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Abstract—The widely spread CoronaVirus Disease (COVID)-
19 is one of the worst infectious disease outbreaks in history
and has become an emergency of primary international concern.
As the pandemic evolves, academic communities have been ac-
tively involved in various capacities, including accurate epidemic
estimation, fast clinical diagnosis, policy effectiveness evaluation
and development of contract tracing technologies. There are more
than 23,000 academic papers on the COVID-19 outbreak, and
this number is doubling every 20 days while the pandemic is
still on-going [1]. The literature, however, at its early stage, lacks
a comprehensive survey from a data analytics perspective. In
this paper, we review the latest models for analyzing COVID-
19 related data, conduct post-publication model evaluations and
cross-model comparisons, and collect data sources from different
projects.

Index Terms—Data Collection; Covid-19; Policy Effectiveness;
Clinical Characteristics; Computer Vision;

I. INTRODUCTION

With over 7,800,000 cases and 430,000 deaths globally [2],
CoronaVirus Disease (COVID)-19, the disease caused by Se-
vere Acute Respiratory Syndrome CoronaVirus (SARS-CoV)-
2, is one of worst infectious disease outbreaks in history and
has become an emergency of primary international concern. In
mid-December 2019, the first COVID-19 case was detected in
Wuhan, China, where it rapidly spread across the country and
caused a pneumonia epidemic in early January 2020. The virus
currently has spread to 140 other countries, including Japan,
Italy, Brazil, and the USA, after infecting and causing the
death of thousands of patients in China, with the number of
confirmed new cases and deaths increasing every day [3]–[5].

Hospitals and healthcare systems worldwide are under high
stress and have already stepped up in unprecedented ways
to face the challenges of COVID-19. For example, the first
confirmed case of COVID-19 in the United States was reported
in Snohomish County, Washington State [6]. The genomic and
epidemiological analyses of sequenced virus RNA recovered
that in February 2020, community transmission of COVID-
19 was detected in the western Washington region. Confirmed
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cases in the U.S. increased to 1,000 by March 11, to 100K by
March 27, over 1 Million on April 28, and reaching 2 Million
at the end of May [7]. In order to save lives and minimize the
virus spread, hospitals have accelerated testing efforts and are
treating hundreds of thousands of people worldwide.

The virus has influenced peoples daily life. To mitigate the
spread of the disease, Wuhan in China Hubei province was
placed under a strict lockdown on January 23 and reopened
gradually after more than ten weeks. In the United States,
California Gov. Gavin Newsom issued a stay-at-home order
on March 19, and every state in the USA had restrictions in
place by early April. The virus has also effectively grounded
global economies to a halt. The U.S. unemployment rate had
shot up from 3.8% in February to 13.3% in May [8], and
the COVID-19 recession is predicted to be comparable to the
Great Depression of the 1930s, where the unemployment rate
was estimated to reach 25% [9].

To combat this ongoing crisis, many efforts have been made
in developing accurate epidemic predictions, fast diagnosis so-
lutions, effective policy implementations and efficient tracing
systems. These projects, ranging from using different kinds
of clinical data (chest CT image, X-Ray, laboratory findings,
etc.) to generate fast screening methods, risk profiling, pa-
tient surveillance and tracking, and genetic network analysis,
provide a snapshot of pandemic origins and social analytics.
Many institutions have already developed COVID-19 tracking
projects and generated data dashboards to help policymakers
and the public understand the trajectory of the pandemic,
compare each country or state’s interventions and testing levels
with case counts and death overtime, and make decisions for
the path forward.

While various datasets and analyses have been published by
hospitals, institutions, governments and organizations globally,
it lacks a comprehensive literature review and data collection
from the analytical perspective to address the fragmented
data at the early stage of COVID-19 related researches. For
example, a prediction model published in early March showed
accurate estimation of infection numbers might not work
well due to the fast evolution of the virus and government
responses. This manuscript demonstrates the latest datasets,
prediction models, evaluations of policies, and tracing tech-
nologies for combating the challenges caused by COVID-19.
The main contributions of this paper are summarized below.
• We provide an overview of data-driven COVID-19 studies

from the perspectives of epidemic prediction, clinical
diagnosis, policy effectiveness, and contact tracing.
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• We conduct model studies with the latest data to evaluate
how good they perform since their publication date.

• We collect the data sources and timeline of the key
policies and combine them with multiple data sources
to estimate the effectiveness.

The rest of this paper is organized as follows. In Section II,
we review the state-of-the-art models for epidemic prediction.
In Section III, we report the analytical studies about clinical
characteristics and diagnosis. We present the policy effec-
tiveness researches in Section IV. The latest technologies for
COVID-19 related contact tracing are reviewed in Section V.
Final, Section VI concludes this.

II. EPIDEMIC PREDICTION

The tremendous increase in the number of infected patients
with COVID-19 has drained the healthcare systems globally.
Based on the New York Times Data Set [10], Fig. 1 illustrates
how rapidly the virus spreads in the counties of New York
State (NYS), which is the epicenter of the coronavirus in
the United States. The heatmap figure plots the number of
infections per each county in NYS. On March 1st, there was
only one confirmed COVID-19 case in NY state; however,
the number increased to 67462, 286901, 382879 on March
30, April 25 and June 7. An urgent need exists to accurately
predict the epidemic. Many efforts have been made to estimate
the scale and time course of epidemics, evaluating the effec-
tiveness of public health interventions, and informing public
health policies.

A. Prediction Models

1) Exponential Model: Without effective responses (e.g. the
early stages of a pandemic), the number of infected patients
will grow exponentially over the time. Given the initial time
series data of diagnosed infections, we can get,

I(t) = I(0)× ert (1)

,where I(t) is the number of diagnosed infections over the
time and r is the growth rate, which can be obtained though
observed data at the moment when executing the model.

The authors in [11], [12] studied the exponential model,
however, in practice, the prediction fails to deliver reliable
numbers due to active responses from the government.

2) Logistic Model : Unlike the exponential model that only
works for the uncontrolled prevalence, the logistic growth
model is approximately exponential at first, but the growth
rate reduces as it approaches the model’s upper bound, called
the carrying capacity. In the logistic model, the growth is given
by [13],

I(t) =
N

1 + eb−c(t−t0)
(2)

, where I(t) is the cumulative number of confirmed cases, N is
the predicted maximum number of confirmed cases (carrying
capacity of the population), b and c are fitting coefficients
which can be obtained by using the existing data set, t0 is the
time when the first infection is observed and t is the number
of days since the first case.

Similar logistic growth and regression based models were
developed to predict trends of the pandemic [14]–[19]. For
example, authors [19] proposed a segment Poisson model that
coupled a power law with an exponential law to estimate out-
breaks. However, according to the latest evolution of COVID-
19 worldwide, the model consistently under predicts the final
epidemic size.

3) SIR Model: The Susceptible-Infectious-Recovered (SIR)
is a compartmental model that describes the transmission of
an infectious disease through individuals who pass through the
following five states: susceptible, infectious, and recovered.
Their distributions can be given as follows [12],

dS(t)

d(t)
= − β

N
× S × I (3)

dI(t)

d(t)
= (

β

N
× S − γ)× I (4)

dR(t)

d(t)
= γ × I (5)

, where β is the transmission rate, γ is the recover rate
recovery, and N = S + I + R is a constant The basic
reproduction number in SIR model is,

R0 =
β

γ
(1− I0

N
) (6)

As a popular base model for predicting COVID-19, SIR
has many variations in the literature. For example, a mod-
ified Susceptible-Exposed-Infectious-Removed (SEIR) epi-
demiological model was proposed in [20], which introduced
move-in, In(t) and move-out, Out(t) parameters to respect the
mass population in Wuhan during the Chinese New Year.
Additionally, a Stochastic SIR model (SSIR) was proposed
in [21] that takes the randomness into the prediction.

4) MetaWards: The author in [22] adapted an existing
stochastic metapopulation model of disease transmission to
predict the likely timing of the peak of the COVID-19 epi-
demic in England and Wales. The population was divided into
electoral wards in this model, and the author assumed that the
individuals would contribute to the force of infection in their
“home” ward during the night and their work ward during
the day. To estimate potential decreased transmission rate
during the summer months, the author replaced the constant
transmission rate with a time-varying transmission rate. The
equation of the transmission rate is,

r = β × (1− m

2
× (1− cos2π × t

365
)) (7)

, where m represents the magnitude of the seasonal difference
in transmission and ranges from 0 (no seasonality) to 1
(maximum seasonality with no transmission at the peak of
the summer).

