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Abstract: Zika virus (ZIKV) is a flavivirus that originated in Africa but emerged in Latin America 

in 2015. In this region, other flaviviruses such as Dengue (DENV), West Nile, and Yellow Fever 

Virus (YFV) also circulate, allowing for possible antigenic cross-reactivity to impact viral infections 

and immune responses. Studies have found antibody mediated enhancement between DENV and 

ZIKV, but the impact of YFV antibodies on ZIKV infection has not been fully explored. ZIKV 

infections cause congenital syndromes, such as microcephaly, necessitating further research into 

ZIKV vertical transmission through the placental barrier. Recent advancements in biomedical 

engineering have generated co-culture methods that allow for in vitro recapitulation of the maternal: 

fetal interface. This study utilized a transwell assay, which is a co-culture model utilizing human 

placental syncytiotrophoblasts, fetal umbilical cells, and a differentiating embryoid body to replicate 

the maternal: fetal axis. To determine if cross reactive YFV vaccine antibodies impact the 

pathogenesis of ZIKV across the maternal fetal axis, maternal syncytiotrophoblasts were inoculated 

with ZIKV or ZIKV incubated with YFV vaccine anti-sera, and viral load was measured 72 hours 

post inoculation. Here we report that BeWo and HUVEC cells are permissive to ZIKV and that the 

impact of YFV post-vaccination antibodies on ZIKV replication is cell line dependent. Embryoid 

bodies are also permissive to ZIKV and the presence of YFV antibodies collected 1 to 6 months post 

vaccination enhances ZIKV infection. Our data show that each of the cell lines and EBs have a 

unique response to ZIKV complexed with post-vaccination serum suggesting there may be cell-

specific mechanisms that impact congenital ZIKV infections. Since ZIKV infections can cause severe 

congenital syndromes, it is crucial to understand any potential enhancement or protection offered 

from cross-reactive, post-vaccination antibodies. 
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congenital infections, Zika congenital syndrome, stem cell 

 

1. Introduction 

Zika Virus (ZIKV) and Yellow Fever Virus (YFV) are both part of the flavivirus family, with an 

enveloped, single-stranded positive-sense RNA genome. Both ZIKV and YFV are vectored by Aedes 

mosquitoes. Both YFV and ZIKV originated in Africa and have been found to co-circulate within the 

same regions of Latin America [1].. ZIKV first appeared in the Western Hemisphere in 2015 [2,3]. YFV 

however, has been circulating in the Americas since the African slave trade era and is endemic in 

many tropical regions such as Brazil, Columbia, Venezuela, and Peru to name a few [4]. In the 1930s, 

a live attenuated vaccine for YFV, 17D, was developed, and in its almost 80 years of use, has proven 

to have a significant impact on controlling YFV outbreaks [4,5]. Multiple countries have mass 

vaccination programs and some countries, where YFV is endemic, have the YFV-17D vaccine 

included in the national recommended childhood immunization schedule. Particularly, Bolivia, 

Brazil, Columbia, Ecuador and Venezuela all recommend the vaccine to children 9-12 months of age 

within the entire country, not just in known endemic regions [6].  Despite these recommendations, 
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recent surveys showed that little more than half of the population in these regions are vaccinated for 

YFV [7]. With ongoing vaccination campaigns in these areas, there are a spectrum of post-vaccination 

YFV antibodies, some which might enhance infection of other flaviviruses. 

With many flaviviruses co-circulating in the same areas in Central and Southern America, there is the 

possibility of antigenic cross reactivity, especially since some YFV endemic areas have reported 

seroprevalence rates of ZIKV as high as 63% [4,8]. Antigenic cross reactivity and antibody mediated 

enhancement frequently occurs between flaviviruses. Cross-reactive Dengue virus (DENV) and West 

Nile virus antibodies have already been known to enhance ZIKV pathogenesis [9-11]. However, only 

limited studies have been conducted on the potential cross-reactive nature of YFV antibodies. One 

study, using commercial ELISA detection kits for DENV and ZIKV, found there to be minimal cross 

reactivity between YFV antibodies and DENV detection, and no cross-reactivity in ZIKV detection 

[12,13]. While these studies were very informative, they do not represent the actual immunological 

landscape as Souza et al [12] used post vaccination serum from 9-month old infants which have an 

undeveloped immune system, and the CDC MAC-ELISA for ZIKV was validated using a sample size 

of less than 10 with individuals of an unknown exposure history [13]. Further, South America, 

especially Brazil, has a high incidence of measles which can affect immunological memory in 

recovered persons [14].  

