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Abstract: Cannabis is a flowering plant that has long been used for medicinal, therapeutic, and 

recreational purposes.  Cannabis contains more than 500 different compounds, including a unique 

class of terpeno-phenolic compounds known as cannabinoids; Δ9-tetrahydrocannabinol (THC) and 

cannabidiol (CBD) are the most prevalent cannabinoids and have been associated with the 

therapeutic and medicinal properties of the cannabis plant. In this paper, continuous flow 

microwave assisted extraction (MAE) is presented and compared with other methods for 

commercial cannabis extraction. The practical issues of each extraction method are discussed. The 

main advantages of MAE are: continuous-flow method which allows for higher volumes of biomass 

to be processed in less time than existing extraction methods, improved extraction efficiency leading 

to increased final product yields, improved extract consistency and quality because the process does 

not require stopping and restarting material flows, and ease of scale-up to industrial scale without 

the use of pressurised batch vessels. Moreover, due to the flexibility of changing the operation 

conditions, MAE eliminates additional steps required in most extraction methods, such as biomass 

decarboxylation, winterisation, which typically adds at least a half day to the extraction process. 

Another factor that sets MAE apart is the ability to achieve high extraction efficiency even at the 

industrial scale. Whereas the typical recovery of active compounds using supercritical CO2 remains 

around 70-80%, via MAE up to 95% of the active compounds from cannabis biomass can be 

recovered at the industrial scale. 
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1. Introduction 

Cannabis is a genus of flowering plants belonging to the cannabaceae family with three main 

species: Cannabis sativa, Cannabis indica, and Cannabis ruderalis, Figure 1 [1].  
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Figure 1. Cannabis plant [1] 

 

Cannabis has a long history of being used for medicinal, therapeutic, and recreational purposes. 

Cannabis is known, for example, to be capable of relieving nausea (such as that accompanying 

chemotherapy), pain, vomiting, spasticity in multiple sclerosis, and of increasing appetite. The 

importance of cannabis in therapeutics is emphasized by the ever-increasing number of research 

publications related to the use of cannabis and cannabis products to treat various indications [2-5]. 

Cannabis contains more than 500 different compounds, which include terpenes, flavonoids, 

lipids, sterols, chlorophyll, fatty acids, salts, sugars, and a unique class of terpeno-phenolic 

compounds known as cannabinoids or phytocannabinoids. More than 100 cannabinoids have been 

identified in different cannabis plant strains. Examples include Δ9-tetrahydrocannabinol (THC), 

cannabidiol (CBD), cannabinol (CBN), cannabigerol (CBG) and cannabichromene (CBC) [5-7]. THC 

and CBD are the most prevalent cannabinoids and have been associated with the therapeutic and 

medicinal properties of the cannabis plant and associated products – Figure 2. THC is mainly 

recognized for its psychotropic effects when consumed, but lately has also been found to effectively 

treat pain, muscle spasticity, glaucoma, insomnia, lack of appetite, nausea, and anxiety while CBD is 

used to treat migraines, inflammation, seizures, IBS, depression, insomnia, and anxiety [2,3,8]. CBD 

is non-psychoactive and is the major cannabinoid constituent in hemp cannabis. 

The terms hemp and marijuana are classifications of cannabis adopted into culture even though 

they do not represent legitimate nomenclature for cannabis. Hemp and marijuana are both cannabis; 

hemp, however, refers to cultivars of cannabis that contain very low concentrations of psychoactive 

THC (typically less than 0.3% by dry weight).  Hemp (sativa) is an industrially grown plant that is 

cultivated outdoors, better suited for warm climates with a long season. Industrially grown hemp is 

used to produce textiles from the hemp fibre, and foods and supplements such as protein and 

essential fatty acids from the seeds.  Hemp seed oil is rich in unsaturated omega-3 and omega-6 

fatty acids and is almost entirely devoid of cannabinoids. Marijuana, on the other hand, is often 

deliberately bred and cultivated in controlled environments in order to optimize the cultivar’s 

characteristics, including the composition of cannabinoids such as THC and CBD.  Controlled 

growing and cultivation is designed to produce female plants that yield budding flowers rich in 

cannabinoid content.  Harvesting of industrial hemp has traditionally avoided collection of flowers 

to minimize cannabinoid content of industrial products.  This practice is however changing as the 
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production of CBD from farmed hemp becomes legalized in more and more jurisdictions 

world-wide. 

