
1 
 

Modeling Epidemics as First-order Systems – COVID-19 Example 

Abdallah Abusam 

Water Research Center, Kuwait Institute for Scientific Research  

P. O. Box 24885, Sadat 13109, Kuwait 

aabusam@kisr.edu.kw 
 

Abstract 

The semi-logarithmic plot of the cumulative number of cases of epidemics resembles the response 

of a first-order systems for a step load. This similarity was utilized to develop a first order model 

that can be used for extracting information about the dynamics of infectious disease epidemics. 

The developed model was validated using COVID-19 data of China. It was also heuristically fitted 

to other 13 countries. Obtained results indicated that the model can reliably forecasts the number 

of infected person, epidemic growth speed towards steady-state condition (process time constant, 

T), and time to reach steady-state condition (4T). The developed model will help public health 

authorities in developing more effective control strategies of epidemics.  

Keywords: Infectious Diseases, Epidemics, Dynamical Modeling, COVID-19, First-order 

Systems. 

 

1.0 Introduction 

Mathematical models are useful tools that help provide insights into infectious disease dynamics 

(Caccavo 2020). They can be utilized to get vital information about dynamics of epidemics such 

as epidemics growth rate, time to reach the peak and the number of infected persons. Such 

information is of great importance for public health and other concerned authorities.  It is useful 

to develop appropriate control measures and be prepared to deal with consequences of epidemics 

(Rabbani et al 2020). Due to increase in epidemics occurrence, use of mathematical models has 

increased tremendously in the last decades. In fact, mathematical modeling has become the main 

tool for developing effective control strategies for infectious disease epidemics (Anderson and 

May, 1991).  

Large numbers of mathematical models have been developed to describe the growth patterns of 

infectious disease epidemics (Lin et al. 2020). Epidemiological models can be divide broadly into 

statistical and dynamical models. The commonly used dynamical models are either logistic growth 

models or compartmental models. The first logistic model was proposed by Verhulst in 1834 and 

modified by Richards in 1959 (Batista, 2020). On the other hand, the first compartmental SIR 

(susceptible, infected and recovered model) model was developed by the Scottish Kermack and 

McKendrick in 1927 (Sanglier et al. 2020). Since then, many new versions of both the logistic 

growth and compartmental models have been developed (Batista 2020; Liu 2020; Ma 2020; Roda 
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2020). Despite that, however, the original versions of these models are still in use. As a matter of 

fact, they have been widely used for modeling COVID-19.  

During epidemics there is always a need for a fast and effective response (Sanglier et al. 2020). 

Effective response, however, requires reliable mathematical models that not only fit the profiles 

of epidemics, but also reliably explain their dynamics. Unfortunately, results of most of the 

existing models are unreliable because their parameters have no physical meanings and they cannot 

be accurately estimated from data. Roda et al. 2020 reported that forecast reliabilities of 

epidemiological models are greatly affected by the identifiability problem of their parameters. 

Abusam et al. (2020) have shown that parameters of Verhulst and Richards models cannot be 

identified from data and their predictions are unreliable. According to Louchet 2020, many 

countries could not reliably predict the progress of the on-going COVID-19 pandemic.  

For developing effective control strategies of epidemics, there is always a need for a reliable model 

that can accurately capture the dynamics of the epidemics (Chowell et al. 2016). In this paper, 

principles of systems engineering were used to develop a new dynamical model that extracts 

accurate and physically meaningful information about the dynamics of infectious disease 

epidemics.   

 

2.0 Materials and Methods 

2.1 Data 

Data used in this paper was obtain from Worldometers website (Worldometers, 2020).  Except for 

China, the data is the daily records of the cumulative confirmed cases, from the 15 February to 30 

June 2020. Notice that the data of China used here is for the first wave of COVID-19 epidemic 

which occurred between 22 January to 2 March 2020.    

