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Abstract: In the design of multi-loop Networked Control Systems (NCSs) wherein each control
system is characterized by heterogeneous dynamics and associated with certain set of timing
specifications and constraints, appropriate metrics need to be employed for the synthesis of control
and networking policies to efficiently respond to the requirements of each control loop. Majority
of the design approaches for sampling, scheduling and control policies include either time-based
or event-based metrics to perform pertinent actions in response to the changes of the parameters of
interest. We specifically focus in this article on Age-of-Information (AoI) as a recently-developed
time-based metric and threshold-based triggering function as a generic event-based metric. As the
NCS model, we consider multiple heterogeneous stochastic linear control systems that close their
feedback loops over a shared-resource communication network. We investigate the co-design across
the NCS, and discuss the pros and cons with AoI and ET approaches in terms of asymptotic control
performance measured by linear-quadratic Gaussian (LQG) cost functions. In particular, sampling
and scheduling policies combining AoI and stochastic event-triggered metrics are proposed. It
is argued that pure AoI functions that generate decision variables solely upon minimizing the
average age irrespective of control systems dynamics may not be able to improve the overall
NCS performance even compared with pure randomized policies. Our theoretical analyses are
successfully validated through several simulation scenarios.

Keywords: networked control systems; age-of-information; event-triggered sampling; scheduling
architecture; resource constraint; asymptotic performance; estimation error

0. Introduction

Networked Control Systems (NCSs) generally refer to multiple dynamical systems controlled
by possibly remotely located controllers with information exchange supported by a wired or wireless
communication infrastructure. The applications of such systems are ranging from smart energy grids,
autonomous driving, and industrial production, to healthcare, agriculture, and smart homes [1,2].
The two main layers of a networked system – control and communication – strongly influence each
other and face heterogeneous and time-varying conditions, constraints and demands [3]. Hence, the
efficient design of networked systems requires novel and integrated strategies that are responsive to
the heterogeneity of the control systems and the real-time variations of individual layers, and at the
same time possess flexibility and scalabiliby [4–6].

Considering state-of-the-art communication technology, there is a need for novel approaches
to modeling, analysis and design of network protocols and control mechanisms capable of jointly
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supporting information exchange required to make decisions at the right component and at the right
time. This is the basic motivation behind employing appropriate utility functions to coordinate the
process of data exchange in a network of many dynamical users. Over the last two decades, there
have been many attempts from the control and the communication communities to develop, evaluate
and improve such utility functions compared to the conventional fixed-period and randomized data
coordination approaches. Notions such as Value-of-Information (VoI), [7,8], Age-of-Information (AoI),
[9,10], and Event-Triggered (ET) [11,12], are metrics that have been separately shown to be capable
of coordinating information distribution taking into account the integrated and coupled context of
NCSs. Traditionally, however, two rather distinct paths on addressing the NCS design have been
followed: from the communication perspective, the focus mainly resulting in the design approaches
that maximize the network throughput or minimize the end-to-end latency and jitter often ignoring
the dynamics, requirements and characteristics of the sending and receiving entities and the specific
data that are being transmitted [13–15]. From the control perspective, on the other hand, the major
goal has been to maximize quality-of-control (QoC), and the communication network is usually
abstracted as one or more maximum-rate and delay-negligible transmission channels with enough
computation and functional capability to resolve contentions [16,17]. Hence, to fill this research void,
it is essential to develop systematic and applicable co-design principles for NCSs that bring both QoC
and QoS together by studying novel architectures that take into account the requirements, limitations,
and tolerances of both network and control systems.

0.1. Contributions

In this article, the goal is to propose an efficient co-design architecture for heterogeneous NCSs
where the influence of both control and network systems are taken into account. Specifically, we
study a sampling-scheduling-control co-design problem for stochastic NCSs comprised of multiple
heterogeneous linear time-invariant (LTI) control systems. The sampling and control units reside at
the control system layer and are designed distributedly, i.e., they are locally installed in every control
loop and generate decision variables for their corresponding local control systems. The scheduling
unit resides at the network layer and arbitrates the channel access in a centralized fashion, i.e., a
unique scheduler coordinates the allocation process of the limited resources among the control loops
to avoid contention and consequently data loss. We consider a realistic communication model in
that the data packets that are not scheduled for immediate transmissions, if not updated by a newer
data sample, are stored in a buffer for possible transmissions in future time instances. If a current
sample is not successfully transmitted due to resource limitations, it is not discarded, and remains
in the buffer to be either replaced by a newer sample, or transmitted with some delay whenever
the communication resource is assigned to it. Therefore, end-to-end delay in our formulation is
comprised of an inter-sampling duration induced by the local samplers and a network-induced
delay due to the resource limitations. Performance of each local control system is asymptotically
measured by the local linear-quadratic Gaussian (LQG) cost function and the overall asymptotic NCS
performance is determined by the average sum of their local LQG costs. Note that the performance
influenced by the resource constraints and the end-to-end transmission delays.

Motivated by the existing results for the design of control and communication systems, in this
article we focus on two celebrated notions of utility metrics: AoI- and ET-based functions. We first
discuss if these two design concepts may properly co-exist in a networked control scenario and
study where each of them excels in terms of decision making efficiency. We evaluate them based
on two crucial aspects: first, which class of policies result in lower local and overall cost values,
and second, how much information is required for a policy maker to generate appropriate decisions.
The first one, as explained earlier, is evaluated based on asymptotic LQG cost functions, while the
second is basically judged based on that a policy maker needs less information, and distributed
parts of networked system may not be willing to disclose too much information. Therefore, a
desirable and applicable co-design architecture would result in sampling, scheduling and control
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decisions that jointly induce low local and overall control costs, while they require local or partially
accessible information to generate their assigned decision variables at the expense of a viable level of
computational complexity.

Under some mild assumptions on the information structures of the policy makers, we first
show that the optimal control policy can be obtained independent of the sampling and scheduling
policies. In fact, we show that the optimal controllers are of the certainty equivalence (CE) form,
which technically means the optimal control inputs are identical as they would be obtained in the
absence of the additive stochastic disturbances. This is really helpful as it provides a decomposition
opportunity for the cross-layer co-design in the sense that the control law remains fixed for a variety
of sampling and scheduling policies within the specified classes that satisfy those assumptions on
their information structures. We then propose a joint sampling-scheduling co-design where the local
samplers are ET and the centralized scheduler uses AoI-based prioritization for resource management.
Considering the asymptotic average LQG cost function as the overall NCS performance metric, we
show that the ET function is indeed a more efficient candidate for sampling, compared with its AoI
counterpart, in sense of the asymptotic average sum of LQG functions, while AoI performs efficiently
for governing the resource allocation process. We compare the performance of the AoI scheduling
design with conventional random access resource scheduling and show that the AoI scheduling has
the design flexibility to be appropriately adjusted to outperform the pure random access policy.

To the best of our knowledge, there is no result available in the literature that considers the
co-design of control and communication systems with joint ET and AoI-based policies and compare
their joint performance, although, both policies have separately been studied extensively from both
control and communication perspectives.

0.2. Related Works

Since the seminal work [18] many results have shown that event-based approach outperforms
the conventional time-triggered and periodic schemes in the sense that they are capable of achieving
the same control performance with significantly less usage of computation and communication
resources [19–22]. The event-based approach is also widely studied in the context of NCSs [23–26],
and it is shown that the event-based functions can be employed to efficiently govern the information
sampling and scheduling processes taking into account not only the control requirements but also the
communication conditions such as resource scarcity and channel properties [27–30].

Many researchers have demonstrated that ET policies preserve stability of NCSs despite
updating the controllers less often. In [31], L2 stability of ET output feedback control is shown in
the presence of network-induced delay. Stability of stochastic ET NCSs is also extensively studied,
employing appropriate stochastic stability notions such as almost-sure and moment stability, with
various sources of randomness such as model uncertainty, sensor noise, and erroneous channels
[32–35]. Additionally, event-based medium access control (MAC) and contention resolution (CR)
protocols for resource-limited or contention-based communication networks have been proposed
in the literature, both in form of centralized and decentralized MAC and CR algorithms [36–39].
Centralized MAC and CR approaches are shown to be capable of fully resolving contentions yet
at the expense of not being scalable as they require a huge volume of information exchange, while
easily deployable decentralized event-based MAC and CR counterparts can substantially decrease
contentions but not fully resolving them.

Design of optimal ET policies for either control and communication systems or cross-layer
joint design has been an active area of research. The results suggest that finding global optimal
event-based functions is often nontrivial, especially for multi-loop NCSs or more realistic models
of communication networks [40–43]. The major difficulty lies behind the tight couplings and
inter-layer dependencies between the distributed time-varying parameters of control and network
systems, obliging to search for less computationally complex sub-optimal or approximative solutions.
Network-induced delays are regarded as major coupling parameters in ET NCS design that
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depending on the model of sampling and communication network might possess different dynamic
characteristics. In fact, delay affects the states of the control systems, and the states themselves affect
the decision outcomes of the event-based policies, and those decisions also affect the network-induced
delays [44]. Therefore, an optimal co-design needs to keep track of the network-induced delays which
might not be feasible for stochastic networked systems.

The AoI metric, proposed in [45], has emerged to quantify the freshness of the received status
updates at the estimator and has attracted significant attention from communication and networking
communities. The AoI is defined as the time elapsed since the generation of the latest successfully
received status update at the estimator. Several authors have studied the problem of minimizing
some functions of AoI under different queuing and communication models [46–50]. While the works
in [46–48] consider time averaged AoI, the authors in [49] consider minimizing the tail of the AoI, and
the authors in [50] consider any non-decreasing and measurable function of AoI. Apart from studying
the effects of communication scheduling on AoI, none of the above works consider estimation or
control objectives for networked systems. Nonetheless, a general consensus is that, a lower AoI in
an NCS may result in a lower estimation and control cost, because having access to fresher state
information often improves the performance. However, only a handful of works considered the
performance of the solutions proposed for AoI with respect to such costs. The authors in [51] have
studied the minimum mean squared error problem with independent and identically distributed
(i.i.d.) transmission delays for Wiener process estimation. They have shown that the estimation
error is a function of AoI if the sampling decisions are independent of the observed Weiner process;
otherwise, the estimation error is not a function of AoI. In [52], we studied a state estimator of a
single-loop stochastic LTI system with i.i.d. transmission delays and derived the relation between
AoI and the estimation error, assuming that the sampling decisions are independent of the observed
states.

There has been an increasing interest recently from the control community to consider AoI utility
functions due to their simpler evolution and characteristics compared to ET or VoI metrics. Despite
some progress, however, there exist results suggesting that AoI-based approaches with the original
linear formulation of AoI, may not be sensitive enough to dynamic changes of control systems and
their QoC requirements [53,54]. In [55], various nonlinear functions of AoI are considered to be
minimized instead of the conventional average linear AoI and it is shown that these variations of AoI
utility functions can be beneficial to improve the control performance. The authors in [56] showed
in a recent work that a discounted AoI-dependent monotonic function can be employed to optimally
govern wireless network scheduling to maximize control performance over infinite horizon. Despite
recent efforts reflected in the literature, there are still many challenges. Specifically, there is no result,
to the best of our knowledge, on combined ET and AoI-based co-design across control systems and
communication network layers.

0.3. Outline

In the remainder of this article, the NCS model and the problem statement and are described
in Section 1. The co-design architecture with CE controllers, sampling and scheduling policies is
presented in Section 2. Performance analysis and comparisons with other co-design architectures are
presented in Section 3. Simulation results are demonstrated in Section 4 and the concluding remarks
are summarized in Section 5.

0.4. Notations

We denote the expectation, conditional expectation, conditional probability, transpose and trace
operators by E[·], E[·|·], P[·|·], [·]⊤, and tr(·), respectively. A multivariate Gaussian distributed
random vector X with mean vector µ and covariance matrix W ≻ 0 is denoted by X ∼ N (µ, W),
where A ≻ B denotes A−B is positive definite. The Q-weighted squared 2-norm of a column
vector X is denoted by ‖X‖2

Q , X⊤QX, and ‖X‖2
2 , X⊤X. A time-varying column vector Xi

t
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Figure 1. Multi-loop NCS with a shared communication network equipped with a data storage buffer.

includes an array of variables belonging to the sub-system indexed by i at time t, while we define
Xi
[t1,t2]

, {Xi
t1

, Xi
t1+1, ..., Xi

t2−1, Xi
t2
}, and Xi , {Xi

0, Xi
1, ... }. For constant matrices, a subscript

indicates the corresponding sub-system, and a superscript denotes matrix power. An optimal
decision variable/policy X is represented by X∗. The set of natural, real, non-negative integer, and
non-negative real numbers are denoted by N, R, N0, and R≥0, respectively. For n-by-m-dimensional
real space, we use the notation Rn×m.