This, however, does not indicate possible in vivo interactions as several reports indicate that flaviviral 

neutralization is complex and dependent upon many factors [15]. It has also been shown that 

antibodies that neutralize in vitro, like with neutralization assays, often do not neutralize in vivo 

suggesting that complex immunological interactions occur for neutralization [16-18]. In regions 

where ZIKV has a high prevalence, a large portion of the population also has YFV antibodies, not 

only from the childhood schedule of immunizations but also from ongoing vaccination campaigns 

that inoculate adults and provide boosters for pregnant women, HIV-infected persons, and other 

immunocompromised populations [19]. With a spectrum of YFV antibodies present in this 

population, it is important to understand any possible cross-reactivity, antibody mediated 

enhancement, or antibody mediated neutralization possible. 

Studies have reported that vaccination of pregnant women with YFV occurs during vaccination 

campaigns [20,21]. While several studies have shown vaccination with YFV during pregnancy is safe, 

the development of protective immunity is reduced indicating that there may be increased non-

neutralizing, cross-reactive antibodies [19-21]. Whether YFV vaccination occurs in childhood, 

adulthood, or during pregnancy, cross-reactive antibodies that complex with other flaviviruses could 

be a source for enhancement of infection. Further, non-neutralizing antibodies have been shown to 

contribute significantly to antibody dependent enhancement [22-24]. 

Since ZIKV infections can cause severe congenital syndromes, it is crucial to understand any potential 

enhancement or protection offered from cross-reactive antibodies [8]. Studying the vertical 

transmission of ZIKV has posed some challenges to researchers. Results produced in mice models 

are difficult to translate directly to a human or non-human primate model since mice placentas are 

structurally different [25-27]. Ovine and non-human primate models have proved to be promising, 

but these too have their limitations, such as increased costs, small sample sizes, and being labor 

intensive [28,29]. To address these roadblocks, recent advances in biotechnology have generated co-

culture models that use primary human cell lines and stem cells to replicate cellular interfaces. Co-

culture models have been used to simulate the blood brain barrier, the pulmonary barrier, and the 

maternal fetal axis in nanoparticle translocation studies [30-34].  

The transwell co-culture model was utilized in this study to determine if the cross reactivity of YFV 

antibodies could impact ZIKV pathogenesis in utero during early pregnancy. This in vitro model 

offers multiple benefits, such as reproducibility, standardization, and excels in simulating the 

physiological boundary of the maternal fetal axis [35,36]. Maternal syncytiotrophoblasts and fetal 
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umbilical vein cells (BeWo and HUVEC) were used in our transwell co-culture, following established 

placental models [34,35,37,38]. The BeWo cell line was derived from a human placenta and best 

simulates the structure and function of the syncytiotrophoblasts layer of the placenta that forms the 

continuous outer layer to the placenta [39,40]. These cells directly contact maternal blood and regulate 

the exchange of nutrients and particles to a developing fetus [25,41,42]. Any virus or antibodies 

moving across the placental barrier would first have to cross the syncytiotrophoblast layer to reach a 

fetus, and previous studies have determined translocation rates across a BeWo layer to replicate the 

rates found in ex vivo placental perfusions [27,43]. Further, we employed a ZIKV isolate derived from 

human placenta which we felt would be more relevant than utilizing a lab adapted strain with 

unknown tissue tropism in humans.  

We followed Campagnolo et al. (2018) by including a differentiating embryoid body (EB) in the 

basolateral chamber of our transwell co-culture which mimics an early stage developing embryo [38]. 

