δ(γN−γm−1)(t). (32)

We enhance the fact that the sequence γk, k = 0, 1, · · · , N is imposed by the particular application
at hand, not by any transform.

Theorem 6. Relation (32) leads to the generalization of the formula (31) so that

L [DγN f (t) · ε(t)] = sγNL [ f (t) · ε(t)]−
N−1

∑
k=0

f (γm)(0)sγN−γm−1. (33)

In the commensurate case we have γk = kα, k = 0, 1, · · · , N, and we obtain

L
[

DNα f (t) · ε(t)
]
= sNαL [ f (t) · ε(t)]−

N−1

∑
k=0

f (kα)(0)s(N−k−1)α. (34)

Expression (34) must be compared with those we obtain using the ULT with the Riemann-Liouville
and Caputo derivatives. We verify that they give rise to different formulae [13], namely

L
[

RLDα f (t)
]
= sαF(s)−

m−1

∑
k=0

skDα−k−1
t f (0+) (35)

3 The value f (0), must be intended in distributional sense 23–25.
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and

L
[

CDα f (t)
]
= sαF(s)−

m−1

∑
k=0

sα−k−1Dk f (0+), (36)

where m = dαe.

Example 4. To understand what is at stake, let us consider a simple example. Let the linear system defined by
the following differential equation:

D2α f (t) + aDα f (t) + b f (t) = g(t), a, b ∈ R, (37)

where g(t) = 0, t > 0 and 0 < α < 1. We want to compute the output f (t) for t > 0 using the ULT with RL
or C, and the BLT, represented by (35), (36), and (34) respectively. Therefore, they use the following IC:

ULT − RL f (α−1)(0+) if α ≤ 1
2

ULT − RL f (α−1)(0+), f (2α−1)(0+), f (2α−2)(0+) if 1
2 < α ≤ 1

ULT − C f (0+) if α ≤ 1
2

ULT − C f (0+), f ′(0+) if 1
2 < α ≤ 1

BLT f (0), f (α)(0) if 0 < α ≤ 1

(38)

It is important to note that with the BLT, we do not have to distinguish between the cases α ≤ 1
2 and

1
2 < α ≤ 1.

For another comparison, let us introduce two state variables v1(t) = f (t) and v2(t) = Dα f (t) so that the
equation (37) can be rewritten as[

Dαv1(t)
Dαv2(t)

]
=

[
0 1
−b −a

] [
v1(t)
v2(t)

]
t > 0. (39)

Let v =

[
v1(t)
v2(t)

]
. To solve equation (39), using (35), (36), and (34), we need the following IC:

ULT − RL v(α−1)(0+)
ULT − C v(0+)
BLT v(0)

0 < α ≤ 1,

respectively, or, attending to the definition of the vector v, we need the IC

ULT − RL f (α−1)(0+), f (2α−1)(0+) if 0 < α ≤ 1
ULT − C f (0+), f (α)(0+) if 0 < α ≤ 1
BLT f (0), f (α)(0) if 0 < α ≤ 1.

(40)

As observed, there is a contradiction between (38) and (40) in regard to the use of ULT with RL and C
derivatives, while we have a perfect coherence of the BLT solution.

2. The two-dimensional LT

2.1. Definition

We now introduce the two-dimensional BLT (2D-BLT). Let the function e(x, t) = esx+ut, (x, t) ∈
R2, (u, s) ∈ C2 be the 2D exponential.
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Definition 3. Similarly to the 1D case, we define 2D inverse BLT by [15–17,21]

h(x, t) = L−1
sv H̄(u, s) =

1
(2πi)2

σ1+i∞∫
σ1−i∞

σ2+i∞∫
σ2−i∞

H̄(u, s)eux+st duds, (x, t) ∈ R2, (41)

where H̄(u, s) is the 2D-BLT of h(x, t). Moreover, the integration paths are vertical straight lines with abscissas
σ1 and σ2, that are located inside a region where H̄(u, s) is analytic. For simplicity, we may represent such
straight lines by γ1 and γ2. The Cauchy principal values of the integrals are assumed in (41) and in the following.

In coherence with previous sections, the partial transform relatively to only one of the variables
will be represented as Lxh(x, t) = H(u, t) or Lth(x, t) = H(x, s).

