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Abstract: The majority of cellular responses to external stimuli are mediated by receptors such as G 

protein-coupled receptors (GPCRs) and systems including endoplasmic reticular stress (ER stress). 

Since GPCR signalling is pivotal in numerous malignant pathologies, they are targeted by a number 

of clinically used drugs. Cancer cells often negatively modulate GPCRs in order to survive, 

proliferate and to disseminate. Similarly, numerous branches of the unfolded protein response 

(UPR) act as pro-survival mediators and are involved in promoting cancer progression via 

mechanisms such as epithelial mesenchymal transition (EMT). However, there are a few proteins 

among these groups which impede deleterious effects by orchestrating the pro-apoptotic 

phenomenon and paving a therapeutic pathway. The present review exposes and discusses such 

critical mechanisms and some of the key processes involved in carcinogenesis. 
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1. Introduction 

G protein-coupled receptors (GPCR) contribute to a number of physiological capabilities during 

tumorigenesis [1] and are vastly involved in the control of virtually all cell types. Their structure 

allows for binding of highly diverse ligands, thus they are considered to be the most druggable family 

of proteins. Loss of balance in the activation of these receptors may result in triggering of conditions 

such as carcinogenesis. Mechanisms such as GTP hydrolysis, second messenger related protein 

kinases (e.g. PKA and PKC), G-protein-coupled receptor kinases (GRKs), and arresting prevent the 

malfunctioning of GPCR signalling. GRKs in general phosphorylate their target GPCR in order to 

prevent excessive cellular signalling. GRKs are considered to be negative regulators of GPCR activity 

and are involved in tumorigenesis through processes such a cell death, proliferation, invasion and 

vascularisation [2]. Nearly 108 GPCR targets are available but fewer than eight are in the anti-cancer 

class[3]. Moreover, understanding how GRKs regulate GPCR activity may greatly aid in 

understanding oncogenesis and respected therapeutics. 

Activation of GPCR expressed in various cells has been found to stimulate ER stress [4]. Arrestin-

1(ARR-1), the GPCR protein in Caenorhabditis elegans, was studied in order to investigate 

homeostasis. It was noted that ARR-1 was essential for GPCR signalling which controls unfolded 

protein response (UPR) and various neural pathways concerning ER stress were governed by GPCR. 

NPR-1, in a neural circuit setting, controls the p38/PMK-1 MAPK pathway required for innate 

immunity[5]. Similarly, OCTR-1 also regulates the p38/PMK-1 MAPK pathway and other UPR 

pathways [6]. GPCRs were reported to be key players not only in cancers but also in inflammation-

related diseases such as ulcerative colitis and Crohn’s disease, and OGR1 was identified as a classic 

example of GPCR protein expressed in gut-related inflammatory diseases. Surprisingly, OGR1 aided  
in the regulation of ER stress through the IRE1α-JNK signalling pathway and blockage of  
autophagosomal degradation [4]. This body of evidence forms a strong understanding between  
GPCR and ER stress.   
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The course of linkage of GPCR and ER stress to EMT progression is of interest in cancer 

therapeutics (Figure1). Furthermore, in cancer progression, chemotactic migration is regarded as a 

key aspect, and it has been found that the activation of hemotactic GPCRs led to impaired 

autophagosome biogenesis in U87 cells which aided in cell migration [7].  

In addition, epithelial-mesenchymal transition (EMT) also plays an important role in the 

development of resistance to EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib, in NSCLC[8]. 

Hence, the functional crosstalk between GPCRs and EGFR linked to EMT could be a potential target 

for inhibiting EMT-associated metastasis in lung cancer. We have previously shown that EMT is an 

active process in NSCLC and mutually associated with airway disease [9]. EGFR and EMT-related 

protein expressions were markedly high in the peripheral leading edge of NSCLCs and related to 

tumour characteristics associated with poor prognosis. The relationships between EMT-related 

tumour biomarker expression and those in the airway epithelium and Rbm provide a background 

for utility of airway changes in clinical settings. The functional crosstalk between GPCRs and EGFR 

also contributes to the progression of other cancers, such as colon, breast, and head and neck tumours 

