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Abstract: In the design of multi-loop Networked Control Systems (NCSs) wherein each control
system is characterized by heterogeneous dynamics and associated with certain set of timing
specifications and constraints, appropriate metrics need to be employed for the synthesis of control
and networking policies to efficiently respond to the requirements of each control loop. Majority
of the design approaches for sampling, scheduling and control policies include either time-based
or event-based metrics to perform pertinent actions in response to the changes of the parameters of
interest. We specifically focus in this article on Age-of-Information (Aol) as a recently-developed
time-based metric and threshold-based triggering function as a generic event-based metric. As the
NCS model, we consider multiple heterogeneous stochastic linear control systems that close their
feedback loops over a shared-resource communication network. We investigate the co-design across
the NCS, and discuss the pros and cons with Aol and ET approaches in terms of asymptotic control
performance measured by linear-quadratic Gaussian (LQG) cost functions. In particular, sampling
and scheduling policies combining Aol and stochastic event-triggered metrics are proposed. It
is argued that pure Aol functions that generate decision variables solely upon minimizing the
average age irrespective of control systems dynamics may not be able to improve the overall
NCS performance even compared with pure randomized policies. Our theoretical analyses are
successfully validated through several simulation scenarios.

Keywords: networked control systems; age-of-information; event-triggered sampling; scheduling
architecture; resource constraint; asymptotic performance; estimation error

0. Introduction

Networked Control Systems (NCSs) generally refer to multiple dynamical systems controlled
by possibly remotely located controllers with information exchange supported by a wired or wireless
communication infrastructure. The applications of such systems are ranging from smart energy grids,
autonomous driving, and industrial production, to healthcare, agriculture, and smart homes [1,2].
The two main layers of a networked system — control and communication — strongly influence each
other and face heterogeneous and time-varying conditions, constraints and demands [3]. Hence, the
efficient design of networked systems requires novel and integrated strategies that are responsive to
the heterogeneity of the control systems and the real-time variations of individual layers, and at the
same time possess flexibility and scalabiliby [4-6].

Considering state-of-the-art communication technology, there is a need for novel approaches
to modeling, analysis and design of network protocols and control mechanisms capable of jointly
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supporting information exchange required to make decisions at the right component and at the right
time. This is the basic motivation behind employing appropriate utility functions to coordinate the
process of data exchange in a network of many dynamical users. Over the last two decades, there
have been many attempts from the control and the communication communities to develop, evaluate
and improve such utility functions compared to the conventional fixed-period and randomized data
coordination approaches. Notions such as Value-of-Information (Vol), [7,8], Age-of-Information (Aol),
[9,10], and Event-Triggered (ET) [11,12], are metrics that have been separately shown to be capable
of coordinating information distribution taking into account the integrated and coupled context of
NCSs. Traditionally, however, two rather distinct paths on addressing the NCS design have been
followed: from the communication perspective, the focus mainly resulting in the design approaches
that maximize the network throughput or minimize the end-to-end latency and jitter often ignoring
the dynamics, requirements and characteristics of the sending and receiving entities and the specific
data that are being transmitted [13-15]. From the control perspective, on the other hand, the major
goal has been to maximize quality-of-control (QoC), and the communication network is usually
abstracted as one or more maximum-rate and delay-negligible transmission channels with enough
computation and functional capability to resolve contentions [16,17]. Hence, to fill this research void,
it is essential to develop systematic and applicable co-design principles for NCSs that bring both QoC
and QoS together by studying novel architectures that take into account the requirements, limitations,
and tolerances of both network and control systems.

0.1. Contributions

In this article, the goal is to propose an efficient co-design architecture for heterogeneous NCSs
where the influence of both control and network systems are taken into account. Specifically, we
study a sampling-scheduling-control co-design problem for stochastic NCSs comprised of multiple
heterogeneous linear time-invariant (LTT) control systems. The sampling and control units reside at
the control system layer and are designed distributedly, i.e., they are locally installed in every control
loop and generate decision variables for their corresponding local control systems. The scheduling
unit resides at the network layer and arbitrates the channel access in a centralized fashion, i.e., a
unique scheduler coordinates the allocation process of the limited resources among the control loops
to avoid contention and consequently data loss. We consider a realistic communication model in
that the data packets that are not scheduled for immediate transmissions, if not updated by a newer
data sample, are stored in a buffer for possible transmissions in future time instances. If a current
sample is not successfully transmitted due to resource limitations, it is not discarded, and remains
in the buffer to be either replaced by a newer sample, or transmitted with some delay whenever
the communication resource is assigned to it. Therefore, end-to-end delay in our formulation is
comprised of an inter-sampling duration induced by the local samplers and a network-induced
delay due to the resource limitations. Performance of each local control system is asymptotically
measured by the local linear-quadratic Gaussian (LQG) cost function and the overall asymptotic NCS
performance is determined by the average sum of their local LQG costs. Note that the performance
influenced by the resource constraints and the end-to-end transmission delays.

Motivated by the existing results for the design of control and communication systems, in this
article we focus on two celebrated notions of utility metrics: Aol- and ET-based functions. We first
discuss if these two design concepts may properly co-exist in a networked control scenario and
study where each of them excels in terms of decision making efficiency. We evaluate them based
on two crucial aspects: first, which class of policies result in lower local and overall cost values,
and second, how much information is required for a policy maker to generate appropriate decisions.
The first one, as explained earlier, is evaluated based on asymptotic LQG cost functions, while the
second is basically judged based on that a policy maker needs less information, and distributed
parts of networked system may not be willing to disclose too much information. Therefore, a
desirable and applicable co-design architecture would result in sampling, scheduling and control
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decisions that jointly induce low local and overall control costs, while they require local or partially
accessible information to generate their assigned decision variables at the expense of a viable level of
computational complexity.

Under some mild assumptions on the information structures of the policy makers, we first
show that the optimal control policy can be obtained independent of the sampling and scheduling
policies. In fact, we show that the optimal controllers are of the certainty equivalence (CE) form,
which technically means the optimal control inputs are identical as they would be obtained in the
absence of the additive stochastic disturbances. This is really helpful as it provides a decomposition
opportunity for the cross-layer co-design in the sense that the control law remains fixed for a variety
of sampling and scheduling policies within the specified classes that satisfy those assumptions on
their information structures. We then propose a joint sampling-scheduling co-design where the local
samplers are ET and the centralized scheduler uses Aol-based prioritization for resource management.
Considering the asymptotic average LQG cost function as the overall NCS performance metric, we
show that the ET function is indeed a more efficient candidate for sampling, compared with its Aol
counterpart, in sense of the asymptotic average sum of LQG functions, while Aol performs efficiently
for governing the resource allocation process. We compare the performance of the Aol scheduling
design with conventional random access resource scheduling and show that the Aol scheduling has
the design flexibility to be appropriately adjusted to outperform the pure random access policy.

To the best of our knowledge, there is no result available in the literature that considers the
co-design of control and communication systems with joint ET and Aol-based policies and compare
their joint performance, although, both policies have separately been studied extensively from both
control and communication perspectives.

0.2. Related Works

Since the seminal work [18] many results have shown that event-based approach outperforms
the conventional time-triggered and periodic schemes in the sense that they are capable of achieving
the same control performance with significantly less usage of computation and communication
resources [19-22]. The event-based approach is also widely studied in the context of NCSs [23-26],
and it is shown that the event-based functions can be employed to efficiently govern the information
sampling and scheduling processes taking into account not only the control requirements but also the
communication conditions such as resource scarcity and channel properties [27-30].

Many researchers have demonstrated that ET policies preserve stability of NCSs despite
updating the controllers less often. In [31], £, stability of ET output feedback control is shown in
the presence of network-induced delay. Stability of stochastic ET NCSs is also extensively studied,
employing appropriate stochastic stability notions such as almost-sure and moment stability, with
various sources of randomness such as model uncertainty, sensor noise, and erroneous channels
[32-35]. Additionally, event-based medium access control (MAC) and contention resolution (CR)
protocols for resource-limited or contention-based communication networks have been proposed
in the literature, both in form of centralized and decentralized MAC and CR algorithms [36-39].
Centralized MAC and CR approaches are shown to be capable of fully resolving contentions yet
at the expense of not being scalable as they require a huge volume of information exchange, while
easily deployable decentralized event-based MAC and CR counterparts can substantially decrease
contentions but not fully resolving them.

Design of optimal ET policies for either control and communication systems or cross-layer
joint design has been an active area of research. The results suggest that finding global optimal
event-based functions is often nontrivial, especially for multi-loop NCSs or more realistic models
of communication networks [40-43]. The major difficulty lies behind the tight couplings and
inter-layer dependencies between the distributed time-varying parameters of control and network
systems, obliging to search for less computationally complex sub-optimal or approximative solutions.
Network-induced delays are regarded as major coupling parameters in ET NCS design that
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depending on the model of sampling and communication network might possess different dynamic
characteristics. In fact, delay affects the states of the control systems, and the states themselves affect
the decision outcomes of the event-based policies, and those decisions also affect the network-induced
delays [44]. Therefore, an optimal co-design needs to keep track of the network-induced delays which
might not be feasible for stochastic networked systems.

