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Abstract: In-cloud ice mass accretion on wind turbines is a common challenge faced by energy
companies operating in cold climates. On-shore wind farms in Scandinavia are often located in regions
near patches of forest, the heterogeneity length scales of which are often less than the resolution of
many numerical weather prediction (NWP) models. The representation of these forests—including
the cloud water response to surface roughness and albedo effects related to them—must therefore
be parameterized in NWP models used as meteorological input in ice prediction systems, resulting
in an uncertainty that is poorly understood and to present date not quantified. The sensitivity of
ice accretion forecasts to the subgrid representation of forests is examined in this study. A single
column version of the HARMONIE-AROME 3D NWP model is used to determine the sensitivity of
the forecast of ice accretion on wind turbines to the subgrid forest fraction. Single column simulations
of a variety of icing cases at a location in northern Sweden were examined in order to investigate the
impact of vegetation cover on ice accretion in varying levels of solar insulation and wind magnitudes.
In mid-winter cases, the wind speed response to surface roughness was the primary driver of the
vegetation effect on ice accretion. In early season cases, the cloud water response to surface albedo
effects plays a secondary role in the impact of in-cloud ice accretion, with the wind response to surface
roughness remaining the primary driver for the surface vegetation impact on icing. Two different
surface boundary layer (SBL) forest canopy subgrid parameterizations were tested in this study that
feature different methods for calculating near-surface profiles of wind, temperature, and moisture,
with the ice mass accretion again following the wind response to surface vegetation between both of
these schemes.

Keywords: Wind Energy; Heterogeneous Land Use; Icing; Cold Climate;Forests

1. Introduction

In the past several decades, commercial wind power has grown from humble beginnings in
small research wind farms to an important energy resource worldwide. Utilities, independent power
producers, and investors have especially taken advantage of regions in cold climates such as those in
Scandinavia, where sparse human population and high air density combined with terrain-induced
wind flows make for an excellent region for wind farm development. According to [1], 69 GW of wind
energy were located in cold climates in 2012, with 10 GW/Year being built from 2013-2017.

A challenging aspect of operating wind farms in cold climate regions is that of ice accretion on the
wind turbine blades. Accretion of ice affects the aerodynamic efficiency of the turbine, yielding lower
power output. Also, increased loads and vibration can decrease the life of turbine components [2] and
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ice throw from wind turbine blades can be hazardous to plant personnel. The forecast of ice accretion
is therefore crucial for plant operators and dispatchers who must plan for wind operations at energy
utilities and independent power producers. As a result, ice prediction methods have been developed
in the form of short term forecast models [3] and regional ice climate atlases [4]. Although much work
has been done in the past decade to develop ice prediction products, this forecast problem continues to
be a complex challenge [5]. Icing models, such as that described in [6], have been developed and tested
in lab settings, but rely upon prognostic meteorological data input from numerical weather prediction
(NWP) models in order to produce predictions of ice load. The ice load forecasts are sensitive to
changes in low level liquid water content (LWC), wind magnitude, temperature and humidity [6].

On-shore wind farms in Scandinavia are often located within regions of complex terrain and near
heterogeneous patches of boreal forest. In these regions, the typical icing event occurs due to low level
clouds containing supercooled liquid water intersecting terrain, impacting the turbine structure [3].
[5] discusses the impact of errors due to localization that can occur in regions with subgrid complex
topography and mitigating these errors with an ensemble method. Land cover representation and the
modelling of surface-atmosphere fluxes in areas of heterogeneous land surface cover has been a hotly
contested topic for decades, with papers focusing on the sensitivity of the forecast of temperature and
wind to changes in surface albedo [7] and roughness [8]. Several studies have focused on the impacts
of land surface type on the timing and evolution of low level clouds and fog [8-10].

The aim of this study is to test the sensitivity of an operational mesoscale NWP model forecast of
wind turbine icing events to changes in subgrid representation of vegetation fraction. A single-column
model is used in this analysis, which uses the same physics and parameterization packages as its
3D cousin, but integrates in time only vertical fluxes in a vertical column covering one horizontal
grid box. While they do not allow the horizontal advection of upstream large scale meteorological
variables into and out of the atmospheric column, single column models allow the user to change
certain model parameters while holding large scale conditions constant. This has several advantages:
first, as subgrid conditions are only integrated in one column the computational expense is cheap
relative to 3D models, allowing for one to run several experiments; second, as large scale conditions
are held constant, analysis of subgrid responses to changes in parameters is less unwieldy. As a result,
we were able to run several simulations with the same initial conditions, only changing the vegetation
cover in each. The output from the experiments was then used as input into an icing model. From this,
we could analyze the sensitivity of the turbine icing forecast to vegetation cover. In addition, we were
able to test the impact of the icing forecast to vegetation fraction when two different surface boundary
layer (SBL) parameterization schemes were used: a single-layer scheme and a multilayer scheme with
explicit levels within the forest canopy.

