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Abstract

The out-of-time-ordered correlation (OTOC) function is an important new probe in quan-
tum field theory which is treated as a significant measure of random quantum correlations.
In this paper, with the slogan “Cosmology meets Condensed Matter Physics” we demon-
strate a formalism using which for the first time we compute the Cosmological OTOC
during the stochastic particle production during inflation and reheating following canoni-
cal quantization technique. In this computation, two dynamical time scales are involved,
out of them at one time scale the cosmological perturbation variable and for the other the
canonically conjugate momentum is defined, which is the strict requirement to define time
scale separated quantum operators for OTOC and perfectly consistent with the general
definition of OTOC. Most importantly, using the present formalism not only one can study
the quantum correlation during stochastic inflation and reheating, but also study quantum
correlation for any random events in Cosmology. Next, using the late time exponential
decay of cosmological OTOC with respect to the dynamical time scale of our universe
which is associated with the canonically conjugate momentum operator in this formalism
we study the phenomena of quantum chaos by computing the expression for Lyapunov
spectrum. Further, using the well known Maldacena Shenker Stanford (MSS) bound, on
Lyapunov exponent, λ ≤ 2π/β, we propose a lower bound on the equilibrium temperature,
T = 1/β, at the very late time scale of the universe. On the other hand, with respect to
the other time scale with which the perturbation variable is associated, we find decreasing
but not exponentially decaying behaviour, which quantifies the random quantum correla-
tion function at out-of-equilibrium. We have also studied the classical limit of the OTOC
check the consistency with the large time limiting behaviour of the correlators. Finally,
we prove that the normalized version of OTOC is completely independent of the choice of
the preferred definition of the cosmological perturbation variable.

Keywords: Cosmology beyond the standard model, Quantum Dissipative Systems,
Stochastic Processes, Effective Field Theories.
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1 Introduction

The out-of-time ordered correlation (OTOC) [1–7] functions in the context of quantum

field theory at finite temperature is considered as a very strong probe of any kind of

stochasticity, randomness and quantum mechanical chaos in the present day research of

theoretical physics. Earlier it was only studied in the various condensed matter systems

where out-of-equilibrium phenomena plays significant role. The concept of OTOC was

first introduced in the computation of superconductivity to describe the vertex correction

of current [9]. But for the past few years theoretical physicist are applying this idea to

explore various unknown out-of-equilibrium features of various quantum field theories at

finite temperature and in the context of bulk gravitational theories. From the very common

understanding one can physically interpret OTOC as a quantum mechanical analogue of

the classical version of the sensitiveness against tiny random fluctuations in the initial

conditions, and particularly if we get exponential growth in the time dynamics of the

OTOC then it is treated as a very strong probe of quantum mechanical chaos 2. In terms

of the traditional physics one can think of this concept as the theoretical indicator of the

energy gaps, and in that connection it is very interesting to investigate that whether or

not the OTOC can be treated as a better probe of stochastic randomness and quantum

mechanical chaos at out-of-equilibrium.

To describe this in a more technical way, let us consider two quantum operators X(t)

and Y (0), which are separated in time scale and using them OTOC is defined by the

following expression [1]:

How to define OTOC? C(t) :≡ −〈[X(t), Y (0)]2〉β = − 1

Z
Tr
[
exp (−βH) [X(t), Y (0)]2

]
,

(1.1)

where the thermal partition function is defined as:

Partion function : Z = Tr [exp (−βH)] where β =
1

T
with kB = 1 . (1.2)

Specifically in this context commutator of the two time separated operator in quantum

mechanics describes the effect of perturbation by the operator Y on the measurement of

the operator X on later time scales and the converse statement is also true here. In this

construction, we also assume that these two operators have zero one point functions. Now

if we fix these operators as, two canonically conjugate operators i.e. in terms of position

operator X(t) = q(t) and momentum operator Y (0) = p(0) for a quantum system, then

in the semi-classical limit, one can replace the commutator bracket of these two operators,

[q(t), p(0)], will be replaced by the Poisson bracket, i {q(t), p(0)}PB = i(∂q(t)/∂q(0)) (in

2In terms of Schrödinger time evolution it is very difficult to describe such quantum phenomena in
quantum mechanical systems.

2
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the natural unit system, where we take, ~ = 1). For classical system to have chaotic

description, (∂q(t)/∂q(0)) ∼ exp(λt), where λ is the Lyapunov exponent, which is appearing

as an outcome of the sensitiveness of the initial conditions. Consequently, if we compute

the expression of OTOC out of these two canonically conjugate quantum operators then

it will scale with resopect to time scale as, C(t) ∼ exp(2λt), to achieve a quantum chaotic

description from this set up and here λ is treated as quantum Lyapunov exponent. It is

expected from this discussion that, if we can able to quantize the classical chaotic system

properly then it can provide a positive numerical value of the quantum Lyapunov exponent

within the framework of OTOC. Following this discussion one can further distinguish

between the classical and quantum chaotic system, which comes from the computation

of OTOC and the time evolution of this shows that in quantum mechanics OTOC is a

quantity which does not grow with the evolutionary time scale of the quantum theory but

at the late time scales saturates to a constant value and in this literature this time scale is

identified as the Ehrenfest time scale. one can also describe this characteristic time scale

a critical scale after which the quantum mechanical wave function of the theory spreads

over the whole system under consideration for this description 3

As we have already mentioned in the present day research the concept of OTOC getting

more attention due to the fact that, it can be served the purpose of a strong theoretical

probe of possible bulk gravitational dual theories, in terms of the framework of AdS/CFT

correspondence [10, 11]. One can quote here many many examples to feature the impor-

tance of the OTOC’s in the context of AdS/CFT. One of the famous examples are the

study of the existence of shock waves in the black hole physics [12–15, 17] which can be

described by various types of geometries and this specific study finally led to maximum

saturation bound of the quantum version of the Lyapunov exponent (λ), given by the

following expression [1]:

M(aldacena) S(henker) S(tanford) bound : λ ≤ 2π

β
with ~ = 1, c = 1, kB = 1 . (1.3)

which is appearing in the expression for OTOCs at finite temperature. This well known

bound was established by Maldacena, Shenker, Stanford, which is commonly addressed as

MSS bound on quantum chaos these days [1]. In gravitational paradigm, this saturation

bound is physically interpreted as the red shift factor near the black hole event horizon

having a finite Hawking temperature. In this description, Sachdev-Ye-Kitaev (SYK) model

[16, 18–27] is the most famous example at present which can able to saturate the MSS bound

very successfully, which describes the quantum mechanical model of Majorana fermions in

presence of infinitely long disorder. In the context of SYK model the saturation of the MSS

bound corresponds to a quantum mechanical description of the black hole paradigm within

3In a very rough sense, very crudely also this characteristic time scale is identified as the transition
time scale which describes the phase transition from a particle description to a wave description of the
quantum mechanical wave function.

3
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the framework of AdS/CFT correspondence. Most significantly, it is important to note

that the appearance of quantum Lyapunov exponent in the computation of OTOC allows

to consider the connection with the bulk gravitational physics in the quantum mechanical

regime by applying the understanding from AdS/CFT correspondence. From the detailed

past study in this literature we already know that any bulk gravitational physics which have

their own dual description are described by the strongly quantum mechanical description.

So from the present discussion it is evident that, to connect this description with the

phenomena of quantum mechanical chaotic picture we explicitly need to have an analogous

description of quantum Lyapunov exponent, which will mimic the role of the well known

Lyapunove exponent as appearing in the description of chaotic dynamical classical systems

and to serve this purpose successfully, OTOC is the only strongest probe which can be

treated as the physical discriminator of the classical and quantum mechanical description

in the present context of discussion.

Now, we will talk about something very unusual from the perspective of applying the

framework of the computation of OTOC in a completely different framework in which

we are mostly interested in this paper. This is nothing but cosmological application of

OTOC from our own universe. Initially anyone can think that this is just a crazy idea and

the final result will not give any physically relevant information regarding cosmological

OTOC. We are completely ok with this initial thought. But gradually once we proceed in

this paper by detailed computation we will try to convince the general readers regarding

the strong applicability of OTOC within the framework of Cosmology. Before going to

discuss this feature in detail we will first start with some basic understanding from the

study of Cosmology, which will surely helps to understand the background physical mo-

tivation of this crazy computation of OTOC in cosmological paradigm. In the quantum

mechanical description of Cosmology, which is mostly used to describe the early universe

physics the most significant quantity that we study are the N -point correlation functions

of the cosmological scalar fluctuations or the tensor fluctuations or the mixture of them

[28–32]. These quantum fluctuations are originated from a geometrical and a very funda-

mental quantity of the study of Cosmology, which is the well known classical gravitational

background metric. To describe the observationally relevant universe in the cosmological

scales it is a very general practice to consider the Friedmann-Lemâıtre-Robertson-Walker

(FLRW) background metric of our space-time which is an exact solution of Einstein’s field

equations within the framework of General Theory of Relativity and describes, a homoge-

neous, isotropic and expanding universe. However, the most general solution of the metric

contains an additional curvature parameter, which one can fix to be zero by considering

the present to observational data obtained from various observational probes of Cosmol-

ogy. So this implies that, spatially flat FLRW metric is sufficient enough to describe most

of the observationally consistent aspects within the framework of Cosmology [33]. For

this reason we will stick to this background metric only for the rest of the discussions of

this paper. Using this metric one can study the cosmological perturbation theory from

4

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2020                   doi:10.20944/preprints202007.0038.v1

Peer-reviewed version available at Symmetry 2020, 12, 1527; doi:10.3390/sym12091527

https://doi.org/10.20944/preprints202007.0038.v1
https://doi.org/10.3390/sym12091527


which one can explain the origin of previously mentioned scalar and tensor fluctuations,

which are treated to be quantum to describe the physics of early universe and for the

late time scale it is considered to be classical in nature. These quantum fluctuations are

very fundamental objects in the context of Cosmology from which all N -point correlation

functions can be computed in Fourier space and these results can be used to probe the

physics of early universe as well as to comment on its impact on the present day galaxy

and cluster formation in large scale structure non-linear cosmological perturbation theory.

Apart from having a great understanding the computation of these correlation functions

of the quantum fluctuations at thermodynamic equilibrium, we have till now have a lot of

constraints and limitations from the observational probes. From cosmological observations

till now we have information regarding the amplitude of the primordial power spectrum

from scalar mode fluctuations 4 [34] and about its nearly scale invariance feature with re-

spect to momentum scale 5. Additionally, we have information regarding upper bound on

the tensor-to-scalar ratio 6 at the cosmological horizon scale from the observational probes.