1. NCS Model and Problem Description

1.1. NCS Model

We consider an NCS consisting of N heterogeneous stochastic linear time-invariant (LTI)
controlled dynamical processes that synchronously exchange their sensory information with their
corresponding controllers via a common resource-limited communication network, see Figure 1. Each
process i ∈ N , {1, . . . , N} comprises of a plant Pi, a noisy sensor Si, and a feedback control unit
including a feedback controller Ci and an estimator Ei. Each process i ∈ N is described as follows:

xi
k+1 = Aix

i
k + Biu

i
k + wi

k, (1)

yi
k = xi

k + vi
k, (2)

where xi
k ∈Rni

, ui
k ∈Rmi

and yi
k ∈Rni

represent the state vector, control input and sensor measurement
of the process i at a time-step k ∈ N0, respectively. Constant matrices Ai ∈ Rni×ni

and Bi ∈ Rni×mi

describe the system matrix and input matrix, respectively, and we assume that each pair (Ai, Bi) is
controllable. To allow for heterogeneity, Ai and Bi matrices may differ for different processes and
may also adopt different dimensions. The random processes wi

k ∈Rni
and vi

k ∈Rni
are, respectively,

the exogenous disturbance acting on the process dynamics and the measurement noise. They are
assumed to be Gaussian distributed independent random sequences with mutually i.i.d. realizations
wi

k ∼N (0, Σwi) and vi
k ∼N (0, Σvi), ∀k and i ∈ N, where Σwi ≻ 0 and Σvi ≻ 0. The initial states xi

0’s,
i ∈ N, are also presumed to be randomly selected from an arbitrary finite-moment distribution with
mean µxi

0
and variance Σxi

0
≻ 0.

At every time-step k, the decision on whether the state measurement yi
k of sub-system i is sent

for transmission is taken by a local sampler Si located at the sensor station. The sampling decision

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2020                   



6 of 30

is assumed to be the outcome of a local sampling policy ξi : I i
k 7→ {0, 1}, where I i

k represents the
information available at Si at time-step k and will be formally defined later. The sampling decision
outcome, denoted by the binary-valued variable δi

k, is as follows:

δi
k = ξi(I

i
k) =

{

1, yi
k sent to network for transmission,

0, otherwise.
(3)

At every time-step k, those sub-systems which locally decided to update their corresponding
controllers will forward their sensor measurements to the communication network. We assume
that the communication network has capacity limitations such that not all N sub-systems can
simultaneously close their sensor-to-controller links at a time instance, i.e., if the network capacity
at every single time-step is denoted by the constant c ∈ N, the following resource constraint holds

1 ≤ c < N, ∀ k ∈ N0. (4)

The communication network is assumed to be consisting of a queue to store the received data packets
and a scheduling unit that decides which data packets are to be transmitted at each time-step. It
should be mentioned that, transmissions of data from sensors to the buffer and from the buffer
to the controllers are not subject to communication delay, i.e., if the sampler or scheduler decides
on a sample being sent to the buffer or a buffered data sent to the controller, the transmissions
are completed instantaneously. The scheduling decision at every time-step k is assumed to be the
outcome of a centralized resource allocation policy π : I s

k 7→ {0, 1} × . . . × {0, 1} = {0, 1}c, where
I s

k denotes the information available at the network scheduling unit at time-step k which will be
formally defined later, and c is the constant capacity constraint. The scheduling decision associated
with sub-system i at time-step k is denoted by the binary variable φi

k and is defined as

φi
k = π(I s

k) =

{

1, send the latest measurement of sub-system i in the buffer to Ei,

0, send nothing from sub-system i to Ei.
(5)

The network queue buffers at most one data packet from each sub-system at every time instance.
Hence, in case a new measurement belonging to a certain sub-system arrives at the queue, the fresher
data packet replaces the formerly buffered data of that sub-system. The older data packet will be
discarded. Therefore, for each sub-system, there is either no buffered data packet in the queue or there
is one which is the latest measurement sent to the network by the local sampler. This means even the
freshest data packet of a sub-system in the queue might contain the measurement that corresponds
to a previous time-step.

When bandwidth is assigned to a certain sub-system, its freshest measurement in the queue will
be forwarded to the corresponding control unit. The received state measurement by the control unit
of a sub-system i at a time-step k, denoted by zi

k, might belong to a previous time k̄ < k due to the
communication delay imposed by the scheduling unit. Therefore, zi

k is determined as a function of
the scheduling variable, as discussed in the following. Before that, we define the notion of AoI at the
control unit in our NCS model, as follows:

Definition 1. AoI at the control side of a sub-system i ∈ N, at time-step k ∈ N0, is defined as ∆i
k = k − k̄i,

where yi
k̄i is the latest received measurement by the estimator Ei up to time k, which confirms δi

k̄i = 1.

Assume that at a time-step k, yi
k̄i = yi

k−∆i
k

is the freshest measurement of sub-system i in the

queue, which ensures δi
k−∆i

k

= 1, and δi
k−∆i

k+1
= . . . = δi

k = 0, because otherwise, yi
k−∆i

k

would have

been replaced by a fresher measurement. In addition, this confirms that φi
k−∆i

k

= φi
k−∆i

k+1
= . . . =

φi
k−1 = 0, since otherwise, no data belonging to sub-system i would be in the queue at time-step k. To
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conveniently denote this, we use the notation φi
k(k − ∆i

k) = 1 to express the time index of the freshest
buffered measurement belonging to sub-system i at time-step k that is scheduled to be transmitted
to the estimator Ei. Hence, by φi

k(k − ∆i
k) = 1, we denote that yi

k−∆i
k

will be received by Ei at k. If

no measurement of sub-system i is scheduled to be transmitted at k, we simply write φi
k = 0. With

this notation we declare two essential aspects of the information structure: 1) if a sample is scheduled
for transmission, then the estimator knows which time instance the received measurement belongs
to, and 2) receiving no measurement update might correspond to having no measurement sample of
sub-system i in the queue and not necessarily to resource limitations. It should be noted that if there
is no data belonging to a sub-system i buffered at a time-step k, then we certainly have φi

k = 0. In the
other words, if the scheduler decides for φi

k = 1, then there exists exactly one buffered data packet
of sub-system i to be sent to its corresponding control unit. Therefore, φi

k = 0 might correspond to
either having no measurement sample of sub-system i in the buffer to forward or having not enough
resources to schedule the available sample at that specific time. In the latter case yi

k−∆i
k

remains in

the queue to be either serviced in future time-steps or replaced by a fresher sampled measurement.
Finally, according to Definition 1, the information update at an estimator Ei can be stated as

zi
k =







yi
k−∆i

k

if φi
k(k − ∆i

k) = 1, ∆i
k ∈ [0, k],

∅ if φi
k = 0.

(6)

Note that the estimator Ei receives the current measurement sample yi
k, only if φi

k(k) = 1, which
ensures δi

k = 1 and ∆i
k = 0. Depending on the information received at the estimator and the state

estimate computed, the control input ui
k is assumed to be generated as the outcome of a causal

mapping γi : Ĩ i
k 7→ Rmi

, where Ĩ i
k represents the set of available information at the controller and

will be formally defined later.

Remark 1. In the absence of a measurement sample at the control side at a certain time k, i.e., if φi
k = 0,

the estimator Ei may use the information contained in the sampling variable, i.e., knowing the outcome of δi
k,

and incorporate it in computing x̂i
k. This extra knowledge is known as the side-information contained in the

sampling variable. In this article, we do not investigate the impact of the side-information when no measurement

update is received by an estimator. As we will see later when we introduce the information structures, we

assume that the control unit of a sub-system keeps the history of the sampling variables δi
[0,k], however, does

not incorporate this side-information in computing x̂i
k in the absence of a measurement sample. Incorporating

side-information results in a nonlinear estimator and possibly non-tractable state estimator design problem,

especially for threshold-based sampling policies in the presence of resource limitations. We assume that if no

update is received at the estimator at some certain time-steps, then the estimator constructs x̂i
k in a model-based

fashion using the previous estimate x̂i
k−1.

Depending on the sampling and scheduling decision variables {δi
0, . . . , δi

k} and {φi
0, . . . , φi

k}, we
can derive the dynamics of the AoI at the estimator Ei. It is straightforward to derive the dynamics of
∆i

k, as functions of the sampling and scheduling variables:

∆i
k =

k−r

∑
t=1

k−r

∏
l=t

(1 − δi
l) + r, r =

k

∑
t=1

k

∏
l=t

(1 − φi
l). (7)

It can be seen from (7) that the AoI at the estimator depends on both sampling and scheduling decision
outcomes.
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Having the outcomes of the sampling and scheduling policies determined in (3) and (5), we can
introduce the information sets I i

k and I s
k , available, respectively, for the local sampler of sub-system i

and the centralized scheduling unit, as follows:

I i
k = {I i

prim, δi
0, . . . , δi

k−1, φi
0, . . . , φi

k−1, zi
0, . . . , zi

k−1}, (8)

I s
k = ∪i∈N{I

i
prim, Nb

0, . . . , Nb
k, δi

0, . . . , δi
k, φi

0, . . . , φi
k−1, zi

0, . . . , zi
k−1}, (9)

where, I i
prim , {Ai, Bi, Σwi , Σvi , µxi

0
, Σxi

0
}, and Nb

k denotes the set of buffered state measurements
at time-step k. Additionally, we introduce the set of available information for the estimator and
controller of sub-system i at time-step k:

Ĩ i
k = I i

k ∪ {δi
k, φi

k, zi
k} ∪ {ui

0, . . . , ui
k−1} = {I i

prim, ui
0, . . . , ui

k−1, δi
0, . . . , δi

k, φi
0, . . . , φi

k, zi
0, . . . , zi

k}. (10)

Note that, with the information about sampling and scheduling variables in (8)-(10) and the
expression for the AoI in (7), the sampler Si is aware of the sequence ∆i

[0,k−1], the controller Ci is

aware of ∆i
[0,k], and the centralized sampler has the knowledge of ∪i∈N{∆i

[0,k−1]}.

Having the information set Ĩ i
k introduced, we can construct the state estimate and compute the

estimation error at the estimator of sub-system i. We denote the state estimate at the estimator of
sub-system i at time-step k by E[xi

k|Ĩ
i
k], and define the corresponding estimation error as

ẽi
k = yi

k − E[xi
k|Ĩ

i
k]. (11)

The dynamics of the estimation error ẽi
k can be obtained as

ẽi
k = yi

k − E[xi
k|Ĩ

i
k] = Aix

i
k−1 + Biu

i
k−1 + wi

k−1 + vi
k − E[Aix

i
k−1 + Biu

i
k−1 + wi

k−1|Ĩ
i
k]

= Ai(xi
k−1 − E[xi

k−1|Ĩ
i
k]) + wi

k−1 + vi
k = Ai(ẽ

i
k−1 − vi

k−1) + vi
k + wi

k−1. (12)

Note that, we can write E[xi
k−1|Ĩ

i
k] = E[xi

k−1|Ĩ
i
k−1 ∪ {δi

k, φi
k, zi

k, ui
k−1}]. Since the evolution of xi

k−1
is independent of the parameters δi

k, φi
k, zi

k, ui
k−1, we then have E[xi

k−1|Ĩ
i
k] = E[xi

k−1|Ĩ
i
k−1], which

confirms (12). Assume now that the decision variables δi
k and φi

k are generated and yi
k−∆i

k

, for any

arbitrary ∆i
k ∈ [∆i

k−1 + 1, k], is the latest received state measurement by the estimator Ei at time-step
k, i.e., φi

k(k − ∆i
k) = 1. Note that the realization of ∆i

k is determined by the sampling and scheduling
variables δi

[∆i
k−1,k]

and φi
[∆i

k−1,k]
. We can compute the state estimate as

E[xi
k|Ĩ

i
k] =

E[A
∆i

k
i xi

k−∆i
k
+ A

∆i
k−1

i Biu
i
k−∆i

k
+ . . . + AiBiu

i
k−2 + Biu

i
k−1 + A

∆i
k−1

i wi
k−∆i

k
+ . . . + wi

k−1|Ĩ
i
k]

= A
∆i

k
i E[xi

k−∆i
k
|yi

k−∆i
k
] + A

∆i
k−1

i Biu
i
k−∆i

k
+ . . . + AiBiu

i
k−2 + Biu

i
k−1,
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where E[xi
k−∆i

k

|yi
k−∆i

k

] is the Minimum Mean-Square Estimate (MMSE) computed by a Kalman filter

at the estimator side Ei given the received measurement yi
k−∆i

k

, with the standard Kalman filter

equations for a time t at which the measurement sample yi
t is available, as

E[xi
t|y

i
t] = x̂i−

t + Ki
t

(

yi
t − x̂i−

t

)

,

x̂i−
t = Ai E[x

i
t−1|I

i
t−1] + Biu

i
t−1,

Ki
t = Pi−

t

(

Pi−
t + Σvi

)−1
,

Pi−
t = E

[(

xi
t − x̂i−

t

) (

xi
t − x̂i−

t

)⊤
]

= AiP
i−

t−1A⊤
i + Σwi ,

Pi
t = E

[(

xi
t − E[xi

t|y
i
t]
) (

xi
t − E[xi

t|y
i
t]
)⊤
]

= Pi−
t − Ki

t

(

Pi−
t + Σvi

)

Ki⊤
t ,

where, Pi−
t and Pi

t denote, respectively, the a priori and the a posteriori estimation error covariances.
Therefore, from (11), and using the equivalent expression

yi
k = A

∆i
k

i xi
k−∆i

k
+ A

∆i
k−1

i Biu
i
k−∆i

k
+ . . . + AiBiu

i
k−2 + Biu

i
k−1 + A

∆i
k−1

i wi
k−∆i

k
+ . . . + wi

k−1 + vi
k,

we conclude that

{ẽi
k|φ

i
k(k − ∆i

k) = 1}

= A
∆i

k
i

(

xi
k−∆i

k
− E[xi

k−∆i
k
|yi

k−∆i
k
]

)

+ A
∆i

k−1
i wi

k−∆i
k
+ . . . + wi

k−1 + vi
k

= A
∆i

k
i

(

ẽi
k−∆i

k
− vi

k−∆i
k

)

+ vi
k +

∆i
k

∑
r=1

Ar−1
i wi

k−r. (13)

where, ẽi
k−∆i

k

is the MMSE error due to having access to yi
k−∆i

k

. Otherwise, if φi
k = 0, we use the

model-based estimation error as in (12), wherein ẽi
k−1 is not necessarily MMSE error.