 

Figure 2. Main cannabinoids in cannabis sativa plant; (a) Female flower with visible trichomes; (b) - 

male cannabis flower buds [9] 

 

Cannabinoids are particularly concentrated in the glandular hairs (trichomes) distributed 

across the surface of the cannabis plant. These trichomes are particularly concentrated in the bracts 

and leaves of the female inflorescence. Resin glands form at the tips of these trichome stalks and 

secrete an aromatic terpenoid containing resin with a very high content of cannabinoids. 

The proportion of cannabinoids in the plant may vary from species to species, as well as vary within 

the same species at different times and seasons. Furthermore, the proportion of cannabinoids in a 

plant may depend upon soil, climate, and harvesting methods. Thus, based on the proportion of the 

cannabinoids present in a plant variety, the psychoactive and medicinal effects obtained from 

different plant varieties may vary. 

Historical delivery methods of cannabis have involved smoking, i.e. combusting, the dried 

cannabis plant material [10]. Smoking results, however, in adverse effects on the respiratory system 

via the production of potentially toxic substances. Alternative delivery methods such as oral 

administration of edible forms, transdermal delivery of topical forms and buccal administration of 

sprays for oral or nasal administration all require some method of extraction of the cannabinoids 

and other compounds from the plant.  

North America is experiencing a boom for cannabis-derived products (i.e. packaged foods, 

edibles and beverages, beauty & personal care, consumer health, pet care, home & garden), made 

possible by the legalization of recreational cannabis in Canada in 2018 and in 11 U.S. states, two U.S. 

territories, and the District of Columbia. The global market for cannabis-derived products was ~ 5 

trillion USD in 2018 and is expected to grow 1,200% by 2023 [11]. 

To this end, there are various conventional biomass extraction methods available for the 

extraction of cannabis. Given the inherent commercial value of CBD and THC, the applied method 
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to extract them is very important in terms of accomplishing the quantity and quality of the product. 

Moreover, economics of the processes is a very important parameter in its commercialization.  

The scope of this paper is to present an overview of the extraction methods currently used 

commercially for cannabis extraction with particular attention to the relative advantages of 

continuous flow microwave-assisted extraction. 

2. Commercial Cannabis Extraction Methods 

There are several important considerations to consider when choosing an extraction method for 

cannabis. The most important are as follows: 

 Extraction efficiency, the percentage of bioactive compounds recovered through the entire 

extraction process;  

 Extract quality and consistency, including the purity or “potency” of cannabinoids in the extract 

and also the relative amounts or “profile” of other potentially synergistic compounds such as 

terpenes; 

 Throughput capacity and scalability, assessment of the extraction method and its efficient 

implementation at commercial scales vs. market demand; 

 Environmental control, e.g., carbon footprint and safety, i.e. minimize risks to the consumers and 

worker safety. 

The potency (a term often used in lieu of purity or concentration) of cannabis extracts and 

extract-derived products is equivalent to cannabinoid (e.g., Δ9-tetrahydrocannabinol, THC) content. 

Depending upon the psychoactive and medicinal effects obtained from different varieties of the 

cannabis plant or the different methods of cultivation for cannabis, a specific variety of cannabis may 

be considered more effective or more potent than others (e.g., in providing the desired physiological 

effect at a desired level in an individual). Similarly, some specific combinations of pharmacologically 

active compounds in a cannabis variety may be more desirable in comparison to other varieties. 