Section 2 of this paper will describe the models used as well as the experimental design. Section 3
will present the results of the experiments in terms of both the icing model and its input variables, as
well as show the response in two specific cases. Section 4 will discuss the results and Section 5 will
conclude.

2. Method

The model used in this study-Modéle Unifié Simple Colonne (MUSC) [11]-is a single column
version of the HARMONIE-AROME (cy40h.1.1.1) configuration of the ALADIN-HIRLAM 3D NWP
system [12]. HARMONIE-AROME was developed from the AROME mesocale model, itself born as
part of the ALADIN (Aire Limitée Adaptation Dynamique Développement International) -HIRLAM
(HIgh Resolution Limited Area Model) consortium. ALADIN-HIRLAM is a collaboration of 26
countries in Europe and North Africa with the aim to improve short-range weather prediction in
this region. HARMONIE-AROME itself is a convection-permitting non-hydrostatic limited area
model used in operational forecast offices in Sweden, Norway, Denmark, Ireland, The Netherlands,
Finland, Spain, Iceland, Estonia, and Lithuania. MUSC contains the same physics and parameterization
packages as HARMONIE-AROME with the exception that horizontal advection being ignored in the
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simulation; although MUSC contains an added capability to implement large scale forcing based on a
horizontal thermal gradient. The result is a computationally cheap research tool that can be used to
understand vertical turbulent exchanges or test the performance of new parameterization schemes that
may be incorporated in new versions of 3D NWP models [13]. MUSC was configured using similar
settings to the operational version of HARMONIE-AROME used at SMHI. This configuration uses a
2.5 km horizontal resolution with 65 vertical levels.

2.1. Surface Model

The surface model used in MUSC is version 7.3 of the Surface Externalisee (SURFEX) externalized
surface scheme [14]. SURFEX is a package of physical parameterizations that calculate the subgrid
energy exchange between the surface and atmosphere. When SURFEX is coupled with an atmospheric
model, forcing data from each gridpoint of the model atmosphere is sent to a series of models that
calculate fluxes of momentum, sensible heat, latent heat, gas-, and aerosol feedbacks for each of
four tiles representing a different surface type: sea, lake, nature (consisting of vegetation and soil),
and urban areas [14]. In addition to the fraction of surface type tiles, SURFEX has a capability that
can further divide the nature tile into up to 12 so-called patches. An average of each individual
turbulent flux is then calculated such that it is weighted by the fraction of each surface type and the
resulting flux is sent back to the atmosphere, along with information about surface roughness, albedo,
emissivity, and surface temperature. In SURFEX version 7.3, the surface type fractions are determined
from ECOCLIMAP II [15], which combines satellite and land maps to create a database of surface
descriptions at 1-km resolution. The surface description from ECOCLIMAP II, upper air temperature,
specific humidity, horizontal wind components, pressure, total precipitation, aerosol concentration,
gas concentration, downwelling short- and longwave radiation from the atmospheric model are sent
to SURFEX at each model time step.

Available within the SURFEX parameterization package is a 1D multilayer surface boundary layer
(SBL) scheme developed by [16] (see schematic in Figure 1b). When the [16] canopy scheme is not
activated, SURFEX uses a single layer scheme coupled to the lowest atmospheric model level using a
variation of Monin-Obukov similarity to calculate wind, temperature and humidity profiles in the SBL
(see schematic in Figure 1a).
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Figure 1. Examples of different SBL schemes: (a) single layer SBL and (b): multilayer canopy scheme
described in [16]

[16] proposed that the single layer scheme, while accurate in flat, homogeneous landscapes, failed
to estimate mass and momentum fluxes within tree canopies as the lowest atmospheric model level is
assumed to be above the vegetation. Multilayer schemes, with explicit atmospheric model levels within
the tree canopies, provide the capability to calculate more accurate atmospheric profiles within the tree
canopy, but are computationally expensive when used in operational forecast models. [16] proposed
a compromise multilayer SBL scheme that solves the atmospheric governing equations by utilizing
the subgrid turbulence parameterization scheme combined with a large scale atmospheric term and
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canopy drag terms calculated from the leaf area index (LAI) of the forest. The turbulence scheme used
in MUSC and HARMONIE-AROME is called HARMONIE with RACMO Turbulence (HARATU) [12].
HARATU computes a prognostic TKE equation on half-levels using separate diagnostic length scales
for heat and momentum [12], providing the basis for flux computations within SURFEX. The large
scale forcing term is the tendency of wind, temperature, and humidity at the lowest atmospheric level.
Below the lowest atmospheric level, the aforementioned variables and TKE are calculations taken
from the turbulence parameterization scheme used in the NWP system. The aim of the [16] canopy
SBL scheme is to provide a computationally cheap solution to improving forecast performance in
forested areas. It should be noted that in their analysis of the performance of HARMONIE-AROME
(cy40h.1.1.1), [12] states that operational experiences found that the [16] canopy SBL scheme yields
temperatures that are too low in stable conditions with weak winds, which is contrary to what was
found in [16].

