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Abstract

In this paper, we consider a class of new generating function for the Frobenius-Genocchi polynomials, called
the type 2 degenerate poly-Frobenius-Genocchi polynomials, by means of the polyexponential function.
Then, we investigate diverse explicit expressions and some identities for those polynomials.
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1. Introduction

Special polynomials have their origin in the solution of the di¤erential equations (or partial di¤erential
equations) under some conditions. Special polynomials can be de�ned in a various ways such as by generating
functions, by recurrence relations, by p-adic integrals in the sense of fermionic and bosonic, by degenerate
versions, etc.
Kim-Kim have introduced polyexponential function in [18] and its degenerate version in [20],[21]. By

making use of aforementioned function, they have introduced a new class of some special polynomials.
This idea provides a powerfool tool in order to de�ne special numbers and polynomials by making use of
polyexponential function. One may see that the notion of polyexponential function form a special class of
polynomials because of their great applicability, cf. [12, 18-22, 26, 27, 29, 31]. The importance of these
polynomials would be to �nd applications in analytic number theory, applications in classical analysis and
statistics, cf. [1-34].
Throughout of the paper we make use of the following notations: N := f1; 2; 3; � � � g and N0 = N [ f0g.

Here, as usual, Z denotes the set of integers, R denotes the set of real numbers and C denotes the set of
complex numbers.
The classical BernoulliBn (x), Euler En (x) and GenocchiGn (x) polynomials and the degenerate Bernoulli

Bn;� (x), Euler En;� (x) and Genocchi Gn;� (x) polynomials are given as follows (cf. [5, 8, 10, 11, 14, 16,
18-20, 22, 23, 26-32]):

1X
n=0

Bn (x)
tn

n!
=

t

et � 1 and
1X
n=0

Bn;� (x)
tn

n!
=

t

e� (t)� 1
ex� (t) (1.1)

1X
n=0

En (x)
tn

n!
=

2

et + 1
and

1X
n=0

En;� (x)
tn

n!
=

2

e� (t) + 1
ex� (t) (1.2)
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1X
n=0

Gn (x)
tn

n!
=

2t

et + 1
and

1X
n=0

Gn;� (x)
tn

n!
=

2t

e� (t) + 1
ex� (t) : (1.3)

One may look at the references [1, 4-13, 15, 17-19, 21, 22, 25-31] to see the various applications of Bernoulli,
Euler and Genocchi polynomials.
Frobenius studied the polynomials Fn (x j u) given by (cf. [2, 3])

1� u
et � ue

xt =
1X
n=0

Fn (x j u)
tn

n!
(u 2 Cn f1g) . (1.4)

Upon setting u = �1, it becomes
Fn (x j �1) = En (x) .

Owing to relationship with the Euler polynomials as well as their important properties, and in the honor of
Frobenius, the aforementioned polynomials denoted by Fn (x j u) are called the Frobenius-Euler polynomials,
cf. [2, 3].
Parallel to (1.4), Yaşar and Özarslan [34] introduced the Frobenius-Genocchi polynomials GFn (x;u) given

by

(1� u) t
et � u ext =

1X
n=0

GFn (x;u)
tn

n!
; (1.5)

since
GFn (x;�1) = Gn (x) .

The case x = 0 in (1.5), GFn (0;u) := G
F
n (u) stands for the Frobenius-Genocchi numbers. Several recurrence

relations and di¤erential equations are also investigated in [34].
Khan and Srivastava [17] introduced a new class of the generalized Apostol type Frobenius-Genocchi

polynomials and investigated some properties and relations including implicit summation formulae and
various symmetric identities. Moreover a relation in between Array-type polynomials, Apostol-Bernoulli
polynomials and generalized Apostol-type Frobenius-Genocchi polynomials is also given in [17]. Wani et al.
[33] considered Gould-Hopper based Frobenius-Genocchi polynomials and then, summation formulae and
operational rule for these polynomials.
The Bernoulli polynomials of the second kind are de�ned by means of the following generating function

1X
n=0

bn (x)
tn

n!
=

t

log (1 + t)
(1 + t)

x
: (1.6)