No other information regarding the higher point (three and four-point etc.) cosmological

correlation functions are not available till now with significant statistical accuracy which

can also be treated as the probe of new physical phenomena through non-Gaussianity in

the primordial Cosmology. This implies that, just using the present observational probes

one cannot able to distinguish amongst various possible origin of primordial quantum me-

chanical fluctuations and rule out models which describes inflationary paradigm within

the framework of Cosmology. So one can immediately ask about a questions regarding the

possible options left to explore the physics of primordial quantum fluctuations:

• Possibility I:

The first possibility pointing towards the future observational aspects which can be

probed by different ongoing and upcoming experiments to verify various theoretical

features of primordial Cosmology. The most significant quantity using which it is

possible to understand the underlying quantum field theory origin of the primor-

dial physics is tensor-to-scalar ratio. Detection of this observable with high statisti-

cal accuracy will provide us the information regarding the generation of primordial

4This is actually represent the amplitude of the cosmological two-point correlation function of scalar
mode quantum fluctuations in Fourier space.

5This constraint will helps us to determine the feature of the primordial power spectrum for scalar
modes in all cosmological momentum scales. Till now from observational probes only the information
regarding the spectral index (which is represented by the logarithmic derivative of the logarithm of the
power spectrum at the cosmological horizon crossing scale) with high statistical accuracy is available. Any
further information, such as running and the running of the running of the scalar spectral index are not
available with any significant statistical accuracy.

6It represents the ratio of the amplitude of the power spectrum from tensor and scalar modes fluctuation
and in terms of quantum description it represents the ratio of the two-point cosmological correlations. This
is a very important observable in Cosmology the determination of which with high statistical accuracy will
directly confirm the existence of gravitational waves in primordial cosmology and can also further able to
fix the origin of primordial fluctuations by exactly determining the scale of inflation.

5
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gravitational waves, which will further confirms the exact origin of the primordial

quantum mechanical fluctuations by exactly estimating the scale of inflation. Not

only discriminating different frameworks of inflationary paradigm, but also the ex-

istence of alternatives to inflationary frameworks i.e. bouncing cosmology, cyclic

cosmology, ekpyrotic scenario etc. can also be verified by the confirmation of the

primordial gravity waves. The next important quantity within the framework of pri-

mordial Cosmology is study the existence of non-Gaussian features in the quantum

mechanical fluctuations and the probability distribution profile of its related correla-

tion functions. For this purpose the study of bispectrum and trispectrum, which are

basically representing the momentum dependent amplitude of the three-point and

four-point correlation function are very important. In near future through the up-

coming cosmological missions if it is possible to detect these non-Gaussian amplitudes

with high statistical accuracy then it is further put more stringent constraint on the

primordial physics. This is because of the fact that, the probability distribution of

such quantum fluctuations in the primordial universe is almost following Gaussian

profile and a small but significant deviation from such Gaussianity will be extremely

helpful to discriminate amongst various possible theoretical models of inflation which

can able to generate significant amount of non-Gaussian amplitude in the context

of three-point and four-point correlation functions. We are very hopeful for the de-

tection of these important observables in near future cosmological experiments. For

this purpose one needs to upgrade the present experimental tools and techniques or

have to wait for upcoming future advanced experiments, which can able to measure

these mentioned observables with high statistical accuracy.

• Possibility II:

The second possibility is pointing towards the probing of new physical concepts

by incorporating additional but significant features within the framework of early

universe Cosmology. Till now all of the features are studied by considering the fact

that the quantum fluctuations appearing in the primordial universe is at thermal

equilibrium. But if the quantum mechanical system which we use to study to describe

the early universe Cosmology are not in thermal equilibrium then quantifying the

quantum correlation functions within the framework of finite temperature out-of-

equilibrium quantum field theory of Cosmology is extremely difficult to compute and

till now in the literature of Cosmology no such framework is available using which

one can pursue this specific computation. On the other hand, anybody can ask

us here why at all computation and quantification of all such quantum mechanical

correlation function for the primordial Cosmology describing a out-of-equilibrium

is important at all and if these ideas can be provided theoretically then in which

stages of the evolutionary scale of our universe this can be really implemented? The

answer is very simple and it is already hidden there in the study of the early universe

6
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Cosmology. In the following we now explicitly mention about these phenomena where

this methodology can be applicable:

1. Stochasticity and particle production during inflation:

During the epoch of inflation we describe the physics of inflationary paradigm

with scalar field which have a negligible mass compared to the Hubble scale,

which is treated as the reference characteristic scale of early universe Cosmology.

However, during inflation many particle produces in a stochastic manner which

have masses either of the order of Hubble scale or have mass very heavier than

the Hubble scale. These particles are commonly known as partially massless or

heavy scalar fields whose origin can be explained from the randomness appearing

in the quantum mechanical stochastic fluctuation appearing in the early uni-

verse where various unknown out-of-equilibrium features play significant role.

