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Abstract: Diet influences, and is influenced by, a wide range of socioeconomic, cultural, geographic, 

and genetic variables.  Here we survey a matrix of such interactions as well as their connection to 

a variety of health outcomes, in a cohort of 689 diverse adults employed at Emory University and 

enrolled in the Center for Health Discovery and Well-Being (CHDWB) study. Principal component 

analysis (PCA) of the Block Food Frequency Questionnaire revealed seven PC cumulatively 

explaining 25.8% and each individually at least 2% of the proportional consumption of 110 food 

items. PC1 is strongly correlated with the Healthy Eating Index-2015 measure, and accordingly 

healthier scores associate with multiple measures of physical and mental health.  It, as well as PC2 

(likely a measure of food expense) and PC3 (carbohydrate versus protein consumption) show 

significant geographic structure across the Atlanta metropolitan area, correlating with race and 

ethnicity, income level, age and sex.  Notably, a polygenic score for body mass index (BMI) 

consisting of 281 SNPs explains 2.8% of the variance in PC5, which is as strong as its association 

with BMI itself.  PC5 appears to differentiate participants with respect to conscious eating behavior 

related to the choice of diet or comfort foods.  Our analysis adds to the growing literature on factor 

analysis of socio-demographic influences on nutrition and health. 

Keywords: polygenic risk; wellness; food frequency; principal component analysis; healthy eating 

index; obesity; food desert 

 

1. Introduction 

While it is well established that obesity and metabolic disease are mediated in part by total 

food intake, and the basic components of a healthy diet are well-known [1,2], rates of conformity to 

healthy diet recommendations differ widely across populations.  Variation in diet has also been 

suspected as one of the leading mechanisms mediating the relationship between socioeconomic 

status and health outcomes [3,4].  Reciprocally, genetics and health-related factors also contribute 

to dietary choice [5,6]. Much remains to be learned about the distribution of dietary patterns across 

different socio-demographic, genetic and health spectra as well as the relative effect of these 

variables on dietary preference.  

Large scale community surveys that include food frequency questionnaires (FFQ) provide 

exciting opportunities to link estimates of dietary consumption and choice to genetics, health, 
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socioeconomic, and other cultural variables.  Typical dietary epidemiological analyses start by 

extracting a subset of the information from a food consumption survey, such as the average daily or 

weekly intake amount of whole grains, fruits, certain types of meats, or nutrients like dietary fibers 

and saturated fats.  One tool for assessing food consumption is the Block FFQ, which self-reports 

the frequency and qualitative amount of consumption of over one hundred food items [7,8].   

Another widely used measure of diet quality computed from food intake is a summary 

“healthy eating index” (HEI).  A series of versions of such indices have been developed, including 

the HEI-2005 [9], HEI-2015 [10], and Alternative HEI [11]. These scores quantify an individual’s 

conformance to the Dietary Guidelines for Americans developed by the U.S. Department of 

Agriculture (USDA). Individuals who meet all aspects of these USDA dietary guidelines receive a 

maximum score, whereas a diet consisting of highly saturated fats, added sugar and insufficient 

nutrients will receive a poor score. While useful for assessment of overall diet quality, cumulative 

summary scores such as HEI are unable to capture aspects of dietary variation across a cohort, since 

the sources of the variation are not captured and hence two individuals with quite different diets 

may have similar scores. 

An alternative approach is to use factor analysis or machine learning to identify dimensions 

underlying common dietary trends from the full matrix of FFQ information [12]. Summary scores 

along the principal components of the variation can then be correlated with health-related variables 

that might either influence dietary choices, or be influenced by them [13].  This approach evaluates 

the entire dietary pattern instead of individual nutrients or foods, but it emphasizes items that are 

the most variable across the sample cohort, and provides a more comprehensive view of food and 

nutrient consumption in the study cohort [14-16].  

The Center for Health Discovery and Wellbeing (CHDWB) at the Predictive Health Institute of 

Emory University and Georgia Tech was established in 2008 with the aim of ascertaining whether 

targeted health interventions based on detailed self-knowledge of sub-clinical disease could have 

tangible health benefits [17].  Highly significant but modest improvements in multiple aspects of 

well-being were documented over a three-year period and were particularly notable in those with 

baseline poor health [18,19].  The cohort has a broad sociodemographic intake, and is drawn from 

the broader Atlanta metropolitan area. Previous studies from our group have investigated 

metabolomic correlates of diet-related obesity [20,21]. Here we report on an analysis of self-reported 

food frequency surveys and their relationship to health outcomes in the CHDWB cohort consisting 

of 689 adults aged 25-75.   