The Aol metric, proposed in [45], has emerged to quantify the freshness of the received status
updates at the estimator and has attracted significant attention from communication and networking
communities. The Aol is defined as the time elapsed since the generation of the latest successfully
received status update at the estimator. Several authors have studied the problem of minimizing
some functions of Aol under different queuing and communication models [46-50]. While the works
in [46-48] consider time averaged Aol, the authors in [49] consider minimizing the tail of the Aol, and
the authors in [50] consider any non-decreasing and measurable function of Aol. Apart from studying
the effects of communication scheduling on Aol, none of the above works consider estimation or
control objectives for networked systems. Nonetheless, a general consensus is that, a lower Aol in
an NCS may result in a lower estimation and control cost, because having access to fresher state
information often improves the performance. However, only a handful of works considered the
performance of the solutions proposed for Aol with respect to such costs. The authors in [51] have
studied the minimum mean squared error problem with independent and identically distributed
(iid.) transmission delays for Wiener process estimation. They have shown that the estimation
error is a function of Aol if the sampling decisions are independent of the observed Weiner process;
otherwise, the estimation error is not a function of Aol. In [52], we studied a state estimator of a
single-loop stochastic LTI system with i.i.d. transmission delays and derived the relation between
Aol and the estimation error, assuming that the sampling decisions are independent of the observed
states.

There has been an increasing interest recently from the control community to consider Aol utility
functions due to their simpler evolution and characteristics compared to ET or Vol metrics. Despite
some progress, however, there exist results suggesting that Aol-based approaches with the original
linear formulation of Aol, may not be sensitive enough to dynamic changes of control systems and
their QoC requirements [53,54]. In [55], various nonlinear functions of Aol are considered to be
minimized instead of the conventional average linear Aol and it is shown that these variations of Aol
utility functions can be beneficial to improve the control performance. The authors in [56] showed
in a recent work that a discounted Aol-dependent monotonic function can be employed to optimally
govern wireless network scheduling to maximize control performance over infinite horizon. Despite
recent efforts reflected in the literature, there are still many challenges. Specifically, there is no result,
to the best of our knowledge, on combined ET and Aol-based co-design across control systems and
communication network layers.

0.3. Outline

In the remainder of this article, the NCS model and the problem statement and are described
in Section 1. The co-design architecture with CE controllers, sampling and scheduling policies is
presented in Section 2. Performance analysis and comparisons with other co-design architectures are
presented in Section 3. Simulation results are demonstrated in Section 4 and the concluding remarks
are summarized in Section 5.

0.4. Notations

We denote the expectation, conditional expectation, conditional probability, transpose and trace
operators by E[-], E[-|-], P[-|], []7, and tr(-), respectively. A multivariate Gaussian distributed
random vector X with mean vector y and covariance matrix W > 0 is denoted by X ~ N (u, W),
where A >~ B denotes A—B is positive definite. The Q-weighted squared 2-norm of a column

vector X is denoted by ||X||2Q £ X'QX, and ||X|53 £ X"X. A time-varying column vector X!
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Figure 1. Multi-loop NCS with a shared communication network equipped with a data storage buffer.

includes an array of variables belonging to the sub-system indexed by i at time t, while we define

EtlrtZ] £ {Xfl, Xiﬁ_l, . X§2_1,X£2}, and X' £ {Xi,Xi, .. }. For constant matrices, a subscript
indicates the corresponding sub-system, and a superscript denotes matrix power. An optimal
decision variable/policy X is represented by X*. The set of natural, real, non-negative integer, and
non-negative real numbers are denoted by N, R, Ny, and R, respectively. For n-by-m-dimensional

real space, we use the notation R"*™.

1. NCS Model and Problem Description

1.1. NCS Model

We consider an NCS consisting of N heterogeneous stochastic linear time-invariant (LTI)
controlled dynamical processes that synchronously exchange their sensory information with their
corresponding controllers via a common resource-limited communication network, see Figure 1. Each
processi € N £ {1, ...,N } comprises of a plant P;, a noisy sensor S;, and a feedback control unit
including a feedback controller C; and an estimator &;. Each process i € N is described as follows:

Xpyq = Aix + Bl + wj, 1)

=i+l @

where xf( eR", u}'( €R" and y}'( eR" represent the state vector, control input and sensor measurement
of the process i at a time-step k € Ny, respectively. Constant matrices A; € R"*"" and B; € R >’
describe the system matrix and input matrix, respectively, and we assume that each pair (A;, B;) is
controllable. To allow for heterogeneity, A; and B; matrices may differ for different processes and
may also adopt different dimensions. The random processes wi €R"™ and v}; € R" are, respectively,
the exogenous disturbance acting on the process dynamics and the measurement noise. They are
assumed to be Gaussian distributed independent random sequences with mutually i.i.d. realizations
w}( ~N(0,Z,) and vf{ ~N(0,Z,), Vkand i € N, where £_; = 0and X > 0. The initial states xf)’s,
i €N, are also presumed to be randomly selected from an arbitrary finite-moment distribution with
mean j,; and variance fo) > 0.

At every time-step k, the decision on whether the state measurement y. of sub-system i is sent
for transmission is taken by a local sampler S; located at the sensor station. The sampling decision
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is assumed to be the outcome of a local sampling policy ¢; : I,i — {0,1}, where I,i represents the
information available at S; at time-step k and will be formally defined later. The sampling decision
outcome, denoted by the binary-valued variable &, is as follows:

1, y;{ sent to network for transmission,

oL =&(Th) = { €)

0, otherwise.

At every time-step k, those sub-systems which locally decided to update their corresponding
controllers will forward their sensor measurements to the communication network. We assume
that the communication network has capacity limitations such that not all N sub-systems can
simultaneously close their sensor-to-controller links at a time instance, i.e., if the network capacity
at every single time-step is denoted by the constant ¢ € N, the following resource constraint holds

1<c¢c< N, VkeN. 4)

The communication network is assumed to be consisting of a queue to store the received data packets
and a scheduling unit that decides which data packets are to be transmitted at each time-step. It
should be mentioned that, transmissions of data from sensors to the buffer and from the buffer
to the controllers are not subject to communication delay, i.e., if the sampler or scheduler decides
on a sample being sent to the buffer or a buffered data sent to the controller, the transmissions
are completed instantaneously. The scheduling decision at every time-step k is assumed to be the
outcome of a centralized resource allocation policy 7 : Z} — {0,1} x ... x {0,1} = {0,1}¢, where
7} denotes the information available at the network scheduling unit at time-step k which will be
formally defined later, and c is the constant capacity constraint. The scheduling decision associated
with sub-system i at time-step k is denoted by the binary variable gb,i and is defined as

1, send the latest measurement of sub-system i in the buffer to &;,

¢ = n(Tf) = { 6)

0, send nothing from sub-system i to &;.

The network queue buffers at most one data packet from each sub-system at every time instance.
Hence, in case a new measurement belonging to a certain sub-system arrives at the queue, the fresher
data packet replaces the formerly buffered data of that sub-system. The older data packet will be
discarded. Therefore, for each sub-system, there is either no buffered data packet in the queue or there
is one which is the latest measurement sent to the network by the local sampler. This means even the
freshest data packet of a sub-system in the queue might contain the measurement that corresponds
to a previous time-step.

When bandwidth is assigned to a certain sub-system, its freshest measurement in the queue will
be forwarded to the corresponding control unit. The received state measurement by the control unit
of a sub-system i at a time-step k, denoted by z;;, might belong to a previous time k < k due to the
communication delay imposed by the scheduling unit. Therefore, z; is determined as a function of
the scheduling variable, as discussed in the following. Before that, we define the notion of Aol at the
control unit in our NCS model, as follows:

Definition 1. Aol at the control side of a sub-system i € N, at time-step k € Ny, is defined as A;'( =k—K,
where y;i{,- is the latest received measurement by the estimator £; up to time k, which confirms 5};,- =1

Assume that at a time-step k, y;;(i is the freshest measurement of sub-system i in the

_ i
= Yi-al

queue, which ensures 5 =1, and 5 =...= 5}( = 0, because otherwise, y;{ Al would have
Sk

k—Al k—Al+1
k k
oy . . i _ i _ o
been replaced by a fresher measurement. In addition, this confirms that ¢, N ¢ Mg T T

¢;;71 = 0, since otherwise, no data belonging to sub-system i would be in the queue at time-step k. To
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conveniently denote this, we use the notation (,bf{(k - A;{) = 1 to express the time index of the freshest
buffered measurement belonging to sub-system i at time-step k that is scheduled to be transmitted
to the estimator &;. Hence, by (p,i((k - A;() = 1, we denote that y;(_ Al will be received by &; at k. If

no measurement of sub-system i is scheduled to be transmitted at k, we simply write gb,"( = 0. With
this notation we declare two essential aspects of the information structure: 1) if a sample is scheduled
for transmission, then the estimator knows which time instance the received measurement belongs
to, and 2) receiving no measurement update might correspond to having no measurement sample of
sub-system 7 in the queue and not necessarily to resource limitations. It should be noted that if there
is no data belonging to a sub-system i buffered at a time-step k, then we certainly have (,b,i{ = 0. In the
other words, if the scheduler decides for gb,‘( = 1, then there exists exactly one buffered data packet
of sub-system i to be sent to its corresponding control unit. Therefore, ¢; = 0 might correspond to
either having no measurement sample of sub-system i in the buffer to forward or having not enough

resources to schedule the available sample at that specific time. In the latter case y;{i remains in

Al

the queue to be either serviced in future time-steps or replaced by a fresher sampled measurement.
Finally, according to Definition 1, the information update at an estimator &; can be stated as

v, AL if ¢pi(k—Al) =1, Al €0k, ©

@ if ¢l =0.

Note that the estimator &; receives the current measurement sample y;;, only if ‘Pli((k) = 1, which
ensures 6, = 1 and A} = 0. Depending on the information received at the estimator and the state
estimate computed, the control input u; is assumed to be generated as the outcome of a causal
mapping 7; : f}; — R™, where f}; represents the set of available information at the controller and
will be formally defined later.