1.2. Problem Description

As discussed above, the time of generating a measurement sample and injecting it to the queue
is determined by the sampler while the time of delivering that generated sample, if not discarded
due to the arrival of a new sample, to the corresponding controller is determined by the network
scheduler. Hence, the source-to-destination delay, i.e., the gap between the current time until the
time a generated sample is received by the controller, depends on how the local samplers and the
centralized scheduler policies are designed. The problem we tackle in this article is the co-design
of sampling, scheduling and control policies {ξi, π, γi}. We discuss the optimal control policy, and
then consider ET and AoI-based policies for the design of sampling and scheduling policies and
study the effects of the combined architecture on the control performance which is correlated with
the end-to-end delay. Performance comparisons are made according to the LQG index functions as
the asymptotic cost metrics for each local sub-system, denoted by Ji:

Ji = lim
T→∞

1
T
E

[

xi⊤

T Q2
i xi

T +
T−1

∑
k=0

xi⊤

k Q1
i xi

k + ui⊤

k Riu
i
k

]

, (14)
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where Q1
i , Q2

i � 0 and Ri ≻ 0 are, respectively, the state and control input weight matrices of

appropriate dimensions, and we assume each pair (Ai,
√

Q1
i ) is detectable, ∀i ∈ N. The overall

asymptotic NCS performance is measured by the average cost

J =
1
N

N

∑
i=1

Ji. (15)

2. NCS Design

In this section, we first study the structural properties of the feedback controllers Ci, i ∈ N, and
show that local control law γi(Ĩ

i
k) can be designed separately from the local sampling law ξi(I

i
k)

and the scheduling law π(I s
k). Afterwards, we discuss the combined design of the local sampling

law and the network scheduling law and discuss which class of ET or AoI-based policies match the
corresponding decision maker.

2.1. CE Control Law

Let us first make a crucial assumption on the sampling policy ξi(I
i
k):

Assumption 1. The local sampling policies ξi(I
i
k)’s are selected from the classes of control-input-independent

sampling policies, i.e., δi
k, i ∈ N, are computed independent of the sequence of control inputs {ui

0, . . . , ui
k−1}.

Assumption 1 does not result in a loss of generality w.r.t. the introduced information structure at
the sampler, see (8) that indicated I i

k does not contain any knowledge of control inputs {ui
0, . . . , ui

k−1}.
This is crucial for the derivation of the optimal control policies, as will be discussed in Theorem 1.

Theorem 1. Consider an NCS as described in (1)-(6), where each control system is steered at every time-step

k ∈ N0 by a local sampler ξi(I
i
k) and a local plant controller γi(Ĩ

i
k) with I i

k and Ĩ i
k given in (8) and (10),

respectively. If the local sampling policies are selected according to the Assumption (1), then the optimal control

policy in sense of LQG given in (14) is CE, i.e.,

γ∗
i (Ĩ

i
k) = Li

k E

[

xi
k|Ĩ

i
k

]

, (16)

where Li
k = −

(

Ri + B⊤
i Pi

k+1Bi

)−1
B⊤

i Pi
k+1Ai is the optimal state feedback control gain.

Proof. See Appendix A.

Remark 2. Showing that the optimal control law exists over the time horizon [0, T], we can take the limit

as T → ∞ which results in having the asymptotic control gain Li
∞ = −

(
Ri + B⊤

i Pi
∞Bi

)−1
B⊤

i Pi
∞ Ai, with

Pi
∞ = limk→∞ Pi

k being the asymptotic a posteriori estimation error covariance. We later show in Section 3.2

that, under appropriate sampling/scheduling co-design, ∀i ∈ N, Pi
∞ indeed exists and is not unbounded.

Remark 3. The result of Theorem 1 is in accordance with the existing results on the separation of control and

sampling policies w.r.t. the LQG cost function, if the sampling law is independent of the control inputs. In

fact, it is discussed in [22,57] that in the presence of control-input-dependent sampling policies, the separation

between the sampling and control policies cannot generally be achieved. As it is shown in (18) and (19), the

estimation error evolves independent of the control inputs, therefore, the sampling policies are allowed to be

function of the estimation error without violating the results of Theorem 1.

Remark 4. Theorem 1 states that the optimal control law is of certainty equivalence form, however, the optimal

control inputs ui,∗
k are still computed based on the state estimate E

[
xi

k|Ĩ
i
k

]
. As shown before, the estimation

process depends on the sampling and scheduling policies ξi(I
i
k) and π(I s

k), hence the sequence of control inputs
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{ui,∗
0 , . . . , ui,∗

k }, i ∈ N, is only optimal w.r.t. the given sampling and scheduling policies, and the control inputs

are globally optimal only if sampling/scheduling policies are optimal. However, under any sampling policy that

satisfies Assumption 1 and any scheduling policy, the optimal control law (16) remains CE.

Now that the control law is characterized, we can derive the dynamics of the estimation error
at the sampler, assuming that the local samplers are aware of the control law form in (16). This
assumption is essential in the sense that the samplers do not need to have the knowledge of the
control inputs {ui

0, . . . , ui
k−1} to compute the estimation error, and this coincides with the information

structure (8). The estimation error at the sampler is defined as

ei
k = yi

k − E[xi
k|I

i
k]. (17)

From (8), and at time-step k, the sampler has the knowledge of the latest controller measurement
update zi

k−1. Let for any arbitrary ∆i
k−1 ∈ [0, k− 1], yi

k−1−∆i
k−1

be the latest received state measurement

by the estimator Ei at time-step k − 1, i.e., φi
k−1(k − 1 − ∆i

k−1) = 1. Then, similar to (13), we can
compute the estimation error ei

k as

{ei
k|φ

i
k−1(k − 1 − ∆i

k−1) = 1}

= A
∆i

k−1+1
i

(

xi
k−1−∆i

k−1
− E[xi

k−1−∆i
k−1

|yi
k−1−∆i

k−1
]

)

+ A
∆i

k−1
i wi

k−1−∆i
k−1

+ . . . + wi
k−1 + vi

k

= A
∆i

k−1+1
i

(

ẽi
k−1−∆i

k−1
− vi

k−1−∆i
k−1

)

+ vi
k +

∆i
k−1+1

∑
r=1

Ar−1
i wi

k−r. (18)

If φi
k−1 = 0, the estimation error at the sampler is, similar to (12), computed based on the model

parameters, i.e.,
{ei

k|φ
i
k−1 = 0} = Ai

(

ẽi
k−1 − vi

k−1

)

+ vi
k + wi

k−1. (19)

Note the difference between ẽi
k−1−∆i

k−1
and ẽi

k−1 in the expressions (18) and (19), where the former is

the MMSE error due to having the measurement sample yi
k−1−∆i

k−1
, while the latter is not MMSE as

the estimator does not have access to yi
k−1 at time-step k − 1.

Remark 5. Comparing (12) and (19), we conclude that if the estimator Ei does not receive any state

measurement update at time k − 1, i.e., φi
k−1 = 0, then ei

k = ẽi
k. It should, however, be noted that this

equality is valid under the assumption that the estimator does not incorporate side information contained in the

sampling variables to compute the state estimate.

2.2. Co-design of Sampling and Scheduling Laws

As the optimal control policy is shown to be CE, we now propose the sampling/scheduling
co-design. We specifically focus on two common classes of policies, the ET and AoI utility functions,
and study which class of policies is more suitable for sampling and which fits better to govern the
scheduling process. Remind that the sampling is performed locally within each sub-system while the
scheduler resides in the network layer and is performed in centralized fashion, see Figure 1.

We now introduce the ET and VoI functions used in the rest of this article. For the sampling
policy, if the ET threshold-based approach is employed, then a sample of a local sub-system i ∈ N
is generated and forwarded to the network buffer whenever the square norm of the corresponding
sub-system’s estimation error exceeds a positive random threshold ri

k, i.e.,

δi, ET
k =

{

1, if ‖ei
k‖

2
2 > ri

k,

0, if ‖ei
k‖

2
2 ≤ ri

k,
(20)
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where, the binary-valued δi, ET
k indicates if a sample is forwarded for transmission or not based on the

ET policy. The sequence of i.i.d. real-valued random thresholds ri
k ∼ exp(µi

r), k ∈ N0 are assumed to
be exponentially distributed, with µi

r ∈ R≥0 being the rate parameter of the exponential distribution.
Random threshold policy is a more general form of the threshold-based policies, hence the presented
results in this article are easily extendable for ET deterministic threshold-based approach. Note
that, the sampling policy (20) is in accordance with the Assumption 1. Remind that ei

k denotes the
estimation error computed at time k at the sampler side Si (not at the controller side Ci).

When AoI policy is employed for sampling, a state sample of a sub-system i is sent to the
communication network for transmission whenever the age of the latest received state information at
the controller Ci exceeds a given threshold λi ∈ N0, i.e.,

δi, AoI
k =

{

1, if ∆i
k−1 > λi,

0, if ∆i
k−1 ≤ λi.

(21)

Since age is a discrete variable taking only non-negative integer value, without loss of any generality,
the threshold λi is also assumed to be selected from non-negative integers.

As a comparative scenario, we also consider the periodic sampling, in which each sensor sample
is sent for transmission at pre-defined instances of time and the inter-transmission time is determined
by the constant time period Tp ∈ N. Therefore, we have

δi, P
k =

{

1, if k = nTp + i, n ∈ N

0, if otherwise.
(22)

As noticed in the expressions (20)-(22), we use the superscripts “ET”, “AoI” and “P” to indicate that
the sampling policies are ET, AoI-based, and periodic, respectively.

For the purpose of illustrations and ease of analysis, let us set the communication channel
capacity to c = 1, i.e., at every time-step k the scheduler allows only one state information to be
forwarded to the corresponding controller, (see (4)). We already introduced Nb

k as the set of all
sub-systems that have a state sample in the network buffer at time-step k. Note that, this state
information might belong to the current time k or to a previous time, hence, the buffered state
measurements are not necessarily time-synchronized. For the AoI scheduling, we introduce the
highest-age-first policy that in fact minimizes the average age of all sub-systems in Nb

k. For a
sub-system i ∈ Nb

k, this can be expressed as

P[φi, AoI
k = 1] =







1, if ∆i
k−1 > ∆

j
k−1, ∀j ∈ Nb

k, j 6= i

1
ηk

, if ∆i
k−1 = . . . = ∆l

k−1
︸ ︷︷ ︸

ηk sub-systems

> ∆
j
k−1, ∀j ∈ Nb

k, j 6= i, . . . , l

0, if ∃j ∈ Nb
k, ∆

j
k−1 > ∆i

k−1

(23)

where, ηk denotes the number of sub-systems in Nb
k with the highest age at time-step k. We also

express that if i /∈ Nb
k, then P[φi, AoI

k = 1] = 0.
For pure random scheduling, we employ the common uniform randomization and we, therefore,

have for all i ∈ N

P[φi, R
k = 1] =







1
|Nb

k |
, if i ∈ Nb

k

0, if i /∈ Nb
k

(24)

where, | · | represents the set cardinality operator and the superscript “R” in (24) stands for random
scheduling policy.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2020                   



13 of 30

Scheduling
ET AoI R P

Sa
m

pl
in

g ET ∗ ∗
AoI ∗ ∗
R
P ∗ ∗

Table 1. Considered combinations of sampling/scheduling policies. The combinations designated
with ∗ are discussed either analytically or in simulations.