When preparing cannabis plant extracts, the retention of the full mix of cannabinoids present in the 

original plant may be desirable for some varieties, while other varieties may be preferred in altered 

form due to the variances in the specific cannabinoid composition and concentrations. Such variance 

is further exacerbated by the presence of certain terpenoid or phenolic compounds, which may have 

pharmacological activity of their own and which may be desired at different concentrations in 

different combinations. 

In many cases, additional processing steps, both upstream and downstream of the extraction 

itself, are required to obtain the final cannabis extract product.  The incorporation of these steps 

with the extraction method and their impact on the overall process efficiency and product quality 

must also be considered. Some common processing steps discussed further below include: 

 Decarboxylation, the process of converting non-active native acidic cannabinoids into their active, 

neutral forms via a thermal reaction; 

 Winterization, the process of removing plant lipids and unwanted waxes by a secondary solvent, 

freezing and filtration; 

 Decolorization, the process of removing chlorophyll and unwanted pigments; 

 Secondary purification, the process of further purifying the extract to increase the potency of 

cannabinoids and other components, via various methods including distillation, 

chromatography, or crystallization. 
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The cannabinoids are biosynthesized in the cannabis plant in acidic forms known as acidic 

cannabinoids. To be therapeutically active, these acidic cannabinoids must be converted to their 

neutral forms by a decarboxylation reaction. Decarboxylation is instant when cannabis is 

combusted during smoking [12]. All other consumption forms containing cannabis extracts must 

however involve a decarboxylation step to produce the active neutral forms. Many traditional 

methods of extracting inactive cannabinoids from raw cannabis biomass require subjecting the 

biomass to a heating process to decarboxylate the cannabinoids prior to extraction [13]. While it is 

relatively straightforward to heat dried cannabis for decarboxylation at particular temperature for 

specific time, in small quantities (kg or tens of kg), it becomes increasingly more difficult to carry it 

out if multiple tonnes of cannabis biomass must be subjected to decarboxylation prior to entering 

the extraction process. In addition, subjecting the biomass to a heating process may cause 

combustion, modification of the plant profile, negative effect on terpenes, or cause other 

undesirable effects that could lower quality or purity of the cannabis extract. For example, the 

process of decarboxylation of cannabis biomass can increase the number of cannabinoids occurring 

as artefacts by oxidative degradation or isomerization. Further, extraction of cannabis biomass that 

has been subjected to a thermal decarboxylation can lead to loss of valuable compounds including 

terpenes. Still further, decarboxylation of cannabis biomass prior to extraction does not provide an 

ability to control the amount of decarboxylation reaction to a desired percentage of neutral 

cannabinoids and so provide extract products with varying ratios of cannabinoid acids and 

corresponding neutral cannabinoids. So, any method of extraction that requires the cannabis 

biomass to be decarboxylated prior to extraction will hamper quality and purity of the cannabis 

extract.   

In some extraction methods, many of the plant lipids and heavy waxes are co-extracted with the 

cannabinoids and other desirable components. As these are generally undesirable, they must be 

subsequently removed in the downstream process of winterization. Winterization involves 

dissolving the extract in alcohol, keeping it at sub-zero temperatures for a prolonged period to 

precipitate the heavy lipids, removing them by filtration and subsequently evaporating off all the 

alcohol to obtain the desired extract.  This process is lengthy and usually costly and can result in 

loss of overall efficiency, i.e. loss of valuable cannabinoids. Similarly, if excessive chlorophyll or 

other pigmentation is extracted, this must be removed by a decolorization step (e.g., treatment with 

activated carbon), which can again lead to loss of efficiency. Any extraction method that eliminates 

the need for these steps is desirable 

3. Scale-up Considerations and Cannabis Commercial Extraction Methods 

Extraction is the first step to separate the desired natural compounds from the raw biomass 

materials. Conventional extraction methods that have been applied to various natural products for 

many years include solvent extraction, distillation, mechanical pressing, and sublimation according 

to the extraction principle. Solvent extraction is the most widely used method. The extraction of 

biomass generally proceeds via the following stages: (i) the solvent is mixed with the solid biomass; 

