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For the solution existence condition of the Navier-Stokes equation, we propose a conjecture as
follows: ”The Navier-Stokes equation has a solution if and only if the determinant of flow velocity
gradient is not zero, namely det(∇v) 6= 0.”
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I. INTRODUCTION

In continuum physics, there are two ways of describing
continuous media or flows, the Lagrangian description
and the Eulerian description. In the Eulerian description,
the Navier-Stokes equations of incompressible flow can be
expressed as follows:

∂v

∂t
+ v · (∇v) = −1

ρ
∇p+ ν∇2v, (1)

∇ · v = 0. (2)

The Eq. 1 is momentums equation and Eq. 2 is mass
conservation equation. In which, v(x, t) is flow velocity
field, ρ is constant mass density, p(x, t) is flow pressure,
ν is kinematical viscosity, t is time, x = xkek is position
coordinates, ek is a base vector and v is flow velocity,
∇ = ek

∂
∂xk is gradient operator, and ∇2 = ∇ ·∇.

Applying the divergence operation to both sides of the
momentum equation Eq.1 and use the mass conservation
leads to a pressure equation: ∇2 ·(p1) = −ρ∇·(v ·∇v) =
−ρ{(∇v)2 + [∇(v∇)] ·v}, where 1 = ekek is an identity
tensor and v∇ = (∇v)T .

The NavierõStokes existence and smoothness prob-
lem is an open problem in mathematics [1], regardless of
numerous abstract studies that have been done by math-
ematicians. Now the question is that, is it possible to
propose a simple criteria on the solution existence of the
Navier-Stokes equation without complicated mathemat-
ics.

II. THE CONVECTIVE ACCELERATION
v · (∇v) IS THE KEY SOURCE OF DIFFICULTY

In order to find some useful information from the
Navier-Stokes equation, let’s have a look at the meaning
of v · (∇v) in Eq. 1. This term is called convective accel-
eration that is caused by the flow velocity gradient. It is
obvious that the convective acceleration v · (∇v) is the
central point of the Navier-Stokes equations. Without
the convective acceleration, the solution existence would
not be a problem at all. The understanding on the con-
vective term is quite important for the study on the so-

lution existence should be focus on v · (∇v). Therefore,
we attack the open problem from the v · (∇v).

III. A FORM-SOLUTION AND SOLUTION
EXISTENCE CONJECTURE

Assuming the determinant of the velocity gradient is
not zero, namely det∇v 6= 0, the form-solution of the
Navier-Stokes momentum equation in Eq.(1) can be ex-
pressed as follows

v =

[
ν∇2v − 1

ρ
∇p− ∂v

∂t

]
· (∇v)−1, (3)

equivalently

v = (∇v)−T ·
[
ν∇2v − 1

ρ
∇p− ∂v

∂t

]
, (4)

equivalently

v =

[
∇ · (ν∇v − p

ρ
1)− ∂v

∂t

]
· (∇v)−1, (5)

equivalently

v = (∇v)−T ·
[
∇ · (ν∇v − p

ρ
1)− ∂v

∂t

]
. (6)

The new formats of Naver-Stokes equations in Eqs. 3,
4, Eq.(5) and Eq.(6) have never been seen in literature.
They are formulated for the first time by Bo-Hua Sun
[2]. Those form-solutions provide a rich information on
the solution existence.

Therefore we have a conjecture as follows:

Conjecture 1 The 3D Navier-Stokes equation has a so-
lution if and only if the determinant of flow velocity gra-
dient is not zero, namely

det(∇v) 6= 0.

Although we have successfully split the velocity field
v from the convective term v · (∇v), the calculation of
the inverse of the velocity gradient (∇v)−1 is still great
challenge.
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According to the Cayley-Hamilton theorem [3–6], for
the 2nd order tensor ∇v, the following polynomial holds:

(∇v)3 − I1(∇v)2 + I2∇v − I31 = 0, (7)

where I1 = tr(∇v) = ∇ · v, I2 = 1
2 [(tr∇v)2 − tr(∇v)2]

and I3 = det(∇v).
Hence, for the case of det(∇v) 6= 0, we have:

(∇v)−1 =
(∇v)2 − I1∇v + I21

det(∇v)
. (8)

For incompressible flow, the divergence of velocity gra-
dient is zero, namely, I1 = tr(∇v) = ∇ · v = 0, thus
I2 = 1

2 [(tr∇v)2 − tr(∇v)2] = − 1
2 tr(∇v)2.

Therefore, the inverse of the velocity gradient for in-
compressible flow takes a simpler form:

(∇v)−1 =
(∇v)2 − 1

21tr(∇v)2

det(∇v)
. (9)

Therefore, the incompressible flow velocity field in Eq.(5)
is then reduced to the following form:

v =

[
ν∇2v − 1

ρ∇p− ∂v
∂t

]
· [(∇v)2 − 1

21tr(∇v)2]

det(∇v)
,

(10)
in which

∇v = vj,ieiej ,

(∇v)2 = ∇v ·∇v = vj,kvk,ieiej ,

tr(∇v)2 = 1 : (∇v)2 = vi,kvk,i,

det(∇v) = εijkv1,iv2,jv3,k

where εijk is permutation symbol.