When x = 0, bn (0) := bn are called the Bernoulli numbers of the second kind, cf. [20].
It is well-known from (1.6) that�

t

log (1 + t)

�r
(1 + t)

x�1
=

1X
n=0

B(n�r+1)n (x)
tn

n!
, (1.7)

where B(r)n (x) are the Bernoulli polynomials of order r, see [20].
For � 2 C, the �-falling factorial (x)n;� is de�ned by (see [10, 11, 20-22, 24-27, 29-31])

(x)n;� =

�
x(x� �)(x� 2�) � � � (x� (n� 1)�); n = 1; 2; : : :
1 n = 0:

(1.8)

In the case � = 1, the �-falling factorial reduces to the familiar falling factorial as follows

(x)n;1 := (x)n = x(x� 1) � � � (x� n+ 1) and (x)0 = 1:

The �� di¤erence operator is de�ned by (see [10, 11])

��f(x) =
1

�
(f(x+ �)� f(x)); � 6= 0: (1.9)
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The degenerate exponential function ex� (t) is de�ned as follows

ex� (t) = (1 + �t)
x
� and e1� (t) = e� (t) . (1.10)

It is readily seen that lim�!0 e
x
� (t) = e

xt (cf. [10, 11, 20-22, 24-27, 29-31]). From (1.8) and (1.10), we obtain
the following relation

ex� (t) =
1X
n=0

(x)n;�
tn

n!
, (1.11)

which satis�es the following di¤erence rule

��e
x
� (t) = te

x
� (t) : (1.12)

The Stirling numbers of the �rst kind S1 (n; k) and the Stirling numbers of the second kind S2 (n; k) are
de�ned (cf. [2; 4; 5; 12]) by means of the following generating functions:

(log (1 + t))
k

k!
=

1X
n=0

S1 (n; k)
tn

n!
and

(et � 1)k

k!
=

1X
n=0

S2 (n; k)
tn

n!
. (1.13)

From (1.13), we get the following relations for n � 0:

(x)n =

nX
k=0

S1 (n; k)x
k and xn =

nX
k=0

S1 (n; k) (x)k . (1.14)

Very recently, Kim-Kim [22] performed to generalize the degenerate Bernoulli polynomials by using poly-
exponential function

Eik (t) =
1X
n=1

tn

(n� 1)!nk (1.15)

as inverse to the polylogarithm function

Lik (t) =
1X
n=1

tn

nk
(jtj < 1; k 2 Z) (1.16)

given by

Eik (log (1 + t))

e� (t)� 1
ex� (t) =

1X
n=0

�
(k)
n;� (x)

tn

n!
. (1.17)

Upon setting x = 0 in (1.17), �(k)n;� (0) := �
(k)
n;� are called the degenerate poly-Bernoulli numbers. Kim et al.

[22] studied the degenerate poly-Bernoulli polynomials and also gave some explicit expressions and several
formulas for those polynomials.
For k 2 Z, the type 2 degenerate poly-Euler polynomials E(k)n;� (x) are de�ned, cf. [29], as follows:

Eik (log (1 + 2t))

t (e� (t) + 1)
ex� (t) =

1X
n=0

E
(k)
n;� (x)

tn

n!
.

When x = 0, E(k)n;� (0) := E
(k)
n;� are called the type 2 degenerate poly-Euler numbers. Lee et al. [29] studied

the type 2 degenerate poly-Euler polynomials and provided multifarious explicit formulas and identities.
Since Ei1 (t) = et � 1, it is worthy to note that

�
(1)
n;� (x) := Bn;� (x) and E

(1)
n;� (x) := En;� (x) .
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2. The type 2 Degenerate Poly-Frobenius-Genocchi Polynomials

Now, we consider the following De�nition 1 by means of the polyexponential function.

De�nition 1. Let k 2 Z. The type 2 degenerate poly-Frobenius-Genocchi polynomials are de�ned via the
following exponential generating function (in a suitable neigbourhood of t = 0) including the polyexponential
function as given below:

Eik (log (1 + (1� u) t))
e� (t)� u

ex� (t) =
1X
n=0

G
(F;k)
n;� (x;u)

tn

n!
. (2.1)

At the value x = 0 in (2.1), G(F;k)n;� (0;u) := G
(F;k)
n;� (u) will be called type 2 degenerate poly-Frobenius-Genocchi

numbers.