[10, 11]. Another GPCR super family member, GPR171, identified as a potential tumour-promoting 

gene, is also over expressed in lung cancer[12]. Studies have shown that GPR171 enhanced 

proliferation[12] and metastasis of lung cancer[12, 13] in an EGFR-independent manner. Therefore, 

it is also proposed that combined inhibition of GPR171 and EGFR might be a promising strategy for 

lung cancer treatment. GPCRs are also known to be involved in tumour progression by coupling with 

the Gs-, Gα- and Gq- protein-signalling pathways. For instance, GPCRs can interact with Rho GTPase 

by coupling with the Gαq signalling pathway which is involved in cell migration and 

invasion[14][15]. GPR78 is an orphan GPCR and a Gs-coupled receptor in regulating the cellular level 

of cAMP[16] and it has been found to be expressed in several lung cancer cell lines[17]. The mRNA 

level of GPR78 was also found to be increased in lung cancer cells[17]. The over expression of GPR78 

in lung cancer cells promoted cell migration by inducing the activation of RhoA and Rac1, which are 

small signallingG proteins of Rho GTPase[18] through the Gαq-signalling pathway[17]. GPR78 

knockouts significantly suppressed the cell migration in metastatic lung cancer cell lines[17]. It has 

been understood that the activation of RhoA and Rac1 signalling was likewise associated with the 

mTORC2 and mTORC2 activity in regulating EMT in the metastasis of colorectal cancer cells[19]. 

GPCRs knockouts could also potentially suppress EMT-associated metastasis in lung cancer via the 

Rho GTPase pathway, however further work is needed in this direction. 

On the other hand, the orchestrating role of ER stress in EMT initiation has been well established. 

ER stress induces EMT in AECs, at least in part through Src-dependent pathways, thereby 

demonstrating its role in fibroblast accumulation in pulmonary fibrosis [20]. Hypoxia was another 

factor driving pro-EMT transcription factors, as well as the activation of ER stress markers both in 

vivo in rat lungs and in vitro in aleveolar epithelial cells [21]. Hence hypoxia and intracellular calcium 

are both involved in EMT induction of AECs, mainly through the activation of ER stress and hypoxia-

induced factor (HIF)-signalling pathways. Enhanced ER stress was responsible for induction of EMT 

in human lens epithelial cells [22]. Histone deacetylases (HDACs) participate in the regulation of 

dynamic equilibrium state of histone or non-histone acetylation/deacetylation and their deacetylase 

activity could be inhibited by histone deacetylase inhibitor (HDACi). ER stress-inducing agents such 

as tunicamycin and bleomycin induced ER stress and EMT in lung epithelial cells via the up-

regulation of HDACs which was proved by employing the HDAC inhibitor via the Smad pathway 

[23]. ER stress employed its arms in the process of EMT induction. The Src-dependent pathway was 

previously shown in pulmonary fibrosis [20]. The inositol-requiring protein 1 (IRE1)-XBP1 pathway 

was found to promote EMT via Snail expression in pulmonary fibrosis. The interrelationship between 

GPCRs, ER stress and EMT is nearer to a triangle. Therefore, in this review, we intend to revisit some 

of the key candidates in the pathways such as GPCR, ER stress and EMT which have been developed 

in order to modulate and have been tested in disease models.  

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 July 2020                   doi:10.20944/preprints202007.0097.v1

https://doi.org/10.20944/preprints202007.0097.v1


3 of 10 

 

 

Figure 1. the interrelation between GPCR, ER stress and EMT. 

2. LPA5 is a friend in need among GPCRs 

The long-term expression between LPA5 and cancer progression has been the subject of debate. 

LPA treatment was found to reduce cell survival, this having been proved via LPA5 knockdown. A 

secondary messenger, cAMP, has also been implicated widely in cell-death decisions, acting as a 

switch, and LPA5 facilitates cAMP accumulation, thereby reducing cell survival. LPA5-mediated 

signalling also reduced cell survival in MG-63 cells. LPA5 combines with Gq and G12/13 which in 

turn activates Rho-mediated signalling emerging in lessened survival in MG-63 cells [24].   

LPA vastly dictates embryonic development which is an indirect effector of tumour growth, 

angiogenesis and metastasis, and a serendipitous finding showed cell migration being impeded by 

LPA in B16F10 melanoma cells. Interestingly, LPA5 mediated the inhibitory effect via rise in cAMP 

and co-activation of protein kinase A (PKA). LPA5 was importantly considered to be an anti-

migratory agent due to its ability to elevate cAMP in both original and transfected cells [25]. Similarly, 

pancreatic cancer cell lines PANC-1 were screened for similar effects. LPA5 absence stimulated cell 

motility, invasiveness and angiogenesis which evidently showed the anti-cancer role of LPA5. 