2.2. Icing Model

Output from each simulation was run through an icing model based on the one described in [6]
and adapted to wind turbine use in [17]. This is the same icing model used by [5]. The model is based
upon the equation:

dM

5
—_— = VD —-1L, 1
mathrmdt 1; st M

where M is the mass of the accumulated ice in kg, ¢ is time, w is the liquid water content, V is the wind
speed, D is the diameter of the cylinder, and a1, ay and a3 are the collision, sticking, and accretion
efficiencies, respectively. L is an ice loss term that combines a series of functions to take ice shedding,
melting, sublimation, and wind erosion into account [5]. Equation 1 uses as input from the NWP
output wind speed, temperature, pressure, cloud water, ice, rain, graupel, snow, and specific humidity.
Collision efficiency aq—or the fraction of supercooled particles that make contact with the structure-is
determined by the concentration of the particles, size distribution of the particles, wind magnitude,
and size of the structure. The size distribution of the supercooled water droplets is estimated using the
median volume diameter (MVD) calculation described in [18]. As the specific MVD is unavailable as
NWP output, it was estimated using the liquid water content output and assuming that the number
concentration of liquid water particles is constant at 100cm ! following [5]. The sticking efficiency was
determined from the work conducted by [19], using a; = 1/V%7.

The icing model includes functions that calculate ice mass due to different phases of precipitation,
including supercooled water, graupel, rain, and snow. The model also includes functions that calculate
the approximate decrease of ice mass due to wind erosion, sublimation, and shedding off the turbine
blades. The input variables from the NWP model are interpolated within the model to the turbine hub
height and the ice mass is calculated at that level.

2.3. Experimental Setup

In order to test the sensitivity of the model forecast to the vegetation fraction at the model’s lower
boundary, MUSC was initialized from a point in northern Sweden using 3D HARMONIE-AROME
forecasts of six different low level in-cloud icing events in 2013 and 2014. The aim here was to examine
the dynamic and diabatic response of the model to changes of vegetation fraction under a range of
differing meteorological conditions and incoming solar radiation profiles. This way, we could examine
the response of the icing model to vegetation fraction changes when forced with the NWP output.
From this information, one can analyze the icing model input variables to find the contribution of
diabatic and dynamic components to the icing model response and the authors could look at the
impact of vegetation fraction on the evolution of these events.

The initial conditions were chosen from relatively well-forecasted icing events described in
the work done by [5]. Also, the cases chosen represent a wide range of top of atmosphere (TOA)
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downwelling shortwave (SW) radiation profiles from both early and mid-season icing events in order
to test the response due to changes in albedo. The cases chosen for the study are listed in Table 1.

3D Model Date | MUSC Init Hour | Event Type Snow Cover | Max TOA SW Down
2013/12/24 0600 | 0900 Lifting fog Yes 132.5 W/m?
2014/01/05 0600 | 0900 Lifting fog Yes 157.1 W/m?
2014/01/05 1800 | 2100 Lifting fog Yes 157.1 W/m?2
2014/10/18 0600 | 0900 Elevated cloud/Lifting fog | Yes 449.6 W /m?
2014/10/22 0600 | 0900 Elevated cloud/Lifting fog | Yes 417.9 W/ m?
2014/10/23 0600 | 0900 Elevated cloud/Lifting fog | Yes 410.0 W /m?

Table 1. Cases from which initial profiles were taken from the 3D model.

For each case, the initial conditions remained the same, with the only adjusted variable being
the vegetation percentage. For every case MUSC was initialized from the +03 hour output of the 3D
model run, spun up for 3 hours, and integrated for 48 hours, with 60 second timesteps. The simulation
was run for 48 hours in order to analyze the consistency of any diabatic impacts over more than one
diurnal cycle.