An EB is generated by inducing stem cells to differentiate and self-organize in the three germ layers, 

endoderm, mesoderm, and ectoderm [44-46]. By including an EB in the co-culture model, we hoped 

to determine if there were differences in the translocation of virus and/or virus: antibody complexes 

that cross the placental barrier and infect an EB. Here we describe a co-culture model (Figure 1) which 

can be utilized to study enhancement or neutralization of virus by maternal antibodies at the 

maternal fetal axis.  We show that YFV post-vaccine antibodies can enhance ZIKV infection of an EB 

which could impact the development of congenital syndromes.  

Figure 1. Experimental model of the trans-well co-culture assay modified from Campagnolo et al. (2018) [38]. 

Co-cultures of BeWo, HUVEC, and embryoid body (EB) were apically infected with either Zika virus (ZIKV) or 

ZIKV+YFV (Yellow Fever Virus) antibody. 

2. Materials and Methods  

2.1. Cell Culture and Virus Propagation  

Primary Human Umbilical Vein Endothelial Cells; Normal, Human, Pooled (HUVEC) (ATCC PCS-

100-013) were cultured in EndoGRO-MV-VEGF media (MilliporeSigma, Burlington, MA, USA) 

containing 5% fetal bovine serum (FBS). To promote microvasculature phenotypes commonly 

expressed in the first trimester with placental expansion and throughout pregnancy, a variety of 

factors were used including rh VEGF, rh EGF, rh FGF, rh IGF, ascorbic acid, hydrocortisone 

hemisuccinate, heparin sulfate, and 1X Glutamax per manufacturer’s instructions [47,48]. 

Additionally, human placental cells BeWo (ATCC CCL-98) were cultured in Ham's F-12K (Kaighn's) 

Medium containing 10% FBS, 1X non-essential amino acids, 1X Glutamax, and 1mM HEPES. Lastly, 
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Cercopithecus aethiops kidney cell line Vero E6 (ATCC CRL-1586) were grown in Dulbecco's modified 

Eagle's medium (DMEM) with 10% FBS, supplemented with penicillin/streptomycin, 1X non-

essential amino acids, 1X Glutamax, and 1mM HEPES. All cell lines were incubated at 37°C/ 5% CO2. 

ZIKV R103451 was obtained from BEI Resources (Cat. # NR-50355) and expanded once in Vero cells. 

All Yellow Fever Antiserums were obtained through BEI Resources, (BEIresources.org). Pre-Immune 

Antiserum (Cat #NR-41782) was taken from a non-human primate prior to immunization, Early 

Immune Yellow Fever Virus Antiserum (Cat #NR-29335) was collected from a non-human primate 

30 days post inoculation with live attenuated yellow fever virus vaccine (17D), Late-Immune Yellow 

Fever Virus Antiserum (Cat #NR-42576) was collected from non-human primate at 30 day intervals 

between 120-420 days post inoculation with live attenuated yellow fever virus vaccine (17D) and then 

pooled, and lastly, Very Late-Immune Yellow Fever Virus Antiserum (Cat #NR-43206) was 

comprised of pooled serum from non-human primate 420-570 days post inoculation with live 

attenuated yellow fever virus vaccine (17D). 

 

2.2. Embryoid Body Formation and Imaging 

Human Induced Pluripotent Stem Cells (ATCC ACS-1019) were cultured in mTeSR1 media (StemCell 

Technologies, Vancouver Canada) on plates coated with vitronectin XF (Stemcell Technologies, 

Vancouver, Canada). 100µL of undifferentiated ACS-1019 cells were seeded in each well of a 96-well 

round bottom ultra-low attachment plate at a density of 90,000 cells/mL using a multichannel pipettor 

to ensure uniformity and reproducibility of Embryoid Body (EB) formation. EB formation media 

(StemCell Cat#05893) was supplemented with 10µM Y-27632 and used for formation as well as 

culture during the transwell assay. The 96-well plate was incubated at 37°C/ 5% CO2 for 48h without 

being disturbed. On day two and day four of formation, 100µL of EB formation medium was gently 

added to each well. On day five, EBs were observed for uniformity, each with a diameter between 

400-600µm, and smooth round edges prior to being harvested and proceeding to the transwell assay.  