Remark 1. In the absence of a measurement sample at the control side at a certain time k, i.e., if 4),i =0,
the estimator &; may use the information contained in the sampling variable, i.e., knowing the outcome of 5,i,
and incorporate it in computing £}. This extra knowledge is known as the side-information contained in the
sampling variable. In this article, we do not investigate the impact of the side-information when no measurement
update is received by an estimator. As we will see later when we introduce the information structures, we
assume that the control unit of a sub-system keeps the history of the sampling variables ‘Sfo,k]' however, does

not incorporate this side-information in computing 32}( in the absence of a measurement sample. Incorporating
side-information results in a nonlinear estimator and possibly non-tractable state estimator design problem,
especially for threshold-based sampling policies in the presence of resource limitations. We assuine that if no
update is received at the estimator at some certain time-steps, then the estimator constructs £;_in a model-based
fashion using the previous estimate £1_.

Depending on the sampling and scheduling decision variables {4, ...,5:} and {¢}, ..., ¢i}, we
can derive the dynamics of the Aol at the estimator &;. It is straightforward to derive the dynamics of
A;{, as functions of the sampling and scheduling variables:

k—rk—r

A=Y TTa-6)+r, =

t=1 1=t t

k
[Ta—ae. @)

1=t

1=

It can be seen from (7) that the Aol at the estimator depends on both sampling and scheduling decision
outcomes.
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Having the outcomes of the sampling and scheduling policies determined in (3) and (5), we can
introduce the information sets I,i and 77, available, respectively, for the local sampler of sub-system i
and the centralized scheduling unit, as follows:

T = {Zpeims S0 -1 841, @b+ Db 200 -+ 1 2k 1} ®)
b b i i 4 i ] i
Ik —_— UIEN{ prun'NO’ . .,Nk, 56, . .,5}1{, ¢6, . .,(P1271,26, .. ’Z;Cfl}/ (9)
where, Ifmm = {A;, B, Z,i, 2, P ’fo) }, and N,l; denotes the set of buffered state measurements

at time-step k. Additionally, we introduce the set of available information for the estimator and
controller of sub-system i at time-step k:

Iy = I, U {6, pp 21} U {ug, . ... uk =1 pnm,ub,...,u;(_l,élo,...,(5}(,4)’0,...,471’(,26,...,z}c}. (10)

Note that, with the information about sampling and scheduling variables in (8)-(10) and the
expression for the Aol in (7), the sampler S; is aware of the sequence A[O k—1) the controller C; is
aware of A[o K and the centralized sampler has the knowledge of U,GN{A[O e 1]}

Having the information set Il introduced, we can construct the state estimate and compute the
estimation error at the estimator of sub-system i. We denote the state estimate at the estimator of
sub-system i at time-step k by E[x,’; \f};], and define the corresponding estimation error as

& = yi — El|Z{). (11)
The dynamics of the estimation error é}; can be obtained as

= vk — E[xt|Z}] = Aixj_y + Biuj_y + wj_y + v} — E[Aix}_y + Biug_y + wj_4|Z]

= Aj(xj_y — E[ 4| Z]) + wi_y + 0 = Ay — U q) + 0h + Wy (12)
Note that, we can write E[x} ,|Z] = E[xk l|I LU {6 ¢zl ul 1}] Since the evolution of xi
is independent of the parameters &, ¢!, zi, ul |, we then have E[xk JZE = Efxi 1\ 4], which

confirms (12). Assume now that the decision variables 5 and ¢, are generated and yk_ ais for any
k

arbitrary A;'( €| ;'(_1 + 1, k], is the latest received state measurement by the estimator &; at time-step
k,ie., (])}((k - A;{) = 1. Note that the realization of A;{ is determined by the sampling and scheduling

variables 5E ALK and 4)f ALK We can compute the state estimate as

E[Xilfi} =

Ai i
E[A, *x k A,+A k A1+ +ABuk 2+Buk 1+A k A,+ +wk l|Ik}

= A, Ak E[x;—ALWL—A};} + A; A1 Biu;{_A;-( + ...+ ABiuj_, + Biu}{_l,
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where E[x! is the Minimum Mean-Square Estimate (MMSE) computed by a Kalman filter

k Al |yk Al]
at the estimator side &; given the received measurement Y,_,i» With the standard Kalman filter
Sk

equations for a time t at which the measurement sample y! is available, as
Elxilyil = 2 +Ki (vi— 21 ),
ﬂ = AiE[xj_4|Tj_ 1]+B”t %
R m)
. S S NT T
P =E [(x; — ) (x; — ) ] — AP A 3,
i i i i wa i~ i (pi iT
Py =E (xt - E[xt‘yt}) (xt - E[xt‘yt}) =P —K (Pt +Zz;i) K,
where, P/~ and P! denote, respectively, the a priori and the a posteriori estimation error covariances.
Therefore, from (11), and using the equivalent expression

. Ai -1 . .
Ve =A;"x AZ+A u A,+ .+ A;Bjui_,+ Bl 1+A w}{fAi+...+w}{,l+v}(,

we conclude that

{é |4’k(k Ak) 1}

i i i A'el

. Al
— A% (4 i i Sl
=4 ( k—al " Vkeal ) T Z% A Wiy (13)
r=
where, ek Al is the MMSE error due to having access to yf{_ e Otherwise, if ‘Plic = 0, we use the

model-based estimation error as in (12), wherein é};_l is not necessarily MMSE error.

1.2. Problem Description

As discussed above, the time of generating a measurement sample and injecting it to the queue
is determined by the sampler while the time of delivering that generated sample, if not discarded
due to the arrival of a new sample, to the corresponding controller is determined by the network
scheduler. Hence, the source-to-destination delay, i.e., the gap between the current time until the
time a generated sample is received by the controller, depends on how the local samplers and the
centralized scheduler policies are designed. The problem we tackle in this article is the co-design
of sampling, scheduling and control policies {¢;, 77, v;}. We discuss the optimal control policy, and
then consider ET and Aol-based policies for the design of sampling and scheduling policies and
study the effects of the combined architecture on the control performance which is correlated with
the end-to-end delay. Performance comparisons are made according to the LQG index functions as
the asymptotic cost metrics for each local sub-system, denoted by J;:

1 T e
Ji=lim —E |xp Q%x% + Y xf Qlx} +ul Rl (14)
T—oo T ! k=0
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where Q},Q? = 0 and R; > 0 are, respectively, the state and control input weight matrices of

appropriate dimensions, and we assume each pair (A;, \/Q}) is detectable, Vi € N. The overall
asymptotic NCS performance is measured by the average cost

1 N
] = Ni;h. (15)

2. NCS Design

In this section, we first study the structural properties of the feedback controllers C;, i € N, and
show that local control law 7;(Z}) can be designed separately from the local sampling law ¢&;(Z})
and the scheduling law 71(Z}). Afterwards, we discuss the combined design of the local sampling
law and the network scheduling law and discuss which class of ET or Aol-based policies match the
corresponding decision maker.

2.1. CE Control Law

Let us first make a crucial assumption on the sampling policy ¢; (Ii)

Assumption 1. The local sampling policies ; (I}() s are selected from the classes of control-input-independent
sampling policies, i.e., 6i, i € N, are computed independent of the sequence of control inputs {ul, ..., ”;;71 }.

Assumption 1 does not result in a loss of generality w.r.t. the introduced information structure at
the sampler, see (8) that indicated Z; does not contain any knowledge of control inputs {ug, ...,u;_,}.
This is crucial for the derivation of the optimal control policies, as will be discussed in Theorem 1.

Theorem 1. Consider an NCS as described in (1)-(6), where each control system is steered at every time-step
k € Ny by a local sampler ¢; (I}{) and a local plant controller 7y (f}{) with I,i and f,i given in (8) and (10),
respectively. If the local sampling policies are selected according to the Assumption (1), then the optimal control
policy in sense of LQG given in (14) is CE, i.e.,

7i(Z) = LLE [<{IZi], (16)
. . -1 .
where L = — (Ri + BiTP,i_HBi) BiTPiHAi is the optimal state feedback control gain.
Proof. See Appendix A. O

Remark 2. Showing that the optimal control law exists over the time horizon [0, T|, we can take the limit
as T — oo which results in having the asymptotic control gain L, = — (R,- + BZ‘TP};OBI-)_1 BiTPgoAi, with
P&, = limy_, o Py being the asymptotic a posteriori estimation error covariance. We later show in Section 3.2
that, under appropriate sampling/scheduling co-design, Vi € N, Pg, indeed exists and is not unbounded.

Remark 3. The result of Theorem 1 is in accordance with the existing results on the separation of control and
sampling policies w.r.t. the LQG cost function, if the sampling law is independent of the control inputs. In
fact, it is discussed in [22,57] that in the presence of control-input-dependent sampling policies, the separation
between the sampling and control policies cannot generally be achieved. As it is shown in (18) and (19), the
estimation error evolves independent of the control inputs, therefore, the sampling policies are allowed to be
function of the estimation error without violating the results of Theorem 1.

Remark 4. Theorem 1 states that the optimal control law is of certainty equivalence form, however, the optimal
control inputs uy* are still computed based on the state estimate E [x}(\f;(] As shown before, the estimation
process depends on the sampling and scheduling policies ; (I}() and 7t(Z}), hence the sequence of control inputs
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{uf)’*, ey ui’* }, i € N, is only optimal w.r.t. the given sampling and scheduling policies, and the control inputs
are globally optimal only if sampling/scheduling policies are optimal. However, under any sampling policy that
satisfies Assumption 1 and any scheduling policy, the optimal control law (16) remains CE.