But it is extremely difficult to quantify or describing this phenomena correctly

at the out-of-equilibrium regime of quantum field theory which consistently de-

scribe a quantum mechanical theory of primordial Cosmology. Additionally it

is important to note that, during the stochastic particle production during in-

flation due to the presence of randomness noise plays significant role to describe

the quantum mechanical phenomena during this particular epoch in the cosmo-

logical evolutionary time scale. However, we have a very small understanding

regarding the time dependent random noise within the framework of out-of-

equilibrium quantum field theory till now. Only in some specific situations if

we provide some additional constraints on the two-point and the one-point cor-

relation of the time dependent noise, which have the Gaussian probability distri-

bution profile one can deal with noise. But such analysis within the framework

of quantum field theory is not exactly correct which in turn could not able to

gives us the correct predictions from the quantum theory of early universe. One

the other hand, we really don’t know about the nature of the time dependent

noise which we are studying in the present context. This means we don’t know

that whether the time dependent noise have Gaussian or non-Gaussian proba-

bility distribution profile, which information can be directly understandable if

we really know the exact computation of N -point correlation functions of time

dependent noise in cosmology. A lot of attempts have been made within the

framework of quantum-field theory to study the quantum mechanical features

and the related N -point correlation functions to study the exact nature, be-

haviour and magnitude of the noise. However, apart from having the rigorous

attempt it is not completely known about the detailed quantum filed theory

structure from which one can reliably compute such correlation functions in

quantum mechanics. Here lies one of the prime motivations to write this paper.

Our expectation from the presented computation of this paper is that the cos-

7
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mological version of OTOC defined in a specific quantum mechanical vacuum

state, which actually describes the initial condition in early universe Cosmol-

ogy, describes the randomness and stochastic features of quantum mechanical

fluctuations in the out-of-equilibrium regime in a perfectly correct fashion. This

is just not an arbitrary claim, but also one can appear at such conclusion by

considering the basic understandings of the background physical phenomena

which describes the particle production mechanism during the epoch of infla-

tion. Throughout our paper we have explicitly established the framework for

the first time in Cosmology literature using which one can explicitly perform

the computation of the cosmological correlation functions of the random quan-

tum mechanical fluctuations in the out-of-equilibrium regime of quantum field

theory. Instead of studying the quantum correlations with the time ordered

or the anti-time ordered physics, in the present context cosmological OTOC

functions are playing significant role to describe the underlying hidden features

of out-of-equilibrium physics to describe the stochastic randomness during the

particle production mechanism during inflation 7.

2. Reheating:

Reheating is an epoch in the evolutionary time scale of our universe which

appears just after inflation. During inflation the inflaton field started slowly

rolling through the valley of the inflationary potential under consideration and

it is expected that after a certain time the inflaton field will reach the stable

minimum of the potential and the inflationary mechanism just stops there. But

is the the end of the story? Obviously it is not the end. Once the inflation ends

the inflation field started oscillating around the stable minimum of the potential

and started interacting with the valley of the potential as well as some other

filed, which we identify as the reheaton, the field who is mostly responsible for

reheating 8. As a consequence of such interactions enormous amount of heat

is generated and the quantum mechanical system that we are studying imme-

diately goes to its out-of-equilibrium phase. From the previous understanding

of the subject it was extremely difficult to determine the quantum effects in

terms of studying the quantum correlations in this out-of-equilibrium phase.

7Here it is important to note that, the Random Matrix Theory is an another alternative framework
using which one can compute these quantum mechanical cosmological correlation functions within the
framework of out-of-equilibrium quantum field theory [35, 36].

8It is important to note that, in the Cosmology literature there exists a few models of inflation where
reheating is not required and without having any reheating phase in those models one can able to describe
the genesis of the dark matter candidate theoretically. However, these models are very small in number and
the construction of these models relies on various underlying assumptions, which may not be completely
correct as far as the technical rigour of the quantum field theory for Cosmology is concerned. So for our
discussion we stick to the general models of inflations which are developed from more reliable version of
UV complete theories at very high energy scale and these models has to have the reheating phenomena in
the evolutionary cosmological time scale of our universe.

8
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I have to thank my student Baibhab Bose from the QASTM group for drawing this
interesting diagram for this paper. This picture actually contains the motivation of

writing this paper and its connection with various other interesting aspects of quantum
field theories. Also this diagram establish the connection among condensed matter

physics and quantum statistical mechanics with cosmology. However, Baibhab presented
me as a crazy person with four hands, just like lord Ganesha as appearing in Hindu

mythology. Only I don’t have any elephant trunk.
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What is the quantum correlation in Cosmology
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The background philosophy of the paper is presented in this diagram. our prime
motivation is to find out the quantum correlation functions in the context of Cosmology

within the framework of out-of-equilibrium quantum field theory. This diagram also
shows our achievements from this paper and how the obtained results can help us to

study various unexplored issues in the context of early universe cosmology.

10

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2020                   doi:10.20944/preprints202007.0038.v1

Peer-reviewed version available at Symmetry 2020, 12, 1527; doi:10.3390/sym12091527

https://doi.org/10.20944/preprints202007.0038.v1
https://doi.org/10.3390/sym12091527


But it is expected from our basic understanding of quantum statistical mechan-

ics that if we wait for long cosmological time scale then the system reaches

the equilibrium where it is possible to associate an equilibrium reheating tem-

perature associated with the system. After reaching equilibrium the reheaton

field started decaying to some new particle contents which are responsible to

describe the genesis of dark matter in the early universe Cosmology. That

means without explaining the detailed quantum aspects throughout the total

cosmological time scale in detail it is impossible to study the genesis of the dark

matter contents of our universe and this actually motivates us to study this

hidden unexplored phenomena in this paper. Till now we have very less de-

scription available regarding the quantum mechanical aspects during the epoch

of reheating. Only the quadratic and quartic inflationary models are studied

from phenomenological in this context and it is till unknown how to quantify

and estimate the quantum mechanical correlations and study the detailed quan-

tum field theory aspects of reheating. On the other hand, as we have already

mentioned that it is extremely important to determine the quantum mechanical

correlations during this epoch to study the genesis of the dark matter contents

where the principles of out-of-equilibrium quantum field theory will play signif-

icant role. But till now there is no such significant inputs are available from the

theory side which can be able to provide us the relevant tools and techniques

to compute such quantum mechanical correlation function and study various

other quantum field theory aspects related to reheating at out-of-equilibrium.