However, besides the seasonal factors, the MetaWards
model fails to consider COVID-19 interventions, which results
in significantly overestimated trends of infections.
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(a) March 1st, 2020 (b) March 30th, 2020 (c) April 25th, 2020 (d) June 7th, 2020

Figure 1: Per-County Infection Map of New York State

5) SIDARTHE: A more comprehensive model was pro-
posed in [23]. The model SIDARTHE considers multiple
stages of the infection such that S, susceptible (uninfected);
I, infected (asymptomatic or paucisymptomatic infected, un-
detected); D, diagnosed (asymptomatic infected, detected);
A, ailing (symptomatic infected, undetected); R, recognized
(symptomatic infected, detected); T, threatened (infected with
life-threatening symptoms, detected); H, healed (recovered);
E, extinct (dead). Fig. 2 illustrates the stage transitions of
SIDARTHE.

Figure 2: SIDARTHE Model (Fig .1 in [23])

Specifically, it consists of eight ordinary differential equa-
tions, modeling the evolution of the population in each stage
over time.

Ṡ(t) = −S(t)× (αI(t) + βD(t) + γA(t) + δR(t)) (8)

İ(t) = S(t)× (αI(t) + βD(t) + γA(t)

+δR(t))− (ε+ ζ + λ)I(t)
(9)

Ḋ(t) = ε× I(t)− (η + ρ)D(t) (10)

Ȧ(t) = ζ × I(t)− (θ − µ+ κ)A(t) (11)

Ṙ(t) = ηD(t) + θA(t)− (υ + ξ)R(t) (12)

Ṫ (t) = µA(t) + vR(t)− (σ + τ)T (t) (13)

Ḣ(t) = λI(t) + ρD(t) + κA(t) + ξR(t) + σT (t) (14)

Ė(t) = τT (t) (15)

, where the state variables (upper Latin letters) are the
population fraction of each stage and considered parameters
(Greek letters) are positive numbers. The α, β, γ and δ are
the transmission rate of contact between S and I, D, A and
R. ε and θ are the detection probabilities of asymptomatic
and symptomatic cases, respectively. ζ and η represent the
probability rate at which an infected subject, respectively
not aware and aware of being infected. µ and v denote the
probabilities of undetected and detected infected subjects that
develop serious symptoms. τ is the mortality rate. λ, κ, ξ, ρ
and σ are the recovery rates for the patients in five classes (S,
I, D, A and R).

B. Post Publication Model Evaluation

The SIDARTHE model utilizes much more parameters
than the previously mentioned models. Based on the code
provided by authors, Fig. 3 plots the midterm evolution of
the pandemic in Italy, which contains three additional curves
with the latest data, Real Diagnosed Cumulative Cases (black),
Real Diagnosed Total Infected (pink) and Real Diagnosed
Total Recovered (light blue). Please note that the model uses
data from 0 to 45 days to obtain the best parameter set. The
solid lines (except the additional three) are estimates of the
actual pandemic, and the dotted lines are the estimates of the
diagnosed pandemic.

As we can see from Fig. 3a, the predicted values of diag-
nosed cumulative cases are always lower than the real values
from 45 to 116. However, the difference between the two
curves is reducing over time. It is likely that the restrictions
were taking effect gradually. Fig. 3b plots the prediction of a
stricter lockdown enforcement. The curve flattens quicker than
the real case (black curve). Fig. 3c assumes a milder lockdown
with widespread testing and contact tracing. It fits well with
the real curve with a stable gap, which reflects the shortage
of tests and contact tracing. Additionally, the real diagnosed
total number of recovered cases are more than expected. This
is due to the fact that more resources, such as ventilators, are
available to the patients.

Almost all reviewed models fit the curve very well before
their publication date; however, the performance of their esti-
mations is yet to be discovered. In Table I, we present the post
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(a) Predicted epidemic evolution
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(b) The effect of lockdown
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(c) The effect of testing

Figure 3: Followup of the SIDARTHE model with 70 days post-publication data

-publication statistics of 13 models and 17 countries published
from Feb. 28 to Jun. 6. For the papers, Table I collects the
Predicted Peak Date (P. Peak Date), Predicted Peak Value
(P. Peak Value, largest number daily new cases) and Predict
Size (P. Size, e.g. the predicted final size of the pandemic).
From the database of World Health Organization [24], we
queried the data (on Jun. 18, 2020) of Real Peak Date (R.
Peak Date, the date of largest daily new cases), Real Peak
Value (R. Peak Value, the largest number of daily new cases)
and Current Size (the current total infections). We can see
from the table that models [13], [20], which predict China will
produce reasonably good results on the predicted peak date and
size. This is because, when they published in late February
and mid March, the curve of infections in China had already
been flattened and was reduced, which means China was on
track towards the end of the pandemic and thus, the models
have enough data for training and fitting the curve. Except
for China, COVID-19 was still quickly spreading in many
countries in late March and early April. For example, on April
8, the model in [14] predicts that the final pandemic size would
be 71950, 36240, 10420, 85750, 85750, 41850, 61420, 1560,
for Italy, Iran, South Korea, Germany, France, USA, Spain and
Japan, respectively. With the latest data on Jun. 18, however,
most of these numbers are significantly underestimated, 230%,
438%, 17.6%, 118%, 313%, 4900%, 297%, 1000% for these
counties. The most accurate prediction was for South Korea
since, at the time of its publication, the trend in South Korea
was clear enough for the model.

III. CLINICAL CHARACTERISTICS AND DIAGNOSIS

The purpose of this retrospective cohort study is to seek
a faster and more reliable diagnosis method of COVID-19
and acquire more accurate conclusions concerning the clinical
characteristics and mortality risk factors for patients with
confirmed COVID-19 infection. In this section, we review
the literature from traditional meta analysis and artificial
intelligence aided analysis.

A. Meta Analysis

The authors in [31], [32] screened medical databases from
PubMed [33], Cochrane Library [34], Embase databases [35],

Scopus [36], and Google scholar [37]. They collected the
relevant literature dated up to February 24 [31] and May 1,
2020 [32], and then proposed a meta-analysis of a quantitative,
formal procedure that aggregated, integrated, and reanalyzed
the results of several independent studies.

As a subset of the systematic review, meta-analyses attempt
to collate empirical evidence fitting previously specified crite-
ria to provide a more precise estimate of the effect of treatment
or the risk factors concerning a disease [38]. The PRISMA
(Preferred Reporting Items for Systematic reviews and Meta-
analyses), which contains a 27-item checklist and a four-phase
flow diagram, is a guide to improve the reporting of systematic
reviews and meta-analyses [39]. The forest plot is commonly
used to present the results of meta-analyses, where each study
is shown with its effect size and corresponding 95% confidence
interval. The risk ratio (or relative risk) and the odds ratio are
the two most common measures of effect used for dichotomous
data in meta-analysis, while the standardized mean difference
(SMD) estimation is the dominant method used for continuous
data. The random-effects model in meta-analysis assumes the
true treatment effect differs across studies and could generate
an estimate of the average treatment effect [40]. The greatest
benefit of meta-analysis is the ability to examine the degree
of heterogeneity among studies. A statistical test such as
Cochrans X 2test or the Q-test is used to indicate the extent of
heterogeneity. The author in [41] developed measures for the
impact of heterogeneity and proposed three suitable statistics:

H2 =
Q

k − 1
(16)

, where Q is X 2 heterogeneity statistic, and k−1 is its degrees
of freedom;

R2 =
vR
vF

(17)

, which represents the ratio of the standard error of the
underlying mean from a random effects meta-analysis to the
standard error of a fixed effect meta-analytic estimate;

I2 =
H2 − 1

H2
(18)

, the inconsistency index that describes the proportion of total
variation in study estimates due to heterogeneity.
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Table I: Epidemic Prediction Post Publication Evaluation (as of June 18 2020)

Model Publish Date Region P. Peak Date P. Peak Value P. Size R. Peak Date R. Peak Value Current Size

SEIR [20]
LSTM [20] 02/28/20 China 02/18/20

02/04/20
4169
3886

122122
95811 02/13 15152 84867

Logistic Model [13] 03/16/20 China 02/06/20 ∼8000 80261 02/13 15152 84867
SIR [25] 03/16/20 China 02/27/20 N/A 120000 02/13 15152 84867

SIDARTHE [23] 03/22/20 Italy 03/15 N/A 181080 03/21 6557 237500
SIR [12] 04/06/20 India 04/12/20 1500 13000 06/14 11929 354065