Now that the control law is characterized, we can derive the dynamics of the estimation error
at the sampler, assuming that the local samplers are aware of the control law form in (16). This
assumption is essential in the sense that the samplers do not need to have the knowledge of the
control inputs {uf), e u;;_l} to compute the estimation error, and this coincides with the information
structure (8). The estimation error at the sampler is defined as

e = vk — E[x|Z{]. (17)

From (8), and at time-step k, the sampler has the knowledge of the latest controller measurement

update z;‘(_l. Let for any arbitrary A;'(_l €[0,k—1], y;(_ - be the latest received state measurement

by the estimator &; at time-step k — 1, i.e., 4),i_1(k —-1- A;'(_l) = 1. Then, similar to (13), we can
compute the estimation error e;; as

{e;;|¢li71(k —-1- A;;fl) =1}

AL 41 , , . Al . , .
— Ak i _ i _ i _ k=1, _ i i
= A, (xk_l_A;{_l E[xk_l_A;C_1 |yk_1_A;€_1}) + A; LRI +... 4w+
A+ [ ‘ Mot
. _ ~i i i r—1_.i
=4, <6k1A;’< LT Yke1-a) 1) top+ ), Al w,. (18)
- - r=1

If 47;;71 = 0, the estimation error at the sampler is, similar to (12), computed based on the model
parameters, i.e.,

{eilpf_q = 0} = 4 (é;c—l - U;c—l) + 0+ Wiy (19)
Note the difference between é;'(_ LA and é}‘(_l in the expressions (18) and (19), where the former is

k-1 .
the MMSE error due to having the measurement sample y; ,, , while the latter is not MMSE as
k-1

the estimator does not have access to y._; at time-step k — 1.

Remark 5. Comparing (12) and (19), we conclude that if the estimator &; does not receive any state
measurement update at time k — 1, i.e., ‘Pli(—l = 0, then e;'( = é}‘(. It should, however, be noted that this
equality is valid under the assumption that the estimator does not incorporate side information contained in the
sampling variables to compute the state estimate.

2.2. Co-design of Sampling and Scheduling Laws

As the optimal control policy is shown to be CE, we now propose the sampling/scheduling
co-design. We specifically focus on two common classes of policies, the ET and Aol utility functions,
and study which class of policies is more suitable for sampling and which fits better to govern the
scheduling process. Remind that the sampling is performed locally within each sub-system while the
scheduler resides in the network layer and is performed in centralized fashion, see Figure 1.

We now introduce the ET and Vol functions used in the rest of this article. For the sampling
policy, if the ET threshold-based approach is employed, then a sample of a local sub-system i € N
is generated and forwarded to the network buffer whenever the square norm of the corresponding
sub-system’s estimation error exceeds a positive random threshold r}'(, ie.,

5i, ET _ {1' if Hd{”% > rlic’ (20)
K= o :
0, if lelll3 <rt,
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where, the binary-valued (5;;’ ET indicates if a sample is forwarded for transmission or not based on the
ET policy. The sequence of i.i.d. real-valued random thresholds 7} ~ exp(y;), k € Ny are assumed to
be exponentially distributed, with u; € R>( being the rate parameter of the exponential distribution.
Random threshold policy is a more general form of the threshold-based policies, hence the presented
results in this article are easily extendable for ET deterministic threshold-based approach. Note
that, the sampling policy (20) is in accordance with the Assumption 1. Remind that e;‘( denotes the
estimation error computed at time k at the sampler side S; (not at the controller side C;).

When Aol policy is employed for sampling, a state sample of a sub-system i is sent to the
communication network for transmission whenever the age of the latest received state information at
the controller C; exceeds a given threshold Al e Ny, ie.,

O L Sh o
0, if Al <AL

Since age is a discrete variable taking only non-negative integer value, without loss of any generality,
the threshold A is also assumed to be selected from non-negative integers.

As a comparative scenario, we also consider the periodic sampling, in which each sensor sample
is sent for transmission at pre-defined instances of time and the inter-transmission time is determined
by the constant time period Ty € N. Therefore, we have
521):{1, %f k:nTﬁi, neN )

0, if otherwise.

As noticed in the expressions (20)-(22), we use the superscripts “ET”, “Aol” and “P” to indicate that
the sampling policies are ET, Aol-based, and periodic, respectively.

For the purpose of illustrations and ease of analysis, let us set the communication channel
capacity to ¢ = 1, i.e.,, at every time-step k the scheduler allows only one state information to be
forwarded to the corresponding controller, (see (4)). We already introduced Nz as the set of all
sub-systems that have a state sample in the network buffer at time-step k. Note that, this state
information might belong to the current time k or to a previous time, hence, the buffered state
measurements are not necessarily time-synchronized. For the Aol scheduling, we introduce the
highest-age-first policy that in fact minimizes the average age of all sub-systems in Nllé. For a
sub-system i € Nz, this can be expressed as

1, if AL >AL L, VjeNL j#i

Plgi At = 1) = % if Al =...=A,>A , VJEN), j#i...,1I (23)

1]k sub-systems

0, if FHeNY A | >AL,

where, 77, denotes the number of sub-systems in N,’z with the highest age at time-step k. We also
express that if i ¢ N, then P[4>,i(’ Aol _q) — .

For pure random scheduling, we employ the common uniform randomization and we, therefore,
have foralli € N

1 . . b
e ik if ieN]

Plgy " =1] = (24)
0, if i¢N}

where, | - | represents the set cardinality operator and the superscript “R” in (24) stands for random
scheduling policy.
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Scheduling
ET | Aol |[R| P
oo ET * *
% Aol * *
g R
B P * *

Table 1. Considered combinations of sampling/scheduling policies. The combinations designated
with * are discussed either analytically or in simulations.

In the following, we analytically compare Aol-based vs. ET design for the decentralized
sampling and will show (Section 3.3) that ET threshold-based sampling policy outperforms Aol-based
counterpart if thresholds are appropriately designed. We, moreover, show that Aol sampling is in
fact a more general form of periodic sampling with two differences, first, the transmission pattern
may contain more than one fixed period, and second, the period(s) is a function of the number
of sub-systems and the Aol thresholds. For the centralized scheduling process, we employ the
Aol-based prioritizing policy of highest-age-first. In comparison with the pure random scheduling
policy (Section 3.3), we show that the highest-age-first policy is not necessarily outperforming the
pure random scheduling, if heterogeneity of sub-systems is not taken into account. We then propose
the highest-age-first prioritization for the unstable sub-systems and show that this Aol-based policy
is indeed capable of coordinating the communication resources more efficiently compared to the
random scheduling, in sense of lower average sum of estimation errors of all sub-systems. We do
not investigate the ET design as an applicable architecture for the scheduling policy since scheduling
is a centralized process and decision making based on ET policies requires knowledge of real-time
state information from all sub-systems which might not be preferred. It is, however, conjectured that
if for certain small-size networked control scenarios ET policy might be favorable to be employed as
the centralized scheduler, then it would even outperform Aol-based prioritizing scheduling due to
its powerful capability of real-time prioritizing based on the current state of each single sub-system.
The sampling/scheduling policy combinations that we address in this article, either analytically or in
the simulation results, are summarized in Table 1.

3. Performance Analysis of the Joint Design

In this section, we propose two major co-design methodologies for the sampling and scheduling,
where in the first method the sampling process is governed by an Aol threshold-based policy
introduced in (21) and the scheduling is performed based on highest-age-first policy introduced in
(23). In the second co-design the scheduling will be performed similarly based on the highest-age-first
policy law in (23), while sampling process is controlled by the ET threshold-based policy shown
in (20). We additionally consider periodic sampling policy and random scheduling, introduced in
(22) and (24), respectively, as two conventional models for sampling and scheduling and provide
comparisons, theoretically or numerically, with the proposed co-designs. For the purpose of brevity,
we use the abbreviations “Aol/Aol”, “ET/Aol”, “ET/R”, “Aol/R”, “P/R”, and “P/Aol” to denote
the combined “sampling/scheduling” policy, see Table 1. To avoid confusion, it is worth reminding
the difference between the Aol policies for decentralized sampling and centralized scheduling, see
(21) and (23).

3.1. Aol Sampling and Scheduling Co-design

In the Aol/Aol co-design architecture, the Aol sampling is performed locally at every
sub-system’s sensor station according to the threshold-based policy (21), while the Aol scheduling
is done in centralized fashion according to the highest-age-first prioritizing policy (23). Assume a
NCS is comprised of a set of stable and a set of unstable sub-systems, denoted respectively by N and
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Figure 2. Sampling and scheduling patterns for an illustrative heterogeneous NCS of 3 stable (S51,
552, 553) and 3 unstable (US1, US2, US3) sub-systems with Aol/Aol co-design architecture.

N,, where Ns UN,; = N, and N; = \Ns\ and N, = |N,| indicate the number of stable and unstable
sub-systems, respectively. Here, we study the asymptotic sampling and transmission patterns for the
Aol/ Aol co-design for different values of the deterministic thresholds Al i€ Ngand A, j € Nu.

Let A\ < Nand M < N. It is straightforward to conclude that each sub-system, either stable
or unstable, will be scheduled for transmission once in every N time-steps with a fixed unique
pattern. Moreover, the sampler of each stable sub-system will send N — A’ number of samples to
the buffer in the same cycle of N time-steps, while unstable sub-systems send each N — A/ samples.
We demonstrate this pattern for an illustrative example in below, and then summarize the concluding
statements in the Proposition 1.