Remark 1. Taking k = 1 in (2.1) yields G(F;1)n;� (x;u) := GFn;� (x;u) are the degenerate Frobenius-Genocchi
polynomials GFn;� (x;u) (cf. [15]) as follows

(1� u) t
e� (t)� u

ex� (t) =
1X
n=0

GFn;� (x;u)
tn

n!
.

Remark 2. Upon setting �! 0 in (2.1) gives lim�!0G
(F;k)
n;� (x;u) := G

(F;k)
n (x;u) are type 2 poly-Frobenius-

Genocchi polynomials G(F;k)n (x;u) (cf. [12]) as follows

Eik (log (1 + (1� u) t))
et � u ext =

1X
n=0

G(F;k)n (x;u)
tn

n!
.

Remark 3. Taking k = 1 and � ! 0 in (2.1) yields G(F;1)n;� (x;�1) := Gn;� (x) are the Frobenius-Genocchi
polynomials in (1.5).

A di¤erence operator rule of type 2 degenerate poly-Frobenius-Genocchi polynomials is given as follows

��G
(F;k)
n;� (x;u) = G

(F;k)
n�1;� (x;u) .

Now, we give the following theorem.

Theorem 1. The following relation

G
(F;k)
n;� (x;u) =

nX
l=0

�
n

l

�
G
(F;k)
n�l;� (u) (x)l;� (2.2)

is valid for k 2 Z and n � 0.

Proof. By De�nition 1, we consider that
1X
n=0

G
(F;k)
n;� (x;u)

tn

n!
=

Eik (log (1 + (1� u) t))
e� (t)� u

ex� (t)

=

 1X
n=0

G
(F;k)
n;� (u)

tn

n!

! 1X
n=0

(x)n;�
tn

n!

!

=
1X
n=0

 
nX
l=0

�
n

l

�
G
(F;k)
n�l;� (u) (x)l;�

!
tn

n!
;

which implies the asserted result in (2.2). �

Now, we give the following theorem.
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Theorem 2. The following relation

d

dx
G
(F;k)
n;� (x;u) = n!

1X
u=1

G
(F;k)
n�u;� (x;u)

(�1)u+1

(n� u)!u�
u�1 (2.3)

is valid for k 2 Z and n � 0.

Proof. By De�nition 1, we consider that
1X
n=0

d

dx
G
(F;k)
n;� (x;u)

tn

n!
=

Eik (log (1 + (1� u) t))
e� (t)� u

d

dx
ex� (t)

=
1X
n=0

G
(F;k)
n;� (x;u)

tn

n!

1

�
ln (1 + �t)

=

 1X
n=0

G
(F;k)
n;� (x;u)

tn

n!

! 1X
u=1

(�1)u+1

u
�u�1tu

=
1X
n=0

1X
u=1

G
(F;k)
n;� (x;u)

(�1)u+1

u
�u�1

tn+u

n!
;

which implies the asserted result in (2.2). �

A relation between the type 2 degenerate poly-Frobenius-Genocchi polynomials and the degenerate
Frobenius-Genocchi polynomials is stated in the following theorem.

Theorem 3. For k 2 Z and n � 0, we have

G
(F;k)
n;� (x;u) =

nX
m=0

m+1X
l=1

�
n

m

�
S1 (m+ 1; l) (1� u)m

lk�1 (m+ 1)
GFn�m;� (x;u) . (2.4)

Proof. From (1.15), we observe that

Eik (log (1 + (1� u) t)) =
1X
l=1

(log (1 + (1� u) t))l

(l � 1)!lk

=
1X
l=1

1

lk�1

1X
m=l

S1 (m; l) (1� u)m
tm

m!

=
1X
m=0

m+1X
l=1

S1 (m+ 1; l) (1� u)m+1

lk�1 (m+ 1)

tm+1

m!
. (2.5)

Then, by (2.1), we get

t (1� u)
e� (t)� u

ex� (t)
1

t (1� u) Eik (log (1 + (1� u) t)) =
1X
n=0

G
(F )
n;� (x;u)

tn

n!