We are interested in two major questions.  First, how are dietary patterns structured across the 

cohort?  To address this, we performed factor analysis on the dietary data for 110 food items, and 

used the identified principal components as individual surrogates for traditional healthy eating 

indices. These were contrasted with the HEI-2015 computed from the same data.  Second, how are 

dietary tendencies correlated with demographic, health, and genetic factors?  We used multivariate 

statistics to evaluate the influences of self-reported ethnicity, gender, age, education, marital status, 

income and geographic location on measures of dietary health, and evaluated whether polygenic 

risk scores for obesity differentiate individuals by diet.  Finally, results are presented confirming 

general preconceptions about the influence of proportional food consumption on physical and 

mental health. 

2. Materials and Methods 

2.1. Data collection and classification 

The dietary information and personal health profiles analyzed in this study were generated by 

the Center for Health Discovery and Well Being (CHDWB), within the Predictive Health Institute of 

Emory University and Georgia Tech in Atlanta, Georgia. The full data set includes social, physical, 
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physiological, psychological and lifestyle profiles for all participants of a longitudinal health 

promotion program [22]. The participants were generally healthy and active employees without 

uncontrolled chronic disease conditions, drawn at random from all sectors of Emory University, 

including a breadth of social backgrounds and ethnicities as indicated in Table 1. Sociodemographic 

information was collected at recruitment using an electronic Personal Information Form.  This 

included gender, race/ethnicity, age (computed from date of birth and visit date), household income 

in ordinal levels, educational attainment in years of schooling completed, marital status, and zip-code 

of residence. 

Associated with each visit over a four-year period, with 6-month intervals between the first three 

visits, and 12-months thereafter, participants were asked to complete a web-based Block FFQ.  We 

analyze data for a total of 689 participants who reported total daily caloric intake in the range of 700- 

4200 kcal.  They also had body composition measurements, blood was drawn for a comprehensive 

metabolic and immunological profile, and a range of surveys of health-related behavior facilitated 

computation of the Beck Depression Index (BDI)[23], General Anxiety Disorder-7 score (GAD-7)[24], 

Perceived Stress Scale (PSS-14)[25], Epworth Sleepiness Scale (ESS)[26], and the SF36 Quality of Life 

Survey [27].  Here we report on only the first visit since completion of the survey was variable at 

subsequent time-points, though the major PC of diet remain similar in a dataset including 2552 

surveys.  Additional details and analysis of health outcomes are provided in our previous 

publications [18,19,22]. 

 

Table 1. Characteristics of the CHDWB FFQ sample included in the study  

Characteristic    Analytic Data Set  

n    689  

Females, n (%)    453 (65.9%)  

Age, years, mean  SD    48.0  11.0  

Race/Ethnicity, n (%)      

White, non-Hispanic    487 (70.9%)  

Black, non-Hispanic    151 (22.0%)  

Asian    35 (5.1%)  

Hispanic    9 (1.3%)  

  American Indian/ Alaska Native    5 (0.7%)  

Education years, mean  SD    18.9  4.5  

Household Income, median group    $100,000 to $150,000  

Marital Status, n (%)      

Single    157 (23.1%)  

Married    436 (64.0%)  

Divorced    88 (12.9%)  

 

2.2 Dietary pattern analysis  

The dietary questionnaire used in the study was a version of the semi-quantitative FFQ-2005 

administered over the internet by NutritionQuest. It included 110 food items with specified serving 

sizes described in natural portions (e.g. 1 banana) or standard weight and volume measures of 

common servings. For each food item, participants indicated the intake frequency and number of 

portions per intake based on 7-day recall. Daily consumption of each food was calculated by 
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multiplying weekly intake frequency with number of portions consumed, divided by 7 days. The 

questionnaire thus returned a matrix of food consumption data, along with software-generated 

dietary and nutritional measurements that align with the 2015-2020 USDA Dietary Guidelines for 

Americans [28]. Some examples of the dietary and nutritional measurements are: caloric intake per 

day, cup equivalents of whole fruits consumed per 1,000 kcal, and percent of energy that comes 

from saturated fats and from added sugar [9].  