Illustrative example: Assume N; = N, = 3, ¢ = 1, AM = 5and M = 2. Fig. 2 shows the
sampling and transmission patterns of each sub-system, wherein, each circle (square) shows that a
new measurement sample from a stable (unstable) sub-system is sent to the buffer. The red-bordered
ones are the scheduled data packets and the numbers inside circles and squares denote the age of that
corresponding sub-system at that time-step. According to (21), every unstable system j (denoted by
US1, US2, US3 in Fig. 2) sends a fresh sample to the buffer at any time-step k at which A{(_l > 2. Hence,
no data packet is injected to the buffer before time-step k = 4, at which all three unstable sub-systems
will send a measurement sample to the buffer (see Fig. 2). Note that, at time-step k = 4, the samplers
decide based on A} = 3 > 2. The same occurs for the stable sub-systems (denoted by SS1, SS2, SS3 in
Fig. 2), hence, they all send their first measurement samples to the buffer at time-step k = 7, knowing
that AL = 6 > 5. Since at time-step k = 4, there are three data packets all with identical highest ages,
the Aol scheduler selects one of the three randomly, i.e., 774 = 3 (see the second argument of(23)). This
randomization is repeated again at the next time-step k = 5 now with only two data packets with
similar ages belonging to US2 and US3 (US1 remains silent for the next two time-steps). Atk = 6,
there is only one data packet in the buffer and it is certainly scheduled as there is no competition
for the single transmission resource. At time-step k = 7, there are 4 data packets belonging to SS1,
552, 553, US1. The data packet belonging to US1 will not be scheduled for transmission because it
has a lower age compared to the other three. For the remaining ones with the same ages, one will
be scheduled for transmission randomly (e.g., SS2 as in Fig. 2). At k = 8§, random selection is done
between only S51 and SS3 since the existing data packets of US1 and US2 entail lower ages. Finally, at
k =9, SS1 is certainly scheduled for transmission as it has the highest age among all the data packets
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in the buffer. From this time-step forward, the same pattern of transmissions is repeated without any
randomization.

As it is also illustrated by the above example, we state the following proposition for which we
omit the lengthy but straightforward proof:

Proposition 1. For the sketched heterogeneous NCS scenario, if ¢ = 1, A A < N, Vi € N and Vj € Ny,
then the following statements hold, asymptotically:

1. each sub-system is scheduled a transmission once every N time-steps.

2. stable and unstable sub-systems send, respectively, N — A and N — M fresh samples to the buffer during
every N time-steps.

3. if Al = Nl = N — 1, then the Aol sampling is equivalent with the time-triggered sampling.

Now assume that A/, A/ > N. We can express similar statements as in Proposition 1 and conclude
that both stable and unstable sub-systems successfully transmit in asymptotic regime, respectively,
every A' + 1 and A + 1 time-steps, and they send only one sample to the buffer per each successful
transmission. This is then clear that this scenario is also equivalent with the periodic transmission
with periods of A’ + 1 and A/ + 1 for stable and unstable sub-systems, respectively.

If Al > Nand M < N, the transmission pattern for each sub-system i € Nj is similarly
periodic with time period of A’ + 1, and only one measurement sample is sent to the buffer per
each transmission. For sub-systems j € N;, however, the transmission pattern is not periodic with
a unique period, i.e., the inter-transmission times vary between every two consecutive successful
transmissions, if N < Al < 2N. In fact it changes between M+ 1 and N for each j € Ny. When the
inter-transmission time is A/ + 1, no data sample is discarded in between, while, when it is N, each
sub-system j sends N — A/ number of samples per each transmission. In addition, if A’ — o, then
every j € Ny successfully transmits every A/ + 1 time-steps during which each sub-system j sends
max(1, Ny, — AJ) number of samples to the buffer. The same can be said for A/ — co. These statements
can be numerically tested by, for example, setting A’ = 7 in the depicted illustrative example in Fig. 2.

From the above discussions, we can make two crucial conclusions. First, Aol/Aol co-design
policy governed by the Aol threshold-based sampling law (21) and Aol-based highest-age-first
scheduling law (23) is not equivalent to the unique fixed periodic transmission policy, although, for
some specific parameters, e.g., A' = A/ = N — 1, they coincide. Second, all the possible transmission
patterns are determined by the capacity constraint (4), the Aol thresholds A’ and A/ and the number
of network sharing sub-systems, that are all constants. Hence, the resulting transmission patterns are
insensitive w.r.t. the dynamics of stable or unstable sub-systems. We may design the Aol thresholds
Al and A differently for stable and unstable sets of sub-systems, however, they are assumed to be

constant parameters and not adjusted by changing the dynamics'.

3.2. ET Sampling and Aol Scheduling Co-design

In this section, we study the ET/Aol co-design architecture, where the sampling is locally
performed according to the ET law (20) and the scheduling is centrally governed by the
highest-age-first law in (23). For the clarity of analysis and illustrative purposes, we first assume
that the ET thresholds in (20) are deterministic and constant, i.e., r,i{ =rlc R>p. We discuss in the
next section how to extend the performance results to the ET sampling with stochastic thresholds.

Since the estimation error e;‘( is a random variable (see (18) and (19)), there is generally no fixed
pattern for transmission of each sub-system when sampling is controlled by the ET law in (20). Hence,

1 The discussions of the Section 3.1 can be extended to cover the scenarios that the Aol thresholds are not identical within

the set of stable or unstable sub-systems, i.e., if i,] € N, then Al * Al Although this leads to more complex transmission
patterns, it does not contradict the crucial conclusions of this section, as summarized in the last part of the Section 3.1.
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we study the asymptotic transmission rate for which we try to find mathematical expressions or
bounds. To do that, we first compute the asymptotic sampling rate for an arbitrary sub-systemi € N,
as follows: }

limy,co Ef]| e [13]

, (25)
rl

lim E[§i] = lim P(6i = 1) = lim P(|[¢l||2 > #) <
Jim B[] = lim P(g, =1) = lim P(|jei/|3 > r') <

where the inequality in (25) is obtained using Markov’s inequality knowing Hef{ |3 is a non-negative
random variable and #/ is a non-negative constant. To provide more meaningful bound, we first state
the following Lemma which essentially states that the dynamics of a stable sub-system’s estimation
error variance becomes insensitive to closing the feedback loop, asymptotically.

Lemma 1. For any stable LTI stochastic control system modeled by (1), the estimation error variance is
asymptotically bounded regardless of how often the feedback loop is closed.

Proof. From (19), we can express the estimation error at the sampler’s side, assuming that no
transmission has taken place from the initial time until the current time k, ie., ¢] = ¢ = ... =
47;;71 = 0, which ensures ALl =k — 1, as follows:

K K
ik (s i) o i ok (i) o =1
e = 4; (eo - vo) Hopt AT W, = A (xo - P‘xg)) +op+ ) AT W,
r=1 r=1

where the second equality holds since & = y) — E[x}] = x{ + v} — P According to the last

expression, e;{ is zero-mean, hence, we can compute the asymptotic estimation error variance as

I .
lim E [} ¢] = lim E [|le} 3] = lim E
I E ek o] = i B il = o,

. . k .
48 (s )+ L a1
r=

— i E [f (s g ) 2] + i Y E [l 2] 2 o)
r=1

k—ro0

< lim Z | A; |\2 Vs i+,

k—o0

Z
— 5 T Xy (27)
C1- HA I3
where, to obtain (26), we used the mutual statistical independence of xé, v;'( and {wf), wi, cery w;(},
and the third expression is derived using the sub-multiplicative property of vector norms and also
knowing that limy_, A = 0, since A is Hurwitz. The final bound (27) is obtained knowing that
the infinite series limy_,o, YX_, HA1|| 2 )Zw,- is convergent since ||A;[|3 < 1, which completes the
proof. O

Having Lemma 1, we can then re-express (25) for all stable sub-systems i € N, as follows:

; 1 z,
lim P(6, =1]i €N —r— +X 28

dm PG =1 € No) < (1—||A|2+ ) (28)
It should be noted that the expression (25) holds for both stable and unstable sub-systems, while (28)
is valid only for the former ones. Moreover, the bound (28) becomes trivial if the right hand side of
the inequality is bigger than one, so this might also be seen as a rule to design the threshold 7. Tt
is clear that the higher 7l is, the lower the transmission rate of stable sub-systems becomes, which is
expected.
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Lemma 1 does not apply to unstable sub-systems, hence, to derive similar upper-bound for
sub-systems j € N, we compute limy_, E[|\e§{||§} according to the estimation error expression (18),
as in the following:

: iN2IA] _
Jim Efllep 12147 . € Nu] =

li A{(_1+1 é] i j A{c—1+1 r_le 2 ; '
"51"1°E HAj ( k-1-4) , vk—l—Ail) Tt r; A, , Ny ] €Nu| <
. e r—12 . 2(A)_,+1) i j 20
Byt fim 3 1A B+ i A <o B eN] @)