2.1 Model development  

The semi- logarithmic plot of cumulative cases of an epidemic grows asymptotically towards a 

steady state condition (Fig. 1). Data plotted in Fig. 1 is for COVID-19 in China (Worledimeters, 

2020) and SARs, which occurred in Singapore in 2003 (Ang, 2007). The two curves shown in Fig. 

1 resemble the response of first order systems to step loads. Accordingly, it has been assumed that 

the logarithm of cumulative cases of an epidemic can be modelled as a first order system subjected 

to a sudden step load (i.e. increase in number of infected people). Therefore, important information 

about the dynamics of epidemics (e.g. time constant and time to reach steady-state condition) can 

accurately be extracted from the data. Notice that conversion of data from arithmetic scale to 

logarithm scale will just condense it but will not change it. Further, any information obtained in 

logarithmic scale can easily be converted back to arithmetic scale through calculation of the anti-

logarithm. Furthermore, all information about time is and will remain in arithmetic scale.    
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Fig. 1. Natural Logarithms of Cumulative Cases of SARs of 2003 in Singapore and COVID-19 in 

China.  

 

First order systems are modeled by a first order differential equations. Denoting for the logarithm 

of the cumulative cases by C’ (pronounced C prime), the response of the system to a step input 

load u (a sudden change in number of infections) can thus be described mathematically as follows:  

 

𝑇 ∙
𝑑𝐶′(𝑡)

𝑑𝑡
+ 𝐶′(𝑡) = 𝑘 ∙ 𝑢(𝑡) …………………….(Eqn. 1) 

Where  

C’: Logarithm of the cumulative number of infected cases. 

T: Process time constant (day).  

u: Step input load (sudden change in number of infected persons). 

k: process gain (increase in number of cumulative infected persons). 

u: process input load (sudden increase in number of infected persons). 
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Solution of Eqn. 1 is (Bequette, 1998): 

𝐶′(𝑡) = 𝑘 ∙ 𝑑𝑢 ∙ [1 − 𝑒
−𝑡

𝑇 ] ……………………….(Eqn. 2) 

Where  

du: Change of input load w.r.t. initial steady state conditions.  

Notice that it is not necessary that the initial steady-state be equal to zero (no infected person). 

Initial steady-state greater than zero means that certain number of infection was sustained before 

the epidemic appeared.    

Assuming the product of k and du equals K, Eqn. 2 can be re-written as: 

𝐶′(𝑡) = 𝐾 ∙ [1 − 𝑒
−𝑡

𝑇 ] …………………………………………….(Eqn. 3) 

 

After rearranging and taking the natural logarithm, Eqn. 3 can also be re-written as a straight line 

equation:  

 

𝑙𝑛[𝐾 − 𝐶′(𝑡)] = −
𝑡

𝑇
+ 𝑙𝑛[𝐾]   ……………………………………………………………………(4) 

 

Hence for first-order system, the plot of ln[K-C’] is linear (Eqn. 4). To test that, ln[K-C’] of data 

for Kuwait and Oman was plotted and presented in Fig. 2. From this figure, it is apparent that the 

plots are not perfectly straight lines, but they can reasonably be approximated by straight lines, 

except for the first day(s) of the epidemic. Since modeling is a simplification of reality, it is 

acceptable to assume the plots of ln[K-C’] is a perfect straight lines, when the first day(s) is 

excluded. That means the initial steady-state condition before the epidemic, C’(0), should be 

considered an unknown parameter to be estimated from data. This assumption seems to be 

reasonable since the first record(s) of data is often not reflecting the true number of persons initially 

infected.    
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Fig. 2. Shape of the Natural log of K – C(t) for Oman and Kuwait 

 

With unknown initial steady-state condition, the model will be:  

 

𝐶′(𝑡) = 𝐶′(0) + 𝐾 ∙ [1 − 𝑒
−𝑡

𝑇 ] …………………………………………….(Eqn. 5) 

 

The developed model (Eqn. 5) has only three unknown parameters (C’(0), K and T) to be estimated 

from data. The parameter C’(0) is the number of infected persons just before the epidemic become 

apparent. The parameter T is the speed at which the epidemic grow (time constant of the epidemic, 

T) to reach the steady-state condition. From the value of T, time will be taken to reach steady-state 

condition can also be estimated. Since first order systems achieve more than 98% of their ultimate 

gain in time equals 4T, therefore they are considered reached steady-state at 4T (Bequette, 1998). 