In the following, we analytically compare AoI-based vs. ET design for the decentralized
sampling and will show (Section 3.3) that ET threshold-based sampling policy outperforms AoI-based
counterpart if thresholds are appropriately designed. We, moreover, show that AoI sampling is in
fact a more general form of periodic sampling with two differences, first, the transmission pattern
may contain more than one fixed period, and second, the period(s) is a function of the number
of sub-systems and the AoI thresholds. For the centralized scheduling process, we employ the
AoI-based prioritizing policy of highest-age-first. In comparison with the pure random scheduling
policy (Section 3.3), we show that the highest-age-first policy is not necessarily outperforming the
pure random scheduling, if heterogeneity of sub-systems is not taken into account. We then propose
the highest-age-first prioritization for the unstable sub-systems and show that this AoI-based policy
is indeed capable of coordinating the communication resources more efficiently compared to the
random scheduling, in sense of lower average sum of estimation errors of all sub-systems. We do
not investigate the ET design as an applicable architecture for the scheduling policy since scheduling
is a centralized process and decision making based on ET policies requires knowledge of real-time
state information from all sub-systems which might not be preferred. It is, however, conjectured that
if for certain small-size networked control scenarios ET policy might be favorable to be employed as
the centralized scheduler, then it would even outperform AoI-based prioritizing scheduling due to
its powerful capability of real-time prioritizing based on the current state of each single sub-system.
The sampling/scheduling policy combinations that we address in this article, either analytically or in
the simulation results, are summarized in Table 1.

3. Performance Analysis of the Joint Design

In this section, we propose two major co-design methodologies for the sampling and scheduling,
where in the first method the sampling process is governed by an AoI threshold-based policy
introduced in (21) and the scheduling is performed based on highest-age-first policy introduced in
(23). In the second co-design the scheduling will be performed similarly based on the highest-age-first
policy law in (23), while sampling process is controlled by the ET threshold-based policy shown
in (20). We additionally consider periodic sampling policy and random scheduling, introduced in
(22) and (24), respectively, as two conventional models for sampling and scheduling and provide
comparisons, theoretically or numerically, with the proposed co-designs. For the purpose of brevity,
we use the abbreviations “AoI/AoI”, “ET/AoI”, “ET/R”, “AoI/R”, “P/R”, and “P/AoI” to denote
the combined “sampling/scheduling” policy, see Table 1. To avoid confusion, it is worth reminding
the difference between the AoI policies for decentralized sampling and centralized scheduling, see
(21) and (23).

3.1. AoI Sampling and Scheduling Co-design

In the AoI/AoI co-design architecture, the AoI sampling is performed locally at every
sub-system’s sensor station according to the threshold-based policy (21), while the AoI scheduling
is done in centralized fashion according to the highest-age-first prioritizing policy (23). Assume a
NCS is comprised of a set of stable and a set of unstable sub-systems, denoted respectively by Ns and
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Figure 2. Sampling and scheduling patterns for an illustrative heterogeneous NCS of 3 stable (SS1,
SS2, SS3) and 3 unstable (US1, US2, US3) sub-systems with AoI/AoI co-design architecture.

Nu, where Ns ∪ Nu = N, and Ns = |Ns| and Nu = |Nu| indicate the number of stable and unstable
sub-systems, respectively. Here, we study the asymptotic sampling and transmission patterns for the
AoI/AoI co-design for different values of the deterministic thresholds λi, i ∈ Ns and λj, j ∈ Nu.

Let λi
< N and λj

< N. It is straightforward to conclude that each sub-system, either stable
or unstable, will be scheduled for transmission once in every N time-steps with a fixed unique
pattern. Moreover, the sampler of each stable sub-system will send N − λi number of samples to
the buffer in the same cycle of N time-steps, while unstable sub-systems send each N − λj samples.
We demonstrate this pattern for an illustrative example in below, and then summarize the concluding
statements in the Proposition 1.
Illustrative example: Assume Ns = Nu = 3, c = 1, λi = 5 and λj = 2. Fig. 2 shows the
sampling and transmission patterns of each sub-system, wherein, each circle (square) shows that a
new measurement sample from a stable (unstable) sub-system is sent to the buffer. The red-bordered
ones are the scheduled data packets and the numbers inside circles and squares denote the age of that
corresponding sub-system at that time-step. According to (21), every unstable system j (denoted by
US1, US2, US3 in Fig. 2) sends a fresh sample to the buffer at any time-step k at which ∆

j
k−1 > 2. Hence,

no data packet is injected to the buffer before time-step k = 4, at which all three unstable sub-systems
will send a measurement sample to the buffer (see Fig. 2). Note that, at time-step k = 4, the samplers
decide based on ∆

j
3 = 3 > 2. The same occurs for the stable sub-systems (denoted by SS1, SS2, SS3 in

Fig. 2), hence, they all send their first measurement samples to the buffer at time-step k = 7, knowing
that ∆i

6 = 6 > 5. Since at time-step k = 4, there are three data packets all with identical highest ages,
the AoI scheduler selects one of the three randomly, i.e., η4 = 3 (see the second argument of(23)). This
randomization is repeated again at the next time-step k = 5 now with only two data packets with
similar ages belonging to US2 and US3 (US1 remains silent for the next two time-steps). At k = 6,
there is only one data packet in the buffer and it is certainly scheduled as there is no competition
for the single transmission resource. At time-step k = 7, there are 4 data packets belonging to SS1,
SS2, SS3, US1. The data packet belonging to US1 will not be scheduled for transmission because it
has a lower age compared to the other three. For the remaining ones with the same ages, one will
be scheduled for transmission randomly (e.g., SS2 as in Fig. 2). At k = 8, random selection is done
between only SS1 and SS3 since the existing data packets of US1 and US2 entail lower ages. Finally, at
k = 9, SS1 is certainly scheduled for transmission as it has the highest age among all the data packets
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in the buffer. From this time-step forward, the same pattern of transmissions is repeated without any
randomization.

As it is also illustrated by the above example, we state the following proposition for which we
omit the lengthy but straightforward proof:

Proposition 1. For the sketched heterogeneous NCS scenario, if c = 1, λi, λj
< N, ∀i ∈ Ns and ∀j ∈ Nu,

then the following statements hold, asymptotically:

1. each sub-system is scheduled a transmission once every N time-steps.
2. stable and unstable sub-systems send, respectively, N − λi and N − λj fresh samples to the buffer during

every N time-steps.
3. if λi = λj = N − 1, then the AoI sampling is equivalent with the time-triggered sampling.

Now assume that λi, λj ≥ N. We can express similar statements as in Proposition 1 and conclude
that both stable and unstable sub-systems successfully transmit in asymptotic regime, respectively,
every λi + 1 and λj + 1 time-steps, and they send only one sample to the buffer per each successful
transmission. This is then clear that this scenario is also equivalent with the periodic transmission
with periods of λi + 1 and λj + 1 for stable and unstable sub-systems, respectively.

If λi ≥ N and λj
< N, the transmission pattern for each sub-system i ∈ Ns is similarly

periodic with time period of λi + 1, and only one measurement sample is sent to the buffer per
each transmission. For sub-systems j ∈ Nu, however, the transmission pattern is not periodic with
a unique period, i.e., the inter-transmission times vary between every two consecutive successful
transmissions, if N ≤ λi

< 2N. In fact it changes between λj + 1 and N for each j ∈ Nu. When the
inter-transmission time is λj + 1, no data sample is discarded in between, while, when it is N, each
sub-system j sends N − λj number of samples per each transmission. In addition, if λi → ∞, then
every j ∈ Nu successfully transmits every λj + 1 time-steps during which each sub-system j sends
max(1, Nu − λj) number of samples to the buffer. The same can be said for λj → ∞. These statements
can be numerically tested by, for example, setting λi = 7 in the depicted illustrative example in Fig. 2.

From the above discussions, we can make two crucial conclusions. First, AoI/AoI co-design
policy governed by the AoI threshold-based sampling law (21) and AoI-based highest-age-first
scheduling law (23) is not equivalent to the unique fixed periodic transmission policy, although, for
some specific parameters, e.g., λi = λj = N − 1, they coincide. Second, all the possible transmission
patterns are determined by the capacity constraint (4), the AoI thresholds λi and λj and the number
of network sharing sub-systems, that are all constants. Hence, the resulting transmission patterns are
insensitive w.r.t. the dynamics of stable or unstable sub-systems. We may design the AoI thresholds
λi and λj differently for stable and unstable sets of sub-systems, however, they are assumed to be
constant parameters and not adjusted by changing the dynamics1.

3.2. ET Sampling and AoI Scheduling Co-design

In this section, we study the ET/AoI co-design architecture, where the sampling is locally
performed according to the ET law (20) and the scheduling is centrally governed by the
highest-age-first law in (23). For the clarity of analysis and illustrative purposes, we first assume
that the ET thresholds in (20) are deterministic and constant, i.e., ri

k = ri ∈ R≥0. We discuss in the
next section how to extend the performance results to the ET sampling with stochastic thresholds.

Since the estimation error ei
k is a random variable (see (18) and (19)), there is generally no fixed

pattern for transmission of each sub-system when sampling is controlled by the ET law in (20). Hence,

1 The discussions of the Section 3.1 can be extended to cover the scenarios that the AoI thresholds are not identical within
the set of stable or unstable sub-systems, i.e., if i, l ∈ Nu , then λi 6= λl . Although this leads to more complex transmission
patterns, it does not contradict the crucial conclusions of this section, as summarized in the last part of the Section 3.1.
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we study the asymptotic transmission rate for which we try to find mathematical expressions or
bounds. To do that, we first compute the asymptotic sampling rate for an arbitrary sub-system i ∈ N,
as follows:

lim
k→∞

E[δi
k] = lim

k→∞
P(δi

k = 1) = lim
k→∞

P(‖ei
k‖

2
2 > ri) ≤

limk→∞ E[‖ei
k‖

2
2]

ri
, (25)

where the inequality in (25) is obtained using Markov’s inequality knowing ‖ei
k‖

2
2 is a non-negative

random variable and ri is a non-negative constant. To provide more meaningful bound, we first state
the following Lemma which essentially states that the dynamics of a stable sub-system’s estimation
error variance becomes insensitive to closing the feedback loop, asymptotically.

Lemma 1. For any stable LTI stochastic control system modeled by (1), the estimation error variance is

asymptotically bounded regardless of how often the feedback loop is closed.

Proof. From (19), we can express the estimation error at the sampler’s side, assuming that no
transmission has taken place from the initial time until the current time k, i.e., φi

1 = φi
2 = . . . =

φi
k−1 = 0, which ensures ∆i

k−1 = k − 1, as follows:

ei
k = Ak

i

(

ẽi
0 − vi

0

)

+ vi
k +

k

∑
r=1

Ar−1
i wi

k−r = Ak
i

(

xi
0 − µxi

0

)

+ vi
k +

k

∑
r=1

Ar−1
i wi

k−r,

where the second equality holds since ẽi
0 = yi

0 − E[xi
0] = xi

0 + vi
0 − µxi

0
. According to the last

expression, ei
k is zero-mean, hence, we can compute the asymptotic estimation error variance as

lim
k→∞

E

[

ei⊤

k ei
k

]

= lim
k→∞

E

[

‖ei
k‖

2
2

]

= lim
k→∞

E

[

∥
∥Ak

i

(

xi
0 − µxi

0

)

+ vi
k +

k

∑
r=1

Ar−1
i wi

k−r

∥
∥2

2

]

= lim
k→∞

E

[∥
∥Ak

i

(

xi
0 − µxi

0

) ∥
∥

2
2

]

+ lim
k→∞

k

∑
r=1

E

[∥
∥Ar−1

i wi
k−r

∥
∥

2
2

]

+ Σvi (26)

≤ lim
k→∞

k

∑
r=1

‖Ai‖
2(r−1)
2 Σwi + Σvi

=
Σwi

1 − ‖Ai‖
2
2
+ Σvi , (27)

where, to obtain (26), we used the mutual statistical independence of xi
0, vi

k and {wi
0, wi

1, . . . , wi
k},

and the third expression is derived using the sub-multiplicative property of vector norms and also
knowing that limk→∞ Ak

i = 0, since Ai is Hurwitz. The final bound (27) is obtained knowing that

the infinite series limk→∞ ∑
k
r=1 ‖Ai‖

2(r−1)
2 Σwi is convergent since ‖Ai‖

2
2 < 1, which completes the

proof.

