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Abstract. In [18], Kim et al. introduced the degenerate poly-Bernoulli polyno-
mials by using polyexponential function. In this paper, we study the degenerate
poly-Frobenius-Genocchi polynomials, which are called the type 2 degenerate poly-
Frobenius-Genocchi polynomials, by means of polyexponential function. Then, we de-
rive some useful relations and properties. We derive type 2 degenerate poly-Frobenius-
Genocchi polynomials equal a linear combination of the degenerate Frobenius-Genocchi
polynomials and Stirling numbers of the first kind. Furthermore, we introduce type
2 degenerate unipoly-Frobenius-Genocchi polynomials by means of unipoly function
and derive explicit multifarious properties.
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1. Introduction

Recently, Kim and his research team (see [7-18]) have studied the degenerate
versions of special numbers and polynomials actively. This idea provides a powerful
tool to define special numbers and polynomials of their degenerate versions. We can
say that the notion of degenerate version from a special class of polynomials because
of their great applicability. The most important application of these polynomials is
in the theory of finite differences, analytic number theory, applications in classical
analysis, and statistics. Despite the applicability of special functions in classical anal-
ysis and statistics, they also arise in communications systems, quantum mechanics,
nonlinear wave propagation, electric circuit theory. electromagnetic theory, etc.

As is well known, the classical Bernoulli, Euler and Genocchi polynomials are
respectively, defined by (see [4, 5, 6])

1 oo

l xt __ = ! 2 xt __ tj
7=0 =0
and
2 L t7
ot :;Gm)ﬁ,uw.

In the case when x = 0, B; = B,;(0), E; = E;(0) and G; = G,(0) are respectively,
called the Bernoulli, Euler and Genocchi numbers.

For u € C with u # 1, the Frobenius-Genocchi polynomials GZ'(z;u) are defined
by
(1- u)t6
et —u

wt — Z GE (x; u)g, (see [18). (1.2)
n=0 )
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In the case when z = 0, GZ'(u) = GZ(0;u) are called the Frobenius-Genocchi
numbers.

Obviously
GE(z;-1) = G ().
For k € Z, Kim-Kim [7] defined the modified polyexponential function, as an
inverse to the polylogarithm function by

n

Tt is worthy to note that e(z, 1|k) LEi)(z) and Eiy(z) = e* — 1.

x

For any non-zero A € R (or C), the degenerate exponential function is defined

by
eX(t) = (L+ AD)X, ex(t) = (1+ At)X. (1.4)
By binomial expansion, we get
(o) tn
ex(t) = Z(I)n,xﬁ, (see [12, 13]), (1.5)
n=0 '

where (z)or =1, ()pr = (@ —A)(x—2X)--- (x — (n — 1)A), (n > 1).

Note that
e n
lim e$(t) = "= = et
A—0 )‘< ) T;) n!

In [1, 2], Carlitz introduced the degenerate Bernoulli polynomials given by

t t
ex(t) -1 Alr) = (1+>\t)%—

The case z = 0, B,(A\) = B,(0; A) are called the degenerate Bernoulli numbers.

(14+M)% = Zﬁnx)\ (1.6)

Note that
A—0

In [17], Kim et al. considered the the degenerate Genocchi polynomials given by

2z “ > 2
—_— = G; —. 1.7
mEETE ERDILAC (1.7)
In the case when u = 0, G, » = G; »(0) are called the degenerate Genocchi numbers.

Very recently, Kim et al. [18] introduced the degenerate poly-Bernoulli polyno-
mials defined by

Wei( ) = Zﬂ(k)( )ni (1.8)

n=0

Here, ﬁflk;\ = ﬁ(k)( 0) are called the degenerate poly-Bernoulli numbers.

Kim et al. [9] introduced the degenerate Frobenius-Euler polynomials are defined
by means of the generating function as follows
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1—wu = > t"
ESUIE (1 + )% = Zhn’,\(ﬂu)ﬁ, (1.9)
n=0 '

so that

i (@]u) = mz::() ( m ) B A (1) (/\)nim, (n>0).

When z = 0, hpa(u) = hp(0Ju) are called the degenerate Frobenius-Euler
numbers, (see [8, 7]).