We computed HEI-2015 [10] from the dietary and nutrition summary data generated by 

NutritionQuest. Some variables required for the computation of HEI were not present in our FFQ 

dataset and were thus excluded or replaced by other variables. “Milk, including soy milk (cups)” 

was not present and the total dairy category was represented by “total cup equivalents of milk, 

yogurt and cheese” only. Similarly, “non-juice fruits” was replaced by “solid fruits”, representing 

whole fruits. “Lean meat from soy products, excluding soy milk” was replaced by “lean meat from 

total soy products”. Additional details of HEI calculation and FFQ variables used can be found on 

the NCI (https://epi.grants.cancer.gov/hei/) and WHI 

(https://www.whi.org/researchers/data/Pages/Available%20Data.aspx) and websites. 

The proportional food consumption for the entire study cohort is summarized in Figure 1 in 

which the 110 food items are grouped into 23 categories based on an established food classification 

method [16] which reduces the total number of items to be analyzed while retaining much of the 

variety. As might be expected, the largest consumption was observed for fruits, sweets and deserts, 

refined grains, and meats (processed and red). 

              

     Figure 1. Overall dietary intake of the total study cohort (2552 surveys) at a glance.   

Weekly consumed amounts of each food item were calculated by multiplying the intake 

frequency with number of portion sizes per intake. The missing food frequency and quantity data 

was imputed using the expectation-maximization method [29]. Initial analysis indicated that the 

dietary variation was mainly driven by the total amount of food consumed, rather than the 

proportions of each food. While interesting and relevant to the influence of psychosocial stress on 

health, for the purposes of this study we considered it a bias to be overcome.  Consequently, we 

transformed the food amounts into their relative proportions in each person’s diet by and dividing 

each food amount by the sum of all the food amounts.  These values, after standardization into z-

scores, were used as the entries into Principal Component Analysis (scikit-learn version 0.19.1, 

Python). Although the percent variance explained by each the major PC decreased slightly relative 

to PC generated with non-proportionalized data, the contributions of different items to each factor 

was more spread out and the scores more normally distributed. The Kaiser criterion suggested 36 
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significant components, however, since most of these showed no obvious dietary associations and 

were thus not helpful for later analysis, we instead examined the scree plot, which suggested a 

cutoff with variance explained > 2%, and seven principal components were retained.  These 

cumulatively explained 25.8% of the variation in inferred dietary proportions in the cohort.   

Geographic projection was performed using the “leaflet” package (https://rstudio.github.io/leaflet/) 

in R.  Zip codes were combined into 23 zones based on geographical proximity, division of census 

tracts, similarity of neighborhoods in terms of sociodemographic profile and grocery store density, 

so that the number of individuals in each zone was roughly equal. 

2.3 Polygenic score assessment 

Genotyping of 423 individuals in our sample was performed on genomic DNA extracted from 

whole blood samples using either the HumanCoreExome-12 v.1.1 or HumanOmniExpress-12 v1.1 

genotyping Illumina arrays [30]. Imputation was performed using IMPUTE v2. software [31] with 

1000 Genomes data, resulting in 8,242,192 imputed SNPs. A polygenic score for BMI (PGSBMI) was 

calculated using the linear scoring function in PLINK v2.0 [32] using reference GWAS data accessed 

from the EBI GWAS catalog (https://www.ebi.ac.uk/gwas/publications/30108127). The score 

includes 281 of the 289 SNPs reported in [33] with association p-values ranging from 2×10-210 to 

9×10-6. BMI and prevalence of obesity defined as BMI >= 30 were plotted against polygenic risk 

scores for 404 participants with all necessary data available, to see if these SNPs correlate with the 

BMI trait in our cohort.  Simple linear regression was performed to test whether PRSBMI has 

significant effects on the major Principal Components of dietary variation. Similarly, PGSWHR for 

402 people was derived with 307 of the 316 independent SNPs in [34], each with p-values ranging 

from 5 x 10-183 to 5 x 10-9 and accessed at https://www.ebi.ac.uk/gwas/studies/GCST008996.  

Obesity in this case was defined as WHR >= 0.9 for males, or WHR >= 0.85 for females. 