Conversely, these effects were reversed by LPA6 knockdown. LPA5 also reduced the cell motility 

Mmp-9 activation in fibroblast 3T3 cells [26]and sarcoma cells [27]. Cell motility activity in endothelial 

cells is majorly regulated by LPA signalling.  

The role of LPA in the regulation of matrix metalloproteinase (MMP) is well documented. The 

ATX-LPA-LPA1 signalling axis has been shown to induce MMP-9 expression in hepatocellular 

carcinoma (HCC). The expression levels of the Mmp-2 gene in MFHL5-2 cells depleted for Lpar5 

were significantly higher than those in control MFHGFP cells [28]. On the other hand, angiogenesis, 

which is the process of producing new blood vessels in order to promote metastasis, is regulated by 

various factors, including VEGF. Recently a connection was discovered between LPA signalling and 

VEGF. In another investigation, endothelial cells were cultured with a conditioned medium from 

neuroblastoma cells expressing individual LPA receptors, and both LPA1 and LPA3 were shown to 

stimulate the cell motility of endothelial cells, correlating with the expression levels of VEGF genes 

[29]. A later study found contrasting results where LPA5 decreased VEGF expression and negatively 

regulated cell motility [28]. This theory not only explains the protective nature of LPA5 in 

carcinogenesis but also the role of LPA in angiogenesis signalling establishing a chemotherapeutic 

target in sarcomas. LPA-induced activation of G12/13 and Gq and escalation of cAMP was proven in 

previous studies. Studies are now denoting a protein GPR92 fifth receptor LPA5 which has similar 

physiological roles [30]. 
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Autotaxin is an ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) family member  
which produces LPA. Up-regulated in most of the metastatic cancers, autotaxin was also associated  
with invasiveness and aggressive metastatic potential of cancers and was positively correlated to  
tumour angiogenesis in colorectal cancer [31]. Furthermore, evidence has identified autotoxins as  
secretory proteins in human melanoma cells, and the over expression of autotoxins was co-relatable  
to increased motility and invasiveness [32]. LPA and autotoxin expression differ vastly with regard  
to in vitro and in vivo settings. Autotaxin was found to be involved in facilitating B16F10 metastasis  
in C57BL/6 mice [33, 34]. However, under in vitro conditions, there was a diminished cell invasion in  
similar cells under the influence of LPA [35]. Negative effects of LPA5 against cell proliferation and  
migration have been shown in melanoma and pancreatic cancer cells [27], and the exogenous  
expression of LPA5 in intestinal epithelial cells MSIE lessened cell proliferation. Such evidence  
greatly supports the proven role of LPA5 in cancer therapeutics.   

Cancer immune editing is a process adapted by cancer cells in order to evade cell death and  
reside in harsh environments. Some of the mechanisms employed by the tumours in order to escape  
harm include CD8T cell response. The CD8T activation by tumour antigen is initiated through T cell  
antigen receptor (TCR) signalling. Previous deleterious effects of LPA on migration, metastasis and  
therapeutic resistance was underscored in a study by Oda et al., where LPA5 receptor and signalling  
by this GPCR inhibits CD8 T cell receptor signalling, activation and proliferation [36]. This study not  
only identified the requirement of LPA5 for negative regulation of TCR-induced calcium mobilisation  
but also in attenuating antigen-mediated proliferation in vivo.   

3. ER stress: A friend apart from foe?  

Endoplasmic reticulum (ER) strives for homeostasis. When ER function becomes overwhelmed  
with an excessive accumulation of misfolded proteins within the lumen, ER stress is triggered. ER  
stress releases coping mechanisms to reduce the damage. The adaptation to a stress environment is  
achieved by ER stress. If the recovery of cellular adaptation fails, long-standing ER stress triggers  
programmed cell death or apoptosis. On the other hand, growing evidence suggests a novel pathway  
which helps cells to survive extreme environmental conditions and escape cell death via up- 
regulation of ER adaptive measures. The million-dollar question here is whether ER stress is a saviour  
or a killer [37].   