In order to visualize ZIKV infection of EBs, EBs were rinsed in PBS, fixed with Paraformaldehyde 

Solution 4% in phosphate buffered saline (PBS) (ThermoScientific CAT# J19943-K2) and blocked in 

5% lamb serum. Primary antibody staining using microtubule-associated protein 2 (MAP2) (Novus 

Biologicals, Littleton, CO, USA) to visualize cell structure and Monoclonal Anti-Flavivirus Group 

Antigen, Clone D1-4G2-4-15 (BEIresources NR-50327) was conducted overnight at 4°C.  EBs were 

rinsed in PBS then incubated with secondary antibodies at room temperature for 1 hour.  Secondary 

antibodies included AlexaFluor 647 and Alexafluor 488 (Invitrogen #A21235 and A11001). EBs were 

rinsed again and then placed on slides and mounted in ProLong Gold Antifade Reagent with DAPI 

(Cell Signaling Technology, Danvers, MA, USA catalog #8961S).  Cover slips were placed on the 

slides and then gently pressed down to flatten the EB.  Slides were incubated overnight at 4°C.   

Images were taken with an Olympus Fluoview 3000 confocal microscope and processed using the 

Olympus Fluoview FV10-ASW 4.1 software package. All images were obtained on the same day 

using the same imaging parameters (zoom, gain, offset, slices, etc).  

2.3. Monolayer Infection and Imaging  

Prior to proceeding with the co-culture assay, we verified the permissiveness of BeWo and HUVEC 

cells to ZIKV as no reports were available to document the susceptibility of these cell lines to flaviviral 

infection.  BeWo and HUVEC monolayers were infected with 1000 infectious units per well. After 

48 hrs, samples were fixed with Paraformaldehyde Solution 4% in phosphate buffered saline (PBS) 

(ThermoScientific CAT# J19943-K2) and blocked in 5% lamb serum. Primary antibody staining with 

microtubule-associated protein 2 (MAP2) (Novus Biologicals, Littleton, CO, USA) was used to 

visualize cell structure and anti-flavivirus group antigen, Clone D1-4G2-4-15 4G2 (BEIresources NR-

50327) to visualize ZIKV. Staining was conducted overnight at 4°C.  Cells were rinsed in PBS then 

incubated with secondary antibodies at room temperature for 1 hour. Secondary antibodies included 

AlexaFluor 647 and Alexafluor 488 (Invitrogen #A21235 and A11001). Cells were rinsed and then 

coverslips were mounted with ProLong Gold Antifade Reagent with DAPI (Cell Signaling 

Technology, Danvers, MA, USA catalog #8961S) and incubated overnight at 4°C.  Images were taken 
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with an Olympus Fluoview 3000 confocal microscope and processed using the Olympus Fluoview 

FV10-ASW 4.1 software package. 

 

2.4. Transwell Co-Culture 

We followed methods previously described elsewhere [49,50]. Briefly, HUVEC cells were seeded on 

the basolateral side of the Corning 12 mm Trans-well® -COL Collagen-Coated 3.0 µm Pore PTFE 

Membrane Insert (Corning, NY, USA catalog# 3494) at a concentration of 1.0x105 cells per 200µl. The 

HUVEC monolayer on the basolateral side was achieved using methods described by Aengenheister 

et al. (2018) [35]. Briefly, inserts were inverted into 6 well plates, with 1mL of PBS in one well to 

ensure enough humidity. Rubber spacers (approximately 1.5mm thick) were placed on the corner of 

the 6 well plate to lift the lid slightly and prevent direct contact of the lid with the inverted insert. 

After the basolateral side was seeded with HUVECs and the lid was replaced, there was slight 

adhesion between the lid and the media. HUVEC seeded inserts were then incubated at 37°C/ 5% 

CO2 for 2hrs, and afterwards the inserts were placed back into the 12 well plate containing fresh 

HUVEC Media. After an insert was replaced in the 12 well plate the apical layer of the membrane 

was seeded with BeWo cells at a density of 1.5x105 cells per 500µl. Co-cultures were incubated for 

72hrs with the media being changed every 48hrs until a 100% confluent layer was observed.  