Adjusted SEIR [14] 04/08/20

Italy
Iran

South Korea
Germany
France
USA
Spain
Japan

03/31
03/31
03/30
04/03
04/02
04/07
04/01
03/30

N/A

71950
36240
10420
85750
36980
41850
61420
1560

03/21
06/04
03/01
03/28
04/01
04/26
04/01
04/12

6557
3574
1062
6294
7500
38509
9222
743

237500
195051
12257

187184
153045
2098106
244328
17668

Segmented Poisson [19] 04/20/20

France
Italy
USA
UK

Germany
Canada

04/07
03/26
04/07
04/09
03/31
04/06

∼7500
∼5500
∼32500
∼4800
∼5500
∼1350

219583
172451
835158
133206
159437
33948

04/01
03/21
04/26
04/12
03/28
05/04

7500
6557
38509
8719
6294
3793

153045
237500
2098106
298140
187184
99147

Gaussian [26] 04/27/20

Greece
Netherlands

Germany
Italy
Spain
France

UK
USA

04/03
03/31
04/02
03/26
03/31
04/05
04/12
04/05

∼100
∼1100
∼6100
∼5950
∼8500
∼5500
∼6500
∼30000

2811
23713
14003

156975
173525
141973
165443
654207

04/21
04/10
03/28
03/21
04/01
04/01
04/12
04/26

156
1335
6294
6557
9222
7500
8719
38509

3203
49412

187184
237500
244328
153045
298140
2098106

Modified SEIR [27] 04/29/20 Spain
Italy

04/29
04/25 N/A ∼ 125000

∼ 10000
04/01
03/21

9222
6557

244328
237500

SEIRQRP [28] 04/29/20 USA 05/18 N/A 820000 04/26 38509 2098106

Nonlinear LR model [29] 05/13/20

Pakistan
USA
Italy
Spain

06/04
04/30
04/28
05/04

48000
∼ 1100000

19700
23600

N/A

06/13
04/26
03/21
04/01

6884
38509
6557
9222

154760
2098106
237500
244328

SIR [30] 06/06/20 Algeria 4/13 106 244400 04/02 263 11147

The Newcastle-Ottawa Scale (NOS) [42] was used to eval-
uate all literature, with the highest quality of literature scoring
nine stars. Articles with the NOS score of higher than five stars
were considered high-quality publications in the study. The
random-effects model for meta-analysis was used to reduce
the influence of heterogeneity between the included studies in
the final conclusion [31].

A total of 284 articles were retrieved, where 39 papers
were eliminated due to repeated retrieval, 212 papers after
reading abstracts, and 23 after reading the full text, a total of
10 articles of literature [43]–[52], including data from 50,466
patients were analyzed in author [31]s research. Original data
were transformed by the double arcsine method to make them
conform to the normal distribution, and the initial conclusion
was then restored via the formula P = (sin( tp2 ))

2 to reach the
final conclusion. The Egger test with P < .05 was performed
in response to publication bias, where the values larger than
were considered as demonstrating no publication bias. The
statistical software Stata version 12.0 was used to carry out
the single-arm meta-analysis, and the results were presented
in Table 1 (with Egger test results, which indicates there
existed a publication bias in the meta-analysis of ARDS (Acute
Respiratory Distress Syndrome) group (P = 0.008)).

The three most common symptoms among people who

Table II: Clinical Characteristics for Patients with Confirmed
COVID-19 via Meta-analysis [31]

Symptom Meta-analysis Adjusted results P

Fever 2.47
95% CI: 2.26 - 2.67

0.891
95% CI: 0.818 - 0.945 0.866

Cough 2.03
95% CI: 1.89 - 2.17

0.722
95% CI: 0.657 - 0.782 0.278

Muscle soreness
or fatigue

1.42
95% CI: 0.96 - 1.88

0.425
95% CI: 0.213 - 0.652 0.09

ARDS 0.79
95% CI: 0.43 - 1.15

0.148
95% CI: 0.046 - 0.296 0.008

Abnormal
chest CT

2.77
95% CI: 2.57 - 2.97

0.966,
95% CI: 0.921 - 0.993 0.908

Patient in
critical condition

0.88
95% CI: 0.73 - 1.03

0.181
95% CI:0.127 - 0.243 0.826

Death of patient 0.42
95% CI: 0.33 - 0.50

0.043
95% CI: 0.027 - 0.061 0.258

were hospitalized with confirmed COVID-19 infection are
fever (89.1%), cough (72.2%), and muscle or general fatigue
(42.5%). Diarrhea, hemoptysis, headache, sore throat, shock,
and other symptoms are rare. 14.8% of patients had ARDS;
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18.1% of all infected cases were defined as severe cases, and
the mortality rate was 4.3%. Chest CT scans were generally
performed at the time of admission, and almost all patients
(96.6%) revealed abnormal results. The representative radiol-
ogy findings in COVID-19 patients are shown in Fig. 4 and
Figure 2 5. The common pattern on chest CT scans for pa-
tients with COVID-19 infection were ground-glass opacity and
bilateral patchy shadowing Fig. 4, and the bilateral multiple
lobular and subsegmental areas of consolidation were found
on the typical chest CT images of severe cases [43].

Figure 4: Representative chest radiographic manifestations in
a non-severe and a severe case with COVID-19 [46]

Figure 5: Representative Chest Radiographs and CT Images of
a Critically Ill COVID-19 patient in Seattle Region USA [53]

The authors in [32] systematically reviewed the present
evidences towards the association between age, gender, hy-

pertension, diabetes, chronic obstructive pulmonary disease
(COPD), cardiovascular disease (CVD), and risk of death due
to COVID-19 infection. They summarized the available find-
ings by meta-analysis. The classic Cochrans Q test [54] was
performed to examine the heterogeneity across studies, where
I2 ≥ 50% was considered to demonstrate such heterogeneity.
The formal test of Egger was used, and all statistical analyses
were conducted by Stata, version 14.0.

A total of 14 studies (twelve conducted in China [44],
[46], [55]–[64], one in Italy [65], and one in Iran [66])
with 29,909 COVID-19 infected patients and 1,445 cases
of death were included in the research [32], and the meta-
analysis results are presented in Table III. The results of Eggers
test demonstrated that the hypothesize on the association of
demographic characteristics and comorbidities with COVID-
19 mortality did not depend on a single study. The authors [32]
findings supported the hypothesis that patients who were of
ages older than 65 years, male, with coexisting disorders
including hypertension, CVDs, diabetes, COPD, and cancer
were associated with higher risk of mortality from COVID-19
infection.

Table III: Mortality Risk Factors for patients with confirmed
COVID-19 via Meta-analysis [32]

Study-ID pooled
Odds Ratios I2(%) p

Hetero.
p

Egger

Age
≥ 65 v.s. <65

4.59
95% CI: 2.61 - 8.04 67.10 0.01 0.185

Gender
Male v.s. Female

1.50
95% CIs: 1.06 - 2.12 76.30 0.002 0.388

Hypertension
Yes v.s. No

2.70
95% CIs: 1.40 5.24 92.6 <0.001 0.065

Cardiovascular
diseases, Yes v.s. No

3.72
95% CIs: 1.77 7.83 89.10 <0.001 0.068

Diabetes
Yes v.s. No

2.41
95% CIs: 1.05 5.51 93.60 <0.001 0.117

Chronic obstructive
pulmonary disease

(COPD), Yes v.s. No

3.53
95% CI: 1.79 6.96 72.20 0.001 0.178

Cancer
Yes v.s. No

3.04
95% CIs: 1.80 5.14 41.60 0.114 0.054

B. Artificial Intelligence Aided Analysis

A confirmed case of COVID-19 infection is routinely de-
fined as a positive result on high-throughput sequencing or
RT-PCR assay of nasal and pharyngeal swab specimens [46].
However, the RT-PCR test has three limitations:
• The process is very slow and can take up to two days to

complete.
• The serial testing may be required to eliminate the

possibility of false negative results.
• In some areas, there exists a shortage of RT-PCR test kits

Those challenges underscore the urgent need for alternative
methods of rapid and accurate diagnosis of patients with
COVID-19.
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Based on initial chest CT scans and associated clini-
cal information (including epidemiological history, leukocyte
counts, symptomatology, patient age and sex), the authors [67]
designed a deep learning based model to identify COVID-
19 infection that could rapidly identify COVID-19 positive
patients in the early stages. A deep convolutional neural
network (CNN) was first developed to learn the imaging
characteristics of COVID-19 patients on the initial CT scan.
The support vector machine (SVM), random forest model,
and multilayer perceptron (MLP) classifiers were then used
to classify COVID-19 patients based on clinical information,
while MLP showed the best performance on the tuning set and
only MLP performance would be reported hereafter. Finally,
a neural network model combined with radiology data and
clinical information was generated to predict COVID-19 infec-
tion status. The generated models were evaluated on the test
set, and their performance was compared to one fellowship-
trained thoracic radiologist and one thoracic radiology fellow
(Table IV). Two-sided P values were calculated by comparing
the sensitivity, specificity, and area under the curve (AUC)
between each of the two models. The CIs of AUC were
calculated with DeLong methods [68] for evaluation. The
sensitivity and specificity comparisons were calculated via the
exact Clopper-Pearson method [69] to compute the 95% CI
shown in parentheses and exact McNemars test [70] for P
value.