2.4 Statistical Analyses 

Statistical analyses were performed in JMP Pro 14.3 (SAS Institute, Cary, NC). The 

distributions of the first 3 diet principal components were assessed and described by the 

sociodemographic characteristics (i.e. gender, age, race/ethnicity, education, income, marital status 

and zone of residence). Differences in the means of the PCs between genders were assessed by 2-

tailed t-test assuming equal variance. Differences in PC distributions among levels of other 

categorical/ordinal variables were first assessed by one-way ANOVA. For variables that have an 

intrinsic linear nature (i.e. age group, household income level, education level), we then used the 

orders of the categories as “dummy numerical variables” to perform linear regression. In order to 

further investigate the relative effect sizes of the sociodemographic characteristics on the PCs, we 

then performed multivariable linear regression with the 6 variables described above.  Associations 

between health and diet were measured by Pearson correlation between each PC and each 

continuous measure of physical, metabolic or mental health. ANOVA was used to evaluate 

associations with clinical illness by categorizing the participants into 6 health groups (obese, 

hypertensive, diabetic, and combinations thereof, as well as controls.) 

3. Results 

3.1 Principal Components of Dietary Proportions 

The food items that load most strongly onto the first seven principle components are listed in 

Table 2. Each PC captures different aspects of overall diet that we subjectively classify into vegetarian 

(PC1), expensive (PC2), high carb (PC3), soups (PC4), juices or typical diet foods (PC5), and fish based 

diets (PC6), with corresponding negative loadings for unhealthy Western food items, inexpensive 

processed goods, high protein, breakfast, commonly consumed items, and red meat, respectively, 

while PC7 is more difficult to categorize. PC1 in particular might alternatively be conceptualized as 

capturing a healthy diet including a large proportion of fruits and vegetables.  PC1 also has a 
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significant linear relationship with Healthy Eating Index-2015 (R2 = 0.354, p <0.0001), further 

corroborating PC1’s representation of the healthy versus fast food eating axis.   

 

Table 2.   Food items contributing to top seven principal components of diet proportions 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

 

Vegetarian vs.       

Western 

Expensive 

vs. Processed 

High carb vs. 

 Ketogenic 

Soups vs     

 Breakfast  

Diet vs  

Satiety 

Fish/seafood  

vs. Meat 

Unclear vs.  

Grilled 

1 Pea Soup Wine Meat subst. Other noodles Pumpkin pie Fried fish Not fried fish 

2 Other veggies Beer Other bread Potatoes Menudo Tuna Mixed chicken 

3 Spinach cooked Coffee Jelly Pinto beans Real juice Meat subst. Tuna 

4 Apples pears Veal Cold cereal Veggie stew Oysters Greens Other noodles 

5 Veggie stew Liquor Bagel Rice Fried fish Shellfish Veal 

6 Oranges Oysters Pizza Pea soup Chicken feet Salty snacks Other pie 

7 Tofu Cheese Cookies Refried beans Orange juice Butter Wine 

8 Peaches Bologna Refried beans Mix beef/pork Some juice Mustard Liver 

9 Strawberries Steak Spaghetti Veg soup Break sand Cracker Other soup 

10 Carrots Tacos Ice cream Tofu Liver Not fried fish Not fried chick 

11 Other fruit Salsa Milk Other soup Tomato juice Salad dressing Cookies 

12 Not fried fish Other eggs Choco Candy Coleslaw cab Water Nuts Cracker 

13 Tomatoes Tomatoes Peanut butter Spaghetti Other eggs Mayo Coffee 

14 Broccoli Not fried fish Breakfast bars Other veggies Diet shakes Cookies Yogurt 

15 Water Tomato juice Power bars Tacos Tofu Spinach  Pumpkin pie 

    

…….. 

    

96 Salty snacks Carrots Beans peas Diet shakes Mixed chick Ribs Salty snacks 

97 Macaroni Some juice Shellfish Breakfast bars Margarine Veal Sausage 

98 Sausage Potatoes Fried fish Nuts Iced tea Cold cereal Beer 

99 Cake Greens Hotdog Break sand Broccoli Other fruit Watermelon 

100 Mix beef/pork Cooked cereal Not fried chick Not fried chick Other fruit Rice Tacos 

101 Pork Other fruit Steak Cold cereal Salad dressing Burger Break sand 

102 Steak Cake Fried chicken Cantaloupe Potatoes Menudo Refried beans 

103 Hotdog Cornbread Sausage Bacon Tacos Steak Burger 

104 Biscuits Corn Liver Yogurt Ice cream Pork Buns 

105 Bacon Cookies Feet Peanut butter Beans peas Mix beef/pork Hotdog 

106 Donut Hic Greens Banana Bologna Oranges Greens 

107 Fried chicken Fried fish Pork Water Strawberries Meatloaf Fries 

108 Buns Watermelon Bacon Salad dressing Soft drinks Apples pears Pinto beans 

109 Burger Real juice Ribs Other eggs Not fried chick Milk Mustard 

110 
Fries Canned fruit Coleslaw  Green salad Green salad Banana Salsa 

3.2   Geographic and cultural associations with the principal components 

We next explored how these dietary components vary with respect to geographic and 