Definition 4. The 1D-BLT studied above suggests us to introduce the 2D-BLT by

Lxt [h(x, t)] = H̄(u, s) =
∞∫
−∞

∞∫
−∞

h(x, t)e−ux−st dxdt, u, s ∈ C. (42)

Consider the partial transforms Lxh(x, t) = H(s, t) and Lth(x, t) = H(x, v). We define the
sequential transforms4, by

LtLx{ f } =
∫ ∞

−∞
e−stdt

∫ ∞

−∞
e−sx f (x, t)dx,

LxLt{ f } =
∫ ∞

−∞
e−uxdx

∫ ∞

−∞
e−st f (x, t)dt.

(43)

It may eventually happen that the 2D-BLT exist and is equal to one or two iterated transforms, but
not necessarily. However, if the 2D-BLT converges absolutely, then the iterated transform exist and the
three transforms are equal [26]. In most practical situations, we have to use two iterated transforms,
for ease of calculation and introduction of the IC.

Remark 4. The separable case h(x, t) = f (x)g(t) is easy to deal with giving

Lxy [ f (x)g(t)] = F(s)G(v). (44)

Example 5. If h(x, t) = e−2|x|ε(t), then we have

H(x, s) = Lth(x, t) = e−2|x| 1
s

Re(s) > 0

and
H̄(u, s) =

1
s(u2 − 4)

, |Re(u)| < 2 and Re(s) > 0.

Attending to the existence conditions of the 1D-BLT we can state sufficient conditions for the
existence of the 2D-BLT.

Theorem 7. Let h(x, t) be a function

1. piecewise continuous,
2. with bounded variation,

4 Also called iterated transforms [26]. We reserve this name for another transform (67)
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3. locally integrable, in the sense that the function is absolutely integrable in any real interval [a, b], so that∫ b
a

∫ d
c |h(x, t)|dxdt < ∞;

4. of exponential order, that is to say, that it does not “grow faster” than given exponentials. This means that:

(a) There are real constants A and a1, a2 > 0 such that |h(x, t)| < A · ea1x+a2t, when x and t are
large and negative (say, for x < x1, t < t1 ∈ R).

(b) There are real constants B and b1, b2 > 0 such that |h(x, t)| < B · eb1x+b2t, x and t are large (say,
for x > x1, t > t1 ∈ R).

(c) It also has to be true that a1 > b1 and a2 > b2.

Under these conditions, the 2D-LT exists and is analytical in vertical strips in the complex plane defined by
b1 < Re(s) < a1 and b2 < Re(v) < a2. These strips define regions where the ROC are located.

The proof of the Theorem arises immediately from the hypotheses.

2.2. Properties of the 2D-BLT

Most of the properties of the 2D-LT are a direct adaptation of similar ones from the 1D-LT.
Consequently, the properties for the 2D-LT are:

1. Linearity/homogeneity
Let a function Lg(x, t) = G(u, s). We have

L [a f (x, t) + bg(x, t)] = aF(u, s) + bG(u, s) (45)

2. Fractional order derivatives

As we are working with derivatives defined on R we can write Dα
xeux+st = uαeux+st for Re(u) > 0

or Re(u) < 0 depending on the causality of the derivative [22]. Similarly, Dβ
t eux+st = sβeux+st for

Re(s) > 0 or Re(s) < 0. We can write

Dα
x Dβ

y [h(x, t)] =
1

(2πi)2

∫
γ1

∫
γ2

sαvβH̄(u, s)eux+st dsdv, (46)

from where we deduce that,

Lxt

[
Dα

x Dβ
t h(x, t)

]
= sαvβ H̄(u, s). (47)

This property is valid for any α, β real or complex.

Example 6. Let us consider the 2D Heaviside unit step

ε(x, t) =

{
1 x ≥ 0, and t ≥ 0

0 x < 0, or t < 0
(48)

and the power function

h(x, t) =
[

xα

Γ(α + 1)
tβ

Γ(β + 1)

]
ε(x, t), α > −1, β > −1.