Cancer stem cells (CSC) are more resistant towards chemotherapy, consequently sensitising  
these cells to chemotherapy is a means by which to render them prone to cell death. CSCs treated  
with salubrinal, a specific inhibitor of eIF2α phosphatase, followed by conventional  
chemotherapuetic agents resulted in sensitisation of CSC towards oxaliplatin and 5-FU. A similar  
pattern was observed during in vivo experiments. Mice treated with salubrinal led to transient UPR  
activation which increased growth of xenografts derived from colon-CSCs, however combinational  
treatment with chemotherapeutic agents suppressed the growth of the xenografts, indicating the  
positive effect of UPR in vitro and in vivo [38].   

Conditions such as hypoxia are essential for tumour survival. Several cancers up-regulate  
GRP78 and XBP1 splicing. In colon cancer, hypoxia induces PERK-dependent phosphorylation of  
eukaryotic translation initiation factor 2a (eIF2a) and translation of ATF4. UPR is vital for tumour  
growth under hypoxia. PERK inactivation, due to the generation of mutations in its kinase domain,  
impairs cell survival under extreme hypoxia, and PERK promotes cancer cell proliferation by limiting  
oxidative DNA damage through ATF4 [39]. On the other hand, the same ER stress is useful in  
promoting cell death. Tolfenamic acid promotes ER stress, resulting in activation of the unfolded  
protein response (UPR)-signalling pathway, of which PERK-mediated phosphorylation of eukaryotic  
translation initiation factor 2a (eIF2a) induces the repression of cyclin D1 translation. Moreover, the  
PERK-eIF2a-ATF4 branch of the UPR pathway plays a role in tolfenamic acid-induced apoptosis in  
colorectal cancer cells, as silencing ATF4 attenuates tolfenamic acid-induced apoptosis.  

Plant metabolites have been a promising source of cancer therapeutics for many decades.  
Esculetin, a coumarin derivative, has been examined on colon cancer cells for its potential anti-cancer  
activity via ER stress-mediated cell death. Esculetin-induced cell death via the ER stress-mediated  
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pathway increased mitochondrial Ca2+overload and also escalated the level of ER stress response  
proteins. It was also proven that the cell death was induced by a mechanism of UPR where CHOP is  
up-regulated and caspase-12 is cleaved. This CHOP initiation mechanism hinders BCL2 family  
proteins and activates BAK and BAX, thereby inducing apoptosis [40].  

Activation of caspase-3, which is an intrinsic cell death pathway, is another mode of inducing  
apoptosis. Andrographolide treatment leads to apoptosis in numerous cancer cells. One of the  
pathways that has been elucidated and which has most potential is ER stress-mediated cancer cell  
death. Upon treatment, there was a significant increase in IRE1-α and spliced XBP-1 which triggers  
apoptosis. Surprisingly, the Andrographolide-mediated cell death was also dependent upon ER  
stress because Andrographolide up-regulated the expression of BAX and also major ER stress  
markers [41].  

Triggering a transcription of heat shock proteins can lead to ER stress-mediated cell death. At  
the same time, proteasome inhibitors were reported to initiate apoptosis in cancer cells, and  
functional or mutational changes in some of the ER genes have been associated with malfunctions.  
XBP1 mutation has been reported in rare myeloma and may be associated with resistance to  
proteasome inhibitors [42]. Hence it is evident that this inhibition might play a key role in cancer  
therapeutics. For instance PS-341, a di-peptidyl boronic acid derivative, has shown impressive  
binding to 26 proteasome and has induced cell death in numerous cancer cell lines. With the ability  
to target 26S proteasome, PS-341 has been logically associated with targeting NF-kB. Traditionally,  
NF-kB was linked to chemotherapy resistance and PS-341 was tested in order to check its ability in  
inhibiting NF-kB via chemotherapy-mediated cell death [43]. Surprisingly, it was found that PS-341  
could induce topoisomerase-1 inhibitor-mediated apoptosis. Potency of PS-341 was assessed in head  
and neck SCC (HNSCC) cells [44-46]. PS-341 not only lessened NF-kB but also induced cell death via  
the ER stress pathway. As part of the involvement of ER stress-modulated cell death in the PS-341  
mechanism, caspase-4 played a crucial role. A study by Fribley and Wang described the potential  
mediatory agents in ER stress-mediated cell death involving PS-341. Their review found that the two  
major mechanisms involved are BH3-only members of the Bcl2 family interfering with the  
cytochrome-c release and via induction of BH3-only proteins Bik and Bim[47].   