(ii) the system is heated to the desired temperature, if needed (iii) the solvent diffuses into the solid 

particles; (iv) solute diffuses out of the solid biomass and dissolves in the liquid solvent; (v) the 

solvent is removed to provide the extracted solutes separated from the spent biomass. Any factor 

enhancing the diffusivity and solubility in the above steps will facilitate the extraction. The 

properties of the extraction solvent, the particle size of the raw materials, the solvent-to-solid ratio, 
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the extraction temperature, and the extraction duration will affect the extraction efficiency and 

extraction selectivity.  

The scale-up of an extraction process is not simply a case of using a larger reaction vessel – 

many factors need to be considered just to keep biomass and solvent contained, let alone achieve 

successful scale-up. Factors such as chemical and physical safety, availability of chemicals, 

analytical, chemical and engineering aspects, commercial considerations (cost and time), 

environmental and legal demands, etc. are just a few of the important initial factors that need to be 

taken into account for the scale-up.  

In addition to biomass availability and specification changes underlined above, almost without 

exception, solvent will be the largest single component in any liquid-solid extraction. This raises 

several possibilities and challenges. While increasing relative solvent volume may increase 

extraction rates by increasing driving forces for diffusion, i.e. relative concentration gradients of 

solutes, reducing the solvent volume will reduce the time and energy required for engineering unit 

operations such as heating, cooling and removal of solvent by distillation, and reduce solvent 

recycling time or waste disposal volume. All these changes are beneficial on larger scale for which 

time, energy and waste disposal costs become significant due to the increased volumes involved. 

Environmental concerns and increasing regulation mean that fewer solvents are available for use, 

and restrictions are getting tighter. Therefore, the selection of the solvent is crucial for the extraction 

scale-up. Selectivity, solubility, cost, and safety should be considered in selection of solvents. Based 

on the law of similarity and intermiscibility (like dissolves like), solvents with a polarity value near 

to the polarity of the solute are likely to perform better and vice versa. In general, GRAS (Generally 

Recognized As Safe) solvents like ethanol and mixtures of water-ethanol are universal solvents for 

biomass extraction.  

While there are various solvent methods for extracting the active compounds out of biomass, 

e.g., supercritical fluid extraction (SFE), Soxhlet, percolation, agitated tank, countercurrent, etc. 

[14-16], when considering cannabis extraction, none of these is optimal in all aspects. Molecules 

extracted through these processes may differ in the quality (physiochemical properties) and quantity 

hence altering the chemical composition of the extract; in addition, many of these methods have 

limitations when it comes to scaling up to suit mass production. Thus, it is very important to search 

for environmental-friendly and safer techniques and solvents allowing to obtain better quality and 

quantity of a cannabis extract from a given biomass, as well as maintaining the consistency in the 

cannabinoid profile of the extracts. 

4. Available Methods Currently Used for Commercial Cannabis Extraction 

There are generally three typical extraction methods currently being used for commercial cannabis 

extraction, albeit at only modest scale: 

 Supercritical CO2 (SC-CO2) extraction 

 Pressurized gas (hydrocarbon) extraction 

 Conventional ethanol solvent extraction 

These are discussed in more detail below. 

In addition to these “big three”, there are several non-conventional, alternative extraction methods 

that have been applied to cannabis extraction, including for example ultrasound-assisted extraction, 
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hydrodynamic extraction and instant-controlled pressure drop extraction. Given that none of these 

have yet been demonstrated at any reasonable commercial scale, they are not further discussed. 