The 2D-LT of h(x, t) is given by

Lxt

[
xα

Γ(α + 1)
tβ

Γ(β + 1)
ε(x, t)

]
=

1
sα+1vβ+1 , Re(u) > 0, Re(s) > 0. (49)
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Definition 5. This property suggests us to introduce a 2D Mittag-Leffler function by

Eαβ(x, t) =
∞

∑
n=0

xnαtnβ

Γ(αn + α0)Γ(βn + β0)
ε(x, t), 0 < α0, β0 ≤ 1, (50)

that is slightly different than the 4-parameter Mittag-Leffler function formulated in [27]. If α0, β0 = 1 the
2D-BLT of Eαβ(x, t) in (50) is given by:

Lxt
[
Eαβ(x, t)

]
=

uα−1sβ−1

uαsβ − 1
, Re(u) > 0, Re(s) > 0. (51)

3. Rotation rule
This rule is a generalization of the scale change property [15,26]. In this case, we can compute the
2D-LT of the function:

g(x, t) = h(a1x + b1y, a2x + b2y).

We have
Ḡ(u, s) =

∫
R

∫
R

h(a1x + b1y, a2x + b2y)e−sx−vydxdt.

Let us introduce dab = a1b2 − a2b1, and the pairs (x′, t′) = (a1x + b1y, a2x + b2y) and (u′, s′) =(
b2u−a2s

dab
, −b1u+a1s

dab

)
, such that

ux + st = u′x′ + s′t′.

As the Jacobian of the transformation is equal to 1
dab

, we obtain

Ḡ(u, s) =
∣∣∣∣ 1
dab

∣∣∣∣ H̄(u′, s′).

The dual property can be obtained using a similar procedure in the inverse transform.

Remark 5. Letting b1 = a2 = 0, we obtain the scale change property.

4. Shift rules
This is similar to the analogue property of 1D-BLT and is readily obtained from the transform or
inverse definitions. If (a, b) ∈ R2, then

L [ f (x− a, t− b)] = e−au−bs F̄(u, s). (52)

The dual property is called modulation property and reads:

Lxt

[
eax+bt f (x, t)

]
= F̄(u− a, s− b). (53)

This property remains valid when a and b are complex numbers.

Example 7. Consider the function defined in (49). With the dual of (52) we obtain

Lxt

[
xαtβeax+bt

Γ(α + 1)Γ(β + 1)
ε(x, t)

]
=

1
(u− a)α+1(s− b)β+1 , (54)

for Re(u) > Re(a) and Re(s) > Re(b).

Remark 6. We can combine shifts with rotation to obtain a more general transformation [26].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2020                   doi:10.20944/preprints202007.0266.v1

https://doi.org/10.20944/preprints202007.0266.v1


15 of 24

5. Convolution
Let us define, with all generality, the convolution between two functions f (x, t) and g(x, t) by:

f (x, t) ∗ ∗g(x, t) =
∫ ∞

−∞

∫ ∞

−∞
f (ξ, ζ)g(x− ξ, t− ζ)dξdζ (55)

and insert expression (52) so that we can write

f (x, t) ∗ ∗g(x, t) =∫ ∞

−∞

∫ ∞

−∞
f (ξ, ζ)

1
(2πi)2

∫
γ1

∫
γ2

Ḡ(u, s)eux+ste−uξ−sζdudsdξdζ.

Interchanging the order of integration, we get:

f (x, t) ∗ ∗g(x, t) =

1
(2πi)2

∫
γ1

∫
γ2

Ḡ(u, s)eux+st
∫ ∞

−∞

∫ ∞

−∞
f (ξ, ζ)e−uξ−sζdξdζduds (56)

that leads to
Lxt [ f (x, t) ∗ ∗g(x, t)] = F̄(u, s)Ḡ(u, s). (57)

We can obtain the dual property, that is interesting in 2D-FT. Nonetheless, we shall not explore
this further in the scope of this paper, but the topic is of interest for a specific study [28].

Example 8. Let α > 0, β > 0 and

F̄(u, s) =
Ḡ(u, s)

uαsβ
, Re(u) > 0, Re(s) > 0.

Then the inverse 2D-LT of F̄(u, s) is given by [26]

f (x, t) =
1

Γ(α)Γ(β)

∫ x

−∞

∫ t

−∞
g(v, w)(x− v)α−1(t− w)β−1dvdw, (58)

that may be considered as a 2D Liouville anti-derivative of order (α, β) [18,22,29].