socioeconomic factors characteristic of Atlanta.  Figure 2 shows very strong geographic structure to 
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food eating tendencies, with PC1 and PC2 as exemplars.  Broadly speaking, PC1 tracks with wealth, 

being higher in the more affluent regions of Midtown, Decatur (near-east of Atlanta), and the upper 

and middle class suburbs of Roswell and Marietta. PC2 is markedly divided between north and south 

Atlanta, likely reflecting access to fresh and more expensive foods in the north, and higher prevalence 

of food deserts in the south.  This distinction also tracks with the historical segregation of Atlantans 

by ancestry.  All five PC are highly significantly differentiated by region (ANOVA, p<10-5).   

 

 
     Figure 2. Geographic distribution of principal components of food consumption in Atlanta. 

Regions of greater metropolitan Atlanta are colored with respect to PC scores (positive values have 

stronger colors) according to the mean value in regions of the city.  Midtown is at the center of 

each Figure, where the major highways converge. 

 

Orthogonally, we also performed regression analysis to evaluate dependence of the three largest 

PC, each of which explains over 2% of the food item variance, for each of the social factors gender, 

self-reported race and ethnicity, age group, education level, household income, and marital status. 

Age was grouped by 10-year intervals, education level was categorized as high school or less (6-12 

yrs), some college or college graduates (13-16 yrs), graduate school (17-22 yrs) or post graduate 

school (>22 yrs), wealth was binned in $25,000 or $50,000 increments as shown, and marital status 

was categorized as single, married or divorced by excluding 8 widowed individuals.  The bins 

were assigned increasing numerical values for evaluation of the significance of the regression, with 

the exception of race/ethnicity which was evaluated by ANOVA.  Salient results are presented in 

Table 3. 

Overall, dietary patterns varied along the socioeconomic gradient and self-reported race was 

the most strongly portioned among the 7 tested variables (P <0.0001 for PC 1-5).  The healthy-

eating PC1 was observed to be higher in females (mean PC1Female = 0.41, mean PC1Male = -0.78), 

Asians (2.58 vs 0.01 for European and -0.62 for African American), and generally increased for 

participants with higher education level or higher household income. A particularly strong gradient 

by income was also observed for PC2, confirming inference from the geographic analysis.   

Multivariate analysis indicated that gender dominates the association with PC1, but age as 

well as race and ethnicity independently contribute as well (p<0.0001 each category).  Furthermore, 

race/ ethnicity, gender and income level have significant independent influences on PC2, whereas 

only race/ethnicity and age are associated with PC3 in the multivariate analysis.  Neither education 

level nor marital status were significant when analyzed alongside the other variables. 

Table 3. Association of dietary PC with geographic and socioeconomic variables 

                       

Characteristic                     PC1            PC2            PC3 
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                   N (%)        Mean (95% CI)     p     Mean (95% CI)       p     Mean 

(95% CI)    p 

                       

Gender              

   Male 234 (34) -0.78 (-1.17,-0.39) ***  0.66 (0.41, 0.92)  ***  0.19 (-0.08, 0.47) 0.03* 

   Female 453 (66)  0.41 (0.13, 0.69)   -0.35 (-0.53, 0.16)   -0.10 (-0.28, 0.07)   

Race/Ethnicity               

   White, non-Hispanic 487 (71)  0.01 (-0.25, 0.27) ***  0.68 (0.52, 0.83)  ***  0.35 (0.19, 0.52) *** 

   Black, non-Hispanic 151 (22) -0.62 (-1.15,-0.10)   -2.09 (-2.35, -1.84)   -1.19 (-1.47, -0.91)   

   Asian  35  (5)  2.58 (1.42, 3.73)   -0.61 (-1.16, -0.07)   -0.06 (-1.05, 0.92)   

   Hispanic   9  (1)  0.39 (-2.57, 3.36)    0.39 (-1.34, 2.12)    0.96 (-1.14, 3.06)   

   Amer. Indian/Alaska Native   5  (1) -0.76 (-4.49, 2.98)    0.16 (-1.43, 1.76)   -0.04 (-1.87, 1.80)   