Let us denote limy_,, A{(_l = AL, Having the highest-age-first scheduler (23), we can compute an
upper-bound for (29) by evaluating the two disjoint cases limy_, 4, ||e§(|\% > 7l or limy_, o ||e§(|\% <7,
almost surely. If the first case holds, then according to (23) we know that a measurement sample
belonging to the sub-system j should exist in the buffer, and according to the Proposition 1 and
the discussions afterwards, it yields that limy o A;(,l < Ml £ max{N, M+ 1}. Otherwise, if
limy Hef{ ||% < 1/, almost surely, no measurement sample would be sent to the buffer asymptotically

according to the ET sampling law (20), and then limj_, A{(_l > max{N, AJ + 1}. Finally, knowing

that é;{ N is the MMSE error computed by the Kalman filter having access to the measurement
T k-1
y;—l—Aiql we can rewrite (29) as
112 j ‘ M 192 2(M/+1) pj
: : , r— :
lim Efle 3] lim ALy < M, j€Nu] <%, + r; 45 2% + Jim A1 0R
Mi+1 ; .
- 2(Mi+1
=T+ ¥ A 3R, + 4l VR, (30)

r=1

where, P/, = limy_,, P]i )

N is the asymptotic estimation error covanrince and will be obtained
T Sk—1
from the following algebraic Riccati equation

Pl = A; (PL = PL(PL+Z,) ' PL) A] + 2,

Finally, having (30), we can express the upper-bound in (25) for the unstable sub-systems j € N, as
j - 2(Mi+1

T+ M AT B, + a3

7]

Pl

lim P(6] = 1[j € N) < (31)
k—o0
Note that, if limy_,q, A{(_l < M/ holds for finite M/, P(];o will also be finite as the Kalman filter

receives state measurements asymptotically to compute the MMSE error. Even though the received
measurements might not be fresh, the delay is finite and the Kalman filter algorithm converges.

3.3. Performance Comparisons

To conduct asymptotic performance analysis, we consider a heterogeneous NCS comprised of
multiple stable and unstable sub-systems. Note that, for a NCS including all stable sub-systems
asymptotic performance becomes independent of the sampling, scheduling and control policies due
to the natural convergence of states. In fact, for a stochastic system of the form (1), the system states
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are expected to converge asymptotically to a bounded set around the origin where the set boundary is
characterized by the moments of the primitive random variables, as we will show later in this section.
Hence, to study the properties of the co-design we focus on the heterogeneous NCS scenario.

The overall asymptotic performance of the NCS is measured by the average cost functions |
introduced in (15). It can be seen from (A3) that the local LQG cost function J; can be minimized by
the control law 4 in an inner optimization problem and then the residual cost becomes a function
of the sampling law ¢;. From (A8), we know that the residual local cost is a function of E[x;;ﬁi]
and ;. where the latter is shown in (A15) to be a function of the estimation error &, and its variance
Pti, t > k. This should be remembered, however, that the resource constraint (4) does not allow the
transmissions to be solely determined by the sampling law &;, and therefore, the local cost J;, from the
overall perspective of control and network layers, becomes dependent also on the scheduling law 7.
The dependency appears in Z} which eventually affects both the estimate E[x}|Z!] and y.. Hence, the
optimal asymptotic cost function (15) should be minimized by both sampling and scheduling policies,
which can be written as

YpE|, min E[Eld TR+ vi) (32)
‘sfo/T—l]/ ‘%/T—l]

wherein, E[xf)} is known a priori, and lp(i) is a function of the estimation errors é}; and their variances P,i,
k€ {0,1,2,...}, according to (A15).

Solving the optimization problem (32) is very challenging due to the coupling of the decision
variables with ¢ through the end-to-end delay Al and also the non-linear nature of the ET and Aol
functions. The aim of this article is, therefore, to identify the appropriate class of policies for the
sampling and scheduling that jointly result in an improved overall performance. Since the overall
performance is a convex function of the estimation error according to (32), it is easier to study the
asymptotic behavior of the estimation error of all sub-systems. In fact, if a certain co-design of
sampling and scheduling policies results in a lower asymptotic average sum of estimation errors of
all sub-systems, compared to another co-design, then it certainly results in a lower asymptotic overall
cost (32) as well. Hence, for the performance analysis and make comparisons between different
sampling /scheduling co-designs, we consider the following performance metric:

(I Tl NEE [ s
mﬁi; {ek ek}—hm—[ZE[ekek}+];E[k kH (33)

Theorem 2 summarizes the second main result of this article on the appropriate sampling/scheduling
co-design architecture. First, we define “non-trivial threshold-based functions”, as follows:

Definition 2. A threshold-based function with stochastic thresholds of the form (20) is said to be non-trivial
if P[r;( # 0] > 0, Yk, and almost surely, P[r;; = oo| = 0, Vk. For deterministic threshold-based functions of
the form (21), we call the threshold-based function non-trivial if \' # {0, c0}.

Theorem 2. Consider a heterogeneous NCS comprised of N LTI stochastic sub-systems modeled as (1)-(2)
from which Ny sub-systems are stable and N,, sub-systems are unstable. Let the network scheduler select only
one sub-system per time-step to transmit its freshest state measurement in the buffer to the controller, i.e.,c =1
in (4). Then, for any non-trivial Aol sampling policy given in (21), there exists a non-trivial constant threshold
ET sampling policy in form of (20) that asymptotically outperforms, in terms of (33), the Aol sampling policy,
given that network scheduling policy obeys the Aol-based highest-age-first law in (24).

Proof. See Appendix B. [
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Remark 6. Reminding the evolution of e{( in (18) and (19), it is clear that the estimation error at the sampler
has a zero-mean but not normal distribution. For general square matrix A; € R">*" | the asymptotic CDF of
\|e} |13 might not have an analytical form, but can be efficiently computed numerically. Indeed, the distribution

of He{{ |13 for general Aj is determined by the distribution of its elements which are statistically dependent via the
off-diagonal elements of A;. For specific forms of A;, however, the CDF has indeed an analytical form. If A; is a

diagonal matrix, then the distribution of ||e§( 13 follows the sum of n; independent Gamma distributions which

has an analytical CDF. For scalar systems, the distribution of Hef{ 15 = ef{ follows a single Gamma distribution.

Remark 7. Theorem 2 can be extended to the case that the thresholds rk and r are stochastic, as in (20). This
would results in the Markov’s inequality in (25), and the expression limy_, o, P (||€] 13>r)=1- Pﬁ ]H( 1)
not to be valid anymore due to the random nature of the thresholds. For stochastic thresholds, instead of
Markov’s inequality which holds for non-negative random variables, we can employ Chernoff bound which is a
generalization of the Markov’s inequality for real-valued random variables. In fact, if thresholds are stochastic,
we can construct the new real-valued random variable ||€] 15— r] and find the upper bound for it by applymg

the Chernoff bound. Further, we can write limy_,, P (He] 13 -7, > O) =1- H ol ;(0), where FHeJHfrJ is

now the asymptotic CDF of the constructed random variable ||e] |5 — .. Note that, Fﬁ ’H< ) = 0 since He{{H%

;(0) > 0Osince He’ H2 — 1, is real-valued. The CDF Fﬁ |-

is a non-negative random variable, however, F

e[| —r

may not have an analytical form, depending on the distributions of the random variables He] 15 and r]

In the following, we discuss that the pure Aol scheduling policy (23) may outperform the
pure random transmission policy (24), but not always. In fact, we discuss that if the scheduler’s
highest-age-first prioritizing feature is applied first to the set of unstable sub-systems, then the Aol
scheduling policy (23) certainly outperforms the pure random transmission policy. We define the
highest-age-first policy for the unstable sub-systems similar to (23), with the exception that the law
is applied, asymptotically, first on the set of unstable sub-systems and the resource is assigned to
the unstable sub-system with the highest age, even if there are stable ones with higher age than the
unstable ones.

Corollary 1. For a fixed sampling policy, the highest-age-first threshold-based scheduling law (23) does not
necessarily outperform the pure random scheduling policy (24), asymptotically, in an NCS of heterogeneous
stable and unstable control sub-systems sharing a capacity limited communication network. The Aol-based
highest-age-first policy for unstable sub-systems, however, asymptotically outperforms the pure random
scheduling policy (24).

Proof. As discussed before, the average sum of the estimation error variance of the set of stable
sub-systems do not asymptotically change. Reminding (13), we see that the higher the age A}'( is for
unstable sub-systems, the larger the estimation error becomes. This is also true for the variance of
the estimation error. Therefore, if a scheduling policy results in a higher transmission probability for
the unstable sub-systems with the highest age, then the average sum of the estimation error variance
will also be more reduced. According to (24), all sub-systems that have a data packet in the buffer are
assigned identical probabilities of transmission INLﬁ\' irrespective of their age or stability properties.

For the same set of sub-systems with a packet in the buffer, the probability that the sub-system with
the highest age, stable or unstable, successfully transmits is, according to (23), = 1f there are 77 <

b 2
IN}| number of sub-systems all with identical highest age, which leads to 17 > The equality

\Nbl
occurs only if all sub-systems in the buffer have the similar age which is also the highest age. It
should, however, be noted that if all the sub-systems that have the highest age are stable, then the

unstable sub-systems in the buffer that may have relatively large age but not the highest are assigned
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with probability zero for successful transmissions, while this probability is |NL1’\ for the pure random
k

scheduling policy that leads to a lower average sum of estimation error variance. With the modified
prioritized highest-age-first policy for unstable sub-systems, however, the described problem can
be easily considered in scheduling, and therefore, this policy always outperforms the pure random
scheduling, for any fixed sampling policy. [

4. Numerical Evaluations

We consider different NCS setups with different number of stable and unstable sub-systems to
numerically test the co-design architectures and compare with the common approaches. Number
of sub-systems N is chosen from the set {2,4,6,8,10} with equal number of stable and unstable
sub-systems. For the ease of interpretation, we choose scalar LTI sub-systems. The system matrices for
stable and unstable sub-systems are selected to be 0.5 and 1.05, respectively. The system disturbance
is modeled as w;( ~ N(0,1),foralli € N, and k € Ny, and for the ease of illustrations we assume
that measurements are noiseless. Each data point in the plots is generated by running the simulative
setup for 10° iterations. In the following we define the sampling and network scheduling strategies
and the parameter values chosen for each scenario.