Having Lemma 1, we can then re-express (25) for all stable sub-systems i ∈ Ns, as follows:

lim
k→∞

P(δi
k = 1|i ∈ Ns) ≤

1
ri

(

Σwi

1 − ‖Ai‖
2
2
+ Σvi

)

. (28)

It should be noted that the expression (25) holds for both stable and unstable sub-systems, while (28)
is valid only for the former ones. Moreover, the bound (28) becomes trivial if the right hand side of
the inequality is bigger than one, so this might also be seen as a rule to design the threshold ri. It
is clear that the higher ri is, the lower the transmission rate of stable sub-systems becomes, which is
expected.
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Lemma 1 does not apply to unstable sub-systems, hence, to derive similar upper-bound for
sub-systems j ∈ Nu, we compute limk→∞ E[‖e

j
k‖

2
2] according to the estimation error expression (18),

as in the following:

lim
k→∞

E[‖e
j
k‖

2
2|∆

j
k−1, j ∈ Nu] =

lim
k→∞

E






∥
∥
∥
∥

A
∆

j
k−1+1

j

(

ẽ
j

k−1−∆
j
k−1

− v
j

k−1−∆
j
k−1

)

+ v
j
k +

∆
j
k−1+1

∑
r=1

Ar−1
j w

j
k−r

∥
∥
∥
∥

2

2

∣
∣
∣
∣
∆

j
k−1, j ∈ Nu




 ≤

Σv j + lim
k→∞

1+∆
j
k−1

∑
r=1

‖Ar−1
j ‖2

2Σw j + lim
k→∞

‖Aj‖
2(∆

j
k−1+1)

2 E

[
∥
∥ẽ

j

k−1−∆
j
k−1

− v
j

k−1−∆
j
k−1

∥
∥

2
2

∣
∣
∣∆

j
k−1, j ∈ Nu

]

. (29)

Let us denote limk→∞ ∆
j
k−1 = ∆

j
∞. Having the highest-age-first scheduler (23), we can compute an

upper-bound for (29) by evaluating the two disjoint cases limk→∞ ‖e
j
k‖

2
2 > rj or limk→∞ ‖e

j
k‖

2
2 ≤ rj,

almost surely. If the first case holds, then according to (23) we know that a measurement sample
belonging to the sub-system j should exist in the buffer, and according to the Proposition 1 and
the discussions afterwards, it yields that limk→∞ ∆

j
k−1 ≤ Mj , max{N, λj + 1}. Otherwise, if

limk→∞ ‖e
j
k‖

2
2 ≤ rj, almost surely, no measurement sample would be sent to the buffer asymptotically

according to the ET sampling law (20), and then limk→∞ ∆
j
k−1 > max{N, λj + 1}. Finally, knowing

that ẽ
j

k−1−∆
j
k−1

is the MMSE error computed by the Kalman filter having access to the measurement

y
j

k−1−∆
j
k−1

, we can rewrite (29) as

lim
k→∞

E[‖e
j
k‖

2
2| lim

k→∞
∆

j
k−1 ≤ Mj, j ∈ Nu] ≤ Σv j +

M j+1

∑
r=1

‖Ar−1
j ‖2

2Σw j + lim
k→∞

‖Aj‖
2(M j+1)
2 P

j

k−1−∆
j
k−1

= Σv j +
M j+1

∑
r=1

‖Ar−1
j ‖2

2Σw j + ‖Aj‖
2(M j+1)
2 P

j
∞, (30)

where, P
j
∞ = limk→∞ P

j

k−1−∆
j
k−1

is the asymptotic estimation error covanrince and will be obtained

from the following algebraic Riccati equation

P
j
∞ = Aj

(

P
j
∞ − P

j
∞(P

j
∞ + Σv j)−1P

j
∞

)

A⊤
j + Σw j .

Finally, having (30), we can express the upper-bound in (25) for the unstable sub-systems j ∈ Nu as

lim
k→∞

P(δ
j
k = 1|j ∈ Nu) ≤

Σv j + ∑
M j+1
r=1 ‖Ar−1

j ‖2
2Σw j + ‖Aj‖

2(M j+1)
2 P

j
∞

rj
. (31)

Note that, if limk→∞ ∆
j
k−1 ≤ Mj holds for finite Mj, P

j
∞ will also be finite as the Kalman filter

receives state measurements asymptotically to compute the MMSE error. Even though the received
measurements might not be fresh, the delay is finite and the Kalman filter algorithm converges.

3.3. Performance Comparisons

To conduct asymptotic performance analysis, we consider a heterogeneous NCS comprised of
multiple stable and unstable sub-systems. Note that, for a NCS including all stable sub-systems
asymptotic performance becomes independent of the sampling, scheduling and control policies due
to the natural convergence of states. In fact, for a stochastic system of the form (1), the system states
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are expected to converge asymptotically to a bounded set around the origin where the set boundary is
characterized by the moments of the primitive random variables, as we will show later in this section.
Hence, to study the properties of the co-design we focus on the heterogeneous NCS scenario.

The overall asymptotic performance of the NCS is measured by the average cost functions J

introduced in (15). It can be seen from (A3) that the local LQG cost function Ji can be minimized by
the control law γi in an inner optimization problem and then the residual cost becomes a function
of the sampling law ξi. From (A8), we know that the residual local cost is a function of E[xi

k|Ĩ
i
k]

and ψi
k where the latter is shown in (A15) to be a function of the estimation error ẽi

t and its variance
Pi

t , t ≥ k. This should be remembered, however, that the resource constraint (4) does not allow the
transmissions to be solely determined by the sampling law ξi, and therefore, the local cost Ji, from the
overall perspective of control and network layers, becomes dependent also on the scheduling law π.
The dependency appears in Ĩ i

k which eventually affects both the estimate E[xi
k|Ĩ

i
k] and ψi

k. Hence, the
optimal asymptotic cost function (15) should be minimized by both sampling and scheduling policies,
which can be written as

J = lim
T→∞

1
N

N

∑
i=1

1
T
E



 min
δi
[0,T−1], φi

[0,T−1]

E

[

E[xi
0]
⊤Pi

0 E[x
i
0] + ψi

0

]



 (32)

wherein, E[xi
0] is known a priori, and ψi

0 is a function of the estimation errors ẽi
k and their variances Pi

k,
k ∈ {0, 1, 2, . . .}, according to (A15).

Solving the optimization problem (32) is very challenging due to the coupling of the decision
variables with ψi

0 through the end-to-end delay ∆i
t and also the non-linear nature of the ET and AoI

functions. The aim of this article is, therefore, to identify the appropriate class of policies for the
sampling and scheduling that jointly result in an improved overall performance. Since the overall
performance is a convex function of the estimation error according to (32), it is easier to study the
asymptotic behavior of the estimation error of all sub-systems. In fact, if a certain co-design of
sampling and scheduling policies results in a lower asymptotic average sum of estimation errors of
all sub-systems, compared to another co-design, then it certainly results in a lower asymptotic overall
cost (32) as well. Hence, for the performance analysis and make comparisons between different
sampling/scheduling co-designs, we consider the following performance metric:

Je
∞ = lim

k→∞

1
N

N

∑
i=1

E

[

ẽi⊤

k ẽi
k

]

= lim
k→∞

1
N

[
Ns

∑
i=1

E

[

ẽi⊤

k ẽi
k

]

+
Nu

∑
j=1

E

[

ẽ
j⊤

k ẽ
j
k

]]

. (33)

Theorem 2 summarizes the second main result of this article on the appropriate sampling/scheduling
co-design architecture. First, we define “non-trivial threshold-based functions”, as follows:

Definition 2. A threshold-based function with stochastic thresholds of the form (20) is said to be non-trivial

if P[ri
k 6= 0] > 0, ∀k, and almost surely, P[ri

k = ∞] = 0, ∀k. For deterministic threshold-based functions of

the form (21), we call the threshold-based function non-trivial if λi 6= {0, ∞}.

Theorem 2. Consider a heterogeneous NCS comprised of N LTI stochastic sub-systems modeled as (1)-(2)
from which Ns sub-systems are stable and Nu sub-systems are unstable. Let the network scheduler select only

one sub-system per time-step to transmit its freshest state measurement in the buffer to the controller, i.e., c = 1
in (4). Then, for any non-trivial AoI sampling policy given in (21), there exists a non-trivial constant threshold

ET sampling policy in form of (20) that asymptotically outperforms, in terms of (33), the AoI sampling policy,

given that network scheduling policy obeys the AoI-based highest-age-first law in (24).

Proof. See Appendix B.
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Remark 6. Reminding the evolution of e
j
k in (18) and (19), it is clear that the estimation error at the sampler

has a zero-mean but not normal distribution. For general square matrix Aj ∈ Rnj×nj
, the asymptotic CDF of

‖e
j
k‖

2
2 might not have an analytical form, but can be efficiently computed numerically. Indeed, the distribution

of ‖e
j
k‖

2
2 for general Aj is determined by the distribution of its elements which are statistically dependent via the

off-diagonal elements of Aj. For specific forms of Aj, however, the CDF has indeed an analytical form. If Aj is a

diagonal matrix, then the distribution of ‖e
j
k‖

2
2 follows the sum of nj independent Gamma distributions which

has an analytical CDF. For scalar systems, the distribution of ‖e
j
k‖

2
2 = e

j2

k follows a single Gamma distribution.

Remark 7. Theorem 2 can be extended to the case that the thresholds ri
k and r

j
k are stochastic, as in (20). This

would results in the Markov’s inequality in (25), and the expression limk→∞ P(‖e
j
k‖

2
2 > rj) = 1 − F

j

‖e j‖
(rj)

not to be valid anymore due to the random nature of the thresholds. For stochastic thresholds, instead of

Markov’s inequality which holds for non-negative random variables, we can employ Chernoff bound which is a

generalization of the Markov’s inequality for real-valued random variables. In fact, if thresholds are stochastic,

we can construct the new real-valued random variable ‖e
j
k‖

2
2 − r

j
k and find the upper-bound for it by applying

the Chernoff bound. Further, we can write limk→∞ P(‖e
j
k‖

2
2 − r

j
k > 0) = 1 − F

j

‖e j‖−r j(0), where F
j

‖e j‖−r j is

now the asymptotic CDF of the constructed random variable ‖e
j
k‖

2
2 − r

j
k. Note that, F

j

‖e j‖
(0) = 0 since ‖e

j
k‖

2
2

is a non-negative random variable, however, F
j

‖e j‖−r j(0) > 0 since ‖e
j
k‖

2
2 − r

j
k is real-valued. The CDF F

j

‖e j‖−r j

may not have an analytical form, depending on the distributions of the random variables ‖e
j
k‖

2
2 and r

j
k.

In the following, we discuss that the pure AoI scheduling policy (23) may outperform the
pure random transmission policy (24), but not always. In fact, we discuss that if the scheduler’s
highest-age-first prioritizing feature is applied first to the set of unstable sub-systems, then the AoI
scheduling policy (23) certainly outperforms the pure random transmission policy. We define the
highest-age-first policy for the unstable sub-systems similar to (23), with the exception that the law
is applied, asymptotically, first on the set of unstable sub-systems and the resource is assigned to
the unstable sub-system with the highest age, even if there are stable ones with higher age than the
unstable ones.

Corollary 1. For a fixed sampling policy, the highest-age-first threshold-based scheduling law (23) does not

necessarily outperform the pure random scheduling policy (24), asymptotically, in an NCS of heterogeneous

stable and unstable control sub-systems sharing a capacity limited communication network. The AoI-based

highest-age-first policy for unstable sub-systems, however, asymptotically outperforms the pure random

scheduling policy (24).

Proof. As discussed before, the average sum of the estimation error variance of the set of stable
sub-systems do not asymptotically change. Reminding (13), we see that the higher the age ∆i

k is for
unstable sub-systems, the larger the estimation error becomes. This is also true for the variance of
the estimation error. Therefore, if a scheduling policy results in a higher transmission probability for
the unstable sub-systems with the highest age, then the average sum of the estimation error variance
will also be more reduced. According to (24), all sub-systems that have a data packet in the buffer are
assigned identical probabilities of transmission 1

|Nb
k |

, irrespective of their age or stability properties.

For the same set of sub-systems with a packet in the buffer, the probability that the sub-system with
the highest age, stable or unstable, successfully transmits is, according to (23), 1

ηk
, if there are ηk ≤

|Nb
k| number of sub-systems all with identical highest age, which leads to 1

ηk
≥ 1

|Nb
k |

. The equality

occurs only if all sub-systems in the buffer have the similar age which is also the highest age. It
should, however, be noted that if all the sub-systems that have the highest age are stable, then the
unstable sub-systems in the buffer that may have relatively large age but not the highest are assigned

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2020                   



20 of 30

with probability zero for successful transmissions, while this probability is 1
|Nb

k |
for the pure random

scheduling policy that leads to a lower average sum of estimation error variance. With the modified
prioritized highest-age-first policy for unstable sub-systems, however, the described problem can
be easily considered in scheduling, and therefore, this policy always outperforms the pure random
scheduling, for any fixed sampling policy.