Aspects that need to be emphasised regarding the induction of apoptosis in various tumours  
include co-expression or loss of genes such asp53 and the time period of ER stress induction.  
Conceptually, targeting UPR might block ER stress-induced apoptosis and unwittingly promote  
carcinogenesis. There are few reports of UPR being involved in promoting cancer. Such mechanisms  
might depend on the intensity and time of the ER stress which we recently proved via dynamics of  
ER stress [48] and where we have identified the maximum deleterious effect of ER stress at the 6th  
hour of the dynamics period in vitro. We even employed unconjugated bilirubin to impede ER stress- 
mediated cancer progression in LS174T cells via similar time point [49]. This clearly indicates that the  
exposure or the ER stress mediation in induction of cell death is critical.   

4. Good guys in the epithelial-mesenchymal transition (EMT) pathway  

Epithelial-mesenchymal transition (EMT) is known to be an important factor associated with  
cancers’ progression, metastasis and treatment resistance[50]. Polarised epithelial cells lose their cell- 
cell adhesion and apical-basal polarity, and obtain the motile, migratory properties of mesenchymal  
cells [51]. The transition process involves numerous pathological changes. The cells gradually  
decrease the expression of epithelial cell-cell junction proteins, such as E-cadherin, ZO-1  
andcytokeratins, and increase the expression of mesenchymal phenotype, such as N-cadherin,  
fibronectin and vimentin[52, 53].   

  
There are several signalling pathways driving EMT, including inflammation, transforming  

growth factor beta (TGF-), Wnts, NF-B and Notch pathways [52]. The TGF- pathway, as a primary  
inducer of EMT, is activated by binding TGF- ligands to their cognate TGF- receptors. With the  
active TGF- receptors, TGF- signalling complies with Smad2 and Smad3 to lead to EMT[54]. In  
addition, TGF-signalling can also stimulate GTPases, PI3K and MAPK pathways to induce EMT  
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progression[55]. Other signalling pathways, such as Wnt, Notch, AKT-mTOR and NF-B pathways, 

induce EMT by activating EMT transcription factors (EMT-TFs)[52].  There are certain transcription 

factors described as major regulators of EMT, such as Snail, Twist, -catenin, ZEB1 and ZEB2. EMT-

TFs suppress the expression of epithelial proteins[56]. For instance, Snail inhibits the expression of 

the key epithelial protein E-cadherin, therefore epithelial cells lose the cell-cell junction formation, 

leading to mesenchymal transition[57]. The EMT process in normal tissues is managed through a 

complicated regulation of EMT-TFs, with applied regulatory networks operating at different 

transcriptional and post-translational levels, such as alternative splicing, non-coding RNAs, 

epigenetic regulatory mechanisms and protein stability[58]. Studies have shown that the role of EMT-

TFs in cancer progression is not only to regulate the invasion and dissemination of cancer cells, but 

also that they play pivotal roles which can become a target of interest for anti-cancer therapy[59].  

 

Figure 2. Cross-link between EMT-induced signalling pathways and Autophagy-induced 

signalling pathways.  

EMT-mediated signalling pathway includes Notch, TGF-β, receptor tyrosine kinases, Wnt, and 

inflammatory pathways. TGF- β signalling complies with SMAD2 and SMAD3 to lead to EMT. TGF- 

β signalling also activates PI3K-mTOR-AKT-GSK3b pathway to induce EMT. Wnt signalling drives 

EMT through GSK3b inhibition and b-catenin stabilization. Wnt, Notch and inflammatory pathways 

induce EMT by activation of EMT transcription factors, including SNAI1, b-catenin, Twist and Slug. 

Receptor tyrosine kinases activates PI3K-ATK pathway via activation of growth factors, such as EGF, 

VEGF and FGF. Autophagy triggers EMT by up-regulating mesenchymal markers including 

vimentin and Twist and down regulating epithelial marker E-cadherin through Beclin-1 pathway. 