Sampling strategies

1. Event triggering: The sampler (sensor) samples the plant in each time-step, and if the value of the
estimation error is greater than a threshold, then the sample is sent to the queue. The threshold
is generated from an exponential distribution, and the mean of the distribution is chosen from
the set {0,0.1,0.5,1,2: 2 : 30}, where 2 : 2 : 30 are integer values in [2,30] that are divisible by 2.
We use a default setting where each sampler uses the same mean threshold.

2. Period-n sampling: Each sampler samples the plant periodically with period #.

3. Aol sampling: Each sampler samples the plant whenever the Aol at the sampler exceeds N — 1.
The Aol at the sampler is equal to the Aol at the respective estimator from the previous time-step
plus one.

Network scheduling

1. Max Aol: Under this scheduling policy, the network chooses the plant which has a packet in the
queue and maximum Aol at the estimator, which is the highest-age-first policy.
2. Pure randomized: The network scheduler chooses a packet uniformly randomly from the queue.

In Figure 3, we plot the average estimation error variance (across all sub-systems) by varying
the mean threshold. We observe that the estimation error variance is minimized for certain mean
threshold values which increase with the number of sub-systems N. To understand this, note that
when the thresholds are small, all the samplers will place a packet in the queue in almost every
time-step. In this case, Max Aol does close to round-robin scheduling for the plants. Thus, plants
with high or low estimation errors are treated rather indifferently leading to relatively high estimation
error variance. The threshold values that attain minimum estimation error variances are such that the
sub-systems with low estimation errors (usually the stable ones) do not contend for the network
frequently as they do not exceed the thresholds frequently. This results in more often transmission
of packets from sub-systems with high estimation errors, thus lowering the overall estimation error
variance. In the following figures, we present the statistics of the event triggered sampling at mean
thresholds that minimize the estimation error variance, that are marked by black circles in Figure 3.
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Figure 3. Average estimation error variance versus mean threshold under event triggering and Max

Aol scheduling for different number of sub-systems N.
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Figure 4. Comparison of estimation error variance for various sampling/scheduling architectures.

In Figure 4, we compare the estimation error variance achieved under different schemes. For
event triggered sampling, we plot the minimum estimation error variance achieved over different
thresholds for each N. We observe that event triggered sampling strategy obtains the lower estimation
error variance, 30 — 40% lower than that of Aol sampling when N = 10. While Aol sampling and
period-1 sampling results in same variance, the sampling frequency of Aol sampling is much lower
and equals ﬁ Also, it can be observed that, in general, using Max Aol scheduling results in lower
estimation error variance especially as the number of sub-systems grows.

In Figure 5, we compare the normalized total number of network transmissions that occur
under different schemes. While period-1 sampling and Aol sampling result in a transmission in each
time-step, event triggered results in transmissions 80% of the time for varying number of sub-systems.
This is because, the queue remains empty 20% (on average) under event triggered sampling since
only sub-systems with estimation errors greater than the threshold are allowed to place a packet in
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the queue. Therefore, event triggering not only provides lower estimation error variance, but also
reduces the number of network transmissions.
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Figure 5. Normalized total number of network transmissions under different schemes.
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Figure 6. Average Aol achieved under different schemes.

In Figure 6, we compare the average Aol (averaged over all the estimators), achieved under
different schemes. Since Aol sampling samples a plant based on its Aol at the estimator, this strategy
results in the lowest average Aol. On the other hand, event triggering results in higher average Aol,
as it samples based on estimation error, which increases non-linearly with Aol. Also, since Aol Max
scheduling picks the plant with highest Aol and transmits its packet, this strategy results in lower
average Aol across different sampling strategies. The main conclusion is, although ET sampling
policy does not result in the lowest average Aol across the NCS, it results in the lowest achieved
estimation error variance.
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5. Conclusions

In this article, the major goal is to propose a co-design networked control architecture
of sampling, scheduling and control for NCSs comprised of multiple heterogeneous LTI
stochastic control systems that close their sensor-to-controller loops over a shared capacity-limited
communication network. We first show that under mild assumptions on the information structure
of each policy maker, the optimal control law is of certainty equivalence form. We then investigate
various combinations of decentralized sampling and centralized scheduling architectures employing
the applicable concepts of event-triggered and Aol utility functions. We analytically show that the
event-triggered sampling is capable of asymptotically outperforming Aol sampling policy when
the communication resources are limited, while we demonstrate Aol-based prioritizing scheduling
may outperform the pure random scheduling policy under appropriate prioritization metric. To
discuss the effectiveness of each co-design, we measure the overall NCS performance by the average
sum of local LQG cost functions. Our theoretical analyses are successfully validated for the
proposed co-designs and comparisons are made with conventional periodic and pure random access
approaches through simulations on different NCS scenarios.
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Abbreviations

The following abbreviations are used in this manuscript:

NCS Networked Control System
Aol  Age-of-Information

ET Event-Triggered

QoS  Quality-of-Service

QoC  Quality-of-Control

LQG Linear-quadratic Gaussian
CE Certainty Equivalence

Appendix A. Proof of Theorem 1

From the perspective of each local sub-system i, the expected local cost (14) changes depending

on the Z!-measurable sampling policy &;(Z!) and the Z-measurable control policy 7;(Z!). Using the

law of total expectation2, we can re-write (14) over the horizon [0, T, as follows:

i . (A1)

1 PCRITE = LRI
Ji(Gi,vi) = T E|E |¥r Qixp + Yo %k Qixg +up Ry
k=0

2 Letarandom variables X be measurable w.r.t. to some c-algebra H, then we have E[E[X|#]] = E[X].
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From (8) and (10), we know that I}; C 1!, therefore, we can re-write (A1) by employing the general
law of total expectation®, as

I |m

1 T L T T
Ji(Gi,vi) = T E|E|E|xT Qixr + Yo %k Qixp+up R . (A2)
k=0

Define the LQG cost-to-go at time-step k as V,f (&, vi) = x"TT lexiT + ZtT:_kl xiT Q}xi + uf Riui. We then
have from (A2)

.1 ' _ . I
Ji = Tmm]i(‘:iz')’i) =E | min E | min E [Vé((fi/’h)\zé} 1Zo| | - (A3)

1
(:u')’z [0,T-1] ul[O,T—l]

We, moreover, define the optimal stage cost J (k) as follows:
(k) = min E | min E [V/(&7)\ %] 17| (A4)
Ot T-1] U r_)

which results in the compact form J;* = E[J(0)].
The LQG optimal cost-to-go at time-step k + 1 has the following form:

‘ ‘ oo T ‘ ‘ .y
Vil = min E lxlTT Q¥h+ Y xi Qlxi+ul Rul ‘z;(+1 . (A5)
Ulkt1,7-1] t=k+1
Knowing that f]i - f}; +1- we have from the law of total expectation that
ix |7 : o2 L N T ol T |
E |:Vk/+l’Ik:| = imln E xT Ql xT + Z xt QI xt +ut Rlut)Ik . (A6)
Ylk41,7-1] t=k+1
Having (A6), we obtain
Vl?* = gnin E [x,’j Q}x,ic + u}j Riu;; + V]f’_;_k] ‘f}c} . (A7)
Uiro1)
Let us assume that V,i’* can be expressed in the following form:
Vet & El T PLERIT + ks (48)

where 1,0}; is a control-input-independent expression. We will show later in this proof that (A8) is
indeed an authentic assumption. According to (A8), we can re-express (A7) as follows:

. _ S S . o —
V¢" =minE [x;c Qi + i Ry + Elxk 4| L 1) Py Elxiga [T ] + 94 ’Ill(} : (A9)

Uy

3 Let H; and H» be two sub-c-algebras of a probability space with c-algebra H, and X is defined on that probability space.

If Hy C Hy C H, then we have E[E[X|H,]|H1] = E[X|H1]-
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We have for the a priori state estimate that J?k:rl = E[xi “ |Z}]. Since E[x] “ |Z1] is Z}-measurable, we
obtain

E [E[x;(+1|jli+1ﬂpli+1 E[x;‘(—kl‘j—lﬂ ’jﬂ =E [E[xll;+1|jli+1]T|jli} Pli+1 E[x}'(+1|f,i}
—E [xi |ii} "piE {xi |T'} — ¢ pi i (A10)
= k+114% k+1 14k | = X1l e+1%k+17

where, for the first equality we use the conditional expectation property of E[XY|H]| = X E[Y|H] if X
is H-measurable, and the second equality holds according to the law of total expectation knowing

o oy . _ T Ry T
1; C 1;,,. Similarly, it can be shown that E [E[x;(ﬂ\I}JTPiH E[x;(+1\l'llc+l]|1d = 1P %

] . R S S v e _ _ S
Define €., = E[xj4|Z; 4] — E[xi 412y = £, — £, It is straightforward to see €, is
. . . . R .
independent of u;. From (A10), we conclude E [e}(il Py % +1} =E {J?,’( 1P +1} = 0. Using

the equivalence E[x} ,|Z} ] = e}, + %}, together with knowing €, , and |, are independent
of control inputs, we can re-write (A9) as