Table 2 lists the fractions of the different ground cover types for each experiment. The surface
cover from the raw 3D model output featured 86.3% vegetation cover, mostly including coniferous
forest native to northern Sweden. In each successive simulation, 10% of bare ground (ECOCLIMAP-II
abbreviation SFX.COVER 538) was included in the total surface cover fraction while the vegetation
was decreased proportionally. The bare land representation in this study assumes a homogeneous
patch of soil with an average raw visible albedo of 0.23 and an infrared albedo of 0.46, according
to the ECOCLIMAP-II look-up tables. This bare ground representation was an idealized choice for
the experiment and does not necessarily depict the soil conditions at the location the simulation was
initialized from. The resulting grid cell albedo for each experiment as a function of vegetation cover is
shown in Figure 2. Note that increasing the forest and other vegetation cover decreases the overall
albedo in the gridcell. Also note that the albedo values in Figure 2 are from the ECOCLIMAP-II
lookup tables and do not include the high albedo related to snow cover, which is present in each of the
simulations. As a result, the actual relative difference in albedo from the bare ground experiment is
larger than shown.

TUNDRA1 | OURAL BF1 | TAIGA1 | BARE GROUND
0% 0% 0% 100%
2% 2% 7% 90%
3% 3% 13% 80%
5% 5% 20% 70%
7% 7% 27% 60%
8% 8% 33% 50%
10% 10% 40% 40%
12% 12% 47% 30%
13% 13% 53% 20%
15% 15% 60% 10%
17% 17% 67% 0%

Table 2. List of ECOCLIMAP II cover fractions for each case

In order to test the sensitivity of the experiments to the type of SBL scheme, each simulation was
run with both the single and multilayer SBL schemes described in Section 2.1. In order to determine
the subgrid roughness length z( to be coupled with the atmosphere, the SURFEX code weights each
fraction of cover type i within each grid cell, summing n cover elements using the following;:

In(z;/z0,)?T;’ @

i=1
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Figure 2. Visible- (a) and near-Infrared albedo (b) as a function of vegetation percentage for each
experiment

where z; is the roughness length for each cover type, I'; is the weight for each vegetation fraction, and
zj is the averaging level. The average subgrid zg is then determined using

zp = zje ‘tot, 3)

where It is the sum of all surface cover weights. When the multilayer canopy scheme is used, z; is
the height of the lowest canopy level. Otherwise, z; is the height of the lowest atmospheric level. More
information about subgrid averaging of surface properties in SURFEX can be found in [14]. When the
single layer SBL scheme is used, the roughness length in the SURFEX output represents zg aggregated
over all surface cover types within the grid cell and is an accurate representation of the surface effects
felt by the model atmosphere at its lowest level. In contrast, since the multilayer SBL scheme uses
canopy drag terms rather than roughness length to determine frictional effects related to forests, z is
only aggregated for bare ground and low vegetation when this SBL scheme is used. Therefore, the
SURFEX output for grid cell average zgo when using the multilayer SBL scheme appears as a low value
relative to that of the single layer scheme. As a result, an effective roughness zq, s was calculated for
both the single layer and multilayer SBL scheme experiments assuming a logarithmic wind profile [20]
from the surface to the lowest model level,

. B
Oeff = eku(lZ)/u*,

(4)

in which k=0.4 is the von Karman constant, u, is the friction velocity, and u(12) is the wind speed at the
lowest model level of 12 m averaged for all cases for each respective SBL scheme. As friction velocity
was not explicitly included in the model output, this was calculated from the surface momentum flux

using the relationship defined in [20]:
uy = \/|u'ws|, ®)

where |u/w’s| is the surface momentum flux calculated in SURFEX and averaged over all cases for
each respective SBL scheme. Figure 3 shows zq.fs as a function of vegetation fraction when using the
single layer and multilayer SBL scheme, respectively. Note the difference between z. ¢ as a function
of vegetation between the two SBL schemes. While the formulation for surface roughness described in
Equation 4 assumes a logarithmic profile-which is not always the case-it is assumed to be a reasonable
average approximation for depicting the relative difference between the two SBL schemes. That said,
the effective roughness length for the single layer SBL scheme increases steadily with increasing
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vegetation fraction. This is in contrast to zq,ss for the multilayer SBL scheme, which increases sharply
from 10 to 40% vegetation fraction and only slightly increasing with increasing vegetation fraction
above that. The multilayer canopy approach-which includes a forest drag formulation—enables
blockage of the lower canopy levels as the amount of tall vegetation increases, something that has
previously been shown to lower the roughness length [21]. The impact of the SBL formulation on the
icing forecast will be examined in the next sections.

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Vegetation Cover (%) Vegetation Cover (%)
(@) (b)
Figure 3. Effective roughness length zq, ¢ in meters for single-layer (a) and multilayer SBL scheme (b)
as a function of vegetation percentage for each experiment. The colors represent increasing vegetation
fraction.