4. Numerical Evaluations

We consider different NCS setups with different number of stable and unstable sub-systems to
numerically test the co-design architectures and compare with the common approaches. Number
of sub-systems N is chosen from the set {2, 4, 6, 8, 10} with equal number of stable and unstable
sub-systems. For the ease of interpretation, we choose scalar LTI sub-systems. The system matrices for
stable and unstable sub-systems are selected to be 0.5 and 1.05, respectively. The system disturbance
is modeled as wi

k ∼ N (0, 1), for all i ∈ N, and k ∈ N0, and for the ease of illustrations we assume
that measurements are noiseless. Each data point in the plots is generated by running the simulative
setup for 106 iterations. In the following we define the sampling and network scheduling strategies
and the parameter values chosen for each scenario.

Sampling strategies

1. Event triggering: The sampler (sensor) samples the plant in each time-step, and if the value of the
estimation error is greater than a threshold, then the sample is sent to the queue. The threshold
is generated from an exponential distribution, and the mean of the distribution is chosen from
the set {0, 0.1, 0.5, 1, 2 : 2 : 30}, where 2 : 2 : 30 are integer values in [2, 30] that are divisible by 2.
We use a default setting where each sampler uses the same mean threshold.

2. Period-n sampling: Each sampler samples the plant periodically with period n.
3. AoI sampling: Each sampler samples the plant whenever the AoI at the sampler exceeds N − 1.

The AoI at the sampler is equal to the AoI at the respective estimator from the previous time-step
plus one.

Network scheduling

1. Max AoI: Under this scheduling policy, the network chooses the plant which has a packet in the
queue and maximum AoI at the estimator, which is the highest-age-first policy.

2. Pure randomized: The network scheduler chooses a packet uniformly randomly from the queue.

In Figure 3, we plot the average estimation error variance (across all sub-systems) by varying
the mean threshold. We observe that the estimation error variance is minimized for certain mean
threshold values which increase with the number of sub-systems N. To understand this, note that
when the thresholds are small, all the samplers will place a packet in the queue in almost every
time-step. In this case, Max AoI does close to round-robin scheduling for the plants. Thus, plants
with high or low estimation errors are treated rather indifferently leading to relatively high estimation
error variance. The threshold values that attain minimum estimation error variances are such that the
sub-systems with low estimation errors (usually the stable ones) do not contend for the network
frequently as they do not exceed the thresholds frequently. This results in more often transmission
of packets from sub-systems with high estimation errors, thus lowering the overall estimation error
variance. In the following figures, we present the statistics of the event triggered sampling at mean
thresholds that minimize the estimation error variance, that are marked by black circles in Figure 3.
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Figure 3. Average estimation error variance versus mean threshold under event triggering and Max
AoI scheduling for different number of sub-systems N.
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Figure 4. Comparison of estimation error variance for various sampling/scheduling architectures.

In Figure 4, we compare the estimation error variance achieved under different schemes. For
event triggered sampling, we plot the minimum estimation error variance achieved over different
thresholds for each N. We observe that event triggered sampling strategy obtains the lower estimation
error variance, 30 − 40% lower than that of AoI sampling when N = 10. While AoI sampling and
period-1 sampling results in same variance, the sampling frequency of AoI sampling is much lower
and equals 1

N−1 . Also, it can be observed that, in general, using Max AoI scheduling results in lower
estimation error variance especially as the number of sub-systems grows.

In Figure 5, we compare the normalized total number of network transmissions that occur
under different schemes. While period-1 sampling and AoI sampling result in a transmission in each
time-step, event triggered results in transmissions 80% of the time for varying number of sub-systems.
This is because, the queue remains empty 20% (on average) under event triggered sampling since
only sub-systems with estimation errors greater than the threshold are allowed to place a packet in
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the queue. Therefore, event triggering not only provides lower estimation error variance, but also
reduces the number of network transmissions.
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Figure 5. Normalized total number of network transmissions under different schemes.
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Figure 6. Average AoI achieved under different schemes.

In Figure 6, we compare the average AoI (averaged over all the estimators), achieved under
different schemes. Since AoI sampling samples a plant based on its AoI at the estimator, this strategy
results in the lowest average AoI. On the other hand, event triggering results in higher average AoI,
as it samples based on estimation error, which increases non-linearly with AoI. Also, since AoI Max
scheduling picks the plant with highest AoI and transmits its packet, this strategy results in lower
average AoI across different sampling strategies. The main conclusion is, although ET sampling
policy does not result in the lowest average AoI across the NCS, it results in the lowest achieved
estimation error variance.
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5. Conclusions

In this article, the major goal is to propose a co-design networked control architecture
of sampling, scheduling and control for NCSs comprised of multiple heterogeneous LTI
stochastic control systems that close their sensor-to-controller loops over a shared capacity-limited
communication network. We first show that under mild assumptions on the information structure
of each policy maker, the optimal control law is of certainty equivalence form. We then investigate
various combinations of decentralized sampling and centralized scheduling architectures employing
the applicable concepts of event-triggered and AoI utility functions. We analytically show that the
event-triggered sampling is capable of asymptotically outperforming AoI sampling policy when
the communication resources are limited, while we demonstrate AoI-based prioritizing scheduling
may outperform the pure random scheduling policy under appropriate prioritization metric. To
discuss the effectiveness of each co-design, we measure the overall NCS performance by the average
sum of local LQG cost functions. Our theoretical analyses are successfully validated for the
proposed co-designs and comparisons are made with conventional periodic and pure random access
approaches through simulations on different NCS scenarios.
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The following abbreviations are used in this manuscript:

NCS Networked Control System
AoI Age-of-Information
ET Event-Triggered
QoS Quality-of-Service
QoC Quality-of-Control
LQG Linear-quadratic Gaussian
CE Certainty Equivalence

Appendix A. Proof of Theorem 1

From the perspective of each local sub-system i, the expected local cost (14) changes depending
on the I i

k-measurable sampling policy ξi(I
i
k) and the Ĩ i

k-measurable control policy γi(Ĩ
i
k). Using the

law of total expectation2, we can re-write (14) over the horizon [0, T], as follows:

Ji(ξi, γi) =
1
T
E

[

E

[

xi⊤

T Q2
i xi

T +
T−1

∑
k=0

xi⊤

k Q1
i xi

k + ui⊤

k Riu
i
k

∣
∣
∣I i

k

]]

. (A1)

2 Let a random variables X be measurable w.r.t. to some σ-algebra H, then we have E[E[X|H]] = E[X].
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From (8) and (10), we know that I i
k ⊂ Ĩ i

k, therefore, we can re-write (A1) by employing the general
law of total expectation3, as

Ji(ξi, γi) =
1
T
E

[

E

[

E

[

xi⊤

T Q2
i xi

T +
T−1

∑
k=0

xi⊤

k Q1
i xi

k + ui⊤

k Riu
i
k

∣
∣
∣Ĩ i

k

]
∣
∣
∣I i

k

]]

. (A2)

Define the LQG cost-to-go at time-step k as Vi
k(ξi, γi) = xi⊤

T Q2
i xi

T + ∑
T−1
t=k xi⊤

t Q1
i xi

t + ui⊤
t Riu

i
t. We then

have from (A2)

J∗i =
1
T

min
ξi,γi

Ji(ξi, γi) = E



 min
δi
[0,T−1]

E



 min
ui
[0,T−1]

E

[

Vi
0(ξi, γi)|Ĩ

i
0

]

|I i
0







 . (A3)

We, moreover, define the optimal stage cost J∗i (k) as follows:

J∗i (k) = min
δi
[k,T−1]

E



 min
ui
[k,T−1]

E

[

Vi
k(ξi, γi)|Ĩ

i
k

]

|I i
k



 , (A4)

which results in the compact form J∗i = E[J∗i (0)].
The LQG optimal cost-to-go at time-step k + 1 has the following form:

Vi,∗
k+1 = min

ui
[k+1,T−1]

E

[

xi⊤

T Q2
i xi

T +
T−1

∑
t=k+1

xi⊤
t Q1

i xi
t + ui⊤

t Riu
i
t

∣
∣
∣Ĩ i

k+1

]

. (A5)

Knowing that Ĩ i
k ⊂ Ĩ i

k+1, we have from the law of total expectation that

E

[

Vi,∗
k+1

∣
∣Ĩ i

k

]

= min
ui
[k+1,T−1]

E

[

xi⊤

T Q2
i xi

T +
T−1

∑
t=k+1

xi⊤
t Q1

i xi
t + ui⊤

t Riu
i
t

∣
∣
∣Ĩ i

k

]

. (A6)

Having (A6), we obtain

Vi,∗
k = min

ui
[k,T−1]

E

[

xi⊤

k Q1
i xi

k + ui⊤

k Riu
i
k + Vi,∗

k+1

∣
∣Ĩ i

k

]

. (A7)

Let us assume that Vi,∗
k can be expressed in the following form:

Vi,∗
k , E[xi

k|Ĩ
i
k]
⊤Pi

k E[x
i
k|Ĩ

i
k] + ψi

k, (A8)

where ψi
k is a control-input-independent expression. We will show later in this proof that (A8) is

indeed an authentic assumption. According to (A8), we can re-express (A7) as follows:

Vi,∗
k = min

ui
k

E

[

xi⊤

k Q1
i xi

k + ui⊤

k Riu
i
k + E[xi

k+1|Ĩ
i
k+1]

⊤Pi
k+1 E[x

i
k+1|Ĩ

i
k+1] + ψi

k+1
∣
∣Ĩ i

k

]

. (A9)

3 Let H1 and H2 be two sub-σ-algebras of a probability space with σ-algebra H, and X is defined on that probability space.
If H1 ⊂ H2 ⊂ H, then we have E[E[X|H2]|H1] = E[X|H1].
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We have for the a priori state estimate that x̂i−

k+1 = E[xi
k+1|Ĩ

i
k]. Since E[xi

k+1|Ĩ
i
k] is Ĩ i

k-measurable, we
obtain

E

[

E[xi
k+1|Ĩ

i
k+1]

⊤Pi
k+1 E[x

i
k+1|Ĩ

i
k]
∣
∣Ĩ i

k

]

= E

[

E[xi
k+1|Ĩ

i
k+1]

⊤
∣
∣Ĩ i

k

]

Pi
k+1 E[x

i
k+1|Ĩ

i
k]

= E

[

xi
k+1|Ĩ

i
k

]⊤
Pi

k+1 E
[

xi
k+1|Ĩ

i
k

]

= x̂i−
⊤

k+1Pi
k+1x̂i−

k+1, (A10)

where, for the first equality we use the conditional expectation property of E[XY|H] = X E[Y|H] if X

is H-measurable, and the second equality holds according to the law of total expectation knowing

Ĩ i
k ⊂ Ĩ i

k+1. Similarly, it can be shown that E

[

E[xi
k+1|Ĩ

i
k]
⊤Pi

k+1 E[x
i
k+1|Ĩ

i
k+1]

∣
∣Ĩ i

k

]

= x̂i−
⊤

k+1Pi
k+1x̂i−

k+1.

Define ǫi
k+1 , E[xi

k+1|Ĩ
i
k+1] − E[xi

k+1|Ĩ
i
k] = x̂i

k+1 − x̂i−

k+1. It is straightforward to see ǫi
k+1 is

independent of ui
k. From (A10), we conclude E

[

ǫi⊤

k+1Pi
k+1x̂i−

k+1

]

= E

[

x̂i−
⊤

k+1Pi
k+1ǫi

k+1

]

= 0. Using

the equivalence E[xi
k+1|Ĩ

i
k+1] = ǫi

k+1 + x̂i−

k+1, together with knowing ǫi
k+1 and ψi

k+1 are independent
of control inputs, we can re-write (A9) as

Vi,∗
k = min

ui
k

E

[

xi⊤

k Q1
i xi

k + ui⊤

k Riu
i
k

∣
∣Ĩ i

k

]

+ min
ui

k

E

[

(Ai x̂
i
k + Biu

i
k)

⊤Pi
k+1(Ai x̂

i
k + Biu

i
k)|Ĩ

i
k

]

(A11)

+ E

[

ǫi⊤

k+1Pi
k+1ǫi

k+1 + ψi
k+1
∣
∣Ĩ i

k

]

.

Since the last term after the equality above is ui
k-independent, finding the optimal control ui∗

k is
straightforward and can be obtained by setting the derivative of the first two terms in (A11) w.r.t.
ui

k to zero, which results in

ui∗

k = −
(

Ri + B⊤
i Pi

k+1Bi

)−1
B⊤

i Pi
k+1Ai x̂

i
k.