4.1. Supercritical CO2 (SC-CO2) Extraction 

Supercritical fluids are a well-documented alternative to traditional organic solvents suitable for 

various extractions. Any material s in its critical state when it is both heated above its critical 

temperature (Tc) and pressurized above its critical pressure (Pc) and hence there are no distinct liquid 

and gas phases. The specificity of this technique relies on solvent’s physicochemical properties, 

which can be ‘tuned’ by an increase of pressure and/or temperature beyond its critical values [17-21]. 

Supercritical CO2 extraction is a very common technique for cannabis extraction-separation, 

which uses supercritical CO2 (74 bar, 31 0C) in a batch process. Although non-toxic and 

non-flammable, SC-CO2 is, however, dangerous and requires very high pressures to be employed. In 

addition, the method is somehow inefficient and, therefore, not conducive to high throughputs, as 

well as environmentally damaging (e.g., producing large amounts of the greenhouse gas carbon 

dioxide as a by-product). The resulting extracts are, however, considered to be solvent-free.  

Another major drawback of SC-CO2 extraction for cannabis is that decarboxylation must be 

carried out on the cannabis biomass upstream the extraction process (acidic cannabinoids are 

poorly soluble in SC-CO2).  This increases overall costs (decarboxylation must be performed in 

advance on what may be large quantities of cannabis biomass) and leads to the loss of some light 

volatile terpenes. SC-CO2 also co-extracts heavy fats and waxes which must be subsequently 

removed in downstream processing steps (winterization), leading to further cannabinoid losses and 

reduction in overall efficiency or recovery of available cannabinoids. Finally, the scale up of SC-CO2 

is only possible by addition of multiple machines. This results in large capital costs and increased 

QA/QC costs when going to mass production scales. 

4.2. Pressurized gas (hydrocarbon) extraction 

Hydrocarbon extraction is the most popular technique that uses liquified gases such as 

n-propane and n-butane pressurized into liquids (2-10 bar) as solvents for extraction of 

cannabinoids. An advantage of the method is the possibility of these gases to remain in liquid phase 

at low pressure and the possibility to remove them from the system at the end of the extraction by 

gentle heating leading to an extract with low traces of residual solvent. Hydrocarbons such as 

n-butane and n-propane are good solvents for the low-polarity cannabinoids [17,22,23]. In this 

method, butane or propane is pressurized to a liquid state for extraction and then either 

depressurized or heated for removal from the obtained extracts. This extraction process is carried 

out in batch and creates what are known as cannabis “concentrates”, e.g., shatter, a viscous material 

with very high concentration of THC and other cannabis compounds like terpenes, which is 

popular for recreational users. Decarboxylation can be carried out upstream or downstream of the 

extraction. Although effective, the process is undesirable for medicinal and consumer products, due 

to the risk of solvent contamination. Safety is also a major concern given the high 

flammability/explosivity of the hydrocarbon solvents employed. In principle, the scale-up is only 

possible by the addition of multiple machines. 

4.3. Conventional Ethanol Extraction 
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This extraction method is perhaps the most efficient method for capturing cannabinoids in 

either batch or continuous flow processing. Ethanol extraction can use decarboxylated biomass or 

decarboxylation can be performed on the extracted product. The main drawbacks of the method are 

linked to the high input ratios of biomass-ethanol and implicitly to the high quantities of solvent to 

be separated from the extract and recycled and also to the co-extracted molecules, such as fats, 

waxes, and pigments, which means more complex downstream processing (separation, purification, 

etc.).  

4.4. Microwave-Assisted Extraction  

Microwave-assisted extraction (MAE) is different from the methods presented above because 

the extraction occurs as a result of the volumetric heating as opposed to transferring heat from the 

surface inwards, making the process more efficient and more uniform due to the ability to precisely 

control temperature and contact time. 