3. Results

3.1. Impacts on Icing Forecast

All simulations were run through the icing model with both the single layer and multilayer SBL
schemes used. These results are shown in Figure 4, in which the maximum ice mass is shown for the
48 hour period in which MUSC was run. With the default single layer SBL scheme (Figure 4a), the
average icing mass response generally decreases as a function of increased vegetation fraction. This
relative decrease is nearly linear, with a change of about -10% per 0.20 increase in vegetation fraction.
The winter cases (red, black and blue markers) feature a generally decreasing trend in ice mass as
vegetation increases; following the mean trend. The 24 December 2013 case (red markers) follows the
mean trend closely and will be further examined in Section 3.3.2. The October cases were a bit more
variable, with strong nonlinearity connected to the evolution of cloud cover. Of note is the 18 October
2014 case (cyan markers), which experienced a local maximum in icing mass near 0.60 vegetation
fraction and a larger relative impact overall as vegetation fraction is increased. With the single layer
SBL scheme, the total ice mass in the case initialized from 18 October 2014 decreased by nearly 70%
from the case with bare land to the case with .86 vegetation fraction. The 18 October 2014 case will be
further examined in Section 3.3.1.

With the multilayer SBL scheme activated, the percent difference was 25% less than the bare
ground control case for vegetation fractions up to 0.35. The midwinter cases display a systematic
decrease as vegetation fraction increases. The October cases vary between 0 and 50% less ice mass from
bare ground. As vegetation fraction is increased above 0.40, however, the average ice mass impact
remains between 25 and 30% less than bare ground. The 24 December 2013 case follows the average
trend quite well, with a nearly flat response in ice mass as vegetation fraction is increased above 0.40.
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Figure 4. Percent difference of maximum ice mass accretion during the simulation from the 0%
Vegetation case as a function of vegetation fraction for all cases. (a) is the response with the single layer
SBL scheme and (b) is the response with the SBL scheme turned on.

As with the experiments with the single layer SBL scheme, an outlier could be seen in the 18 October
2014 simulation, which experienced a near-linear decreasing trend in ice mass as vegetation fraction
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increased to 0.50, with a well-defined local maximum around 0.80 vegetation fraction. Both the 24
December 2013 and 18 October 2014 cases will be examined in further detail in Section 3.3.

3.2. Assessment of Icing Model Input Variables

Recall that the icing model described in Section 2.2 uses input from a NWP model to describe
the flux of all phases of subfreezing water through the wind turbine sweep. As the efficiency of
the accretion of ice on the wind turbine is dependent upon the content and velocity of the water
molecules—as well as air temperature-this section will show the impact of vegetation on the input
variables from the MUSC simulations. Here we show the impact of vegetation fraction relative to
the bare ground control case for the NWP wind speed, temperature, and liquid water content at 117
meters. The impacts of vegetation cover on rain, snow, ice, and graupel were not included here, as the
values of these were negligible throughout each simulation.

In the experiments using the single layer SBL scheme, the mean wind magnitude impact follows
the trend in roughness length (see Figure 3a) as vegetation is increased (Figure 5a). With increasing
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(a) (b)
Figure 5. Percent difference of temporally averaged 117 meter wind magnitude from bare ground
case as a function of vegetation for single layer SBL (a) and multilayer SBL scheme (b). The average
response is seen in the dashed black line.

vegetation fraction, the average impact on wind magnitude decreases by nearly 50%. The general trend
for the individual cases is decreasing as well, with the exception of the 22 October 2014 case (green
stars). In the 22 October 2014 case, the wind magnitude response is nearly zero up to 0.20 vegetation
cover. The average impact of vegetation percentage on wind magnitude in the simulations with the
multilayer SBL scheme activated (Figure 5b) follows a similar pattern seen in the icing model trends
for those simulations, with a nearly 35% decrease in wind speeds up to 0.50 vegetation fraction and a
flatter response at vegetation fractions higher than this. The mid winter cases (red, black, and blue
circles) feature a nearly flat wind magnitude response with vegetation fractions above 0.50, but the
slope of the October cases (magenta, cyan, and green circles) is steeper. Note that the winter cases
follow the average trend quite closely, while the October cases display relatively more variation.

The average impact of vegetation fraction on temperature (Figure 6) is similar for both SBL
schemes, with a general increasing trend to between 1 and 1.5 degree K. The spread amongst the cases
examined is large, however. The winter cases experienced a very small temperature impact, owing to
low levels of solar insulation. The temperature impact for the October cases as vegetation is increased
varies from 1 K in the 23 October 2014 case to nearly 4 K in the 22 October 2014 case.