Table IV: Models in [67]

Positive
but

normal CT
AUC, P Sensitivity, P Specificity, P

Senior
Thoracic

Radiologist
0 / 25

0.84
(80.0, 88.4),

N/A

0.746
(66.4, 81.7),
P = 0.0501

93.8
(88.5, 97.1),
P = 0.005

Thoracic
radiology

fellow
0 / 25

0.73
(68.3, 78.0),

NA

0.560
(47.1, 64.5),
P = 0.0004

90.3
(84.3, 94.6),
P = 0.090

CNN Model 13 / 25
0.86

(0.821, 90.7),
P = 0.00146

0.836
(76.2, 89.4),

P = 1.00

75.9
(68.1, 82.6),

P=0.031

MLP Model 16 / 25
0.80

(0.746, 84.9),
P = 0.0004

0.806
(72.9, 86.9),

P =0.442

0.683
(60.0, 75.8),
P = 0.0004

Joint Model 17 / 25
0.92

(88.7 94.8),
NA

84.3
(0.771, 90.0),

NA

82.8
(0.756, 88.5),

NA

The proposed joint AI algorithm [67] combined with both
clinical data and CT imaging performed well in sensitivity
(84.3%) and specificity (82.8%), and achieved an AUC of 0.92.
It can be hypothesized that AI systems will help to rapidly
diagnose COVID-19 infected patients when chest CT scans
and associated clinical history are available, and therefore help
in training the health system and combating the COVID-19
pandemic.

Based on the images produced by X-rays and CT scans, re-
searchers attempted to design COVID-19 specific deep neural
networks to increase the accuracy of the diagnosis [71]–[74].
Due to very limited data sets, authors of [74] used transfer

learning to train the deep CNNs. Firstly, they applied transfer
learning on different CNNs models, such as VGG-19 [75],
MobileNets V2 [76], Inception V4 [77] and Xception [78].
Then, the best two models on accuracy, MobileNet v2, and
VGG-19 were selected for COVID-19 classification, which
involves 224 images with positive Covid-19, 700 images
with confirmed common bacterial pneumonia, and 504 images
without diseases.

Table V: Models in [74]

Model Predicted
labels

Actual
COVID-19

Actual
Pneumonia

Actual
Normal

MobileNet v2
Covid-19

Pneumonia
Normal

222
2
0

8
495
1

27
27
646

VGG-19
Covid-19

Pneumonia
Normal

222
3

13

8
460
36

7
26
667

Furthermore, COVID-Net [71] makes predictions using a
design to fully understand the critical factors associated with
positive cases, which helps clinicians to improve screening
and in the meantime, audit COVID-Net in a responsible and
transparent manner to ensure that only relevant information
from the CXR images is leveraged in the decision making.

While many efforts have been made to utilize artificial
intelligence assisted analysis in combating COVID-19, the
biggest challenge in the field is the shortage of data sets. We
summarize the existing data sets that are publicly available
below.

• COVIDx [79]: It is a combined data set from five different
sources that contain Chest radiography images of 7966
normal, 5451 Pneumonia, 258 COVID-19 patients.

• Italian radiological cases [80]: It contains 115 COVID-19
patients with detailed symptomatography and images at
different stages.

• BIMCV-COVID19+ [81]: It is a large data set with
chest X-ray images and CT imaging of COVID-19 pa-
tients along with their radiographic findings, pathologies,
polymerase chain reaction, immunoglobulin G and im-
munoglobulin M (IgM) diagnostic antibody tests, and
radiographic reports. Currently, it includes 1380 CX, 885
DX, and 163 CT studies.

IV. POLICY RESPONSES AND EFFECTIVENESS

As the COVID-19 pandemic continues to spread, gov-
ernments and international organizations are implementing
various policies, which aim to deliver systematic, effective, and
coordinated responses to flatten the curve, save lives and restart
the economy. The following items summarize basic policy
responses that were widely implemented by the governments
globally.

• Social distancing: Keep space (e.g. 6 feet) between your-
self and other people outside of your home. It means
the reduced capacity for indoor businesses and activities,
such as restaurants and schools.
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• School closures: In most schools, it is impossible to
maintain social distancing in the classroom. Most of the
schools were closed in response to the pandemic and
transitioned to online lecturing.

• Travel restrictions: Stop non-essential travels, travel bans
on specific counties or regions, border closures, e.g. US-
Canada and US-Mexico closed on March 18.

• Face covering and mask requirement: Cloth face cov-
erings are required when not working alone and when
interacting with the public, masks should be worn.

• Stay in the home: Except essential workers, all should
remain at home and away from other people unless it is
absolutely necessary to go out (e.g. grocery shopping and
doctor visit). Note California has a similar policy named
shelter in place.

• Phased reopening: Based on the government evaluations,
reopening the economy following a phased structure such
that each phase remains around two weeks for further
evaluation.

Fig. 6 plots the timeline of key police interventions from
government of New York (NY) State, California (CA) State,
Italy, Sweden and United States Federal along with the com-
monly used analytical data sources from Google Coronavirus
Search Trends [82], Daily Infection Curves [2] and Google
Community Mobility Report [83]. The Google Search Interest
demonstrates the degree of the propaganda that each region
involved, where the values of interests stay at high level
in Italy starting from early March, but in NY and CA the
interest started jittering in mid-March. When various policies,
such as different levels of stay-at-home order, implemented
in these regions, the community mobility decreased quickly
in NY, CA and Italy for workplaces, retail/recreation, which
were not recommended or prohibited under the order. The
degrees of decreases can reflect the level of restrictions,
for example, in Sweden, there were roughly 35% reduce in
workplaces, however, the value in Italy was 75%. This is
because Sweden implemented a partial stay-at-home policy,
which only recommend vulnerable people (e.g. seniors) to stay
at home.

A. Social Distancing Policies

The mobility data is used to gauge the effectiveness of
social distancing and stay at home orders, as well as how
well they were followed. The authors in [84] ranked different
intervention policies based on their effectiveness, by using a
difference-in-differences methodology, location-based mobil-
ity, and daily state-level data COVID-19 tests and confirmed
cases. The mobility data collected by the Google Commu-
nity Mobility Reports [83] was split into county-level data
and state-level data. Since most of the intervention policies
were implemented state-wide, the authors [84] performed
an analysis based on the state-level data and had already
collected movements for 50 states and the District of Columbia
for 29 days with 1479 observations. The web-scraping daily
temperature data was captured for the top 5 biggest cities
in each state from Weather Underground [85] (commercial
weather service with real-time weather information). The data

for the daily state-level numbers of tests and positive cases
were collected from the COVID Tracking Project website from
March 9 to April 20, 2020, and the author [84] had data on all
50 states and the District of Columbia for 43 days, providing
2193 observations.

The linear regression model and a difference-in-differences
methodology were used to evaluate the effect of the COVID-
19 policies by authors [84]. A binary variable was defined for
each policy, set to one if a given state adopts that policy after
a certain day during the sample period, and otherwise to zero.
The regression equation is:

Yst = α+Xstβ + ω ∗ tempst+δs + τt + εst (19)

, where Y is the changes in visiting various places; X
represents the matrix for COVID-19 policies, temp indicates
state-level mean daily temperature, δ and τ are sets of state
and day-of the month fixed effects. α and β are the fitting
coefficients.

When estimating the effect of COVID-19 policies on the
number of confirmed cases, it studied the Poisson regression
model:

Posst = exp

(
α+

∇>=15∑
τ<=−7

βτXτ,st + ω × tem pst

+λ× log(tests + 1) + δs + τt

) (20)

,where Posst is the state-level daily number of confirmed
cases. Since the confirmed cases in each state heavily de-
pended on the number of conducted COVID-19 tests, the
log-transformed version of the test number variable was used
to interpret the estimated coefficient as elasticity. The results
demonstrated that statewide stay-at-home orders significantly
increased the measure associated with presence at home by
about six fold (relative to states without policy). Though the
policies such as non-essential business closures and restaurant
and bar limits have positive and statistically significant impact
on presence at home, their effect sizes were about half of what
observed for stay-at-home orders. Meanwhile, there existed a
steady decline in the number of daily confirmed COVID-19
cases after 10-15 days after such policies were implemented.

Similarly, a research group in University of Wisconsin-
Madison [86] used two social distancing metrics.
• The median of individual maximum travel.
• The home dwell time.