In this paper, we have established a detailed quantum field theory framework

at out-of-equilibrium phase which helps us to quantify the extremely relevant

quantum mechanical correlation functions in terms of OTOCs. the methodol-

ogy presented in this paper not only helps us to quantify the correlation at the

out-of-equilibrium phase, but also provides us a detailed understanding about

the equilibrium behaviour of the correlation functions at the large time limit

in the cosmological time scale. Additionally, this detailed study through the

cosmological generalization of OTOCs helps us to determine a lower bound on

the reheating temperature in a completely model independent way. From the

previously available understanding of the subject it was possible to give an esti-

mate of the reheating temperature in a completely model dependent way after

knowing about the relativistic degrees of freedom which are participating during

the epoch of reheating. But apart from having a model dependent expression

that expression actually relies on the scale of inflation completely, which is not

known from the observation side till now. Only an upper bound on the scale

of inflation in terms of the tensor-to-scalar ratio is known from the observa-

tional probes till now. So the previously described method of determining the

reheating temperature is not very reliable and only helps us to know about the

11

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2020                   doi:10.20944/preprints202007.0038.v1

Peer-reviewed version available at Symmetry 2020, 12, 1527; doi:10.3390/sym12091527

https://doi.org/10.20944/preprints202007.0038.v1
https://doi.org/10.3390/sym12091527


upper bound on the reheating temperature in a completely model dependent

way. On the other hand, the present study helps us to determine the exact time

dependent behaviour of the reheating temperature and additionally provides a

lower bound on reheating temperature which we have derived in a completely

model independent way. As we proceed through the subject material of the

paper one can have a clear understanding about each of our big claim which we

have explicitly established with detailed analysis.

3. Stochastic inflation:

Stochastic inflationary paradigm is a very important aspect of the early universe

Cosmology whose technical construction is completely different from the usual

inflationary paradigm. To have inflation from a model which is derived from

some UV complete high energy quantum field theories we don’t need any addi-

tional source, time dependent scalar inflaton field slowly rolls down through a in-

flationary potential and participate in the quantum field theory using which one

can explicitly compute the N -point correlation functions within the framework

of early universe Cosmology. But in the framework of stochastic inflationary

paradigm a time dependent stochastic random source function play significant

role to study the background construction of the quantum field theory. More

precisely, here we have two fields, the inflaton and a stochastic random time

dependent noise field, where both of them are participating to carry forward a

correct quantum field theory construction of inflationary paradigm within the

framework of early universe Cosmology. To construct a correct and consistent

version of these type of quantum field theories one needs to start with a theory

where the time dependent inflaton and the stochastic random time dependent

field coupled to each other. In most of the previous literature, during the con-

struction of these type of quantum field theories the correlation between the time

dependent noise using which one can compute the N -point correlation function

using the time dependent inflation to study the role of quantum mechanical

fluctuations in the early universe Cosmology. In this theoretical construction,

the correlation between the noise acts as a source of the correlation between

the inflaton. But can’t say concretely about the exact behaviour of the noise at

the starting point of the computation. Most of the computation till now have

performed in this literature by assuming the underlying Gaussian behaviour

of the probability distribution of the time dependent stochastic noise function.

As a consequence of this assumption one can now expect that the one-point

function and any odd point correlation function of the time dependent stochas-

tic noise vanish trivially. On the other hand the two-point function has to de

proportional to a time translationally invariant Dirac Delta function and the

proportionality constant actually determine the amplitude of two-point correla-

tion function, which we identify as the power spectrum of the time dependent

12
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stochastic noise in the context of early universe Cosmology. One can also com-

pute any other higher point even correlation functions from this construction,

where one can explicitly show that the connected part of these correlations

are factorizable in terms of the two-point function or the Green’s function of

the theory which we are considering to describe the background quantum field

theory of early universe Cosmology. If we believe that the initial assumption

regarding having a Gaussian probability distribution of time dependent stochas-

tic noise is perfectly correct then everything we have mentioned above are the

automatic consequence of that and using these information one can determine

the N -point correlation function from the inflaton field consistently. Here the

type of the noise we have pointed which follow the Gaussian probability distri-

bution is commonly known as the white noise within the framework of quantum

field theory. But unfortunately we really don’t have any idea if the assumption

that we have taken at the starting point is correct at all or not when one can

think of any arbitrary stochastic randomness within the framework of quantum

field theory. This allows to think about considering non-Gaussian noise, which

commonly identified as the coloured noise in the present context. However, if

we have some time dependent stochastic coloured non-Gaussian noise then it

is extremely complicated to determine the quantum correlations between the

noise and hence the N -point quantum correlation for inflaton field which is

sourced by the coloured noise time dependent profile. Also it is expected that

the random quantum fluctuations in the stochastic noise is the prime source for

which the background equilibrium quantum filed theory set up goes to its out-of

equilibrium phase, where we have very less information regarding the cosmolog-

ical correlation functions within the framework of quantum field theory of early

universe Cosmology. This actually motivates us to think about some alterna-

tive construction of computing the N -point quantum correlation functions due

to the presence of coloured time dependent noise profile and in this paper by

constructing the cosmological version of OTOC we have tried to address this

crucial issue in a alternative way within the framework of out-of-equilibrium

quantum field theory.