Age group                

   < 35 yrs 100 (15) -0.80 (-1.37, -0.22) *** -0.01 (-0.42, 0.39) 0.37  0.62 (0.23, 1.01) ** 

   36~45 yrs 174 (25) -0.71 (-1.15, -0.26)   -0.02 (-0.34, 0.29)    0.23 (-0.08, 0.53)   

   46~55 yrs 227 (33)  0.45 (0.02, 0.88)   -0.09 (-0.36, 0.18)   -0.30 (-0.57, -0.03)   

   56~65 yrs 164 (24)  0.49 (0.04, 0.94)    0.04 (-0.27, 0.35)   -0.09 (-0.37, 0.20)   

   > 66 yrs   24 (3)  0.87 (-0.20, 1.95)    0.81 (-0.15, 1.78)   -0.83 (-1.61, -0.05)   

Education level               

   High School or Less   19 (3) -0.65 (-1.70, 0.39) 0.04* -1.82 (-2.99, -0.66) *** -0.98 (-1.97, 0.01) 0.01* 

   College 263 (38) -0.23 (-0.60, 0.14)   -0.48 (-0.73, -0.23)   -0.23 (-0.47, 0.00)   

   Graduate 257 (37) -0.07 (-0.44, 0.31)    0.26 (0.02, 0.49)    0.20 (-0.04, 0.44)   

   Post-Graduate 148 (22)  0.62 (0.08, 1.16)    0.62 (0.30, 0.93)    0.17 (-0.17, 0.52)   

Household Income level               

   $0 to $50,000   72 (11) -0.99 (-1.75, -0.23) 0.01* -1.18 (-1.66, -0.70) *** -0.37 (-0.85, 0.10) 0.22 

   $50,000 to $75,000   93 (14) -0.13 (-0.79, 0.53)   -0.65 (-1.04, -0.25)   -0.10 (-0.53, 0.32)   

   $75,000 to $100,000   91 (14) -0.07 (-0.62, 0.49)   -0.46 (-0.89, -0.03)   -0.26 (-0.70, 0.18)   

   $100,000 to $150,000  154 (24) -0.12 (-0.55, 0.31)    0.10 (-0.17, 0.37)    0.17 (-0.12, 0.47)   

   $150,000 to $200,000   80 (12)  0.67 (-0.02, 1.35)    0.74 (0.32, 1.15)    0.22 (-0.22, 0.67)   

   $200,000 to $250,000   44  (7)  0.06 (-0.96, 1.08)    0.28 (-0.35, 0.92)   -0.34 (-0.95, 0.27)   

   $250,000 to $300,000   26  (4) -1.02 (-2.25, 0.20)    0.23 (-0.53, 0.99)    0.08 (-0.68, 0.84)   

   Above $300,000   85 (13)  0.67 (-0.03, 1.37)    1.34 (0.89, 1.79)    0.27 (-0.15, 0.69)   

Marital Status               

   Single 157 (23) -0.72 (-1.17, -0.26) 0.01* -0.06 (-0.35, 0.22) 0.01*  0.20 (-0.11, 0.51) 0.22 

   Married 436 (64)  0.22 (-0.07, 0.51)    0.13 (-0.06, 0.33)   -0.02 (-0.21, 0.16)   

   Divorced   88 (13)  0.03 (-0.71, 0.77)   -0.60 (-1.00, -0.11)   -0.26 (-0.72, 0.21)  

                       

Note.  ***P <.0001, **P < .001, *P <.05 

 

 

3.3   Health correlates with dietary principal components 
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The relationship between dietary patterns and health was investigated by correlating the main 

dietary principal components with the participants’ clinical profiles. A total of 45 health related 

traits were examined, including 3 physical traits, 19 items from a comprehensive metabolic panel 

(CMP), 8 items from the complete blood count (CBC) test, 4 mental health related measures and 8 

overall summary scores from the SF36 Quality of Life Survey. Pearson linear and Spearman rank 

correlations gave very similar results, and we report the Pearson’s correlations for 15 traits with 

particularly strong correlations to specific PC in Table 4, in which significant positive correlations 

are shaded red and negative blue. 