The data are derived from large-scale mobile phone location
data provided by Descartes Lab [87] and SafeGraph [88]. The
metrics are used to evaluate the effectiveness of series of stay-
at-home policing on decelerating the spread of the COVID-
19 epidemic by mathematical curve fitting models and mech-
anistic epidemic prediction models. Their results [86] con-
firmed that state implemented stay-at-home orders increased
the amount of time spent at home and the increasing stay-at-
home dwell time would help to decrease the amount of daily
cases of COVID-19. In conclusion, both studies [84], [86]
confirmed that the amount of positive daily COVID-19 cases
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February March April May June

Travel Restriction: Screening 01/23

Travel Restriction: China Travel Ban 02/02

Quarantine: From high-risk regions 02/02

Travel Restriction: China Travel Ban 01/31

Travel Restriction: 
Lmited lockdown 02/22

Stay at home: 
Regional 02/23 School closure: 

National 02/25

Travel Restriction: 
Regional lockdown , 02/29

Travel Restriction: 
Ban high-risk regions , 03/02

Stay at home: 
Limited regions 03/16Stay at home: 

National lockdown 03/09

Travel Restriction: 
Ban EU  03/02

Travel 
Restriction: 
Ban UK and 
Ireland. 03/16

Stay at home: 
Close most public 
transportation 
(Recommend) 03/11

School closure: 
State-wide 03/16

School closure: 
State-wide 
03/19 Travel Restriction: 

Close Border 
03/21

Stay at home: 
State-wide 
03/19

Stay at home:  State-wide 03/20

Social distancing:  State-wide 03/20

Travel Restriction: 
Ban incoming 
travel 03/19

Mask Required:
Limited region 04/20

Stay at home: 
Close most public 
transportation 
(Required) 04/13

Phase 1 Reopening: 04/22

Phase 2 Reopening: 05/08

Phase 1 Reopening: 
Limited regions 
05/15

Expended Phase 2 Reopening: 06/01

Italy        

CA        

NY        

Sweden        

US Federal        

Figure 6: Comparison of Google Trends, Community Traffic and Daily Infections of New York, California, Italy and Sweden
along with the timeline of the policies

decreased as more stay-at-home policies were implemented,
with the stay-at-home orders being the most effective and bar
and restaurant closings being the least effective.

By using metro traffic data to compare epidemics in two ma-
jor cities with the largest number of COVID-19 reported cases
(Daegu and Seoul), the authors in [89] described potential
roles of social distancing in mitigating the spread of COVID-
19 in South Korea. The authors collected daily numbers of
reported cases data in two geographic regions from the Korea
Centers for Disease Control and Prevention (KCDC) between
January 20 to March 16, 2020, and the daily metro traffic in
two cities between 2017 to 2020 was obtained from data.go.kr
and data.seoul.go.kr.

The time-dependent reproduction number Rt, which repre-
sents the average number of secondary cases caused by an
average individual, given conditions at time t, was estimated
using the following equation with a 14-day sliding window:

Rt =
It∑14

k=1 It−kwk
(21)

,where It is the reconstructed incidence time series, for exam-
ple, the number of infected cases on day t, and wk represents

the generation-interval distribution randomly drawn from a
prior distribution.

After comparing the reconstructed incidence and estimates
of Rt in Daegu and Seoul, the results showed that the estimates
of Rt gradually decreased and eventually dropped below 1
about one week after the reporting of the first case, while the
metro traffic volume also decreased simultaneously. The clear,
positive correlations between the normalized traffic and the
median estimates of Rt were found in both Daegu (r = 0.90;
95% CI: 0.79-0.95) and Seoul (r = 076; 95% CI: 0.59-0.87),
which indicated that staying away from the metro and traveling
less had a positive correlation with preventing spreading the
virus.

B. Travel Restriction, School Closure and Large-scale Lock-
down

To reduce the spread of COVID-19 pandemic in China,
restrictions on mobility (hereafter called cordon sanitaire)
were imposed on Wuhan City, Hunbei province on January
23, 2020 [90]. To elucidate the role of case importation in
transmission in cities across China, the authors collected real-
time mobility data from Baidu Inc., together with epidemio-
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logical data from each province, and detailed case data with
reported travel history. These data would help to ascertain
the impact of control measures. Three different COVID-19
“Generalized” Linear Models, GLM, were built to evaluate
hypotheses regarding the effect of mobility and testing on
COVID-19 dynamics; model 1 and model 2 were a Poisson
GLM and a negative binomial GLM to estimate daily cases
counts, where model 3 used a log-linear regression to estimate
daily cumulative cases.

The findings in [90] confirmed that the travel restrictions
were particularly helpful in the early stage of an outbreak when
it was more confined but became less effective as the outbreak
became more widespread. The real-time human mobility data
from Baidu Inc. presented an expected decline of importation
after the establishment of the cordon sanitaire. Since the travel
bans prevented traveling into and out of Wuhan around the
time of the Lunar New Year celebration, the bans may help
to reduce further dissemination of COVID-19 from Wuhan.
Except for Hubei, the study also estimated COVID-19 growth
rates in all other provinces and found that all other provinces
experienced faster growth rates before travel restrictions and
substantial control measures were implemented. After the
control measures were implemented, growth rates became
negative.

The authors in [91] used the example of Japan, the country
in Asia that received the largest number of visitors from China,
to quantify the impact of the drastic reduction in travel volume
on the COVID-19 transmission dynamic outside China, and to
estimate reduction in COVID-19 infections and the chance of
an outbreak outside China as a result of such travel policies.
The epidemiological datasets of confirmed COVID-19 cases
outside China were collected from government and news
websites as of February 6, 2020. The author [35] quantified
the impact on the reduced number of exported cases, the
reduced probability of a major epidemic overseas, and the
time delay to a major epidemic gained from the reduction
in travel volume. The author [35] assumed the epidemic start
data was set on December 1, 2019 (Day 0), and then Wuhan
was put in lock-down from Day 53 (January 23, 2020). Since
the mean incubation period of COVID-19 was nearly 5 days,
thus, the impact of reduced travel volumes would start to be
interpretable from Day 58. The counterfactual model was used
to estimate the reduced volume of exported cases, and Poisson
regression was used to fit the following model through Day
57 with following equation:

E(c(t)) = co exp(rt) (22)

where c(t) was the incidence of exported cases on Day t, co
was the initial value at t = 0 and r presents the exponential
growth rate of exported cases outside China. The reduced
travel volume of exported cases by Day 67 was calculated
by,

V =

67∑
t=58

(h(t)− E(c(t))) (23)

, where h(t) showed the observed number of cases on day t.
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Figure 7: Unemployment Rates in United States 2020

According to the calculations and predicted curve, the
expected number of confirmed COVID-19 cases between Day
58 (January 28, 2020) and Day 67 would be 321 (with 95%
confidence interval: 181, 544), and a total of 95 cases were
diagnosed in the empirical observation. Based on the results,
the authors estimated that 226 cases (95% CI: 86, 449) were
prevented from being exported across the world as a result of
the Wuhan lockdown. Furthermore, the researchers considered
the probability of a major pandemic and the possible delay,
specifically focusing on Japan. Without travel restrictions,
researchers found that the probability of a major pandemic
would be more than 90%, while it would be “broadly ranged
from 56% to 98%” with restrictions. When mobility is limited,
the delay (in days) in time to pandemic is decreased. Further-
more, this paper considers the reduction in COVID-19 spread
through contact tracing, where risk reduction reached 37%
when 50% of those infected were traced. In Japan, researchers
found that the probability of a major epidemic was estimated
to be reduced by 7%-20% and a 2-day delay was gained in
the estimated time to a major epidemic.

C. Long-term Impact of COVID-19 policies

With nearly every state in the United States placing stay-
at-home order and shutting down schools for the rest of the
2019 - 2020 academic year due to the COVID-19 pandemic.
The long-term effect of these policy responses attracts many
researchers. The Fig. 7 plots the unemployment rate in United
States that can reflect the immediate economic impacts of the
policies.

During the pandemic, many employees are unable to travel
to work. The authors in [92] investigate on how many jobs can
be done at home based the data collected by the Occupational
Information Network (O*NET) surveys that covered “work
context” and “generalized work activities”. They also took
this data and merged it with data from the Bureau of Labor
Statistics to show the prevalence of each job listed in the
United States. The results from this paper showed that about
37% of United States jobs can be done from home, which
account for 46% of all wages.

There are more than 55 million students are out of school
without an explicit expectation of school reopening. Yet,
education leaders have little information on how the education
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system has been impacted by school closures. How to model
the potential impact of COVID-19 school closure based on the
existing data becomes a critical topic in the field of educational
policy.