4. Quantum quench in Cosmology:

The study of quantum mechanical quench in presence of time dependent random

coupling and its consequences in quantum correlation functions in Cosmology

is a very important topic of study in the context of theoretical physics. Till

now this is not very well understood and studied in the context of Cosmology.

In the earlier literature for various statistical mechanical and condensed matter

systems quantum quench have been studied rigorously, but its extension in the

framework of early universe Cosmology will provides us the understanding of

the thermalization phenomena and the details of the achieving thermal equilib-

13

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2020                   doi:10.20944/preprints202007.0038.v1

Peer-reviewed version available at Symmetry 2020, 12, 1527; doi:10.3390/sym12091527

https://doi.org/10.20944/preprints202007.0038.v1
https://doi.org/10.3390/sym12091527


rium from an out-of-equilibrium phase in presence of a random time dependent

coupling parameter. One can start with various possibilities here where in each

cases theries are minimally coupled with classical FLRW conformally flat cos-

mological metric in a minimal fashion. The first and the simplest possibility is

appearing in free scalar field theory where we consider a time dependent mass,

which is a random coupling parameter within the framework of quench. The

second possibility appears within the framework of an interacting quantum field

theory where one can consider a situation where two scalar fields with constant

mass are interacting with each other in presence of a random time dependent

coupling parameter. If we treat the interaction term between the two scalar

fields are quadratic then constructing the effective theories of each scalar fields

becomes simpler after performing the path integration over the other unwanted

scalar field for the description. In the quantum description sometimes this is

identified to be the partial trace operation when we are describing everything in

terms of density matrix and similar approach have been followed in the context

of quantum field theories driven by an open quantum system, where the system

is non-adiabatically interacting with the environment. One can further gener-

alize this idea for N number of scalar fields which are placed at the thermal

bath and interacting with a system which is described by a singe scalar field. In

terms of the interaction here one can consider the quadratic or any other non

linear interactions. This description one can identified to be the quantum field

theory generalization of the well known Feynman-Vernon model of influence

functional theories or the Caldeira Leggett model which describes the quantum

dissipation phenomena in the Quantum Brownian motion picture within the

framework of early universe Cosmology. Considering these mentioned frame-

works one can explicitly compute the OTOCs using the methodology presented

in this paper to study the quantum mechanical N -point out-of-time ordered

correlation functions in presence of a quantum mechanical quench within the

framework of out-of-equilibrium version [37–40] of open quantum field theory

of Cosmology [41–44].

Now, we mention the prime highlights of our obtained results in this paper, which we

strongly believe will further help to know about many more unexplored features of cosmo-

logical quantum correlations within the framework of out-of-equilibrium version of quan-

tum statistical field theory:

• Highlight I:

The methodology presented in this paper helps us to quantify the quantum mechan-

ical correlation functions within the framework of Cosmology in presence of random

quantum fluctuations. In this connection, we have computed the expressions for the

two-point and four-point cosmological OTOC in the quantum regime which will pro-
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vide the behaviour of the correlation functions in the out-of-equilibrium regime of

the quantum field theory of early universe Cosmology.

• Highlight II:

We have additionally have studied the classical limiting version of the two-point and

four-point cosmological OTOCs which will provide the decaying large time behaviour

of the correlation function, which are perfectly matching with the expectations from

the chaotic phenomena in the classical regime of the field theory.

• Highlight III:

The large time limiting behaviour of the four-point OTOC helps us to comment on

the equilibrium behaviour of the quantum correlations and to determine the lower

bound of the equilibrium temperature. Using this concept one can further determine

the lower bound on the reheating temperature within the framework of early universe

Cosmology.

• Highlight IV:

We have also studied the quantum Lyapunov spectrum for Cosmology and computed

the associated quantum Lyapunov exponent to have a consistent chaotic description

in the quantum regime from the four-point cosmological OTOC derived in this paper.

• Highlight V:

We have explicitly proved from our detailed computation that the results obtained

from the normalized version of the four-point cosmological OTOC is completely in-

dependent of the choice of the time dependent perturbation variable as appearing in

the specific scheme of the cosmological perturbation theory.

By seeing the length of the paper one may feel very scared. Don’t worry at all. After

reading this paper we strongly believe that the readers can get to know about something

very interesting which was not presented earlier in any Cosmology paper. The study

material and the obtained results of this paper are organized as follows:

• In the section (2), we discuss how one can formulate the OTOC in the context of

Cosmology and what exact quantity we have to compute for this study.

• In the section (3), we discuss about the detailed computation of quantum micro-

canonical two-point and four-point OTO amplitudes and the related OTOC in Cos-

mology.