Note that
lim A, a(z|u) = Hp(z|u), (n > 0).
A—0

It is well known that the Stirling numbers of the first kind are defined by

Yo = ZSl n, )z, (see [6, 7]), (1.10)

where (z)o = 1, and (z),, = x(x —1)---(z=n+1),(n>1). From (1.10), it is
easily to see that

k'(log (141)) Zsl (n, k (k > 0), (see [6, 9, 13-15]). (1.11)
In the inverse expression to (1.11)7 the Stirling numbers of the second kind are
defined by

n
" = ZSQ(’/I,Z)([E)[, (see [1,6, 7]). (1.12)
1=0
From (1.12), it is easily to see that

1
(e — 1)k ZSQ nl (see [8, 11, 13, 14]). (1.13)

The generating function of the degenerate Stirling numbers of the second kind
[13-19] are defined by

o l
%(ex(t) S sm(z,n)%, (n > 0). (1.14)
l=n
In this article, we consider the generating function for the type 2 degenerate
poly-Frobenius-Genocchi polynomials, which are called the type 2 degenerate poly-
Frobenius-Genocchi polynomials, by means of polyexponential function and derive
some properties of those polynomials. In the last section, we define type 2 degenerate
unipoly-Frobenius-Genocchi polynomials by means of unipoly function and includes
several properties.

2. Type 2 degenerate poly-Frobenius-Genocchi polynomials
Let A\,u € C with v # 1 and k € Z, by using the polyexponential function, we

consider the type 2 degenerate poly-Frobenius-Genocchi polynomials are defined by
means of the following generating function

Eir(log(1 4 (1 —u)t (F k)
O Z G . (2.1)
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In case when z = 0 in (2.1), GELF/’\k)(u) = Gle/’\k)(O; u) are called the type 2 de-
generate poly-Frobenius-Genocchi numbers.

For k =11in (2.1), we get

(1_71‘ Z Gn NEHD) (2.2)

6)\(

where Gi y(z;u) are called the degenerate Frobenius-Genocchi polynomials.

Obviously

Eiy(log(1 4+ (1 — > n

lim ix (log(1 + (1 = w)t)) ex(t) = lim G(F;\k)(x;u)t—

A—0 ex(t) —u = A—0 ™ !

) R N
= fnzzoan (w50) - (2.3)
Thus, by (2.1) and (2.3), we have

Jim G (wsu) = G (i), (n > 0) (2.4)

where G%F’k) (z;u) are called the type 2 poly-Frobenius-Genocchi polynomials.

It is clear that
GV (@u) = G (w3 ),

G (25 -1) = () (see [4]),
Jim G (yu) = G (w;u), (n > 0), (see [18)).
im G,

Theorem 2.1. For n > 0, we have

u)l+1

lE:( ) ZWZSll—i—lm—kl)( )n,l’)\T

B Z ( ) G () (s = wGLY (afu). (2.5)
Proof. From (2.1), we have

) . oo tn e tn
Bir (log(1 + (1 — u)t)e (1) = ex(t) D_ 6,37 () — — Y~ G5 (wfu)
n=0 :

n=0
i m,\—ZG(Fk) 1:|u uZ:G(F]~C (z|u) t—'
m=0 n=0

Z (Z( )GiF%(:rlu)( Jm A—uaw’“mu)) z. (2.6)

On the other hand,
Eij(log(1 + (1 — u)t))ex(t)

- (Z(l’)n,AZZ> (Z (log((1m+_(11)!"1:2t))m>

n=0 m=1
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(o) tn o0
(Zxﬂmn!) <Z T Z Syt + 1)t 1 u't )

m:O l m+1

o0 tn oo o0 1 e’} 17u 41 tl
- (Zom5) (E2 m+m—1§51<l*1’m+1>(1+1u)
> (Z () Z_<m+11>k 2 Silt+tm 1)(@,”%(1)*) L@

|
— I+1 n!

Comparing the coefficients of % on both sides of equation (2.6) and (2.7), we obtain
the following theorem.

O
Theorem 2.2. For n > 0, we have
Fk - Fk
G @iw) = ( ) G (W) (@)ma. (2.8)
m=0
Proof. From (2.1), we have
t” Eig (log(1 1—u)t
ZG(Fk) ( lk( Og( +( u) ))) Gi(t)
ex(t) —u
k — t
_ Z G(F ) Z (m)m,)\m
" m=0
n Fk t"
L.HS= Z Z ( - )G; nz)\(u)(a:)W,\H. (2.9)
n=0m=0
Therefore, by (2.1) and (2.9), we require at the desired result. O
Theorem 2.3. For k € Z and n > 0, we have
Fr), (1 = S1(l+1,m+1)(1 —u) r
(2.10)

Proof. By using equations (1.11

), (2.2) and (2.1), we have
PTG (
ZGM (x,u)ﬁ
n=0

. Eik log(l + (1 - u)t)) T
= < ex(t) = ) ex(t)

u

log 1 + (1 —w)t)™
—u Z — 1)Imk
m=1
ef\ i (log(1 + (1 —u)t))™+t
m' (m+ 1)k

m=0

= (0 i( ! J Z Sﬂn,m—i—l)%

m—+1 el n

(- u)t L 1 Si(n+1,m+1)(1 —u)"t"
NG) —ue’\( ) (m+ 1)k mz::n n+1 n!