The field of MAE of natural compounds is quite young. In the last two decades, new 

investigations have been prompted by an increasing demand of more efficient extraction techniques, 

amenable to automation; shorter extraction times, reduced organic solvent consumption, energy and 

costs saved, were the main tasks pursued. Driven by these goals, advances in microwave extraction 

have resulted in a number of innovative techniques such as microwave assisted solvent extraction, 

vacuum microwave hydro-distillation, microwave Soxhlet extraction, microwave-assisted 

Clevenger distillation, compressed air microwave distillation, microwave headspace extraction, 

microwave hydro-diffusion and gravity, and solvent-free microwave extraction [14,15,17,13]. One of 

the success stories of the 21st Century has been the partial replacement of conventional extraction 

processes, with green procedures (reducing energy, time, solvent, and waste) based on microwave 

irradiation [24]. 

The fundamentals of the microwave-assisted extraction process are different from those of 

conventional solvent extraction methods (solid–liquid or simply extraction) because the extraction 

can occur as the result of changes in the cell structure caused by electromagnetic waves, Figure 3, 

Table 1. Even if cell structure is unchanged, the instant volumetric heating possible with microwaves 

as opposed to transferring heat from the surface, inwards, is more efficient, uniform and less prone 

to overkill. Controllability is by far the greatest advantage of microwaves over conventional thermal 

technologies. In processing applications, the ability to instantaneously apply and turn off the heat 

source as desired makes enormous difference to the product quality and hence the production 

economics. The very nature of heating through the involvement of the raw material under 

processing (instead of using fossil fuels or less efficient, indirect electrical heating systems) brings 

about quality consistency as well as positive environmental impacts [25,26].  

An important element of MAE is that the driving force for extraction is not limited to the 

process of diffusion. Conventional solid-liquid extraction involves soaking, washing or contacting 

the solid material with usually hot (50°C to 80°C) solvent to extract the target compounds and 

normally two or three extractions are needed, increasing the solvent and energy usage. Moreover, 

extraction occurs by diffusion, meaning that the only driving force for the process is the 

concentration gradient of the product between the biomass and the solvent. With MAE the solvent 

requirement is lesser as compared to coventional methods and material is exhausted with one 

extraction only. Moreover the microwave energy can be directed directly to and  selectively 
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absorbed by the water (free or bound water) if water present in the biomass.  This creates a very 

rapid temperature increase within the biomass cells, leading to pressure build-up and forcing the 

bioactives out into the surrounding solvent by a pressure-enhanced mass transfer.  This mass 

transfer may be further enhanced by the fact that the thermal gradient is in the same direction as the 

mass transfer – Figure 3.   

 

Figure 3. Biomass-solvent extraction: Conventional vs. Microwaves  

 

Table 1. Solvent-biomass extraction: Conventional vs. Microwaves  

CONVENTIONAL EXTRACTION 

 

MICROWAVE ASSISTED EXTRACTION 

Mechanism via diffusion Pressure-enhanced mass transfer 

Concentration gradient of actives 

between the biomass and the solvent is the 

driving force 

Microwave energy is selectively absorbed by the 

residual water present in the biomass cells 

Diffusion is slow, particularly as the 

actives become more concentrated in the 

solvent 

Results in rapid pressure buildup within cells 

leading to a pressure-driven mass transfer of actives 

(pop-corn effect) 

 

Eventually reaches a saturation point 

 

Extraction is very fast and not limited by an 

equilibrium state – transfer continues as long as 

energy is applied 

Requires high solvent ratios and multiple 

extraction stages to achieve reasonable 

recovery of actives 

Results in short extraction times, reduced solvent 

requirements and fewer extraction stages 

 

Conventional extraction 

Diffusion-driven process - relies 

on concentration gradients 

Micr

owa

ves 

Microwaves 

Biomass Biomass 

Solvent  
Solvent  

Microwave-assisted extraction 

Instant in-core heating creating a 

pressure-driven process leading to increased 

mass and heat transfer rates among the 

reaction products  
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The basics of the MAPTM1 continuous flow microwave-assisted extraction of cannabis consists of 

coupling microwave heating and continuous flow technology and as such creating a very promising 

way to produce high value-added extracts since unlike batch processing, the continuous flow has 

been demonstrated to facilitate process intensification and contributes to a safe, efficient and 

sustainable production. By employing continuous-flow microwave-assisted extraction, it is possible 

to control extraction time and temperature very precisely, both of which can greatly influence 

extraction efficiency and the composition of the extract.  