• In the section (4) and section (5), we present the numerical results obtained from

the two-point and four-point OTOC and also discuss about its physical significance

in Cosmology.
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• In the section (6) and section (7), we present the detailed computation for Lya-

punov spectrum, study the quantum chaotic phenomena, numerically study the ob-

tained results and its physical impact in the context of Cosmology.

• In the section (8), we discuss about classical limit of micro-canonical two-point and

four-point OTO amplitudes and the related OTOC in Cosmology.

2 Formulation of OTOC in Cosmology

2.1 General remarks on OTOC

In this section, my prime objective is to study the out-of-equilibrium physics in the infla-

tionary patch of De Sitter space time. In the context of quantum field theory the time

dynamics of the out-of-equilibrium physics is described by the out-of-time ordered corre-

lation (OTOC) function, which is typically defined by the following expression:

Thermal OTOC : C(t) :≡ −〈[X(t), Y (0)]2〉β , (2.1)

where 〈· · · 〉β represents the thermal average which is taken using one parameter family α

vacua and Bunch Davies quantum vacuum state in De Sitter space. Here, X(t) and Y (t)

are quantum operators are defined at time scale t in the Heisenberg representation. For

any quantum operator O(t) the thermal average is technically defined as:

Thermal average : 〈O(t)〉β :≡ 1

Z
Tr
[
e−βHO(t)

]
, (2.2)

where Z is the thermal Partition Function, which is defined as:

Thermal partion function : Z = Tr
[
e−βH

]
. (2.3)

Here, H is the quantum system Hamiltonian under consideration.

Further using Eq (2.2) and Eq (2.3) in Eq (2.1), we get the following simplified expression

for the out-of-time ordered correlation (OTOC) function:

C(t) :≡ −
Tr
[
e−βH [X(t), Y (0)]2

]
Tr [e−βH ]

= −Tr

[
e−βH

Z
[X(t), Y (0)]2

]
= −Tr

[
ρ [X(t), Y (0)]2

]
, (2.4)

where we have used the fact that the thermal density matrix is defined by the following

expression:

Thermal density matrix : ρ =
e−βH

Z
. (2.5)
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Here it is important to note that the OTOC is defined in terms of the square of the quantum

mechanical commutator bracket of two quantum operators separated by a time scale t

because its connection to the classical Poisson bracket and the exponentially divergent

trajectories expected in the context of classical description of chaos.

Thermal average of the quantum mechanical commutator bracket of two quantum op-

erators not allowed to describe chaos in the present context. To understand the actual

physical reason behind this fact let us assume that the commutator bracket is replaced

by the Poisson bracket by considering the semi-classical limit. In this situation the Pois-

son bracket shows an exponential growth with respect to time, eλLt, where λL represents

the Lyapunov exponent which quantify chaos. Now if we take the thermal average of the

commutator bracket representing two point OTOC function then both the contributions

are cancelled in the semi-classical limit and will not finally contribute to quantum chaos.

On the other hand, from the quantum field theory point of view the two point thermal

averaged function, captures the effect of correlation between the two quantum Hermitian

operators, which decay in the large time limit and cannot characterise the chaotic be-

haviour at all. Instead of that if we consider the square of the commutator bracket, which

actually represents the four-point function, after transforming it to the Poisson bracket in

the semi-classical limit it takes positive signature, which implies no cancellation for both

the contributions. Thermal average of this non trivial contribution further quantify quan-

tum chaos. Similarly, in the quantum picture the four-point thermal averaged function, not

decays exponentially with respect to time at the large time leading order limiting result.

Similarly, to define the quantum chaos the thermal average of the three point as well

as any odd point correlation function of the quantum mechanical operators are also not

allowed to define OTOC. This can be easily verify using the well known Kubo Martin

Schwinger (KMS) condition, which can be demonstrated by applying Schwinger Keldysh

formalism of the closed time path formulation of real time finite temperature field theory.

After applying KMS condition on the any odd point thermal averaged function one can

explicitly show that each of the contributions from the odd point function vanish trivially

and consequently will not contribute to quantify quantum chaos in terms of odd point

OTOC.

A quantum mechanical system is treated as a chaotic system if the quantum mechanical

commutator squared exponentially grow with time, which is technically expressed as:

C(t) ∼ 1

N2
e2λLt , (2.6)

where the exponential growth is characterised by the Lyapunov exponent λL. Also, N

represents the number of degrees of freedom of the system under consideration. In more

technical ground this phenomena of the exponential growth is related to the fast scrambling

in the present context. Here the time scale corresponding to fast scrambling is expected to
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lie within the interval, td � t� t∗, where

Dissipation time : td ∼ β =
1

T
, (2.7)

is the dissipation time scale which is the inverse of the temperature in De Sitter space and

the upper bound of the scrambling time is defined as:

Scrambling time : t∗ ∼
1

λL
logN . (2.8)

On the physical ground, time scale associated to scrambling represents the associated time

scale for a perturbation involving a few degrees of freedom to spread over all the degrees

of freedom of the quantum mechanical system under consideration. In this connection it

is important to note that, any quantum mechanical operations performed after the time

interval for scrambling for a certain number of degrees of freedom can’t able to re-track

the quantum information associated with the perturbation.