In both the single layer and multilayer SBL experiments, cloud water response (Figure 7) is not as
systematic as the other variables examined, with the average response less than £ 25%. The cloud
water response to vegetation percentage in the winter cases is variable around 0%, with the case
initialized on 24 December 2013 (red markers) showing a slight systematic 20% decrease between
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Figure 7. Same as Figure 5 for cloud water at 117 meters.

vegetation fractions of 0.3 and 0.9. The October cases experience highly variable responses to cloud
water as vegetation fraction is increased, with a negative response in the 22 October 2014 case and a
general increasing trend in the 23 October 2014 case. The 22 October 2014 case is variable between +
50% from bare ground.

3.3. Cases

Several cases were analyzed in order to test the sensitivity of simulated events featuring varying
diabatic and large scale influences to the represented forest fraction. To provide further insight into the
physical processes of the icing events and the modelling thereof, two cases will be examined in the next
sections. The case initialized from the morning of 18 October 2014 featured relatively weak synoptic
dynamics under surface high pressure. The 24 December 2013 case featured stronger wind magnitudes
owing to a more dynamic synoptic environment. The temporal evolution of meteorological variables
for these cases will be examined to highlight the diurnal cycle under different surface albedos and
roughness values. The experiments examined in the next section used the single layer SBL scheme.
The simulations using the multilayer SBL scheme are not shown here as the evolution of the cases
using that configuration were similar, with slightly different magnitudes of meteorological variables as
discussed in the previous section.
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3.3.1. 18 October 2014 case

On the morning of 18 October 2014, a deep surface low pressure system was present in the
north Atlantic with an occluded front stretching from southern Sweden into central Europe, where a
weak low pressure system was present. In contrast, a region of high pressure was present over the
northern Baltic Sea, with weak pressure gradients owing to light winds at the target area in northern
Sweden. Figure 8 shows the 900 mb cloud fraction, wind field and temperature at 0900 UTC from

’
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Figure 8. ECMWF ERADS reanalysis: Cloud fraction (shading), wind vectors (m/s), and temperature

(K;contours) at 900 millibars at 0900 UTC 18 October 2014 over Scandinavia. MUSC was initialized at
the location of the black dot.

ECWMEF ERAS reanalysis data. Surface temperatures were below freezing across the entire region
on that day with a subsidence inversion present at 400 meters. Winds were westerly across much of
Sweden, with stronger south-southwesterly winds converging near the northern parts of the border
with Norway. Low clouds developed over the next 24 hours along the line of convergence, signalling
the beginning of a near surface in-cloud icing event at the point of interest symbolized by a black dot
on the aforementioned chart. It was from this point of interest that MUSC was initialized.

The cloud water evolution for the 18 October 2014 case is greatly impacted by changing the
vegetation cover in the single-column experiments. As vegetation cover is increased, the activation of
turbine level cloud water is delayed into the early morning hours, with higher values occurring close
to the ground (see Figure 9). Focusing on the elevation of 117 meters, Figure 11b shows a progressive
trend towards a later onset of cloud water as vegetation increases.

The cloud deck develops soon after the single column model is initialized for the experiments
with lower vegetation cover percentages and persists through the daytime hours, but is not present in
the higher vegetation cases until later in the simulation. This is likely due to a higher sensible heat
flux owing to a greater absorption of downwelling radiation with the lower albedo of higher forest
fractions. The temperature at turbine level reflects this (Figure 11a), as temperatures in the experiments
with higher vegetation fractions peaked at up to 4 degrees K warmer than the bare ground case on
1500 UTC on 18 October 2014. As wind magnitude (Figure 10) at 117 meters was similar amongst all
experiments in the first hours of the simulation, it is likely that the warmer temperatures alone played
a significant role in precluding low level cloud formation for the experiments with higher vegetation
fractions. Conversely, under light winds and clear conditions, temperatures at 117 meters are allowed
to drop more dramatically overnight in the higher vegetation cases examples after 0000 UTC. With the
presence of weak low level winds and very low temperatures during the early morning hours, the
formation of nocturnal radiation fog is implied in the simulations with vegetation percentages above
65% coverage. In all cases, these low level clouds lift through the turbine sweep and into the upper
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Figure 9. Time-height cross section of cloud water content (g/kg, filled contours) for the 18 October
2014 case for vegetation fractions of 0%, 25.9%, 60.4%, and 86.3%, respectively. Top of the atmosphere
downwelling shortwave radiation (W/m?, right y-axis) has been added to indicate the diurnal cycle.

boundary layer throughout the simulation. In the cases with higher vegetation fraction, the clouds
lift dramatically through the morning hours on 19 October 2014 as low level temperatures rebound.
It is noted that during the time that the supercooled clouds lift through the turbine sweep, the wind
speeds increase and remain constant through the rest of the simulation. While winds were relatively
light in this case, this result is significant as icing is impacted by wind speed as seen in the analysis
in the previous sections. The evolution and magnitude of the liquid water content at turbine level
(Figure 11b) varies dramatically as a function of vegetation fraction, with a maximum of 1.9x10~ for
the simulation using 69.1% vegetation fraction as the clouds lift through turbine level. Recall that the
icing response in the 18 October case relative to bare ground was nearly flat at -50% from bare ground
between vegetation fractions of 0.50 and 0.70.