For steady flow, ∂v
∂t = 0, the Eq. 11 is reduced to

v =

[
ν∇2v − 1

ρ∇p
]
· [(∇v)2 − 1

21tr(∇v)2]

det(∇v)
, (11)

The great challenge to find solution of the Navier-
Stokes equation are all from the existence of the velocity
gradient ∇v. The form solution in Eq.(11) reveals that
the difficulty of finding a solution for N-S equations is
because of existence of the nonlinear term v · (∇v), or
in other words, due to the existence of the velocity field
gradient ∇v. Accordingly, the solution of the Navier-
Stokes equation will be blowup as det∇v tends to an
infinitesimal, and has no solution when det∇v = 0.

IV. 2D NAVIER-STOKES EQUATIONS

The 2D N-S equations can be written as follows:

∂v1
∂t

+ v1
∂v1
∂x1

+ v2
∂v1
∂x2

= ν(
∂2v1
∂x21

+
∂2v1
∂x22

)− 1

ρ

∂p

∂x1
,

(12)

∂v2
∂t

+ v1
∂v2
∂x1

+ v2
∂v2
∂x2

= ν(
∂2v2
∂x21

+
∂2v2
∂x22

)− 1

ρ

∂p

∂x1
.

(13)

where vi,j = ∂vi
∂xj

. The above equations can be expressed

in matrix format

∂

∂t

(
v1
v2

)
+

(
v1,1 v1,2
v2,1 v2,2

)(
v1
v2

)
(14)

= −

(
1
ρ
∂p
∂x1

1
ρ
∂p
∂x2

)
+ ν∇2

(
v1
v2

)
, (15)

where the 2D Laplace operator ∇2 = ∂2

∂x2
1

+ ∂2v2
∂x2

2
.

The 2D velocity gradient is

∇v =

(
v1,1 v1,2
v2,1 v2,2

)
, (16)

its determinant is

det(∇v) = v1,1v2,2 − v1,2v2,1, (17)

and the inverse of the 2D velocity gradient is thus

(∇v)−1 =
1

det(∇v)

(
v2,2 −v1,2
−v2,1 v1,1

)

=

(
v2,2 −v1,2
−v2,1 v1,1

)
v1,1v2,2 − v1,2v2,1

.
(18)

Therefore, from Eq. 14, the 2D flow velocity is given by

(
v1
v2

)
=

(
v2,2 −v1,2
−v2,1 v1,1

)
v1,1v2,2 − v1,2v2,1

[
(ν∇2 − ∂

∂t
)

(
v1
v2

)
− 1

ρ

(
p,1
p,2

)]
.

(19)

For the 2D steady flow, Eq.19 is reduced to

(
v1
v2

)
=

(
v2,2 −v1,2
−v2,1 v1,1

)
v1,1v2,2 − v1,2v2,1

[
ν∇2

(
v1
v2

)
− 1

ρ

(
p,1
p,2

)]
.

(20)

Hence, we have a similar conjecture for 2D flow as follows.

Conjecture 2 The 2D Navier-Stokes equation has a so-
lution if and only if the determinant of flow velocity gra-
dient is not zero, namely det(∇v) 6= 0, or equivalently

v1,1v2,2 − v1,2v2,1 6= 0.

V. A GEOMETRICAL AND PHYSICAL
INTERPRETATION OF THE CONJECTURES

Concerning the geometrical and physical meaning of
the conjectures, let’s try to give a basic interpretation.
Assume that d2X is small surface area of a moving fluid
element with volume d3X, they become to d2x and d3x
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due to the velocity gradient det(∇v), respectively. Their
relations are

d2x = det(∇v)(∇v)−T · d2X, (21)

and the volume induced by the velocity gradient ∇v is

d3x = det(∇v)d3X. (22)

From the relations in Eqs.21 and 22, both the surface
area d2x and volume d3x induced by the velocity gradient
∇v will shrink to a point as det(∇v) → 0. If we image
the finite surface area (d2x 6= 0) as a window that flow
can go through, it means that, if d2x = 0, the window is
closed and no flow can go through it.

Denoting the momentum flux density tensor in a vis-
cous fluid Π = pI + ρv ⊗ v − µ∇v, and µ dynamical
viscosity, according to Landau and Lifshitz [7], the lo-
cal form of the equation of motion of the viscous fluid is
∂ρv
∂t +∇ ·Π = 0, which can be rewritten in integral form∫ (

∂ρv
∂t + ∇ ·Π

)
d3X = 0, and further simplified to

∂

∂t

∫
ρvd3X +

∮
Π · d2X = 0, (23)

by Green’s formula.
Using Eqs.21 and 22, we can get an induced form of

Eq.23 by the velocity gradient ∇v as follows

∂

∂t

∫
ρvd3x

det(∇v)
+

∮
Π · (∇v)T · d2x

det(∇v)
= 0. (24)

The Eq.24 will be invalid as det(∇v) → 0. These might
be viewed as another interpretation of the conjectures on
solution existence.

VI. CONCLUSIONS

In conclusion, by taking into account of the importance
of the convective term v ·∇v, the conjectures on solu-
tion existence condition of Navier-Stokes equation have
been proposed, which state that ”The Navier-Stokes e-
quation has a solution if and only if the determinant of
flow velocity gradient is not zero, namely det(∇v) 6= 0.”
[2].

To be honest, this study on the solution existence is
still in a primitive stage. From a future perspective, the
mathematicians should be invited for comprehensive in-
vestigation and proof of the conjectures.
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