- P 1 — Sil+1,m+ 11—t
=2 _Gralsu) !Z(erl)kZ I+1 Il

n=0 m=0 m=l

d0i:10.20944/preprints202007.0103.v1
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(o) n oo
n Si(l+1,m+1)(1 —u) "
L.H.S = G —.
(S (0) & g & M e )
(2.11)
By comparing the coefficients of %, we arrive at the desired result (2.10). (|

Corollary 2.1. For k € Z and n > 0, we have

n

n\ — | m !
Gﬁk}(u):ZQ)z m+1kZS — l++11)(1 )G’f“()

=0

Corollary 2.2. For n > 0, we have

m Ul
afatwn =3 (7) 3 3 MR e

m=0m=I

Corollary 2.3. For n > 0, we have

m=0m=I

In particular,

n

Z( ZZ l+ll+n;+1)2GnM() N

=0 0m=
Tt is well-known from ([3]) that

oo

t " L m
(log(l+t)> (1 +t)x ZB(n r+ )( )n' (7" c (C) (2.12>

n=0

where B,(f) (z) are called the higher-order Bernoulli polynomials which are given
by the generating function

l " xt = B('r) "
etf]. € _Z n (x)ﬁ

n=0

Theorem 2.4. For n > 0, we have
!
F2 (1—u)'B!
=3 () e . (2,13
1=0

Proof. Using (1.3), we first consider the following expression

o0

d d (log(1+ (1 —w
d—Elk(log(l +(1—uz = EZ: 8l n+—|— 1)'nk) )"
1—u 2. (log(1 + (1 — u)z))"
B E I e P S rey
1—-u

Eir_1(log(1+(1—u)x).
(2.14)

T 0+ (1 —-waz)log(l+ (1—uwa)

From (2.14), k > 1, we have

(F k) (1 _ u)kfl x 1
Z_: eaz)—u /0 (14 (1 —u)t)log(l+ (1 —u))
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X /t 1 .. o/t t
o 1+ (1 —wu)t)log(l+ (1—ut) o (14 (1 —w)t)log(l+ (1 —u)t)
k—2—times

Hence, we require

dtdt...dt.

(F2) ()T _ (1—w) [* (1 —u)t
ZG ! ex(r) —u/o (1+ (1 —w)t)log(l+ (1 —u)t) (2.15)

17
) / u)" Byt

_ (1 —U)T Z (1 —u)"B) a"

ex(@) —u = n+1 nl

oo l n
L.H.S = n; (; (’Z) T)llG" NG )) % (2.16)

By (15) and (16), we require at the desired result. Thus, we complete the
proof. O

Theorem 2.5. Let k > 1 and m € N{J{0}, s € C, we have

Xouy (—m) = (1 —u) "™ H(=1)"GEF (u). (2.17)

Proof. Let k > 1, be an integer. For s € C, we define the function xj, . (s) as
1 o] Zs—l
v(s) = Eix (log(1 1-— dz. 2.18
) = 1 | Bk sl + (1= w2) s (2.18)

In view of calculation above that xx . (s) is holomorphic function for #(s) > 0
because of the comparison test as Eix (log(1l+ (1 —u)z)) < Elg (log(1+ (1 — u)z))
with the assumption (1 — )¢t > 0. From (2.18), we note that

xeuls) = S /ooo e Bl (og(1 + (1 - w)2)) dz

C(I—w)t 1 sl - .
T T(s) / e (2) — —Eir (log(1+ (1 —u)z))d
(1 — )t Sl _ o
TG /1 er(e) —u ik (log(l+ (1 —u)z)) dz (2.19)

The second integral converges absolutely for any s € C and hence, the second term
on the right hand side vanishes at non-positive integers. That is,

o la=w)t e 2 . (L)t
Jim | E /1 B (om(1+ (1~ w))dz| < S =0,
. (2.20)
P =) = sin7(r7rs)