      Table 4.   Association of dietary principal components with health outcomes 

  PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 

Basal Metabolic Rate -0.40 0.11 -0.06 0.04 -0.06 0.02 -0.26 

BMI -0.29 -0.08 -0.24 -0.04 -0.09 0.16 -0.19 

Waist-to-Hip Ratio -0.22 0.13 -0.05 0.09 0.03 -0.04 -0.07 

Beck Depression Index (BDI) -0.19 0.04 0.04 0.00 0.04 0.07 0.02 

Systolic Blood Pressure -0.15 -0.04 -0.15 0.01 -0.04 0.05 -0.06 

Diastolic Blood Pressure -0.13 0.01 -0.09 0.03 -0.05 0.00 -0.03 

Body Fat Percent -0.13 -0.18 -0.30 -0.10 -0.11 0.26 -0.10 

Perceived Stress Scale Score -0.12 0.04 0.09 0.02 0.00 0.00 0.00 

General Anxiety Survey-7 Score -0.11 0.12 0.08 -0.05 0.02 0.04 0.04 

Epworth Sleepiness Scale Score -0.11 -0.20 -0.04 -0.02 0.01 0.05 0.01 

Fasting Blood Glucose -0.10 0.10 -0.14 0.05 -0.02 0.02 0.00 

SF-36: Physical Health Score 0.11 0.09 0.15 0.05 0.01 -0.08 0.02 

SF-36: Mental Health Score 0.15 -0.12 -0.07 -0.01 -0.01 -0.02 -0.05 

SF-36: Vitality Score 0.23 -0.02 -0.02 0.08 0.03 -0.07 0.00 

SF-36: General Health Score 0.24 -0.05 0.00 -0.05 0.01 -0.04 0.08 

Most notable in this analysis is the strong correlation between PC1 and most health measures, 

indicating the expected positive impact of a healthier diet in general as well as specific aspects of 

physical and mental well-being including vitality.  Note that negative correlations are due to the 

association of larger values of sleep, anxiety and depression scores, weight and blood pressure, and 

basal metabolic rate, with poor health.  Perhaps surprisingly, PC2 which captures a more 

expensive diet, is also negatively correlated with BMI and body fat percent, and an association of a 

high carb diet (PC3) with reduced body weight was seen.  Consumption of inexpensive processed 

foods implied by high values of PC2 is very clearly associated with elevated waist-to-hip ratio, and 

mildly with mental health concerns.  Notably, and also unexpectedly, the high fish diet implied by 

PC6 strongly correlates with high body fat percent and BMI 

These results are consistent with diet being a major contributor to chronic disease.  To further 

investigate this, we next performed a categorical analysis designed to evaluate whether obese 

individuals (BMI >= 30 kg/m2), hypertensives (blood pressure greater than 140/90 mmHg), and 

diabetics (mean blood sugar over 126 mg/dL) had abnormal PC scores.  These clinical conditions 

are all pharmacologically controlled in the study participants.  Joint incidence of all three 
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conditions was observed in 15 individuals, and for one or two of the conditions in one third of the 

samples, leaving approximately two-thirds of the CHDWB cohort classified as relatively healthy 

controls. Figure 3 shows marked differences in the first three PC with respect to these three chronic 

conditions, with effects in the expected direction.  Healthy status associates with high values of 

PC1 and PC3, but there was surprisingly little differentiation with respect to PC2. Individuals with 

all three conditions tend to have the most extreme dietary consumption patterns.  We caution 

against over-interpretation of individual comparisons due to small sample size of some categories 

and presence of confounding variables.   

 

   Figure 3.  Association of dietary principal components with chronic health conditions. 

3.4   Polygenic association of BMI with health-conscious dietary preferences 

In order to assess whether genetic variation for body weight might act through dietary 

preference, we evaluated polygenic scores (PGS) for BMI and WHR using independent genotype 

weights for 281 and 307 SNPs respectively and weights ascertained by the contributing studies 

[33,34].  Imputed whole genome genotypes were available for 410 individuals, and despite the 

small sample size, the expected positive correlations between PGSBMI and BMI (Figure 4A) and 

prevalence of obesity (Figure 4B) were clearly observed. The polygenic score explains 

approximately 3% of the variance for BMI after excluding a handful of individuals with extreme 

BMI over 40. Each point in Figure 4B represents 41 individuals and there is a clear trend for 

increasing proportion of obese individuals as the PGS decile increases.  
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There does not appear to be any association between polygenic predisposition to BMI and 

dietary PC1 (Figure 4C) or any of the other PC, with the marked exception of PC5 (Figure 4D) 

where the regression explains 2.8% of the variance (p=0.0005), being approximately as strong as the 

association with BMI.  Consideration of the loadings on PC5 suggests that high values reflect 

consumption of fresh juices, diet shakes and other items typically consumed by dieting persons, 

whereas positive ones might be related to more filling foods like ice cream, soft drinks and tacos.  