Defining Li
k = −

(

Ri + B⊤
i Pi

k+1Bi

)−1
B⊤

i Pi
k+1Ai, (16) will be obtained. We still need to show that ψi

k+1
is indeed independent of control inputs. By plugging in (16) in the optimal cost-to-go (A11), and also
using xi

k = ẽi
k + x̂i

k − vi
k (see (11)), we have

Vi,∗
k = E

[

(ẽi
k + x̂i

k − vi
k)

⊤Q1
i (ẽ

i
k + x̂i

k − vi
k) + (Li

k x̂i
k)

⊤Ri(Li
k x̂i

k)
∣
∣Ĩ i

k

]

+ E

[

(Ai x̂
i
k + BiL

i
k x̂i

k)
⊤Pi

k+1(Ai x̂
i
k + BiL

i
k x̂i

k)|Ĩ
i
k

]

+ E

[

ǫi⊤

k+1Pi
k+1ǫi

k+1 + ψi
k+1
∣
∣Ĩ i

k

]

= x̂i⊤

k

(

Li⊤

k RiL
i
k + Q1

i + (Ai + BiL
i
k)

⊤Pi
k+1(Ai + BiL

i
k)
)

x̂i
k (A12)

+ E

[

ẽi⊤

k Q1
i ẽi

k

∣
∣Ĩ i

k

]

− E

[

vi⊤

k Q1
i vi

k

]

+ E

[

ǫi⊤

k+1Pi
k+1ǫi

k+1 + ψi
k+1
∣
∣Ĩ i

k

]

,

where (A12) is obtained noting that E

[

vi⊤

k Q1
i x̂i

k|Ĩ
i
k

]

= E

[

x̂i⊤

k Q1
i vi

k|Ĩ
i
k

]

= E

[

ẽi⊤

k Q1
i x̂i

k|Ĩ
i
k

]

=

E

[

x̂i⊤

k Q1
i ẽi

k|Ĩ
i
k

]

= 0, and E

[

ẽi⊤

k Q1
i vi

k|Ĩ
i
k

]

= E

[

vi⊤

k Q1
i ẽi

k|Ĩ
i
k

]

= E

[

vi⊤

k Q1
i vi

k

]

. Now, comparing (A12)
with (A8), we conclude the two following statements:

Pi
k = Li⊤

k RiL
i
k + Q1

i + (Ai + BiL
i
k)

⊤Pi
k+1(Ai + BiL

i
k), (A13)

ψi
k = E

[

ẽi⊤

k Q1
i ẽi

k

∣
∣Ĩ i

k

]

− E

[

vi⊤

k Q1
i vi

k

]

+ E

[

ǫi⊤

k+1Pi
k+1ǫi

k+1 + ψi
k+1
∣
∣Ĩ i

k

]

= E

[
T−1

∑
t=k

ẽi⊤
t Q1

i ẽi
t + ẽi⊤

T Q2
i ẽi

T

∣
∣Ĩ i

k

]

− E

[
T−1

∑
t=k

vi⊤
t Q1

i vi
t + vi⊤

T Q2
i vi

T

]

+ E

[
T

∑
t=k+1

ǫi⊤
t Pi

tǫi
t

∣
∣Ĩ i

k

]

. (A14)
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From the definitions of ẽi
k, and ǫi

k, and using ui
k = Li

k E[x
i
k|Ĩ

i
k], we obtain the following:

ǫi
k + ẽi

k = E[xi
k|Ĩ

i
k]− E[xi

k|Ĩ
i
k−1] + xi

k + vi
k − E[xi

k|Ĩ
i
k]

= xi
k − E[xi

k|Ĩ
i
k−1] + vi

k

= Ai(xi
k−1 − E[xi

k−1|Ĩ
i
k−1]) + vi

k + wi
k−1

= Ai(ẽ
i
k−1 − vi

k−1) + vi
k + wi

k−1

Knowing that E
[

ǫi⊤

k Pi
k ẽi

k

∣
∣Ĩ i

k

]

= 0 and E

[

ẽi⊤

k−1vi
k−1

∣
∣Ĩ i

k

]

= E

[

vi⊤

k−1vi
k−1

]

, we can write

E

[

ǫi⊤

k Pi
kǫi

k

∣
∣Ĩ i

k

]

+ E

[

ẽi⊤

k Pi
k ẽi

k

∣
∣Ĩ i

k

]

= E

[

(ǫi
k + ẽi

k)
⊤Pi

k(ǫ
i
k + ẽi

k)
∣
∣Ĩ i

k

]

= E

[

(Ai(ẽ
i
k−1 − vi

k−1) + vi
k + wi

k−1)
⊤Pi

k(Ai(ẽ
i
k−1 − vi

k−1) + vi
k + wi

k−1)
∣
∣Ĩ i

k

]

= E

[

ẽi⊤

k−1 A⊤
i Pi

kAi ẽ
i
k−1
∣
∣Ĩ i

k

]

− E

[

vi⊤

k−1A⊤
i Pi

kAiv
i
k−1

]

+ E

[

vi⊤

k Pi
kvi

k

]

+ E

[

wi⊤

k−1Pi
kwi

k−1

]

= E

[

ẽi⊤

k−1 A⊤
i Pi

kAi ẽ
i
k−1
∣
∣Ĩ i

k

]

+ tr
(

(Pi
k − A⊤

i Pi
kAi)Σvi

)

+ tr
(

Pi
kΣwi

)

.

From the above expression, therefore, we obtain

E

[
T

∑
t=k+1

ǫi⊤
t Pi

tǫi
t

∣
∣Ĩ i

k

]

= E

[
T

∑
t=k+1

ẽi⊤

t−1A⊤
i Pi

t Ai ẽ
i
t−1
∣
∣Ĩ i

k

]

+
T

∑
t=k+1

tr
(

(Pi
t − A⊤

i Pi
t Ai)Σvi

)

+
T

∑
t=k+1

tr
(

Pi
tΣwi

)

− E

[
T

∑
t=k+1

ẽi⊤
t Pi

t ẽi
t

∣
∣Ĩ i

k

]

.

Now, defining P̃i
t = A⊤

i Pi
t+1Ai − Pi

t + Q1
i , we can rewrite (A14) and derive ψi

k as follows:

ψi
k = E

[
T−1

∑
t=k

ẽi⊤
t (Q1

i + A⊤
i Pi

t+1Ai)ẽ
i
t + ẽi⊤

T Q2
i ẽi

T

∣
∣Ĩ i

k

]

− E

[
T

∑
t=k+1

ẽi⊤
t Pi

t ẽi
t

∣
∣Ĩ i

k

]

+
T

∑
t=k+1

tr
(

(Pi
t − A⊤

i Pi
t Ai − Q1

i )Σvi

)

− tr
(

Q2
i Σvi

)

+
T

∑
t=k+1

tr
(

Pi
t Σwi

)

= E

[

ẽi⊤

k Pi
k ẽi

k +
T−1

∑
t=k

ẽi⊤
t P̃i

t ẽi
t + ẽi⊤

T Q2
i ẽi

T

∣
∣Ĩ i

k

]

+
T

∑
t=k+1

tr
(

(Pi
t − A⊤

i Pi
t Ai − Q1

i )Σvi

)

(A15)

− tr
(

Q2
i Σvi

)

+
T

∑
t=k+1

tr
(

Pi
tΣwi

)

.

According to (12) and (13), ẽi
k is independent of the control inputs ui

t, t ≤ k and k ∈ N0. Therefore, ψi
k

expressed in (A15) is shown to be control-independent, and the proof in then complete.

Appendix B. Proof of Theorem 2

Incorporating the scheduling decision, no matter which type of scheduling policy has generated
it, we can rewrite (33) as follows:

lim
k→∞

1
N

N

∑
i=1

E

[

ẽi⊤

k ẽi
k

]

= lim
k→∞

1
N

[
Ns

∑
i=1

(

P(φi
k = 1) E

[

‖ẽi
k‖

2
2
∣
∣φi

k = 1
]

+ P(φi
k = 0) E

[

‖ẽi
k‖

2
2
∣
∣φi

k = 0
])

(A16)

+
Nu

∑
j=1

(

P(φ
j
k = 1) E

[

‖ẽ
j
k‖

2
2
∣
∣φ

j
k = 1

]

+ P(φ
j
k = 0) E

[

‖ẽ
j
k‖

2
2
∣
∣φ

j
k = 0

])
]

.
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According to Lemma 1, for stable sub-systems, we know that the expression (26) converges to a
constant value that depends only on Ai, Σvi , Σwi . The exact constant expression equality for non-scalar
systems, however, is non-trivial to derive. For scalar systems, i.e., if 0 < Ai < 1, then the inequality
in (27) becomes equality. For non-scalar case, though, we can use Cauchy-Schwarz inequality to find
a constant upper-bound. What we need for the proof of Theorem 2 is not the exact expression for
limk→∞ E

[
‖ẽi

k‖
2
2
]
, but only knowing that limk→∞ E

[
‖ẽi

k‖
2
2

∣
∣φi

k = 1
]
= limk→∞ E

[
‖ẽi

k‖
2
2

∣
∣φi

k = 0
]
. This

equality is clear from (26) since ‖Ai‖
2
2 < 1 and this diminishes the role of time k in the expression

for the estimation error variance. This essentially concludes that, for the set of stable sub-systems,
transmissions in asymptotic regime do not influence the estimation error variance, and hence, (A16)
can be rewritten as

lim
k→∞

1
N

N

∑
i=1

E

[

ẽi⊤

k ẽi
k

]

= lim
k→∞

1
N

[
Ns

∑
i=1

E

[

‖ẽi
k‖

2
2

]

+
Nu

∑
j=1

(

P(φ
j
k = 1) E

[

‖ẽ
j
k‖

2
2
∣
∣φ

j
k = 1

]

+ P(φ
j
k = 0) E

[

‖ẽ
j
k‖

2
2
∣
∣φ

j
k = 0

])
]

. (A17)

The problematic term in the above expression that may lead to increase the asymptotic average

estimation error variance is E
[

‖ẽ
j
k‖

2
2

∣
∣φ

j
k = 0

]

while ‖ẽ
j
k‖

2
2 > ri. Hence, the aim of the co-design policy

is to increase limk→∞ P(φ
j
k = 1) which consequently leads to a decrease in limk→∞ P(φi

k = 1). Simply,
we would like to assign the transmission opportunities more often to the unstable sub-systems,
asymptotically. In addition, we are interested in not only a successful transmission, but a successful
transmission of a low-age state measurement. This means more frequent sampling and more frequent
scheduling of unstable sub-systems, in probabilistic sense. To achieve this, we should first notice from
the statements of the Proposition 1 and the discussions afterwards in Section 3.1 that, in the non-trivial
AoI/AoI co-design architecture, the minimum sampling rate of stable or unstable sub-systems with
the AoI threshold λi is limk→∞ P(δi

k = 1) = 1
max{N,λi+1} = 1

Mi . To have a higher sampling rate for the
ET sampling law compared to the AoI sampling law, we need to show

lim
k→∞

P(δi
k = 1|i ∈ Ns, ET/AoI) < lim

k→∞
P(δi

k = 1|i ∈ Ns, AoI/AoI). (A18)

Hence, using (28), the inequality (A18) is satisfied if

1
ri

(

Σwi

1 − ‖Ai‖
2
2
+ Σvi

)

<
1

Mi
, (A19)

which results in the following lower-bound for the ET thresholds for stable sub-systems:

ri
> Mi

(

Σwi

1 − ‖Ai‖
2
2
+ Σvi

)

. (A20)

For unstable sub-systems, we need to show

lim
k→∞

P(δ
j
k = 1|j ∈ Nu, ET/AoI) > lim

k→∞
P(δ

j
k = 1|j ∈ Nu, AoI/AoI). (A21)

We know limk→∞ P(‖e
j
k‖

2
2 > rj) = 1 − F

j

‖e j‖
(rj), where F

j

‖e j‖
is the asymptotic cumulative distribution

function (CDF) of the random process ‖e
j
k‖

2
2 and F

j

‖e j‖
(rj) is the value of the asymptotic CDF at rj.

Hence, (A21) is satisfied if

1 −
1

Mj
> F

j

‖e j‖
(rj). (A22)
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The CDF F
j

‖e j‖
is a monotonically non-decreasing function w.r.t. rj, hence, the lower Mj is (i.e.,

either lower N or lower λj), the ET thresholds for unstable sub-systems should also be decreased to
asymptotically out-sample the AoI/AoI architecture, and vice-versa, which is an expected conclusion.
Having (A19) and (A22) satisfied, it is ensured that, first, the asymptotic sampling rate of stable
sub-systems is lower in the ET/AoI co-design compared to the AoI/AoI, and second, the sampling
rate of unstable sub-systems is higher for the former approach. Hence, not only the probability that
the unstable sub-systems transmit is higher for the ET/AoI compared to the AoI/AoI policy, but
also the scheduled transmissions that are determined by the AoI-based highest-age-first policy in (23)
have lower average age for the ET/AoI co-design. This means, limk→∞ P(φ

j
k = 1|j ∈ Nu, ET/AoI) >

limk→∞ P(φ
j
k = 1|j ∈ Nu, AoI/AoI) and therefore, lower asymptotic average estimation error

variance in (A17). Finally, knowing that the asymptotic behavior of the stable set of sub-systems
are independent of the sampling and scheduling policies, the asymptotic average estimation error
variance in (A17) can be upper-bounded as follows:

lim
k→∞

1
N

N

∑
i=1

E

[

ẽi⊤

k ẽi
k

]

≤
1
N

Ns

∑
i=1

[

Σwi

1 − ‖Ai‖
2
2
+ Σvi

]

+
1
N

Nu

∑
j=1

[

P(φ
j
k = 1)

(

Σv j +
N

∑
r=1

‖Ar−1
j ‖2

2Σw j + ‖Aj‖
2N
2 P

j
∞

)

+ P(φ
j
k = 0)rj

]

.