 

2.5. Transwell Neutralization Assay 

Prior to infection, the media in each basolateral chamber was replaced with 1/2 HUVEC media 1/2 

EB Formation media.  Three EBs were added to the bottom of each well (figure 1). Virus assays using 

YFV serum were performed using a 1:200 dilution of serum in PBS. 1,000 infectious units of virus in 

PBS were incubated with serum for 1 hour at 37°C after which BeWo cells were inoculated with the 

mixture in the apical chamber. Assay controls included treatments of mock infection with PBS, Pre-

Immune Antiserum, Early-Immune Antiserum, Late-Immune Antiserum, Very Late-Immune 

Antiserum, and virus only. To obtain neutralization data, supernatant from BeWo and HUVEC cells 

was taken at 72 hrs post inoculation and all 3 replicates per cell line were pooled to obtain a single 

combined solution which was titrated on Vero E6 cells (Figure 2). EBs were separated from the 

HUVEC supernatant by centrifugation at 400xg for 5 minutes.  The supernatant was aspirated and 

EBs were washed with PBS before a second 

centrifugation at 400xg for 5 minutes, after 

which they were gently resuspended in 

PBS. 3 EBs from each replicate were pooled 

for a total of 9 EBs per treatment for each 

independent trial.  Results of the titration 

assay are expressed as an average between 

two independent trials with three replicates 

for each treatment. A Student’s t-test was 

used for pairwise comparisons between the 

treatments. All virus:antibody assays were 

compared against the ZIKV only assay. 

 

Figure 2. Transwell neutralization assay. Supernatant from BeWo and HUVEC cells was taken at 72 

hrs post inoculation and all 3 replicates per cell line were pooled to obtain a single combined solution 

which was titrated on Vero E6 cells. EBs were separated from the HUVEC media and washed in PBS. 

3 EBs from each replicate were pooled for a total of 9 EBs per treatment for each independent trial. 

This figure was modified based on the original illustration by Campagnolo et al. 2018 [38].  

 

 

2.6. Viral Quantification 
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Plaque assays were performed using pooled supernatant samples from each treatment following a 

method described previously [51]. EBs were separated as described above, and vigorously triturated 

to disassociate cells. Briefly, serial dilutions of culture supernatant or EBs in PBS were inoculated 

onto confluent Vero E6 cells and covered with 0.25% methylcellulose overlay. Overlay was removed 

after three days and cells were fixed and stained with 5% acetic acid, 43% ethanol, 50% methanol and 

0.2% wt/vol Coomassie Brilliant Blue R-250 prior to counting plaques. Pairwise comparisons between 

virus:antibody treatments and ZIKV only were performed using a Student’s t-test.  

3. Results 

3.1. Maternal and Fetal Placental Cells are Permissive to ZIKV Infection 

 

Figure 3. Monolayer infection of BeWo and HUVEC cells with ZIKV viewed under 20x magnification. (A) BeWo 

monolayer stained 48 hrs post inoculation with ZIKV. (B) HUVEC monolayer stained 48 hrs post inoculation. 

(Blue=DAPI, Green=MAP2, Pink= ZIKV: 4G2). 

Clinical reports indicate that placental pathology is minimal for ZIKV congenital infections and primarily 

involves reduced placental weight [52-54]. Reports have shown that ZIKV causes autophagy, apoptosis and 

other forms of CPE in HUVEC cells which is contrary to clinical data [55,56]. ZIKV has been detected in BeWo 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 July 2020                   doi:10.20944/preprints202007.0105.v1

https://doi.org/10.20944/preprints202007.0105.v1


 7 of 16 

 

cells also but investigations regarding CPE was limited [57,58]. Further these studies did not employ the 

placental isolate used here which was derived from the placenta of an infant with microcephaly which could 

impact observations [59]. The purpose of this experiment was to determine if our ZIKV strain was permissive 

to HUVEC and BeWo cells and that it would not induce excessive cytopathic effects that might interfere with 

the experiment. Monolayers of both BeWo and HUVEC cell lines were infected with ZIKV and infection 

visualized using the anti-ZIKV D1-4G2-4-15 antibody. Staining determined that both BeWo and HUVEC cell 

lines are permissive to ZIKV infection (Figure 3). This aligns with previous research showing the placental 

trophoblasts and endothelial cells to be permissive to ZIKV infection [60-63] There were no noticeable 

cytopathic effects within BeWo and HUVEC cell lines when infected with ZIKV (Figure 3). 