Example 9. This property can be extended to a different convolution definition, called convolution
about an axis, given by [26]

f (x, t) ∗ab g(x, t) =
∫ ∞

−∞
f (ξ)g(x− aξ, t− bξ)dξ. (59)

We have

Lxt

[∫ ∞

−∞
f (ξ)g(x− aξ, t− bξ)dξ

]
= F(as + bv)Ḡ(u, s). (60)

If f (x) =
xα

Γ(α + 1)
ε(x) we obtain

Lxt

[∫ ∞

0

ξα

Γ(α + 1)
g(x− aξ, t− bξ)dξ

]
=

Ḡ(u, s)
(au + bs)α+1 . (61)
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2.3. Special cases

We now present some cases of particular interest:

1. The 2D-FT and the mixed 2D-LFT
With the formulation we have proposed, the Fourier transforms are particular cases of the Laplace
transforms. The 2D-FT can be written as

H̄(iν, iω) =

∞∫
−∞

∞∫
−∞

h(x, t)e−iνx−iωt dxdt, ν, ω ∈ R. (62)

In some applications, as the diffusion, it is convenient to use a mixed LT-FT transform that we
can state as:

H̄(iν, s) =
∞∫
−∞

∞∫
−∞

h(x, t)e−iνx−st dxdt, ν ∈ R, s ∈ C. (63)

2. One-sided 2D-LT
If f (x, t) is non null only in the first quadrant, then we obtain the 2D-ULT

Lxt [h(x, t)ε(x, t)] = H̄u(u, s) =
∞∫

0

∞∫
0

h(x, t)e−ux−st dxdt, u, s ∈ C. (64)

This expression is the one used traditionally for the 2D-LT.
3. Function defined on a straight line

Consider the function f (x, t) = h(x∓ t). Its 2D-BLT is given by

F̄(u, s) = H(u)
∫
R

e−(u±s)tdt

The integral is divergent. However, if Re(s) = ∓Re(u), let Im(u) = ν and Im(s) = ω, and use a
known property of the Dirac distribution to get

F̄(u, s) = H(u)δ(ν±ω)

Therefore, we can consider that the 2D-LT of h(x− t) is a continuum of impulses.

This example seems to be more interesting when considered from the 2D-FT. In this case, we have

H̄(iν, iω) = H(iν)δ(ν±ω)

This example deserves some attention when the function is defined in the first quadrant: f (x, t) =
h(x− t)ε(x, t)
We have

F̄(u, s) =
∞∫

0

∞∫
0

h(x− t)e−ux−st dxdt =

∞∫
0

∞∫
−t

h(x)e−ux dxe−(u+s)tdt
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Let Hu(s) be the ULT of h(x). We can write

F̄(u, s) =
∞∫

0

Hu(s) +
0∫
−t

h(x)e−ux dx

 e−(u+s)tdt =

Hu(s)
u + s

+

∞∫
0

0∫
−t

h(x)e−ux dxe−(u+s)tdt

We need to compute the second parcel separately. We have

∞∫
0

0∫
−t

h(x)e−ux dxe−(u+s)tdt =
∞∫

0

h(−x)
0∫
−t

ε(t− x)e−(u+s)t dte−uxdx =

=

∞∫
0

h(−x)
e−sx

u + s
dx

There are two particular cases that simplify the result, leading to

F̄(u, s) =

{Hu(u)+Hu(s)
u+s h is even

Hu(u)−Hu(s)
u+s h is odd

Example 10. Let f (x, t) = ε(x, t). We have successively

F̄(u, s) =
∫ +∞

0
e−uxdx

∫ +∞

0
e−stε(x− t)dt =

∫ +∞

0
e−uxdx

∫ x

0
e−stdt

and
F̄(u, s) =

∫ +∞

0
e−ux

(
1− e−(u+s)x

)
dx =

1
u(u + s)

Re(u), Re(s) > 0

4. 2D to 1D reduction

Consider h2(x, t) and define a single variable function h1(t) by

h1(t) = h2(t, t), (65)

having BLT, H1(s), called associated transform of H2(u, s). The process of going from H2 to H1 is
the 2D-to-1D reduction. This procedure is used in the study of linear time varying systems [30].
As h1(t) = h2(t, t), we can use the inverse LT integrals to write∫

γ1

H1(s)est ds =
1

2πi

∫
γ2

∫
γ3

H̄2(u, v)e(u+v)t dudv, t ∈ R.

Computing the 1D-BLT of both sides of this equation, we obtain

H1(s) =
∫ ∞

−∞

1
2πi

∫
γ2

∫
γ3

H̄2(u, v)e(u+v)t dudve−stdt, s ∈ C.
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Assume that all the involved ROC include the imaginary axis. In such case, we can set γ1 =

γ2 = γ3 = 0 and put s = iω, u = iν, and v = iµ. Substituting and interchanging the sequence of
integration, we can write

H1(iω) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
H̄2(iν, iµ)

∫ ∞

−∞
e−i(ω−ν−µ)tdt dudv, ω ∈ R.