On the other hand, for R(s) > 0, the first integral in (2.20) can be written as

—u)s 1 1 pr 1
- F(s)) /O e,,(z)_uEik (log(1 + (1 — u)2)) dz
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— o0 (F7k) 1
_ (1 B u)g ! GTL,)\ (u) n+s—1
 T(s) HZ:% n! /0 : dz

_ (o0 R G
- T(s) nl n+s

n=0
which defines an entire function of s. Thus, we may include that xx,(s) can be
continued to an entire function of s. Further, from (2.20) and (2.21), we obtain

(2.21)

Xk,vu(—m) = sg@m (1 }(l;))s /0 eD(Z:)_* uEik (log(1+ (1 —u)z)) d=

1—u)p ' X GEY 1
= lim  —
s——m  I(s) s+ r!

(1-w' 1 GYy(u)

=ik 04+---40 li 0+0+--- 2.22
FOF 0 lim e e T 00 (2.22)
. (I—w) (1 —s)sinms G&,ﬁ’f) (u) 1 Gﬁ,ﬂu’“)

— sEIElm I(s) = = (1 —u) ['(1+m) cos(mm) -

= (1—u) " (=D)"G (u).
Thus, we complete the proof of this theorem. O
Theorem 2.6. For n > 0, we have
n
k) k
G (@ + g Z ( )G;F o @) (Y)ma. (2.23)
=0

Proof. From (2.1), we have

ZG(Fk) x+y.u)ﬁ _ (Eik(log(l + —U)t))> S (1)
Tl

ex(t) —u
Fk - tm
(Z o3 (s ) <Z<y>m,w>
m=0
k "
= Z (Z ( )foni )\(x;u)(y)m)\> ok (2.24)
By comparing the coefﬁc1ents of T™, we obtain the result (2.23). O

Theorem 2.7. For n > 0, we have

CUCESENED ( . )GEALF_”;)L’A(x;u)(l)m,A. (2.25)

m=0

Proof. By (2.1), we observe that

i [G;F)\k 2+ L) — ngi\k)(x; u)] o <Eik(log(1 +(1- u)t))) €2 (1) fex(t) — 1]

o n! ex(t) —u
— n Fk " o= (Fok "
-3 < " > el %A(aﬂ;u)(l)m)\a -3 6l )(x;u)a. (2.26)
n=0m=0 n=0

Comparing the coefficients of ¢” on both sides, we get the result (2.25). g
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Theorem 2.8. For n > 0, we have

GO ) = 30 (1) @sPmactow. e
m=0 g=0
Proof. From (2. 1) we have
t” Eix(log(1 4 (1 —u)t .

[ Eig(log(1 + (1 —u)t)) _ ©
B < ex(t) —u > ealt) =1+ 1

Ei (lo 1 —w)t)) >\ (2
( K g((g( ))) Z q25§>lq

q=0
- (Z > < ) oSy (m, q)Gf,F’;wu)) = (2.28)
n=0 \m=0¢=0 !
By (2.1) and (2.19), we obtain (2.27). 0

Theorem 2.9. For n > 0, we have

ng) +alu) = Z Z ( ) a"mlS2 \ (I + a,m + Oz)FTEFlkZ\( ). (2.29)
=0 m=0
Proof. Replacing by  + « in (2.1), we have

L ”) 5 ()
n=0

(Elk(loge(j(;; (1; u ) (i": m>

Eix(log(1+ (1 —u)t o 1)

- ( ex(t) —u ) < Z )
 (EiQlog(1+ 1 - w)i)\ ( o i i
— ( k ex(t) —u ) (e,\(t) Z z m!g%sm(l’m)“)

o0 n ) l
N ZG&FA}C)(U)% <Z Z z™mlS \ (I + «, m-i—a)]lfj)

=0 m=0
m Fk t"
L.HS = Z (Z Z ( ) x"mlSy A (I + a,m + a)Gfl_L))\(u)) T (2.30)
=0 m=0
Therefore, by (2.1) and (2.30), we get the result (2.29). 0

3. Type 2 degenerate unipoly-Frobenius-Genocchi polynomials

Let p be any arithmetic function which is a real or complex valued function
defined on the set of positive integers N. Kim-Kim [7] defined the unipoly function
attached to polynomials p(x) by

(zlp) = Z (k€ Z). (3.1)
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Moreover,
oo

™
ug(z|1) = Z i = Lig(z), (see [3]), (3.2)
n=1
is the ordinary polylogaritm function.