A schematic of one process involved in the extraction of the cannabis biomass and 

decarboxylation of the extracted products is presented in Figure 4 while results are listed in Table 22. 

In this method, the raw milled cannabis biomass is mixed with a solvent (e.g., ethanol, IPA, pentane, 

PEG400) selected based on its dielectric and parameter properties vs. type of biomass & its 

concentration of cannabinoids. The obtained slurry is pumped in the continuous flow 

microwave-assisted extraction reactor and progressively heated to the desired extraction 

temperature by using 915 MHz microwaves – Figure 5 [26]; the microwave density can be 

automatically ‘tuned’ to the process conditions as to reach densities between 0.1 and 10 kW/kg of 

biomass. Downstream the extractor, the spent biomass and the extract are separated from the slurry. 

The extract is treated to obtain a final product containing the target compounds in sufficiently high 

yield and high purity. The spent biomass may be processed to yield less than 0.3% concentration of 

THC naturally produced by plants and disposed of once this condition has been achieved. 

 

Table 2. Results of industrial scale cannabinoid extraction runs from cannabisbiomass; biomass flow 

30kg/h, solvent flow 360L/h.  

Run Mass of biomass, kg Purity of cannabis extract, THC% THC recovery in the extract, % 

1 100 61.4 92.6 

2 100 55.1 93.4 

 

The microwave-assisted extractor consists of a food grade stainless steel tube within which a 

mechanical stirrer is placed. Microwaves are provided from a 75 kW (max. power), 915 MHz 

microwave generator consisting of a low ripple switch mode power supply, a magnetron head and a 

circulator + water cooled load with reflected power meter. The microwave generator can be operated 

from 2-3 kW up to 75 kW in continuous wave (CW) mode or controlled pulse. Due to the possibility 

of working with flammable solvents, the microwave generator is installed in a different (non-ATEX) 

room. The microwave transmission line, standard WR975 rectangular waveguide, passes the wall 

between the ATEX and non-ATEX environments through a separation window and then it splits 

into two inlets delivering equal microwave power all along the reactor. In the extractor the 

separation between the reaction mixture and the microwave distribution line is done via microwave 

transparent windows. Due to the continuous measuring and controlling of the reflected power and 

                                                 
1 MAPTM is a patented microwave-asssited processing by Radient Technologies Inc. 

(www.radientinc.com), which has been successfully operating a continuous-flow microwave 

extractor in Canada for over five years at throughputs over 200 kg/h of biomass input. 

 

2 Due to the commercial sensitivity of the subject, the disclosure of the results is limited to two 

examples without the full disclosure of the operational conditions of the extraction. 
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the automatic impedance tuner installed immediately after the circulator (in the non-ATEX zone), 

the microwave forward power is automatically adjusted as to maximize the absorbed energy by the 

extraction mixture and to minimize energy losses by reflected power. Microwave components 

located within the ATEX zone are continuously purged with nitrogen; arc detectors are installed 

within all microwaves components as such as the microwaves are shut down as soon as arcing 

detected. Wall mounted microwave leakage detectors can shut down the microwaves if leakage 

levels  2.3 mW/cm2 are detected around the reactor. 