To project the learning loss caused by school closure, the
authors in [93] assumed that the learning loss due to COVID-
19 can be deemed as an extended learning loss due to summer
break. They used the data from the past MAP Growth assess-
ment takers (Grades 3-8 students taking exams in 2017-18 and
2018-19 school year) to estimate the average summer loss.
By using the “typical” school year growth rates and summer
loss as a reference, they built regression models to project
the learning loss due to COVID-19. Under these models, it is
estimated that the students would obtain approximately 63 -
68% of the learning gains in reading relative to a typical school
year and with 37-50% of the learning gains in math if they
were able to return schools in 2020 Fall. The worry in learning
loss also exists in worldwide. The article [94] analyzed 27
datasets from low- and middle-income countries to estimate
year-on-year growth in student reading achievement under
normal conditions. They assumed that learning loss can be
estimated as a constant relative to the percent of schooling
lost. (e.g. grade 3 students were consistently reading about
20 words per minute faster than their grade 2 counterparts at
given percentiles in consecutive grades.) While a 30% learning
loss (i.e. the equivalent of an approximately 3-month school
closure) would yield a 5.9 correct word per minute loss for
mid-percentile grade 3 students (30% of the 19.8 correct word
per minute expected gain).

Predicting the long-term effect of COVID-19 is still in a
very early stage, related communities are encouraged to collect
data from various sources.

V. CONTACT TRACING

In public health, contact tracing is the process of identifica-
tion of persons who may have come into contact with an in-
fected person and subsequent collection of further information
about these contacts. In practice, however, it is a challenging
task to record the close contact (e.g. 6 feet) through daily
routine intersects.

The researchers are rapidly coalescing around applications
for proximity tracing. Different technologies are been utilize
in this field. For example, the Bluetooth signal strength can
be used to determine whether two smartphones were close
enough together for their users to transmit the virus.

The two dominant mobile operating systems owners, Apple
and Google published Exposure Notification (a.k.a Privacy-
Preserving Contact Tracing Project) in late April. It is a
system that contains public available specifications developed
by Apple and Google. Exposure Notification utilizes Bluetooth
Low Energy technology and privacy-preserving cryptography
to decide whether a specific user may have recently been
within the proximity of someone that had been infected with
COVID-19. Due to security, privacy and political concerns,
however, some governments (e.g. Norway, France and United
Kingdom) tend to develop their own version the application.
We summarize the mainstream contact tracing application
below.

• Singapore, TraceTogether [95]: it uses Bluetooth to ap-
proximate your distance to other phones running the
same app and stores data for up to 25 days. It does not
collect GPS locations or data about users’ WiFi or mobile
network.

• China, Chinese health code system [96]: it is built inside
two hugely popular applications WeChat and Alipay in
China, to provide a health survey and location based
colored health code. The mobile network association is
collected at backend to track users location.

• Austria, StoppCorona [97]: it is an open-source project
for bluetooth based contact tracing. It claims to use a
decentralized approaches for the tracing.

• Hong Kong, StayHomeSafe [98]: the application together
with a wristbands, which is given to all arrivals at the
airport, is used to strictly enforce 14-day quarantine.
The users need to scan an unique QR code to pair the
wristband with the app. Once home, they are to walk
around the apartment to calibrate the wristband.

• South Korea, Corona 100 [99]: it utilizes government
data, alerts users when they come within 100 meters of
a location visited by an infected person. The GPS data is
used to keep tracking the users’ location.

• France, STOPCovid [100]: it relies on Bluetooth Low
Energy to build record the users nearby. If a user test
positive of COVID-19, he/she would get a QR code from
the doctor and the user can choose to open the app and
enter that code to notice the people that he/she interacted
with over the past two weeks.

• Japan, COCOA [101]: it is developed by a group of
engineers at Microsoft and utilizes Exposure Notification
platform. It records encrypted data flagging phones that
have been within one meter for more than 15 minutes;
when one person reports the fact that they have tested
positive for COVID-19, those other users will be notified.

• India, Aarogya Setu [102]: based on the both Bluetooth
and GPS technologies, it lets users know if they have been
near a person with Covid-19 by scanning a database of
known cases of infection. The gathered the data stores on
the servers and shared with the government.

• Italy, Immuni [103]: it follows the standards of Exposure
Notification, which uses Bluetooth to swap codes between
mobile devices.

• Norway, Smittestopp [104], it utilizes both Bluetooth and
GPS singles to estimate user proximity as a means of
calculating exposure risk to COVID-19. In addition, it is a
centralized application architecture, which means the data
is uploaded to a central server controlled by the health
authority, instead of being stored locally on devices.

• United Kingdom, NHS COVID-19 App [105]: it lever-
ages a centralized design that uses Bluetooth to trace
the users and stores data on NHS’s servers. (UK is in
the transition to move the application under Exposure
Notification specifications.)

App-based contact tracing is necessary and useful to control
the COVID-19 pandemic since not enough to quarantine
people only after symptoms onset. To reduce infections, when
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a person is confirmed with COVID-19 infection, one should
act quickly to find all people this person was in close proximity
with. Only a digital, largely automatic solution would help to
conduct such fast contact tracing. However, how to effectively
evaluate these applications are still under investigation.

The authors in [106] used published parameters for the incu-
bation time distribution (5.2 days) and the epidemic doubling
time (5.0 days) from the early epidemic data in China to
develop a mathematical model for COVID-19 infectiousness to
analyze the contribution of different transmission routes. The
model estimated the basic reproductive number R0 equaled
two in the early stages of the epidemic in China, while
the contributions to R0 included four parts 1) 46% from
presymptomatic individuals (who had not shown symptoms
yet), 2) 38% from symptomatic individuals, 3) 10% from
asymptomatic individuals (who never show symptoms), and 4)
6% from environmentally mediated transmission via contami-
nation. The general mathematical model of COVID-19 infec-
tiousness was determined to illustrate the infectiousness varies
as a function of time since infection, τ , for a representative
cohort of infected individuals [106]. The equation is presented
as:

β(τ) = Paxaβs(τ) + (1− Pa) [1− s(τ)]βs(τ)

+ (1− Pa) s(τ)βs(τ) +
∫ τ

l=0

βs(τ − 1)E(l)dl
(24)

,where Pa is proportion asymptomatic, xa represents relative
infectiousness of asymptomatics, βs(τ) describes the infec-
tiousness of an individual currently either symptomatic or
presymptomatic, at age of infection τ, and E(l) presents
environmental infectiousness, which indicates the rate at which
a contaminated environment infects new people after a time
lag l.

In order to estimate the requirements for successful contact
tracing, the authors [107] determined the combination of two
key parameters needed to reduce R0 to less than 1: 1) the
symptomatic individuals should be isolated and 2) the contacts
of symptomatic cases should be traced and quarantined. Based
on published analytical mathematical framework [2], the au-
thors in [1] quantified the whether the COVID-19 epidemic
was expected to be controlled or not by these two interven-
tions. The results indicated that if used by a sufficiently high
proportion of the population, immediate notification through
a contact-tracing mobile phone app could be sufficient to stop
the epidemic. Practical and logistical factors including uptake,
coverage, R0in a given population would be used to determine
whether an app is sufficient to control epidemic spread, or
whether additional measures are required to reduce R0. The
performance of the app can be explored at [108].

The authors in [109] estimated the conditions that isolation
and contact tracing in settings with various levels of social
distancing would be able to contain or slow down COVID-19
epidemic. A stochastic transmission model in [110] was used
to calculate the numbers of latently infected persons, infectious
persons, and persons who have been diagnosed and isolated
in time steps of one day. The author used the model to dis-
tinguish between household contacts (close contacts) and non-
household contacts, and found that only if the majority of cases

were ascertained, then isolation and contacting tracing would
be an effective methods to slow down epidemics. Meanwhile,
social distancing would reduce the effective reproduction num-
ber to below one when non-household contacts were reduced
by around 90%. Finally, the combination of social distancing
with isolation and contacting tracing have synergistic effects
that would increase the prospect of containment.

While many countries utilize Bluetooth-based technolo-
gies [111], [112] to help slow the spread, digital contact tracing
comes with serious privacy concerns because many proposed
apps rely on geo-location tracking and some of them store
user data on central servers if people are to be identified
and tracked. And due to the lack of privacy regulations by
the government, users have to depend on the good will of
technology companies to avoid violating their privacy [113],
[114].

VI. CONCLUSION

As the COVID-19 pandemic continues, many academic
papers have been published to help with combating it. In this
paper, we conduct a literature review from the perspective of
data-driven analytics. We investigate the latest solutions for
epidemic prediction models, clinical diagnosis, policy effec-
tiveness and contact tracing. Additionally, we study models
with latest data to evaluate how good they perform since
their publication date and collect data sources for analytical
researches.
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[27] L. López and X. Rodo, “A modified seir model to predict the covid-19
outbreak in spain and italy: simulating control scenarios and multi-scale
epidemics,” Available at SSRN 3576802, 2020.

[28] C. Xu, Y. Yu, Q. Yang, and Z. Lu, “Forecast analysis of the epidemics
trend of covid-19 in the united states by a generalized fractional-order
seir model,” arXiv preprint arXiv:2004.12541, 2020.