�
1X
m=0

m+1X
l=1

S1 (m+ 1; l) (1� u)m

lk�1 (m+ 1)

tm

m!

=
1X
n=0

 
nX

m=0

m+1X
l=1

�
n

m

�
S1 (m+ 1; l) (1� u)m

lk�1 (m+ 1)
GFn�m;� (x;u)

!
tn

n!
:

which means the asserted result in (2.4). �

The immediate results of the Theorem 3 are stated below.
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Corollary 1. For k 2 Z and n � 0, we have

G
(F;k)
n;� (u) =

nX
m=0

m+1X
l=1

�
n

m

�
S1 (m+ 1; l) (1� u)m

lk�1 (m+ 1)
GFn�m;� (u) . (2.6)

Corollary 2. Taking k = 1 in Theorem 3 gives

G
(F;1)
n;� (x;u) =

nX
m=0

m+1X
l=1

�
n

m

�
S1 (m+ 1; l) (1� u)m

(m+ 1)
GFn�m;� (x;u) .

Corollary 3. Taking k = 1 and u = �1 in Theorem 3 reduces

Gn;� (x) =
nX

m=0

m+1X
l=1

�
n

m

�
S1 (m+ 1; l) (1� u)m

(m+ 1)
Gn�m;� (x) :

Here, we give the following lemma.

Lemma 1. For k 2 Z and n � 0, we have

d

dx
Eik (log (1 + (1� u)x)) =

1� u
(1 + (1� u)x) log (1 + (1� u)x) Eik�1 (log (1 + (1� u)x)) : (2.7)

Proof. From (1.15), we observe that

d

dx
Eik (log (1 + (1� u)x)) =

d

dx

1X
l=1

(log (1 + (1� u)x))l

(l � 1)!lk

=
1� u

(1 + (1� u)x) log (1 + (1� u)x)

1X
l=1

(log (1 + (1� u)x))l

(l � 1)!lk�1

=
1� u

(1 + (1� u)x) log (1 + (1� u)x) Eik�1 (log (1 + (1� u)x)) ,

which is the claimed result in (2.7). �

Theorem 4. Let k � 2. We have

G
(F;k)
n;� (u) =

nX
m=0

�
n

m

� 1X
m1+m2+���+mk�1=m

�
m

m1;m2; � � � ;mk�1

�
(1� u)m1+m2+���mk�1

�GFn�m;� (u)
B
(m1)
m1 (0)

m1 + 1

B
(m2)
m2 (0)

m1 +m2 + 1
� � � B

(mk�1)
mk�1 (0)

m1 +m2 + � � �+mk�1 + 1
.

Proof. By (2.7), we consider

Eik (log (1 + (1� u)x)) =
Z x

0

1� u
(1 + (1� u)x) log (1 + (1� u)x) Eik�1 (log (1 + (1� u)x)) dt

=

Z x

0

1� u
(1 + (1� u)x) log (1 + (1� u)x)

�
Z t

0

1� u
(1 + (1� u)x) log (1 + (1� u)x) � � �

Z t

0

(1� u)2 t
(1 + (1� u)x) log (1 + (1� u)x)| {z }

(k�2) times

dtdt � � � dt:
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Then, we obtain

1X
n=0

G
(F;k)
n;� (u)

tn

n!
=
Eik (log (1 + (1� u) t))

e� (t)� u

=
1

e� (t)� u

Z x

0

1� u
(1 + (1� u)x) log (1 + (1� u)x)

�
Z t

0

1� u
(1 + (1� u)x) log (1 + (1� u)x) � � �

Z t

0

(1� u)2 t
(1 + (1� u)x) log (1 + (1� u)x)| {z }

(k�2) times

dtdt � � � dt

=
(1� u)x
e� (t)� u

1X
m=0

1X
m1+m2+���+mk�1=m

�
m

m1;m2; � � � ;mk�1

�
(1� u)m1+m2+���mk�1

�B
(m1)
m1 (0)

m1 + 1

B
(m2)
m2 (0)

m1 +m2 + 1
� � � B

(mk�1)
mk�1 (0)

m1 +m2 + � � �+mk�1 + 1

xm

m!