As
∫ ∞
−∞ e−i(ω−ν−µ)tdt = δ(ω− ν− µ), we obtain

H1(iω) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
H̄2(iν, iµ)δ(ω− ν− µ)dνdµ,

and finally

H1(iω) =
1

2π

∫ ∞

−∞
H̄2(iν, iω− iν)dν (66)

The dual of this property can be obtained in a similar way.
5. The iterated LT

The iterated LT is the dual of the previous property.

Definition 6. The iterated LT is a particular case of the 2D-BLT (42) obtained with u = s, leading to [30]

LIT [h(x, t)] = H̄(s) =
∞∫
−∞

∞∫
−∞

h(x, t)e−s(x+t) dxdt, s ∈ C. (67)

We can obtain h(t) = L−1
t H̄(s) by a procedure similar to the used for deducing (66).

3. 2D fractional linear systems

3.1. On the 2D fractional derivatives

In (58) we introduced the 2D anti-derivative. After some changes of variables we can redefine it
by [29]

Dα,β
xt f (x, t) =

1
Γ(−α)Γ(−β)

∫ ∞

0

∫ ∞

0
f (x− v, t− w)v−α−1w−β−1dvdw,

where α, β < 0. For α, β > 0, the integrals are singular and need to be regularised [31,32]. If 0 < α, β ≤ 1,
we can write

Dα,β
xt f (x, t) =

1
Γ(−α)Γ(−β)

∫ ∞

0

∫ ∞

0
[ f (x− v, t− w)− f (x, t)] v−α−1w−β−1dvdw, (68)

However, the Grünwald-Letnikov formulation (2DGL) may be more interesting. It reads[29]:

Dα,β
xt f (x, t) = lim

(h1,h2)→(0+ ,0+)
hα

1hβ
2

∞

∑
n=0

∞

∑
m=0

(−α)n

n!
(−β)m

m!
f (x− nh1, t−mh2) (69)

The transfer function of these derivatives is given by the 2D-BLT of (68) and (69). To get them,
it is enough to set f (x, t) = eux+st in the above expressions. For example, for the 2D-GL, we have
successively:

Lxt

[
Dα,β

xt eux+st
]
= eux+st lim

(h1,h2)→(0+ ,0+)
h−α

1 h−β
2

∞

∑
n=0

∞

∑
m=0

(−α)n

n!
(−β)m

m!
e−nuh1−msh2 =
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eux+st lim
h1→0+

hα
1

∞

∑
n=0

(−α)n

n!
e−nuh1 lim

h2→0+
hβ

2

∞

∑
m=0

(−β)m

m!
e−msh2 =

eux+st lim
h1→0+

[
1− e−uh1

h1

]α

lim
h2→0+

[
1− e−sh2

h2

]β

Therefore, the transfer function, H(u, s), of the 2D derivative is

H(u, s) = uαsβ, Re(u), Re(s) > 0 (70)

We could use the “right” derivative instead of the left that we adopted.

3.2. System definition

Consider the 2D Mittag-Leffer introduced in (51). It is not hard to verify that it can be considered
as the solution of the differential equation

Dα,β
xt h(x, t) + h(x, t) = Dα,β

xt f (x, t)

when the input is f (x, t) = ε(x, t).

Definition 7. This suggests us to introduce the concept of fractional 2D linear system by

N

∑
k=0

N

∑
j=0

ak,jD
αk ,β j
xt f (x, t) =

M

∑
k=0

M

∑
j=0

bk,jD
αk ,β j
xt g(x, t), (71)

where ak,j, bk,j, k = 0, 1, · · · are real equation coefficients, with aN,N = 1. N5 and M are non negative integers
verifying M ≤ N. The derivative orders αk, k = 0, 1, · · · and βk, k = 0, 1, · · · form two sequences non
decreasing sequences of positive real numbers.

The corresponding transfer function is the eigenvalue corresponding to the eigenfunction e(x, t) =
esx+ut, (x, t) ∈ R2, (u, s) ∈ C2. It is given by

H(u, s) =
∑M

k=0 ∑M
j=0 bk,juαk sβ j

∑N
k=0 ∑N

j=0 ak,juαk sβ j
. (72)

In practical applications, the input function assumes frequently the form g(x, t) = v(t)δ(x), where
v(t) is a function with BLT.