[29] M. Bashir, H. A. Sattar, and A. Zaheer, “Trend analysis modelling and
prediction of epidemic covid-19 for us, italy, spain and pakistan,” 2020.

[30] M. S. Boudrioua and A. Boudrioua, “Predicting the covid-19 epidemic
in algeria using the sir model,” medRxiv, 2020.

[31] P. Sun, S. Qie, Z. Liu, J. Ren, K. Li, and J. Xi, “Clinical characteristics
of hospitalized patients with sars-cov-2 infection: a single arm meta-
analysis,” Journal of medical virology, vol. 92, no. 6, pp. 612–617,
2020.

[32] M. Parohan, S. Yaghoubi, A. Seraji, M. H. Javanbakht, P. Sarraf, and
M. Djalali, “Risk factors for mortality in patients with coronavirus
disease 2019 (covid-19) infection: a systematic review and meta-
analysis of observational studies,” The Aging Male, pp. 1–9, 2020.

[33] “Pubmed,” https://pubmed.ncbi.nlm.nih.gov/.
[34] “Cochrane library,” https://www.cochranelibrary.com/.
[35] “Embase database,” https://www.embase.com/login#search.
[36] “Scopus,” https://www.scopus.com/home.uri.
[37] “Google scholar,” https://scholar.google.com/.
[38] A.-B. Haidich, “Meta-analysis in medical research,” Hippokratia,

vol. 14, no. Suppl 1, p. 29, 2010.
[39] A. Liberati, D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche,

J. P. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, and D. Moher,
“The prisma statement for reporting systematic reviews and meta-
analyses of studies that evaluate health care interventions: explanation
and elaboration,” Annals of internal medicine, vol. 151, no. 4, pp. W–
65, 2009.

[40] R. D. Riley, J. P. Higgins, and J. J. Deeks, “Interpretation of random
effects meta-analyses,” Bmj, vol. 342, p. d549, 2011.

[41] J. P. Higgins and S. G. Thompson, “Quantifying heterogeneity in a
meta-analysis,” Statistics in medicine, vol. 21, no. 11, pp. 1539–1558,
2002.

[42] A. Stang, “Critical evaluation of the newcastle-ottawa scale for the
assessment of the quality of nonrandomized studies in meta-analyses,”
European journal of epidemiology, vol. 25, no. 9, pp. 603–605, 2010.

[43] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan,
J. Xu, X. Gu et al., “Clinical features of patients infected with 2019
novel coronavirus in wuhan, china,” The lancet, vol. 395, no. 10223,
pp. 497–506, 2020.

[44] K. Wang, P. Zuo, Y. Liu, M. Zhang, X. Zhao, S. Xie, H. Zhang,
X. Chen, and C. Liu, “Clinical and laboratory predictors of in-hospital
mortality in 305 patients with covid-19: a cohort study in wuhan,
china,” China (2/24/2020), 2020.

[45] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang,
Y. Liu, Y. Wei et al., “Epidemiological and clinical characteristics of
99 cases of 2019 novel coronavirus pneumonia in wuhan, china: a
descriptive study,” The Lancet, vol. 395, no. 10223, pp. 507–513, 2020.

[46] W.-j. Guan, Z.-y. Ni, Y. Hu, W.-h. Liang, C.-q. Ou, J.-x. He, L. Liu,
H. Shan, C.-l. Lei, D. S. Hui et al., “Clinical characteristics of
coronavirus disease 2019 in china,” New England journal of medicine,
vol. 382, no. 18, pp. 1708–1720, 2020.

[47] L. Chen, H. Liu, W. Liu, J. Liu, K. Liu, J. Shang, Y. Deng, and
S. Wei, “Analysis of clinical features of 29 patients with 2019 novel
coronavirus pneumonia,” Zhonghua jie he he hu xi za zhi= Zhonghua
jiehe he huxi zazhi= Chinese journal of tuberculosis and respiratory
diseases, vol. 43, pp. E005–E005, 2020.

[48] K. Sun, J. Chen, and C. Viboud, “Early epidemiological analysis of
the coronavirus disease 2019 outbreak based on crowdsourced data: a
population-level observational study,” The Lancet Digital Health, 2020.

[49] Y. Yang, Q. Lu, M. Liu, Y. Wang, A. Zhang, N. Jalali, N. Dean,
I. Longini, M. E. Halloran, B. Xu et al., “Epidemiological and clinical
features of the 2019 novel coronavirus outbreak in china,” MedRxiv,
2020.

[50] J. Li, S. Li, Y. Cai, Q. Liu, X. Li, Z. Zeng, Y. Chu, F. Zhu, and
F. Zeng, “Epidemiological and clinical characteristics of 17 hospitalized
patients with 2019 novel coronavirus infections outside wuhan, china,”
medRxiv, 2020.

[51] C. China, “Novel coronavirus pneumonia emergency response epidemi-
ology team,” Vital surveillance: The epidemiological characteristics of
an outbreak of, 2019.

[52] X.-W. Xu, X.-X. Wu, X.-G. Jiang, K.-J. Xu, L.-J. Ying, C.-L. Ma, S.-
B. Li, H.-Y. Wang, S. Zhang, H.-N. Gao et al., “Clinical findings in a
group of patients infected with the 2019 novel coronavirus (sars-cov-
2) outside of wuhan, china: retrospective case series,” bmj, vol. 368,
2020.

[53] P. K. Bhatraju, B. J. Ghassemieh, M. Nichols, R. Kim, K. R. Jerome,
A. K. Nalla, A. L. Greninger, S. Pipavath, M. M. Wurfel, L. Evans
et al., “Covid-19 in critically ill patients in the seattle regioncase
series,” New England Journal of Medicine, vol. 382, no. 21, pp. 2012–
2022, 2020.

[54] K. D. Patil, “Cochran’s q test: Exact distribution,” Journal of the
American Statistical Association, vol. 70, no. 349, pp. 186–189, 1975.

[55] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang,
B. Song, X. Gu et al., “Clinical course and risk factors for mortality
of adult inpatients with covid-19 in wuhan, china: a retrospective cohort
study,” The lancet, 2020.

[56] C. Wu, X. Chen, Y. Cai, X. Zhou, S. Xu, H. Huang, L. Zhang, X. Zhou,
C. Du, Y. Zhang et al., “Risk factors associated with acute respiratory
distress syndrome and death in patients with coronavirus disease 2019
pneumonia in wuhan, china,” JAMA internal medicine, 2020.

[57] F. Caramelo, N. Ferreira, and B. Oliveiros, “Estimation of risk factors
for covid-19 mortality-preliminary results,” MedRxiv, 2020.

[58] Y. Cheng, R. Luo, K. Wang, M. Zhang, Z. Wang, L. Dong, J. Li, Y. Yao,
S. Ge, and G. Xu, “Kidney impairment is associated with in-hospital
death of covid-19 patients,” MedRxiv, 2020.

[59] V. Y. F. Su, Y.-H. Yang, K.-Y. Yang, K.-T. Chou, W.-J. Su, Y.-M. Chen,
D.-W. Perng, T.-J. Chen, and P.-C. Chen, “The risk of death in 2019
novel coronavirus disease (covid-19) in hubei province,” Available at
SSRN 3539655, 2020.

[60] R. Chen, W. Liang, M. Jiang, W. Guan, C. Zhan, T. Wang, C. Tang,
L. Sang, J. Liu, Z. Ni et al., “Risk factors of fatal outcome in
hospitalized subjects with coronavirus disease 2019 from a nationwide
analysis in china,” Chest, 2020.

[61] R.-H. Du, L.-R. Liang, C.-Q. Yang, W. Wang, T.-Z. Cao, M. Li, G.-Y.
Guo, J. Du, C.-L. Zheng, Q. Zhu et al., “Predictors of mortality for
patients with covid-19 pneumonia caused by sars-cov-2: a prospective
cohort study,” European Respiratory Journal, vol. 55, no. 5, 2020.

[62] Y. Liu, X. Du, J. Chen, Y. Jin, L. Peng, H. H. Wang, M. Luo, L. Chen,
and Y. Zhao, “Neutrophil-to-lymphocyte ratio as an independent risk
factor for mortality in hospitalized patients with covid-19,” Journal of
Infection, 2020.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 July 2020                   doi:10.20944/preprints202007.0124.v1

https://doi.org/10.20944/preprints202007.0124.v1


14

[63] S. Shi, M. Qin, B. Shen, Y. Cai, T. Liu, F. Yang, W. Gong, X. Liu,
J. Liang, Q. Zhao et al., “Association of cardiac injury with mortality in
hospitalized patients with covid-19 in wuhan, china,” JAMA cardiology,
2020.

[64] L. Wang, W. He, X. Yu, D. Hu, M. Bao, H. Liu, J. Zhou, and H. Jiang,
“Coronavirus disease 2019 in elderly patients: Characteristics and
prognostic factors based on 4-week follow-up,” Journal of Infection,
2020.