3.2. Transwell Neutralization Assay  

At 72hrs post inoculation (p.i.), ZIKV was detected via viral plaque assay. Very Late Antiserum significantly 

increased the amount of infectious ZIKV present in BeWo cells at 72hrs post inoculation as compared to when 

no Anti-serum was present in the transwell assay (p=0.033) (Table 1, Figure 4). The presence of YFV antibodies, 

regardless of time the antiserum was taken post vaccination, did not have any significant impact on ZIKV viral 

titers or Ct-values in the HUVEC cell line (Table 1). EBs had significantly increased levels of infectious ZIKV at 

72hrs p.i. when Early and Late YFV Anti-serum were used as when compared to no anti-serum present (p=0.0294, 

p=0.000762) (Table 1). Imaging studies of the EB verified that ZIKV could be detected throughout the EB and 

CPE was inapparent in all treatments (Figure 4). The variation in size observed reflects that normal variance of 

size when EBs are generated in the manner we employed [64].  

 

 ZIKV ZIKV+Pre ZIKV+Early ZIKV+Late ZIKV+Very Late 

BeWo 2.02log
5
 ± 2.4 log

 4
 2.13 log

 5
 ± 4.3 log

 4
 2.3 log

 5
 ± 3.7 log

 4
 2.19 log

 5
 ± 1.4 log

 4
 2.34 log

 5
 ± 2.2 log

 4
 

HUVEC 2.11 log
 5
± 1.6 log

 3
 1.11 log

 5
 ± 6 log

 4
 1.61 log

 5
 ± 8 log

 4
 1.84 log

 5
 ± 5.5 log

 4
 1.98 log

 5
 ± 6.8 log

 4
 

EB 1.3 log
 3
 ± 3.9 log

 2
 6.9 log

 3
 ± 5.3 log

 3
 9.8 log

 3
 ± 8.8 log

 2
 2.2 log

 4
 ± 4.1 log

 2
 1.2 log

 4
 ± 3.2 log

 3
 

Table 1. Viral titration of ZIKV in BeWo, HUVEC, and EBs 72hr p.i. Data provided signifies average log titer ± 

standard error of 2 independent trials with 3 replicates each. Significant increases in ZIKV titers were seen in 

BeWo cells when Very Late YFV anti-serum was present when compared to ZIKV only (p=0.0334), and in EBs 
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when Early (p= 0.0294) and Late (p=0.000762) YFV anti-serum was present when compared to ZIKV only. Bold 

font indicates statistical significance.  

Figure 4. Immunofluorescence of EBs. (Blue=DAPI, Green=MAP2, Red= ZIKV: 4G2). EBs were stained with D1-

4G2-4-15   antibody and mounted on glass slides.  Coverslips were pressed down on the EBs to flatten them, 

producing a ring effect in most images. Scale bar represents 100uM. 

4. Discussion 

Here, we present data showing that ZIKV derived from the human placenta can infect both BeWo 

and HUVEC cells and replicate without out causing excessive CPE. ZIKV has been known to infect 

placental tissue in humans as well as in animal models, and it can cross the placental barrier to infect 

a developing fetus to cause congenital syndromes [11,28,65-67]. The data in this study shows that 

within 72hrs p.i., ZIKV effectively crosses two monolayers, a basement membrane of placental 

collagen, and infects an EB. The detection of ZIKV in cells located on each side of the membrane as a 

model for the maternal: fetal axis supports reports of isolation of ZIKV from placentas and fetuses 

[28,53,68,69]. However, the permissiveness of cells observed in this study may not reflect the cellular 

tropism of ZIKV in actual placentas [70-73].  