Thus, accurate estimation of these physically meaningful parameters will provide public health 

decision makers with very important information about the dynamics of epidemics. 

 

2.3 Model Calibration and Validation 
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Data of the first wave of COVID-19 epidemic in China was mainly chosen to test the model (Eqn. 

5) because it had already reached its end and thus all actual information about it is available.  

For calibration, the model was run with data of the first 20 days only. The least square technique, 

through MATALB function lsqcurvefit, was used to fit model’s prediction to the data. Calibration 

of the model had resulted in estimation of the values of the three unknown parameters: C’(0), T 

and K.  

To validate the model, it was then run with whole 41-days data, using the same parameters’ values 

obtained during the calibration step.   

Dynamics of epidemics usually differ from a community to another and thus from a country to 

another. To demonstrate the ability of the model in identifying the different dynamics of the same 

epidemics in different countries, the model was also heuristically fitted to COVID-19 data of the 

following 13 countries: Bahrain, France, Kuwait, Italy, Netherlands, Oman, Qatar, Singapore, 

Spain, Saudi Arabia, UAE, UK, and USA.  

 

3.0 Results and Discussion 

Values obtained from model calibration for the three parameters C’(0), T and K, were 5.7296 ± 

0.0027, 9.6455 ± 0.0149 and 5.6893 ± 0.0022, respectively. Notice that values of C’(0) and K are 

in logarithmic scale, whereas that of T is in linear scale. It should also be noted that the standard 

errors, which were estimated using the Jacobian matrix (Abusam et al 2000 and 2001), are much 

smaller than parameters’ values. These results clearly indicate that the three parameters can be 

identified accurately and reliably from the data.  

The anti-log of the value estimated for C’(0) (5.7296) is 308. This means that there were initially 

308 persons infected before the step increase in number of infections which resulted in the 

appearance of the epidemic. Given that the anti-log of the prediction for the first day is 520 (571 

from data). The step increase in number of infection is thus 212 persons (520 – 308). Therefore, 

the sudden increase in number of infected persons by 212 had caused the epidemic to appear.  

From model calibration, the estimated process time constant (T) is 9.65 days. This means that the 

epidemic will reach steady-state condition in about 39 days (4 x 9.65 days). Therefore, that is a 

highly reasonable estimate since the epidemic in China was considered to be over in 41 days. The 

epidemic in China finished so fast because very strict control measures had been implemented (Lin 

et al 2020).  In short, results of model calibration seemed to be very realistic and accurate.  

Fig. 3.  presents the validation results of the model. This figure clearly shows that the model fits 

well the data. That is also confirmed from the small value of root mean square errors (RMSE), 

which was 0.1608 in logarithmic scale.  
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Fig. 3. Results of Model Calibration and Validation with data of China 

Further, the model predicts the cumulative number of infected persons of day 41 to be 83885 

persons (anti-log of 11.3372), which is only 4.66% more than the reported value (80151). Such 

good and accurate forecast indicates that the developed model can be used reliably to forecast the 

dynamics of COVID-19 epidemic. 

Results of the heuristic fitting to the data of 13 countries other than China are given in Table 1. 