The general formulation stated in (71) and (72) is dificult to treat. The more manageable
commensurate case reads

H(u, s) =
∑M

k=0 ∑M
j=0 bk,jukαsjβ

∑N
k=0 ∑N

j=0 ak,jukαsjβ
, (73)

where 0 < α, β ≤ 1. If u = iν and s = iω, we obtain the frequency response of the system that is given by:

H(u, s) =
∑M

k=0 ∑M
j=0 bk,j(iν)kα(iω)jβ

∑N
k=0 ∑N

j=0 ak,j(iν)kα(iω)jβ
, (74)

in the commensurate case. This frequency response is also called bi-spectrum.

5 There is no inconvenient in choosing equal summation limits, because we can set some coefficients or orders equal to zero
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3.3. The initial and final value theorems

When studying the BLT we introduced the initial and final value theorems that we want to
generalize to the 2D case. We start by considering the initial value and noting that we can apply (20) to
each of the partial transforms (43) and obtain

f (x, t) ∼ A(x)ϕ(t) for t→ 0 =⇒ F(x, σ) ∼ A(x)Φ(σ) for σ→ ∞

and
f (x, t) ∼ B(t)ψ(x) for t→ 0 =⇒ F(u, t) ∼ B(t)Ψ(υ) for υ→ ∞

. Choosing ψ(x) = xαε(x) and ϕ(t) = tβε(t), we can formulate the 2D initial-value theorem.

Theorem 8 (The 2D initial-value theorem). Assume that f (x, t) is a causal function such that:

• in some neighborhood of the origin, it is a regular distribution, corresponding to an integrable function in
both x and t,

• its LT are F(u, t) and F(x, s) with ROC Re(u) > 0 and Re(s) > 0.

Also, assume that there are a real numbers α, β > −1, such that lim
x,t→0+

f (x, t)
xαtβ

exists and is a finite complex

value. Then

lim
x,t→0+

f (x, t)
xαtβ

= lim
υ,σ→∞

σα+1σβ+1 F̄(υ, σ)

Γ(α + 1)Γ(β + 1)
. (75)

In a similar way, we can revert the limit computations obtaining the 2D final-value theorem:

Theorem 9 (The 2D final-value theorem). Assume that f (x, t) is a causal function such that:

• it has the asymptotic property
f (x, t) ∼ Axαtβ

• its LT are F(u, t) and F(x, s) with ROC Re(u) > 0 and Re(s) > 0.

Then

lim
x,t→∞

f (x, t)
xαtβ

= lim
υ,σ→0+

σα+1σβ+1 F̄(υ, σ)

Γ(α + 1)Γ(β + 1)
. (76)

3.4. Initial conditions

In the 2D case, the IC problem is similar to the 1D studied in 1.5. The application to 2D systems is
immediate, if they exist only for one variable. In the most common situations such variable is time.
Therefore, we can adapt the formula (33) to obtain

Lt
[
DγN

t f (x, t) · ε(t)
]
= sγNLt [ f (x, t) · ε(t)]−

N−1

∑
k=0

f (γm)(x, 0)sγN−γm−1. (77)

However, if the function at hand is non null only in the first quadrant (we could consider others)
the solution is not readily obtained from (77). To obtain the result we are looking for, we proceed
heuristically. Let us assume that we want to solve a simple equation like

Dα,β
xt h(x, t) + ah(x, t) = f (x, t) a ∈ R

for x > 0, t > 0, considering f (x, t) = 0 on such domain:

Dα,β
xt h(x, t) + ah(x, t) = 0, for x > 0, t > 0, a ∈ R. (78)
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This is equivalent to say that h(x, t) is defined on R2, but it is only observed on R+ ×R+. through
the “observation window” represented by the 2D Heaviside function:[

Dα,β
xt h(x, t)

]
ε(x, t) + ah(x, t)ε(x, t) = 0 (79)

To solve the problem, we need to relate
[

Dα,β
xt h(x, t)