3.3.2. 24 December 2013 case

On the morning 24 December 2013, a surface low pressure system was present off the coast of
Scotland, with an associated occlusion and warm front stretching eastward into southern Norway and
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Figure 10. Time evolution of wind speed for the 18 October 2014 case at 117 meters for each vegetation
percentage.
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Figure 11. Time evolution of air temperature (a) and cloud water (b) for the 18 October 2014 case at 117
meters for each vegetation percentage.

Sweden. An area of surface low pressure was present in far northern Sweden near the Arctic Circle.
Figure 12 shows the regional wind field and cloud cover at 0900 UTC from ECMWEF ERAS reanalysis
data. Temperatures near a developing warm front over Baltic Sea were below freezing, but warming
close to the freezing line toward the east. Relatively strong northwesterly winds associated with low
pressure to the northeast were present in Northern Sweden, with a weak deformation zone near the
Norwegian border. Near the line of convergence, a north-south oriented line of clouds formed. A low
level icing event occurred at the point of interest over the next few days. Time-height sections of the
cloud water content are seen in Figure 13. In the control experiment with no vegetation cover, a cloud
forms at the surface slight after 1200 UTC on 25 December 2013 and lifts during the evening hours.
With increased vegetation cover, the cloud evolution is similar, albeit progressively earlier. Clouds
form in the 86.3% case at approximately 0900 UTC on 25 December 2013.
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Figure 12. Same as figure 8, but for 0900 UTC 24 December 2013.

The wind speed at 117 meters is seen in Figure 14 for each simulation. The initial wind speeds
vary from nearly 12 m/s in the bare ground simulations to 6.5 m/s in the simulation with the highest
vegetation fraction. The wind speeds for each simulation gradually decrease during the first 24 to
30 hours before the boundary layer decouples, with wind speeds dropping steeply. This decoupling
occurs earlier as a function of vegetation fraction. The low level temperatures (Figure 15a) cool to
condensation as the boundary layer decouples and fog forms. The cloud water at 117 meters peaks
between .08 and .1 g/kg for all vegetation percentages. However, the timing of the onset of the
supercooled water varies by about 6 hours, with the onset occurring earlier in the higher vegetation
case (Figure 15b). Simulations with higher vegetation fractions relative to the bare ground case led
to an earlier development of low level cloud cover. The clouds gradually lift during the day as the
relatively lower albedo leads to an increase in upward sensible heat flux in response. In the bare
ground cases, clouds formed later, lifting in a similar manner to the higher vegetation cases. Low
incoming solar radiation levels led to weaker turbulent mixing than the 18 October 2014 case, allowing
fog to form in all cases, even during the daytime hours.

In the 24 December 2013 case, there is less downwelling shortwave radiation due to the low
December sun angle at the latitude of the test location and a smaller difference in initial temperature
between the experiments (Figure 15a). However, the 117 m wind speed (Figure 14) is higher in the 24
December 2014 case than in the 18 October 2014 simulation and the sensitivity to changes in vegetation
is greater in this case. Recall that the icing response follows the trend in the relative decrease in wind
speed from the bare ground case. Also note that the cases with vegetation fractions above 60.3% feature
a slightly higher spike in cloud water than the other experiments. Despite the increase in maximum
liquid water content in higher vegetation fractions, the ice mass still decreased in this case with the
mean wind response.

4. Discussion

The experiments show that vegetation representation has an impact on both the total accretion
and evolution of ice formation during simulated wind farm icing events. The icing model is most
sensitive to the impact of the effective roughness on wind magnitude at wind turbine hub height. The
sensitivity of the icing model to wind speed is further highlighted when the SBL parameterization is
changed to a scheme that aims to include tree canopy effects, in which the icing response also appears
to have a strong correlation to surface roughness. With the [16] SBL scheme used, the sensitivity of
simulated ice accretion to vegetation cover seems to decrease at higher forest fractions. The sensitivity
of simulated ice mass accumulation remains high at lower vegetation percentages, however. This
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Figure 13. Same as 9, but for 24 December 2013.