Pre-Vaccination sera was collected prior to vaccination with the 17D YFV vaccine, Early serum was 

collected 30 days p.i., Late serum was collected at 30 days intervals between 120-420 days p.i., and 

lastly, Very Late serum was comprised of pooled serum from 420-570 days p.i.. It has been shown 

that broadly neutralizing IgM antibodies quickly appear after vaccination with the 17D vaccine, 

typically 4-7 days p.i., and have been found to circulate anywhere between 2-11 years p.i. [74,75]. IgM 

antibodies are broadly reactive while IgG antibodies are associated with a higher antigenic specificity 

and better immune responses.  IgG antibodies take longer to appear after vaccination, usually 28-42 

days p.i. with the 17D vaccine, IgM is present in significantly higher titers than IgG [75]. This could 

explain why there was a significant enhancement of ZIKV infection in EBs when Early and Late-

Immune YFV-Antiserum were present. These differences are important to consider when analyzing 

why some sera in this study enhanced while others did not. IgG antibodies have Fc regions and can 

readily cross the placenta due the FcRn receptor on placental syncytiotrophoblasts and endothelial 

cells and have already been found to be endocytosed by the BeWo cell line [76-79]. By the time Early 

and Late antiserum was collected, both IgM and IgG antibodies would have been abundant, 

suggesting why ZIKV enhancement was observed in BeWo and EBs.  

Anti-DENV antibodies have been shown to enhance ZIKV infection in multiple model systems and 

case studies [9,11,79-81]. Due to the genetic similarities between flaviviruses it would be expected 

that antibodies for other flaviviruses, such as YFV, may also contain the ability to enhance ZIKV 

infection. In this study, EBs had enhanced ZIKV infection along with lower viral loads as compared 

to the placental cell lines. This supports reports of ZIKV titers in fetal and placental tissues in vivo 

[28,68,69]. Since macrophages or other monocytes were not used in this study, the enhancement we 

observed was likely due to antibody mediated enhancement (AME). Like ADE, AME occurs when 

antibodies bind to virus particles forming complexes. These complexes interact with cell surface 

receptors and promote entry into host cells leading to increased levels of viral replication via 

suppression of innate immune processes and inflammatory cascades [23,82]. While this process is 

associated with Fc receptor-bearing monocytes, it is also possible for these virus–antibody complexes 

to infect other cell types and suppress innate immunity [23,82]. 

A limitation to this study was the omission of Hofbauer cells from the model. Hofbauer cells have 

been found to play a role in ZIKV transmission through the placental barrier [79,83-85]. They are 

placental macrophages that also have Fc receptors, play a role in early angiogenesis within 

trophoblast cells, and have been found to transfer viral particles into the fetal endothelial cells and 

blood supply [77,86-88]. Since they have been found to further facilitate vertical transmission of ZIKV, 
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not including them in the transwell co-culture assay limits the findings within this study. DENV 

antibodies have already been found to enhance ZIKV infection within Hofbauer cells, and as such 

not including them could have impacted the results [79]. 

5. Conclusions 

Due to the already established cross reactive nature of flavivirus antibodies, it is crucial to understand 

the interactions of neutralizing and enhancing antibodies as vaccine research continues for many of 

these viruses [9,10,89,90]. The 17D vaccine for YFV has been included in the recommended 

vaccinations in most Latin American countries and ongoing vaccination campaigns are vaccinating 

more adults, creating a population of people with potentially cross-reactive antibodies [4-6,12,75]. 

Additionally, in regions of Latin America where these viruses co-circulate due to a common vector, 

Aedes mosquitos, many people have the potential to become co-infected or infected by different 

flaviviruses within their lifetime [1,4,8,84]. Further research about the cross-reactive nature of 

flavivirus antibodies is needed, especially because vertically transmitted viral infections can lead to 

congenital syndromes. More studies are also needed to better understand the kinetics of antibody 

passage through the transwell co-culture model, and to better understand possible antibody 

mediated enhancement of ZIKV by YFV antibodies produced after receiving the 17D vaccine 

especially in pregnant women who may be receiving a booster or receiving vaccination during 

campaigns. 
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