VYt =minE [} Qfxf +uf Ruuf| T} | +minE (A} + Baup) Pl (Adf + Ba)| T (A1D)
Uk

Uk
T A
+E {€IZ<+1P1§+1€IZ<+1 + ki ’Iﬂ :
Since the last term after the equality above is uf{—independent, finding the optimal control u;: is

straightforward and can be obtained by setting the derivative of the first two terms in (A1l) w.r.t.
uy, to zero, which results in

N . -1 . y
uy =~ (Ri+ B/ PLiBi) B/ Pl A%

. . -1 . .
Defining L} = — (Ri + BiTP;iHBi) BiTP;iHAi/ (16) will be obtained. We still need to show that l)bll{Jrl
is indeed independent of control inputs. By plugging in (16) in the optimal cost-to-go (A11), and also
using x;; = é}‘{ + 9?}( - v;'( (see (11)), we have
Vit = [(6h o — o) T Qe+ 5 — o) + (L) T R(Lh) 2]
N - . N e T S
+E (A} + BILEE) T PL (AR + BLEEDIZE +E (el Plreln + Wi 2]
=3 (L RiL+ Q! + (A + BiLy) " Plyy(Ai + BiL))) 3} (A12)
T i | T 1 T ; ; oy
E [ef Qlel|Zi] —E [0} Qlof| +E [efr Plrehan + ¥ |Zi]

; ; ; iTolgi|Fi| — oil Olgi |Fi| — sil Olgi 7| —
where (A12) is obtained noting that E |v} Q;%|Z;| = E|%, Q;vi|Z;| = E|& Q;%|Z,| =
E [J?,’: Q}é}cﬁd = 0,and E [E}j Q}v}c\f}(} =E [v}j Q}E};\f};} =E [v}j Qllv;(} Now, comparing (A12)
with (A8), we conclude the two following statements:

Pl =Li RiLi+ Q} + (A + BiLY) TPl (A + BiL), (A13)

9t =E & Qle|Zi] — € [of Qlof| +E [efiiPlirehn + o |T]]

Tﬁl -T . -T . - T71 T . T . T T PR
=E|Y & Qlej+er Qe |T| —E | Y. v} Qloj+vh Qo | +E| Y e Plel|Zf|. (Al4)
t=k t=k t=k+1
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From the definitions of &, and €!, and using u} = LI E[x}|Z}], we obtain the following:

€, + & = E[x|Z}] — E[xt|Z{_1] + x; + o) — E[xi| Y]
= x — E[Z} 4] + v}
= Ai(x_q — Elx 4| Zi ) + op +wpy
= Ai(Gq — V) + 0 F Wi,

Knowing that E {e;;TPIi é}c]f]’(} =0and E [é}llv}‘#l ]f]’(} =E {v}llv;‘cfl} , We can write
E [ef Ple|Zi] + € [ Pie|Zi] = € [(f + &) TPi(el + &) |Zi]
=E {(Ai(é;cfl — V1) + 0+ wi_y) T PHAIE g — Vh_1) + 0f + Why) ‘ill(:|
[ek 1Al PRAZ l’Ik} [Uk 1A} PAD]_ 1} +E{Uk P }"’E{wk 1P 1}
— € (gL, A7 Pl _|TE] +tr (Pl — AT PiA)T, ) +tr (PIZ,, )

From the above expression, therefore, we obtain

T
E[ Y et Plet|Z;
t

T T ) )
:E[ Y. @A PiAG T + ) tr((P}—AiTPZA,-)ZUi)

=k+1 t=k+1 t=k+1
T ‘ T
+ Y w (P, —E[ AV AR
t=k+1 t=k+1

Now, defining Pti = ATP; 1A - P + Q we can rewrite (A14) and derive l/)]i{ as follows:

. T71 .T . . .T . ~ T .T .o . ~
yi=E| YL & (Qi + Al P Ane+ e Qier|Ti| —E| ) & Pia|L
t=k t=k+1
T . . T .
+ Y w((F-APa-Qhz,) —u (Q,) + ) w(Pixy)
t=k+1 t=k+1
PR T . .
[ —+Z Pl e QR|T + Y ((P-ATPA - QDT (A1)
t=k+1
T
—tr (Q%%;) + tr (PIx ;).
(@)« £ ()

According to (12) and (13), é}‘( is independent of the control inputs ui, t < kand k € Ny. Therefore, 1,0};
expressed in (A15) is shown to be control-independent, and the proof in then complete.

Appendix B. Proof of Theorem 2

Incorporating the scheduling decision, no matter which type of scheduling policy has generated
it, we can rewrite (33) as follows:

klgn;ﬁgg[g;g;}_lgﬁlNS( (9t = V& lebIBlol = 1] + Pot = 01} 314k = o]

i=1
(A16)

Ng ( (9} = 1) E[l12L13]9} = 1] + (], = 0) E| L I3|g} = oD
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According to Lemma 1, for stable sub-systems, we know that the expression (26) converges to a
constant value that depends only on A;, % ;, X ;. The exact constant expression equality for non-scalar
systems, however, is non-trivial to derive. For scalar systems, i.e., if 0 < A; < 1, then the inequality
in (27) becomes equality. For non-scalar case, though, we can use Cauchy-Schwarz inequality to find
a constant upper-bound. What we need for the proof of Theorem 2 is not the exact expression for
limy_,o E[[|€L[|3], but only knowing that limy_,« E[||€L[13|¢L = 1] = limy_. E[||&L|3]¢} = 0]. This
equality is clear from (26) since ||A;]|3 < 1 and this diminishes the role of time k in the expression
for the estimation error variance. This essentially concludes that, for the set of stable sub-systems,
transmissions in asymptotic regime do not influence the estimation error variance, and hence, (A16)
can be rewritten as

i & 2 ] = | L]
+) (P(rpfk' = 1) E[lg,I3l¢] = 1] + Pl = 0 E[I1I]¢} = o})]. (A17)

The problematic term in the above expression that may lead to increase the asymptotic average
estimation error variance is E [Héf( 13 ]gb{( = 0} while ||€‘§( |3 > 7. Hence, the aim of the co-design policy

is to increase limy_, P(¢, = 1) which consequently leads to a decrease in lim_, o, P(¢} = 1). Simply,
we would like to assign the transmission opportunities more often to the unstable sub-systems,
asymptotically. In addition, we are interested in not only a successful transmission, but a successful
transmission of a low-age state measurement. This means more frequent sampling and more frequent
scheduling of unstable sub-systems, in probabilistic sense. To achieve this, we should first notice from
the statements of the Proposition 1 and the discussions afterwards in Section 3.1 that, in the non-trivial
Aol/Aol co-design architecture, the minimum sampling rate of stable or unstable sub-systems with
the Aol threshold A’ is limy_, P((S,i =1) = m —=. To have a higher sampling rate for the
ET sampling law compared to the Aol sampling law, we need to show

Jim P(6i =1]i € N5, ET/ Aol) < Jim P(6i = 1]i € N, AoI/ Aol). (A18)
—00 —00

Hence, using (28), the inequality (A18) is satisfied if

1 % 1
e 4y, —, (A19)
<1 — [l Ail3 ) M

which results in the following lower-bound for the ET thresholds for stable sub-systems:

. . -
PsM [ —22 4y ). (A20)
<1—|Ai||§ )

For unstable sub-systems, we need to show

Jim P(6. = 1|j € Ny, ET/Aol) > Jim P(6] = 1|j € Ny, Aol / Aol). (A21)
—c0 —o0

We know limy_,o, P (He’ 13>7r)=1- (1), where F/ s the asymptotic cumulative distribution

H ell| lle/l
function (CDF) of the random process ||e] |5 and F (17) is the value of the asymptotic CDF at /.

llef]
Hence, (A21) is satisfied if

- >FH6]H( ). (A22)
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The CDF Fﬁ | is a monotonically non-decreasing function w.r.t. rl, hence, the lower M/ is (i-e.,

either lower N or lower A/), the ET thresholds for unstable sub-systems should also be decreased to
asymptotically out-sample the Aol/Aol architecture, and vice-versa, which is an expected conclusion.
Having (A19) and (A22) satisfied, it is ensured that, first, the asymptotic sampling rate of stable
sub-systems is lower in the ET/Aol co-design compared to the Aol/Aol, and second, the sampling
rate of unstable sub-systems is higher for the former approach. Hence, not only the probability that
the unstable sub-systems transmit is higher for the ET/Aol compared to the Aol/Aol policy, but
also the scheduled transmissions that are determined by the Aol-based highest-age-first policy in (23)
have lower average age for the ET/ Aol co-design. This means, limy_,, P(¢, = 1|j € Ny, ET/ AoI) >

limy 00 P(¢{( = 1|j € Ny, Aol/Aol) and therefore, lower asymptotic average estimation error
variance in (A17). Finally, knowing that the asymptotic behavior of the stable set of sub-systems
are independent of the sampling and scheduling policies, the asymptotic average estimation error
variance in (A17) can be upper-bounded as follows:

1 N T 1 N Z ;
lim =) E|& & | < — —Y ¥
kE;Iololezl [k k} N¥[1_||A|2
1 Nu . N 1 N ‘ j
5 L [P =1 (2t L IATBR + 1418VPE | +Pg =0 |.
= r=
(A23)
The bound is trivial if [|A;]|3 = 1 or PL, — co. The first one is avoided due to assuming A; is Hurwitz,

and P, is bounded due to the fact that if limy o ||€] |3 > #/ asymptotically, then A] < M/ which
means, in the worst case, there is one state information with bounded delay to construct the Kalman
estimate. This completes the proof.
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