The negative association of PC5 with BMIPRS is consistent with the interpretation that polygenic 

risk for obesity is mediated through health-conscious eating behaviors and satiety.  No 

associations with PGSWHR were observed.           

  Figure 4. Association between dietary categories, body weight, and polygenic scores 
(A) BMI as a function of BMI polgenic score. (B) prevalence of obesity (BMI>=30) in ten decile 

binds from low to high. (C) Lack of association between PC1 and the BMI polygenic score, cf 

(D) strong association with PC5 (p<0.0001). 

4. Discussion 

This study investigated the correlation of four major types of non-dietary factors with people’s 

diet, namely geography, socioeconomic standing, health status, and genetics. Few studies have 

considered combinations of these subjects together, despite the general acceptance of the concept that 

diet is one of the major factors that connects SES with health. Our results are entirely consistent with 

the supposition that a healthy diet strongly associates with education, income, and access to quality 

food, with highly significant health outcomes as argued by [35,36]. In the context of Atlanta, a 

cosmopolitan city with a large African American population, it is also evident that these cultural 

factors are confounded with race and ethnicity.  Our results regarding the geographic distribution 

of dietary patterns are also consistent with descriptions of unique features related to so-called food 

deserts, where access to food is dominated by dollar stores, gas station food marts or fast food 
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establishments. It is evident that food access and environment has a major effect on the resident’s diet 

choices, but confounded by disparities due to racial and SES factors makes it difficult to parse specific 

contributions. 

In contrast to the conventional dietary analytic approach focusing on a single nutrient or a 

summary score, in this study a regression-based methodology based on principal components was 

applied to food proportions computed from dietary surveys. We show that this allows association of 

specific aspects of dietary choice with other variables. The PCs identified with our approach represent 

the most significant dimensions of eating behavior, and were specifically designed to capture 

proportions of consumed food items rather than overall consumption amounts. The reproducibility 

and validity of this approach was initially discussed by [7]. We note that recent machine learning 

approaches may reveal stronger and more consistent clusters of dietary patterns, and that their utility 

in nutrition research is just beginning to be tapped [37]. 

The present data reveal significant relationships between dietary patterns and health status, 

supporting a link between healthy eating habits and well-being. Intuitively, what we eat can affect 

our physical health, and this is apparent in the trend for people having a balanced diet with plenty 

of fruits and vegetables being at lower risk for diet-related disease and “healthier”. However, health 

status, or the perception of health status, is likely to reciprocally impact dietary choice as well: one 

example is that people with diabetes tended to consume less sugary food than the remainder of the 

cohort.  It is in general difficult to ascribe the direction of causality to any of the described 

relationships. 

One caveat of the study was that the Block FFQ is only semi-quantitative, is biased by self-recall 

of eating habits, and does not survey subtle but important distinctions such as types of salad dressing 

and kinds of cooking oil. It does include calibration questions needed for computation of nutritional 

intake calculations, but we elected instead to focus on food group proportions and so these did not 

contribute to the analyses. Nevertheless, the approach is used widely in the nutrition literature and 

is accepted to capture broad trends in food consumption. 

Recently, a number of large-scale genome-wide association studies have begun to attribute 

genetic factors to BMI, WHR and obesity [33,34] as well as to patterns of dietary consumption.  A 

GWAS on 85 single food intake and 85 principal components of diet in FFQ data for the UK Biobank 

[38], identifying 136 associations specific to dietary choices such as white versus 

wholemeal/wholegrain bread consumption.  Many of these link to olfactory receptor associations 

for example with fruit and tea intake, but Mendelian randomization failed to adduce strong evidence 

for a causal role in coronary artery disease or diabetes.  We provide preliminary evidence that one 

component of dietary intake, PC5, which possibly captures a measure of health-conscious eating, is 

significantly correlated with a polygenic score for BMI. This finding is consistent with the enrichment 

of neuronally expressed genes in the BMI GWAS loci and the notion that this PGS mediates its effect 

in part through the propensity to diet. Our results also indicate how important it will be to control 

genetic analyses for cultural and socioeconomic confounders which are major mediators of dietary 

behavior. 
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