[65] D. Colombi, F. C. Bodini, M. Petrini, G. Maffi, N. Morelli, G. Milanese,
M. Silva, N. Sverzellati, and E. Michieletti, “Well-aerated lung on
admitting chest ct to predict adverse outcome in covid-19 pneumonia,”
Radiology, p. 201433, 2020.

[66] M. Nikpouraghdam, A. J. Farahani, G. Alishiri, S. Heydari,
M. Ebrahimnia, H. Samadinia, M. Sepandi, N. J. Jafari, M. Izadi,
A. Qazvini et al., “Epidemiological characteristics of coronavirus
disease 2019 (covid-19) patients in iran: A single center study,” Journal
of Clinical Virology, 2020.

[67] X. Mei, H.-C. Lee, K.-y. Diao, M. Huang, B. Lin, C. Liu, Z. Xie,
Y. Ma, P. M. Robson, M. Chung et al., “Artificial intelligence–enabled
rapid diagnosis of patients with covid-19,” Nature Medicine, pp. 1–5,
2020.

[68] E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing
the areas under two or more correlated receiver operating characteristic
curves: a nonparametric approach,” Biometrics, pp. 837–845, 1988.

[69] A. Agresti and B. A. Coull, “Approximate is better than exact for
interval estimation of binomial proportions,” The American Statistician,
vol. 52, no. 2, pp. 119–126, 1998.

[70] Q. McNemar, Psychological statistics. Wiley New York, 1962, vol. 3.
[71] L. Wang and A. Wong, “Covid-net: A tailored deep convolutional

neural network design for detection of covid-19 cases from chest x-ray
images,” arXiv preprint arXiv:2003.09871, 2020.

[72] L. Huang, R. Han, T. Ai, P. Yu, H. Kang, Q. Tao, and L. Xia, “Serial
quantitative chest ct assessment of covid-19: Deep-learning approach,”
Radiology: Cardiothoracic Imaging, vol. 2, no. 2, p. e200075, 2020.

[73] S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang,
Y. Li, X. Meng et al., “A deep learning algorithm using ct images to
screen for corona virus disease (covid-19),” MedRxiv, 2020.

[74] I. D. Apostolopoulos and T. A. Mpesiana, “Covid-19: automatic detec-
tion from x-ray images utilizing transfer learning with convolutional
neural networks,” Physical and Engineering Sciences in Medicine, p. 1,
2020.

[75] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[76] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[77] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
in Thirty-first AAAI conference on artificial intelligence, 2017.

[78] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 1251–1258.

[79] “Covidx,” https://github.com/lindawangg/COVID-Net/blob/master/
docs/COVIDx.md.

[80] “Italian radiological cases,” https://www.sirm.org/category/senza-
categoria/covid-19/.

[81] “Bimcv-covid-19,” https://github.com/BIMCV-CSUSP/BIMCV-
COVID-19.

[82] “Google covid-19 search trends,” https://trends.google.com/trends/
story/US cu 4Rjdh3ABAABMHM en.

[83] “Covid-19 community mobility reports,” https://www.google.com/
covid19/mobility/.

[84] R. Abouk and B. Heydari, “The immediate effect of covid-19 policies
on social distancing behavior in the united states,” Available at SSRN,
2020.

[85] “weather underground,” https://www.wunderground.com/.
[86] S. Gao, J. Rao, Y. Kang, Y. Liang, J. Kruse, D. Doepfer, A. K. Sethi,

J. F. M. Reyes, J. Patz, and B. S. Yandell, “Mobile phone location data
reveal the effect and geographic variation of social distancing on the
spread of the covid-19 epidemic,” arXiv preprint arXiv:2004.11430,
2020.

[87] “descartes labs,” https://www.descarteslabs.com/.
[88] “safegraph,” https://www.safegraph.com/.
[89] S. W. Park, K. Sun, C. Viboud, B. T. Grenfell, and J. Dushoff, “Poten-

tial roles of social distancing in mitigating the spread of coronavirus
disease 2019 (covid-19) in south korea,” medRxiv, 2020.

[90] M. U. Kraemer, C.-H. Yang, B. Gutierrez, C.-H. Wu, B. Klein, D. M.
Pigott, L. Du Plessis, N. R. Faria, R. Li, W. P. Hanage et al., “The effect
of human mobility and control measures on the covid-19 epidemic in
china,” Science, vol. 368, no. 6490, pp. 493–497, 2020.

[91] A. Anzai, T. Kobayashi, N. M. Linton, R. Kinoshita, K. Hayashi,
A. Suzuki, Y. Yang, S.-m. Jung, T. Miyama, A. R. Akhmetzhanov et al.,
“Assessing the impact of reduced travel on exportation dynamics of
novel coronavirus infection (covid-19),” Journal of clinical medicine,
vol. 9, no. 2, p. 601, 2020.

[92] J. I. Dingel and B. Neiman, “How many jobs can be done at home?”
National Bureau of Economic Research, Tech. Rep., 2020.

[93] G. Basilaia and D. Kvavadze, “Transition to online education in schools
during a sars-cov-2 coronavirus (covid-19) pandemic in georgia,”
Pedagogical Research, vol. 5, no. 4, pp. 1–9, 2020.

[94] “Calculating the educational impact of covid-19: Using data from suc-
cessive grades to estimate learning loss,” https://www.rti.org/insights/
educational-impact-covid-19.

[95] “trace together,” https://www.tracetogether.gov.sg/.
[96] “China colored health code,” http://newyork.chineseconsulate.org/chn/

fwzc/zxtz/t1769212.htm.
[97] “stopp corona,” https://www.roteskreuz.at/site/meet-the-stopp-corona-

app/.
[98] “Stay home safe,” https://www.coronavirus.gov.hk/eng/stay-home-

safe.html.
[99] “covid 100,” https://www.theguardian.com/commentisfree/2020/mar/

20/south-korea-rapid-intrusive-measures-covid-19.
[100] “stopcovid,” https://techcrunch.com/2020/06/02/france-releases-

contact-tracing-app-stopcovid-on-android/.
[101] “cocoa,” https://www.theverge.com/2020/6/19/21296603/japan-covid-

19-contact-tracking-app-cocoa-released.
[102] “aarogyasetu,” https://play.google.com/store/apps/details?id=

nic.goi.aarogyasetu.
[103] “immuni,” https://www.thelocal.it/20200605/italy-to-begin-testing-

immuni-contact-tracing-app-in-four-regions.
[104] “smittestopp,” https://www.lifeinnorway.net/smittestopp-coronavirus-

app/.
[105] “nhs covid19 app,” https://covid19.nhs.uk/.
[106] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-

Dörner, M. Parker, D. Bonsall, and C. Fraser, “Quantifying sars-cov-2
transmission suggests epidemic control with digital contact tracing,”
Science, vol. 368, no. 6491, 2020.

[107] C. Fraser, S. Riley, R. M. Anderson, and N. M. Ferguson, “Factors that
make an infectious disease outbreak controllable,” Proceedings of the
National Academy of Sciences, vol. 101, no. 16, pp. 6146–6151, 2004.

[108] “Covid-19 transmission routes,” https://bdi-pathogens.shinyapps.io/
covid-19-transmission-routes/.

[109] M. Kretzschmar, G. Rozhnova, and M. van Boven, “Isolation and con-
tact tracing can tip the scale to containment of covid-19 in populations
with social distancing,” Available at SSRN 3562458, 2020.

[110] M. Kretzschmar, S. Van den Hof, J. Wallinga, and J. Van Wijngaarden,
“Ring vaccination and smallpox control,” Emerging infectious diseases,
vol. 10, no. 5, p. 832, 2004.

[111] Y. Mao, J. Wang, and B. Sheng, “Mobile message board: Location-
based message dissemination in wireless ad-hoc networks,” in 2016
international conference on computing, networking and communica-
tions (ICNC). IEEE, 2016, pp. 1–5.

[112] Y. Mao, J. Wang, J. P. Cohen, and B. Sheng, “Pasa: Passive broadcast
for smartphone ad-hoc networks,” in 2014 23rd International Confer-
ence on Computer Communication and Networks (ICCCN). IEEE,
2014, pp. 1–8.

[113] L. R. Bradford, M. Aboy, and K. Liddell, “Covid-19 contact tracing
apps: A stress test for privacy, the gdpr and data protection regimes,”
Journal of Law and the Biosciences, 2020.

[114] M. Zastrow, “Coronavirus contact-tracing apps: can they slow the
spread of covid-19,” Nature Technology Features, 2020.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 July 2020                   doi:10.20944/preprints202007.0124.v1

https://doi.org/10.20944/preprints202007.0124.v1