The small values of RMSE, which ranges from 0.0881 to 0.4504, indicate that the model fits very 

well the dynamics of COVID-19 at the different countries. This can also be seen from Fig. 4 which 

presents the model fit to the data of Italy as an example. The highest value of RMSE (0.4504) is 

obtained for Singapore. As can be from Fig. 5, the fit of model with data of Singapore is not as 

good as that, for example, for Italy (Fig. 4). The relatively large value estimated for the time 

constant of Singapore (93 days) indicates the epidemic there still has long time (day 376) to go 

before approaching its end. In spite of the relatively poor fit, however, all the model parameters 

were also accurately estimated from the data of Singapore as indicated by small standard errors 

(Table 1).  
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Fig. 4. Results of Heuristically fitting the Model to COVID-19 Data of Italy 

Table 1. Estimated Values of the Parameters When the Model Fitted Heuristically to COVID-19 

data of 13 Countries 

Country Ln(C’0) T (days) Ln(K) Tss (days) Ln(RMSE) 

Bahrain 2.9222 ± 0.0199 74.7071 ± 0.9632 8.8036 ± 0.0437 299 0.2441 

France 1.4287 ± 0.0060 18.0408 ± 0.0171 10.5958 ± 0.0057 72 0.1061 

Kuwait 2.5815 ± 0.0246 108.8433 ± 2.1438 12.4205 ± 0.1270 435 0.2794 

Italy 1.2715 ± 0.0205 15.6460 ± 0.0462 11.0756 ± 0.0199 63 0.1899 

Netherlands 0.6278 ± 0.0043 16.4657 ± 0.0116 10.1666 ± 0.0042 66 0.0881 

Oman 0.8628 ± 0.0108 85.4577 ± 0.5237 12.5832 ± 0.0332  342 0.1826 

Qatar 1.2787 ± 0.0718 41.9013 ± 0.8362 10.7472 ± 0.0684 168 0.4314 

Singapore 3.1592 ± 0.0634 93.8916 ± 4.0394 10.6020 ± 0.2013 376 0.4504 

Spain 0.1000 ± 0.0176 18.1273 ± 0425 12.5877 ± 0.0169 73 0.1822 

Saudi Arabia 0.3714 ± 0.0275 34.6036 ± 0.2035 11.8775 ± 0.0250 138 0.2590 

UAE 0.7539 ± 0.0590 64.4939 ± 1.3758 11.9359 ± 0.0835 258 0.4196 

UK 0.4853 ± 0.0379 27.8111 ± 0.1747 12.3680 ± 0.0350 111 0.2944 

USA 1.9445 ± 0.1083 29.1825 ± 0.5137 13.0000 ± 0.0994 117 0.5022 

  Tss: Time to steady-state condition 
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Fig. 5. Model Heuristically fitted to COVID-19 Data of Singapore 

 

From heuristic fitting to different countries, as expected, almost completely different values of the 

model’s parameters were obtained for the different countries (Table 1). This demonstrate clearly 

that the model is able to predict the difference in dynamics of the epidemic under different 

conditions. Table 1 shows that the values estimated for the initial steady-state conditions (C’(0)), 

process gain (K) and the process time constant (T) are unique for each country. However, it can 

be noticed that the initial steady-state conditions (C’(0)) for the European countries (France, Italy, 

Netherlands and Spain) is relatively smaller (15 -20 days) than that for the other countries, e.g. for 

Kuwait (109 days). This means that the model predicted that the epidemic in the four mentioned 

European countries will reach steady-state conditions in only 60 to 80 days, while it that will take 

435 days in Kuwait. This seems to be true. The four European countries have already started to 

ease the control measures and to return normal life, while Kuwait is still implementing some strict 

regulations.   

It becomes clear from above that the developed model can be used reliably for extracting the 

dynamics of COVID-19 epidemic. However, the same model can also be used to model other 

epidemics. As shown for SARs in Fig. 1, the semi-logarithmic plots of the epidemiological curves 
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look like a response of a first-order system to a step load. Therefore, the same model can also be 

used to modeled other epidemics.    

 

4.0 Conclusions 

A simple first-order system model, with physically meaningful parameters, has been developed for 
infectious disease epidemics and illustrated using the data of COVID-19 pandemic.  

Model calibration has indicated that all the three unknown parameters of the model (state initial 
condition, process gain and process time constant) can be accurately identified from data. 

The developed model has also proved to be reliable at revealing the difference in the dynamics of COVID-
19 pandemic in other 13 countries.   
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