 
Figure 4. Schematic of the microwave-assisted cannabis extraction & acidic cannabinoids 

decarboxylation 

 

Figure 5. Photo and schematics of the continuous flow microwave extractor in ATEX environment; 
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As described in Figures 4 and 5, the main advantages of the microwave-extraction related to 

cannabis biomass are: 

 Continuous-flow method at atmospheric pressure which allows for much higher volumes of 

cannabis biomass to be processed in much less time than existing extraction methods; 

 Achieved higher rates of consistency and quality because the process does not require stopping 

and restarting material flows; 

 Scale-up to industrial scale without the need to purchase an endless supply of new machinery 

and without the use of pressurised batch vessels;  

 Eliminates additional steps required in most extraction methods, such as biomass 

decarboxylation and winterisation; 

 Ability to achieve high extraction efficiency at industrial scale. Typical recovery of active 

compounds using supercritical CO2 remains around 70-80%, via microwave-assisted up to 95% 

of the active compounds (Table 1) from cannabis biomass can be recovered. 

From a process intensification view, the continuous flow extraction and its heating via 

microwaves comes with several additional benefits, including significantly increased flexibility and 

safety with respect to operation: 

 The contact time between the biomass and solvent before, during and after microwave treatment 

can be adjusted much more easily; 

 It is possible to precisely control biomass residence time in the microwave zone and - if desired - 

separate the biomass from the solvent very quickly after treatment, or continue contact for any 

length of time at any temperature, depending on the desired outcome; 

 The use of multiple microwave field deposition points through the use of a split waveguide and 

a “ridge wave deposition” allowing for non-uniform dispersal of the wave from the inlet to the 

outlet to account for changing dielectric properties as the material is treated; 

 It has an automatic impedance matching unit that allows for constant, automatic adjustment of 

the field strength and microwave energy absorption maximization; 

 It has a built-in mechanical agitator with variable speed control to randomize movement of 

biomass thus making the field uniform for the materials at all times; 

 It is fully-automated (operators simply input desired MW parameters on an HMI and it runs 

itself while connected to the plant PLC systems); 

 It is fully “ATEX” or “Hazardous zone” classified, meaning it can be used with any flammable 

liquid and be completely safe. 

The extractor is also easily scalable. The continuous flow approach eliminates the requirement 

for having geometric similarity between scales, i.e. the equipment shape and dimensions do not have 

to scale proportionately. Classically, even geometric similarity does not ensure thermal similarity in 

scaled systems; for example, heat transfer is an interface-controlled process and so the surface area 

relative to the volume is critical. As the volumetric scale increases, the area relative to the volume 

decreases and the overall efficiency of heat transfer can decline considerably. There is no thermal 

inertia with microwaves, on the other hand.  Since penetration depth is not an issue with the 

continuous flow design, the energy is deposited uniformly throughout the mixture resulting in rapid 

energy transfer and direct dielectric heating – hence the thermal inertia inherent to classical methods 

is not an issue. 
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5. Conclusions 

As a result of increased legislation, concerns about the environment and competition within the 

globalized market, it has become paramount to look for and implement innovative, clean and 

sustainable ways to obtain natural extracts, i.e. green extraction of natural products. Green extraction 

refers to looking for, designing and implementing extraction processes that lead to (i) a reduction in 

energy consumption, (ii) utilization of alternative solvents to obtain products that are natural and 

renewable, and (iii) extracts that are safe and of high quality. 

As the cannabis industry grows, so will the equipment options for extraction. These advances 

will probably go across the kinds of extraction processes, and the connection between extraction and 

analytical testing could also see improvement. Even with the best equipment, though, only skilled 

operators can produce the intended results. So, training operators as needed should always be 

performed in any company to guarantee results. In addition to it, there is a necessity to explore new 

reactor concepts by emphasising on dedicated designs that assure controllability and monitoring of 

the process conditions.  

Microwave continuous flow extraction is a good example of process intensification. In this 

reactor, the process is run in a continuously flowing stream, enabling very tight process control and 

improved mass heat and mass transfer, consequently achieving higher extraction control and higher 

product quality. Furthermore, continuous extractors can be easily scaled up by placing multiple 

cavities in series or in parallel, thereby shortening development time for full scale production.  
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