Beclin-1 pathway can activate autophagy to suppress EMT via down-regulating EMT transcription 

factors, such as ZEB1 and inhibiting Wnt and NF-κB pathway. P53 inhibits EMT by decreasing the 

expression of EMT transcription factors, such as ZEB1/ZEB2, Snail. 

Autophagy is another principal biological process involved in the development of cancer, and 

there is a complex link between autophagy-corresponding and EMT-corresponding signalling 

pathways (Figure2). Studies have shown that EMT signalling pathways can trigger or inhibit 

autophagy. As well as being associated with the initiation and suppression of EMT, autophagy also 

supports EMT in the viability of potentially metastasis of cancer cells [60]. For instance, autophagy 

deterioration was demonstrated by suppressing autophagy-related genes 5 (ATG5), ATG7 or Beclin-

1, resulting in an increase of cell motility and invasiveness with the up-regulation of Snail and Slug, 
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two of the major EMT-TFs[61]. On the other hand, autophagy prevents EMT, and the autophagy 

activation may decrease the gaining of the EMT phenotype in cancer cells. Autophagy is regulated 

by PI3K/AKT/mTOR, Beclin-1, p53 and JAK/STAT signalling pathways, which have a dramatic 

impact on the EMT process [59]. EMT-correlated signalling pathways, such as integrin, Wnt, NF-κB, 

and TGF-β signalling pathways, also play an essential role in autophagy[59].  

Beclin-1 activates autophagy and accelerates EMT by up-regulating vimentin and Twist 

expression and decreasing E-cadherin expression [62]. In contrast, Beclin-1 activated autophagy 

down-regulates MMPs’ expression to inhibit EMT and also inhibit EMT via down-regulating ZEB1, 

Wnt1 and NF-κB. NF-κB activation is associated with aggressiveness and the metastatic potential of 

carcinomas[63]. The NF-κB pathway promotes EMT by up-regulating related EMT markers, 

including Snail1, Slug and Twist1 [64], and inhibits autophagy by down-regulating the Beclin-1 

pathway [59]. In addition, the study also indicated that Beclin-1 gene knockout may promote EMT 

and cancerogenesis by activating the Wnt1 and NF-κB pathways resulting in cancer cell metastasis. 

However, knockdown of Beclin-1 via small interfering RNA (siRNA) suppressed the autophagy 

activation, consequentially suppressing EMT and the invasiveness of colon cancer cells through 

cooperating down-regulation of vimentin and Twist and up-regulation of E-cadherin[65]. This result 

suggests that inhibiting Beclin-1-induced autophagy would be an effective anti-cancer strategy. 

P53 is an important suppressor protein of cancer. P53 mediates cancer inhibition by down-

regulating autophagy-correspond signalling pathways PI3K/AKT/mTOR via interaction with PTEN, 

which furthers the up-regulation of autophagy[59].P53 can also mediate cancer suppression by 

regulating EMT inhibition through decreasing the expression of EMT-TFs, including ZEB1, ZEB2 and 

Snail, via activation of the relevant microRNA of EMT inhibition[66, 67]. Interestingly, mutant p53 

can promote EMT and mitochondrial fission that in turn promotes autophagy [68]. 

Autophagy and EMT both play an important role in the biological processes of induction and 

development of cancer. Understanding the complicated link between autophagy and EMT is 

necessary for designing a cancer therapy strategy. Autophagy activation not only supports the cells’ 

survival during the EMT, but also functions as the tumour-suppressive signal, which inhibits the 

early phase of metastasis and activation of the EMT. Hence, regulating EMT by targeting autophagy 

is a promising potential strategy for cancer therapy. Currently, translational applications of 

autophagy activators such as rapamycin, and autophagy inhibitors such as chloroquine and 3-

methyladenine to regulate the EMT process, have been utilised in anti-cancer therapy [60, 69, 70].  

5. Conclusion 

Malfunctions in the mutations of GPCR genes are predominantly due to misfolding of mutant 

receptors in the ER. Understanding the GPCR-mediated mechanisms such as seeding of 

metastasising tumours by LPA or vice versa and possible role of ER stress in hampering of pro-

survival mechanisms in cancers would be extremely important. These hallmarks of events regulate 

crucial mechanisms such as EMT which is the most pivotal step in metastasis. Hence, a proper 

elucidation of these candidates would help in identifying potent molecular targets for regulation or 

modulation of tumour progression in numerous cancers.  
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