By using (3.1), we define the type 2 degenerate unipoly-Frobenius-Genocchi
polynomials by

up(log(1+ (1 —u)t (Fk)
ex( G 3.3
ex(t) —u Z nn( (3:3)
In the case when z = 0, Gn A p(u) = fo;(o; u) are called the type 2 degenerate
unipoly-Frobenius-Genocchi numbers. Let us take p(n) = ﬁ Then, we have
i GER) (g u)ﬁ _ up(log(1 4 (1 —u)t)|{£p) ex(t)
— A ) ex(t) —u A
_ i (log(1 + (1 — w)t))™
Tet)—u — mk(m +1)!
Elk(log( + (1 —u)t))
ex(t)
ex(t) —
= Z Gl (w0) . (3.4)

Thus, we have

Fk F.k
G0, () =GP (w3 ).

Theorem 3.1. Let n € N and k € Z. Then we have

pm+1)(m+1)!S(I+1,m+1
G ;;()() mj—(l)k ) (z+1 )1 w)'GE_, (). (35)

In particular,

n l
Gf/’\k)l(u) =22 <7ll> (;:_:—11)1@ Sl(l—;_li:gn+ 1)(1 —u)' Gy 5 (u). (3.6)

(Fky, (" up(log(1 + (1 — u)t)|p)
T;)G”’A’p(u) n! ex(t) —u
m=1
_ 1 — p(m+1 ( +1)! L pa-wt
"o w2 (mriy l%f” U
(1= uwt = pm+1D)(m+ 1) o~ Si(l+1,m+1) t!
_6A(t)—“m220 (m+1) mzzl 1 1+1 (1_u)lﬁ
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=l

= (m+1)(m+1 Si(l+1,m+1 t!
_< G ><Zp (m+ 1) ); (l+1 )(1 )ll'>

— =\ (m+ 1)k I+1 n!
(3.7)
Therefore, by comparing the coefficients on both sides of (3.7), we obtain the following

theorem.

[e'e) n l .
S ( (n)p(m+1)(m+1)!Sl(l+1’m+1)(l —u)'GE | \(u >> a
1 =0

Theorem 3.2. Let n > 0 and k& € Z. Then we have
n m n
G () = 30N ( ) ()45 (m, )G | (w). (3.8)

Proof. Using (3.3), we observe that

Z ¢ ) (umog(l (- u)t))) .

naal n! ex(t) —u

_ (uk(log(l +(1- U)t))> lex(t) —1+1]"

ex(t) —u

_ (uk(log(1+(1u) ) ) Z qisgg)

ex(t) —u =

L.H.S = Z (Z > ( ) )g52) (m, q)GiLF];zA’p(u)> %n, (3.9)

n=0 \m=0 qg=0
By comparing the coefficients of ¢, we obtain the result (3.8).

O
Theorem 3.3. Let n > 0 and k£ € Z. Then we have
k “~ (n Fk
ERCTEDY <m)G;_WZ,>\’p(u)(z)m7,\. (3.10)

Proof. From (3.3), we observe that

Z G;F)\k}))( u)%”' _ uk(loge(Al(:—) (_1; u)t))e"f\(t)
n=0

t’n

LH.S = Z (Z < ) G\ A,p(U)(m)m,A> - (3.11)

By comparing coefﬁments on both sides of (3.11), we obtain the following theo-

rem. O
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4. Conclusions

Motivated by the definition of the type 2 degenerate poly-Bernoulli polynomi-
als introduced by Kim et al. [18], in the present paper, we have considered a class
of new generating function for the Frobenius-Genocchi polynomials, called the type
2 degenerate poly-Frobenius-Genocchi polynomials, by means of the polyexponen-
tial function. Then, we have derived some useful relations and properties. We have
showed that the type 2 degenerate poly-Frobenius-Genocchi polynomials equal a lin-
ear combination of the degenerate Frobenius-Genocchi polynomials and degenerate
Stirlings numbers of the first and second kind. In a special case, we have given a re-
lation between the type 2 degenerate Frobenius-Genocchi polynomials and Bernoulli
polynomials of order n. Moreover, inspired by the definition of unipoly-Bernoulli poly-
nomials introduced by Kim-Kim [7] we have introduced the type 2 degenerate unipoly-
Frobenius-Genocchi polynomials by means of unipoly function and given multifarious
properties including degenerate Stirling numbers of the second kind and degenerate
Frobenius-Genocchi polynomials.
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