(A23)

The bound is trivial if ‖Ai‖
2
2 = 1 or P

j
∞ → ∞. The first one is avoided due to assuming Ai is Hurwitz,

and P
j
∞ is bounded due to the fact that if limk→∞ ‖e

j
k‖

2
2 > rj asymptotically, then ∆

j
k ≤ Mj which

means, in the worst case, there is one state information with bounded delay to construct the Kalman
estimate. This completes the proof.

References

1. Zhang, X.; Han, Q.; Yu, X. Survey on recent advances in networked control systems. IEEE Transactions on

Industrial Informatics 2016, 12(5), 1740–1752.
2. Park, P.; Coleri Ergen, S.; Fischione, C.; Lu, C.; Johansson, K. H. Wireless network design for control systems:

A survey. IEEE Communications Surveys & Tutorials 2018, 20(2), 978–1013.
3. Baillieul, J.; Antsaklis, P. J. Control and communication challenges in networked real-time systems.

Proceedings of the IEEE 2007, 95(1), 9–28.
4. Pajic, M.; Sundaram, S.; Pappas, G. J.; Mangharam, R. The wireless control network: A new approach for

control over networks. IEEE Transactions on Automatic Control 2011, 56(10), 2305–2318.
5. Liu, X.; Goldsmith, A. Cross-layer Design of Control over Wireless Networks. In Advances in Control,

Communication Networks, and Transportation Systems; Editor1, F., Editor2, A., Eds.; Birkhäuser Boston: Boston,
USA, 2005; pp. 111–136.

6. Park, P.; Marco, P. D.; Johansson, K. H. Cross-layer optimization for industrial control applications
using wireless sensor and actuator mesh networks. IEEE Transactions on Industrial Electronics 2017, 64(4),
3250–3259.

7. Molin, A.; Esen, H.; Johansson, K. H. Scheduling networked state estimators based on Value-of-Information.
Automatica 2019, 110.

8. Tanaka, T.; Esfahani, P. M.; Mitter, S. K. LQG control with minimum directed information: Semidefinite
programming approach. IEEE Transactions on Automatic Control 2018, 63(1), 37–52.

9. Kosta, A.; Pappas, N.; Angelakis, V. Age-of-Information: A new concept, metric, and tool. Foundations and

Trends in Networking 2017, 12(3), 162–259.
10. Yates, R. D.; Kaul, S. K. The Age-of-Information: Real-time status updating by multiple sources. IEEE

Transactions on Information Theory 2019, 65(3), 1807–1827.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2020                   



29 of 30

11. Wang, X..; Lemmon, M. D. Event-triggering in distributed networked control systems. IEEE Transactions on

Automatic Control 2011, 56(3), 586–601.
12. Lunze, J.; Lehmann, D. A state-feedback approach to event-based control. Automatica 2010, 46(1), 211–215.
13. Wang, H.; Liao, C.; Tian Z. Providing quality of service over time delay networks by efficient queue

management. IEEE Conference on Local Computer Networks 2011, 275–278.
14. Zhang, Q.; Zhang, Y. Cross-layer design for QoS support in multihop wireless networks. IEEE Proceedings

2008, 96(1), 64–76.
15. Rajandekar, A.; Sikdar, B. A survey of MAC layer issues and protocols for machine-to-machine

communications. IEEE Internet of Things Journal 2015, 2(2), 175–186.
16. Elia, N.; Eisenbeis, J. N. Limitations of linear control over packet drop networks. IEEE Transactions on

Automatic Control 2011, 56(4), 826–841.
17. Nayyar, N.; Kalathil, D.; Jain, R. Optimal decentralized control in unidirectional one-step delayed sharing

pattern. Annual Conference on Communication, Control, and Computing (Allerton) 2013, 374–380.
18. Åstrom, K. J.; Bernhardsson, B. Comparison of periodic and event based sampling for first-order stochastic

systems. Proceedings of IFAC World Congress 1999, 301–306.
19. Rabi, M.; Moustakides, G. V.; Baras, J. S. Adaptive sampling for linear state estimation. SIAM Journal on

Control and Optimization 2012, 50(2), 672–702.
20. Tabuada, P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic

Control 2007, 52(9), 1680–1685.
21. Heemels, W. P. M. H.; Johansson, K. H.; Tabuada, P. An introduction to event-triggered and self-triggered

control. IEEE Conference on Decision and Control 2012, 3270–3285.
22. Molin, A.; Hirche, S. On the optimality of certainty equivalence for event-triggered control systems. IEEE

Transactions on Automatic Control 2013, 58(2), 470–474.
23. Weerakkody, S.; Mo, Y.; Sinopoli, B.; Han, D.; Shi, L. Multi-sensor scheduling for state estimation with

event-based stochastic triggers. IEEE Transactions on Automatic Control 2016, 61(9), 2695–2701.
24. Blind, R.; Allgöwer, F. Analysis of networked event-based control with a shared communication medium:

part II - slotted ALOHA. IFAC Proceedings Volumes 2011, 44(1), 8830–8835.
25. Molin, A.; Hirche, S. A bi-level approach for the design of event-triggered control systems over a shared

network. Discrete Event Dynamic Systems 2014, 24, 153–171.
26. Al-Areqi, S.; Görges, D.; Liu, S. Event-based networked control and scheduling co-design with guaranteed

performance. Automatica 2015, 57, 128–134.
27. Brunner, F. D.; Antunes, D.; Allgöwer, F. Stochastic thresholds in event-triggered control: A consistent

policy for quadratic control. Automatica 2018, 89, 376–381.
28. Mamduhi, M. H.; Molin, A.; Tolic, D.; Hirche, S. Error-dependent data scheduling in resource-aware

multi-loop networked control systems. Automatica 2017, 81, 209–216.
29. Peng, C.; Zhang, J. Event-triggered output-feedback H∞ control for networked control systems with

time-varying sampling. IET Control Theory & Applications 2015, 9(9), 1384–1391.
30. Miskowicz, M. Event-based sampling strategies in networked control systems. IEEE Workshop on Factory

Communication Systems 2014, 1–10.
31. Yu, H.; Antsaklis, P. J. Event-triggered output feedback control for networked control systems using

passivity: Achieving L2 stability in the presence of communication delays and signal quantization.
Automatica 2013, 49(1), 30–38.

32. Hu, S.; Yue, D.; Xie, X.; Du, Z. Event-triggered H∞ stabilization for networked stochastic systems with
multiplicative noise and network-induced delays. Information Sciences 2015, 229, 178–197.

33. Mamduhi, M. H.; Molin, A.; Hirche, S. Stability analysis of stochastic prioritized dynamic scheduling for
resource-aware heterogeneous multi-loop control systems. IEEE Conference on Decision and Control 2013,
7390–7396.

34. Quevedo, D. E.; Gupta, V.; Ma, W.; Yüksel, S. Stochastic stability of event-triggered anytime control. IEEE

Transactions on Automatic Control 2014, 59(12), 3373–3379.
35. Cloosterman, M. B. G.; van de Wouw, N.; Heemels, W. P. M. H.; Nijmeijer, H. Stability of networked control

systems with uncertain time-varying delays. IEEE Transactions on Automatic Control 2009, 54(7), 1575–1580.
36. Kartakis, S.; Fu, A.; Mazo, M.; McCann, J. A. Communication schemes for centralized and decentralized

event-triggered control systems. IEEE Transactions on Control Systems Technology 2018, 26(6), 2035–2048.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2020                   



30 of 30

37. Shao, C.;Leng, S.; Zhang, Y.; Fu, H. A multi-priority supported medium access control in vehicular Ad Hoc
networks. Computer Communications 2014, 39, 11–21.

38. Vilgelm, M.; Mamduhi, M. H.; Kellerer, W.; Hirche, S. Adaptive decentralized MAC for event-triggered
networked control systems. Proceedings of the 19th International Conference on Hybrid Systems: Computation

and Control 2016, 165–174.
39. Mamduhi, M. H.; Kneissl, M.; Hirche, S. Decentralized event-triggered medium access control for

networked control systems. IEEE Conference on Decision and Control 2016, 513–519.
40. Peng, C.; Yang, T. C. Event-triggered communication and H∞ control co-design for networked control

systems. Automatica 2013, 49(5), 1326–1332.
41. Garone, E.; Sinopoli, B.; Goldsmith, A.; Casavola, A. LQG control for MIMO systems over multiple erasure

channels with perfect acknowledgment. IEEE Transactions on Automatic Control 2012, 57(2), 450–456.
42. Maity, D.; Mamduhi, M. H.; Hirche, S.; Johansson, K. H.; Baras, J. S. Optimal LQG control under

delay-dependent costly information. IEEE Control Systems Letters 2019, 3(1), 102–107.
43. Molin, A.; Hirche, S. On LQG joint optimal scheduling and control under communication constraints. IEEE

Conference on Decision and Control 2009, 5832–5838.
44. Mamduhi, M. H.; Baras, J. S.; Johansson, K. H.; Hirche, S. State-dependent data queuing in shared-resource

networked control systems. IEEE Conference on Decision and Control 2018, 1731–1737.
45. Kaul, S.; Gruteser, M.; Rai, V.; and Kenney, J. Minimizing age of information in vehicular networks. IEEE

Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks 2011, 350–358.
46. Kaul, S.; Yates, R.; Gruteser, M. Real-time status: How often should one update? Proceedings IEEE

INFOCOM 2012, 2731–2735.
47. Yates, R. D.; Kaul, S. Real-time status updating: Multiple sources. IEEE International Symposium on

Information Theory Proceedings 2012, 2666–2670.
48. Yates, R. D. Lazy is timely: Status updates by an energy harvesting source. IEEE International Symposium on

Information Theory 2015, 3008–3012.
49. Champati, J. P.; Al-Zubaidy, H.; Gross, J. Statistical guarantee optimization for age of information for

the D/G/1 queue. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) 2018,
130–135.

50. Sun, Y.; Uysal-Biyikoglu, E.; Yates, R. D.; Koksal, C. E.; Shroff, N. B. Update or wait: How to keep your data
fresh. IEEE Transactions on Information Theory 2017, 63(11), 7492–7508.

51. Sun, Y.; Polyanskiy, Y.; and Uysal-Biyikoglu, E. Remote estimation of the Wiener process over a channel
with random delay. IEEE International Symposium on Information Theory 2017, 321–325.

52. Champati, J. P.; Mamduhi, M. H.; Johansson, K. H.; Gross, J. Performance characterization using AoI
in a single-loop networked control system. IEEE Conference on Computer Communications Workshops 2019,
197–203.

53. Ayan, O.; Vilgelm, M.; Klügel, M.; Hirche, S.; Kellerer, W. Age-of-Information vs. Value-of-Information
scheduling for cellular networked control systems. Proceedings of the ACM/IEEE International Conference on

Cyber-Physical Systems 2019, 109–117.
54. Sinha, D.; Roy, R. Scheduling status update for optimizing Age of Information in the context of industrial

cyber-physical system. IEEE Access 2019, 95677–95695.
55. Klügel, M.; Mamduhi, M. H.; Hirche, S.; Kellerer, W. AoI-penalty minimization for networked control

systems with packet loss. IEEE Conference on Computer Communications Workshops 2019, 189–196.
56. Ayan, O.; Vilgelm, M.; Kellerer, W. Optimal scheduling for discounted age penalty minimization in

multi-loop networked control. IEEE Consumer Communications & Networking Conference 2020, 1–7.
57. Rabi, M.; Ramesh, C.; Johansson, K. H. Separated design of encoder and controller for networked linear

quadratic optimal control. SIAM Journal on Control and Optimization 2016, 54(2), 662–689.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2020                   

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Contributions
	Related Works
	Outline
	Notations

	NCS Model and Problem Description
	NCS Model
	Problem Description

	NCS Design
	CE Control Law
	Co-design of Sampling and Scheduling Laws

	Performance Analysis of the Joint Design
	AoI Sampling and Scheduling Co-design
	ET Sampling and AoI Scheduling Co-design
	Performance Comparisons

	Numerical Evaluations
	Conclusions
	Proof of Theorem 1
	Proof of Theorem 2
	References