]
ε(x, t) with Dα,β

xt [h(x, t)ε(x, t)] . We start by
noting that h(x, t)ε(x, t) is discontinuous near the origin which implies that it is convenient to remove
the discontinuity before doing the derivative computation, meaning that we need to subtract the
corresponding “jump” given by h(0, 0)ε(x, t). To clarify the question and motivated by (51) we assume
that the solution of (78) has the form:

h(x, t) =
∞

∑
n=0

An
xnαtnβ

Γ(αn + 1)Γ(βn + 1)
ε(x, t), (80)

that can be transformed by the 2D-BLT into the relation:

H̄(u, s) =
∞

∑
n=0

Anu−nα−1s−nβ−1. (81)

On the other hand, the 2D-BLT of (78) gives

uαsβ H̄(u, s) + aH̄(u, s) = 0 (82)

Therefore, inserting (81) in (82), we obtain:

∞

∑
n=0

Anu−(n−1)α−1s−(n−1)β−1 + a
∞

∑
n=0

Anu−nα−1s−nβ−1 = 0 (83)

that can be rewritten as

A0uα−1sβ−1 +
∞

∑
n=0

An+1u−nα−1s−nβ−1 +
∞

∑
n=0

aAnu−nα−1s−nβ−1 = 0, (84)

from where we deduce that
An+1 = −aAn, n = 0, 1, 2, · · ·

and
An = A0(−a)n, n = 1, 2, · · ·

However, in (84) there is a non compensated term A0uα−1sβ−1 that has to be removed from the
equation (82). Noting that

1. From (80) that A0 = h(0, 0),
2. The expression A0uα−1sβ−1 is the 2D-BLT of h(0, 0)Dα,β

xt ε(x, t),

then the equation (79), must be modified to include the IC:

Dα,β
xt [h(x, t)ε(x, t)]− h(0, 0)ε(x, t) + ah(x, t)ε(x, t) = 0, for x > 0, t > 0, a ∈ R (85)

Therefore, we conclude that a term of the form
[

Dα1,β1
xt h(x, t)

]
ε(x, t) must be substituted by

Dα1,β1
xt [h(x, t)ε(x, t)− h(0, 0)ε(x, t)] , or, using the 2D-BLT

Lxt

[[
Dα1,β1

xt h(x, t)
]

ε(x, t)
]
= uα1 sβ1Lxt [h(x, t)ε(x, t)]− h(0, 0)uα1−1sβ1−1 (86)
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The process repeats every time we do any derivative computation. In fact, assume that we want
to perform a second derivative computation of orders α2 and β2. We have the substitution[

Dα1+α2,β1+β2
xt h(x, t)

]
ε(x, t)⇒

Dα1+α2,β1+β2
xt

[
h(x, t)ε(x, t)−

(
Dα2,β2

xt h(0, 0)
)

ε(x, t)
]
− h(0, 0)Dα1+α2−1,β1+β2−1

xt ε(x, t)

The general expression may become hard to write, but in most applications this formula is sufficient.
In terms of the 2D-BLT it reads:

Lxt

[[
Dα1+α2,β1+β2

xt h(x, t)
]

ε(x, t)
]
= uα1+α2 sβ1+β2Lxt [h(x, t)ε(x, t)]−

h(0, 0)uα2−1sβ2−1 −
[

Dα1,β1
xt h(0, 0)

]
uα1+α2−1sβ1+β2−1.

(87)

In the commensurate case, we can write

Lxt

[[
D2α,2β

xt h(x, t)
]

ε(x, t)
]
= u2αs2βLxt [h(x, t)ε(x, t)]− h(0, 0)uα−1sβ−1−[

Dα,β
xt h(0, 0)

]
u2α−1s2β−1,

(88)

that is the 2D analog of (34).

4. Conclusions

This paper revisited the ULT and BLT, both for the 1D and 2D cases. The ULT and BLT are studied
and compared for the 1D case. The systematic treatment lead to the formulation of the initial-condition
theorem in the 1D and 2D cases using the BLT. This detailed analysis constitutes a solid ground to
pursuit the future development of methods for the representation, analysis and control 2D dynamical
systems.
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Abbreviations

The following abbreviations are used in this manuscript:

LT Laplace transform
ULT unilateral Laplace transform
BLT bilateral Laplace transform
1DLT uni-dimensional Laplace transform
2DLT two-dimensional Laplace transform
FT Fourier transform
ROC region of convergence
IVT initial value theorem
FVT final value theorem
IC initial-conditions
L Liouville
RL Riemann-Liouville
C Caputo
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