suggests that the simulation of low level icing events may be impacted by not only the uncertainty
in vegetation type, but by the surface model, which feature tuning parameters to accurately depict
boundary layer processes [16]. Compared with the single-layer SBL scheme, the multilayer SBL scheme
gives an effective roughness length response to changing vegetation cover that suggests increasing
homogeneity with increased forest canopy cover, which follows the response expected from theory
(see [21]). In Section 2.1, [12] was referenced, who discussed that forecasted low level temperatures
were caused to be much too low in stable conditions when coupling the HARMONIE-AROME model
to SURFEX with the multilayer scheme turned on. This suggests that while the multilayer SBL scheme
used in this study gives a surface roughness response that follows observations, proper tuning is
required for the best results. Recent configurations of the HARMONIE-AROME model have moved
away from the multilayer canopy scheme in favour of calculating surface fluxes over two separate
patches of nature types within a grid cell before determining the weighted average flux over all other
surface types. [22] suggested decreasing the height of the lowest atmospheric model level from 10 to 5
meters in the related AROME model to explicitly resolve atmospheric layers within the tree canopy;
they found that this precluded the need for the [16] multilayer scheme. Diabatic effects due to surface
albedo differences which impact the diurnal evolution of cloud cover, also impacted the icing cases
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Figure 15. Time evolution of air temperature (a) and cloud water (b) for the 24 December 2013 case at
117 meters for each vegetation percentage.

that were examined. This is evident in the 18 October 2014 case, which featured greater solar insulation
than the other mid-winter cases. In this case, the impact of vegetation on the total ice mass was not
as systematic as the mid-winter cases, with the cloud evolution impacted by the convective response
to changes in surface albedo. This shows that, while the dynamic effects due to surface roughness
remain dominant, the albedo effect has a highly relevant impact on the timing and evolution of the
icing event. Recall that in Section 2.3 the model surface is covered by snow, which enhanced the albedo
of the bare ground contribution to each experiment. In a test without snow cover (not shown), the
impact of vegetation on the cloud evolution was reduced, suggesting a decreased heat flux response
with vegetation changes. This is not surprising, as the impact of the representation of snow cover in
the vicinity of forests on the surface energy balance has been examined for decades (see [7]).

As the icing model seems to be most sensitive to changes in wind speed with increasing forest
fraction, wind production can be impacted by the uncertainty of land cover representation and SBL
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parameterization in addition to the icing forecast. The ECOCLIMAP-II package [23] used in SURFEX
is a 1-km resolution land surface database created from several remote sensing datasets of higher
resolution. While land cover representation datasets of this resolution have been successfully used in
global climate models and NWP models of relatively coarse resolution, some further consideration
may be needed in the future as icing and wind production forecasts use NWP input from finer scale
models. As one moves to higher resolution, one also must consider the heterogeneity, or patchiness, of
the forest represented in the model forecast. The land cover represented in the experiments described
in this study was assumed to be homogeneously distributed inside the grid cell. Several large eddy
simulation (LES) studies (for example, [8,13,24-26]) have explored the varying impacts of land surface
heterogeneties on boundary layer cloud processes. As forests surrounding onshore wind farms in
Scandinavia often feature patchy heterogeneities due to nearby forestry operations and clearings for
turbine equipment, and extension of this work is to examine how this patchiness of vegetation can
impact wind turbine icing processes. With a properly-tuned SBL scheme, future mesoscale models may
take advantage of the latest generations of surface description maps, such as the objective roughness
approach (ORA) described in [27] that uses airborne lidar scans of tree height and density to create
detailed snapshots of surface roughness.

5. Conclusions

A single column model was used to test the sensitivity of ice accretion predictions at a high
latitude location to subgrid land use representation from the meteorological input into the icing model.
The single column model demonstrates that the icing on wind power turbines is sensitive to the forest
fraction in a gridcell. In the mid-winter cases examined in which the downwelling solar radiation
was relatively low, the icing forecast seems to be most sensitive to the wind response due to surface
roughness changes as forest fraction is increased.

In the early season icing case examined with increased diabatic forcing in the form of increased
solar insulation, the trend of total predicted ice mass was less systematic than the mid-season cases,
suggesting a sensitivity to the evolution of the in-cloud icing event. In this case, the cloud formation in
the single column model was more transient and this impact can be seen in the ice mass predictions as
vegetation increases. However, the general trend still appears sensitive to the wind response when
surface roughness is increased.

When simulating the cases using a more sophisticated SBL scheme in the single column model
with a different calculation of surface roughness, one can see a similar response to wind magnitude in
the icing prediction. While this suggests that uncertainty in the represented subgrid forest fraction can
lead to errors in the wind turbine icing prediction, the surface layer model parameterization can also
lead to uncertainty.
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