=
1X
n=0

nX
m=0

�
n

m

� 1X
m1+m2+���+mk�1=m

�
m

m1;m2; � � � ;mk�1

�
(1� u)m1+m2+���mk�1

�GFn�m;� (u)
B
(m1)
m1 (0)

m1 + 1

B
(m2)
m2 (0)

m1 +m2 + 1
� � � B

(mk�1)
mk�1 (0)

m1 +m2 + � � �+mk�1 + 1

xn

n!

This �nalizes the proof of the theorem. �

Now, we give the following theorem.

Theorem 5. For n 2 N0, we have

nX
m=0

S2 (n;m)

(1� u)mG
(F;k)
m;� (u) =

nX
m=0

mX
k=0

kX
j=0

�
n

m

��
m

k

�
G
(F )
j;� (u)S2 (k; j)

(1� u)j
Bm�k

(n�m+ 1)k
.

Proof. Replacing t by et�1
1�u in (2.1), we attain

Eik (t)

e�

�
et�1
1�u

�
� u

=
1X
m=0

(1� u)�mG(F;k)m;� (u)
(et � 1)m

m!

=
1X
m=0

(1� u)�mG(F;k)m;� (u)
1X
n=0

S2 (n;m)
tn

n!

=
1X
n=0

nX
m=0

S2 (n;m)

(1� u)mG
(F;k)
m;� (u)

tn

n!
.
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Also, we investigate

(1� u)
�
et�1
1�u

�
e�

�
et�1
1�u

�
� u

1

et � 1

1X
l=1

tl

(l � 1)!lk =
(1� u)

�
et�1
1�u

�
e�

�
et�1
1�u

�
� u

t

et � 1

1X
l=0

tl

l! (l + 1)
k

=
1X
j=0

(1� u)�j G(F )j;� (u)
(et � 1)j

j!

1X
i=0

Bi
ti

i!

1X
l=0

tl

l! (l + 1)
k

=
1X
k=0

kX
j=0

(1� u)�j G(F )j;� (u)S2 (k; j)
tk

k!

1X
i=0

Bi
ti

i!

1X
l=0

tl

l! (l + 1)
k

=
1X
m=0

mX
k=0

kX
j=0

�
m

k

�
G
(F )
j;� (u)S2 (k; j)

(1� u)j
Bm�k

tm

m!

1X
l=0

tl

l! (l + 1)
k

=

1X
n=0

nX
m=0

mX
k=0

kX
j=0

�
n

m

��
m

k

�
G
(F )
j;� (u)S2 (k; j)

(1� u)j
Bm�k

(n�m+ 1)k
tn

n!
:

This completes the proof of the theorem. �

Theorem 6. For k 2 Z and n � 0, we have

G
(F;k)
n;� (x+ 1;u)� uG(F;k)n;� (x;u) =

nX
m=0

m+1X
l=1

�
n

m

�
S1 (m+ 1; l) (1� u)m+1

lk�1 (m+ 1)
(x)n�m;� : (2.8)

Proof. By De�nition 1 and formula (2.5), we see that
1X
n=0

�
G
(F;k)
n;� (x+ 1;u)� uG(F;k)n;� (x;u)

� tn
n!
=
Eik (log (1 + (1� u) t))

e� (t)� u
ex� (t) (e� (t)� u)

= Eik (log (1 + (1� u) t)) ex� (t)

=
1X
m=0

m+1X
l=1

S1 (m+ 1; l) (1� u)m+1

lk�1 (m+ 1)

tm+1

m!

1X
n=0

(x)n;�
tn

n!

=
1X
n=0

nX
m=0

m+1X
l=1

�
n

m

�
S1 (m+ 1; l) (1� u)m+1

lk�1 (m+ 1)
(x)n�m;�

tn

n!
;

which gives the asserted result in (2.8). �

3. Conclusion

In the present paper, we have considered type 2 degenerate poly-Frobenius-Genocchi polynomials and
numbers by means of the polylogaritm function. Then, we have investigated diverse explicit expressions and
some identities for those numbers and polynomials.
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