Further, expanding the right hand side of the Eq (2.1) we get the following simplified

expression for the OTOC, as given by:

C(t) = 〈X(t)Y (0)Y (0)X(t)〉β + 〈Y (0)X(t)X(t)Y (0)〉β − 2 Re [〈Y (0)X(t)Y (0)X(t)〉β]. (2.9)

It is important to note that the first two terms representing two different thermaql averaged

four-point function appearing in the above expression for OTOC can be factorized in terms

of the two point thermal averaged function over the dissipation time scale td ∼ β as given

by:

〈X(t)Y (0)Y (0)X(t)〉β ≈ 〈X(t)X(t)〉β〈Y (0)Y (0)〉β +O
(
e−t/td

)
, (2.10)

〈Y (0)X(t)X(t)Y (0)〉β ≈ 〈X(t)X(t)〉β〈Y (0)Y (0)〉β +O
(
e−t/td

)
. (2.11)

Consequently, over the dissipation time scale td ∼ β the full expression for the OTOC can

be factorized as:

C(t) = 2 {〈X(t)X(t)〉β〈Y (0)Y (0)〉β − Re [〈Y (0)X(t)Y (0)X(t)〉β]}+O
(
e−t/td

)
. (2.12)

Here 〈X(t)X(t)〉β represents the thermal two point function of the quantum operator X(t)

which is actually perturbed by the insertion of the quantum operator Y (0) in terms of

the thermal two point function 〈Y (0)Y (0)〉β. It is important to note that if the insertion

energy of the quantum operator Y (0) is small enough, then the quantum state will relax

with respect to the time scale and the corresponding expectation value (two point function)

of the quantum operator Y (0) will approach to the thermal expectation value multiplied
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by the norm of the quantum mechanical state 9. Consequently, beyond the dissipation time

scale t� td ∼ β, the normalized OTOC can be expressed by the following expression:

C(t) =
C(t)

〈X(t)X(t)〉β〈Y (0)Y (0)〉β
≈ 2

{
1− Re [〈Y (0)X(t)Y (0)X(t)〉β]

〈X(t)X(t)〉β〈Y (0)Y (0)〉β

}
+O

(
e−t/td

)
. (2.13)

Additionally, it is important to note that, late time vanishing behaviour of the OTOC for

quantum mechanical systems are equivalent to the saturation of the square of the normal-

ized thermal expectation value of the square of the commutator and this can be expressed

by the exponential time dependent growth eλLt, where λL is the Lyapunov exponent. Con-

sequently we get:

C(t) ≈ 2

{
1− 1

N2
eλLt +O

(
1

N4

)}
=⇒ λL ≈

1

t
ln

(
N2 Re [〈Y (0)X(t)Y (0)X(t)〉β]

〈X(t)X(t)〉β〈Y (0)Y (0)〉β

)
, (2.14)

where the number of degrees of freedom N scaled as:

N ∼ 1√
GN

=
√

8π in MP = 1 , (2.15)

which is a very large number in terms of the energy scale and of the order of the cut-off of

the quantum gravity cut-off scale i.e. Planck scale.

Here, the Lyapunov exponent, λL, satisfy the following saturation bound for quantum

chaos:

Bound on Lyapunov exponent : λL ≤
2π

β
= 2πT where β =

1

T
with } = 1 = c. (2.16)

This implies the exponential time dependent growth of the real part of the time dependent

thermal correlation function, which is given by the following upper bound:

Bound on normalised four point function :
Re [〈Y (0)X(t)Y (0)X(t)〉β]

〈X(t)X(t)〉β〈Y (0)Y (0)〉β
≤ 1

N2
e

2πt
β . (2.17)

2.2 Eigenstate representation of OTOC in quantum statistical mechanics

Now, instead of discussing further about the general definition of OTOC, we now con-

centrate on the eigenstate representation OTOC, using which many quantum systems can

be analysed very easily. In this eigenstate representation we start with two canonically

conjugate operators, q(t) and p(0), which are separated in time scale. In this context, at

9It is a very well known fact that the time ordered correlation functions decay over the dissipation time
scale td ∼ β to the products of the expectation value of the quantum operator with respect to the thermal
quantum mechanical state.
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finite temperature the OTOC is defined as:

C(t) = −〈[q(t), p(0)]2〉β . (2.18)

Here β = 1/T is the temperature of the quantum system under consideration. Next

considering the energy eigenstates as the required basis of the Hilbert space, we can further

rewrite the OTOC as:

C(t) =
1

Z︸︷︷︸
Thermal partition function

∑
n

e−βEn︸ ︷︷ ︸
Thermal Boltzmann factor

gn(t)︸︷︷︸
Microcanonical OTOC︸ ︷︷ ︸

Thermal OTOC

, (2.19)

where the time dependent coefficient gn(t) is defined by the following expressions:

Microcanonical OTOC : gn(t) ≡ −〈n| [q(t), p(0)]2 |n〉 . (2.20)

Here |n〉 is the energy eigenstate of the quantum system under consideration, which satisfy

the following eigenvalue equation:

Time independent Schrödinger equation : H|n〉 = En|n〉 , (2.21)

where H is in general any time independent Hamiltonian of the quantum system under

consideration. This is basically the fixed energy eigenstate representation of OTOC for

which in this context the time dependent coefficients gn(t) for a given energy level is iden-

tified to be the OTOC computed in the microcanonical statistical ensemble. On the other

hand C(t) represents OTOC at finite temperature or thermal OTOC, as in the eigenstate

representation an additional Boltzmann factor is involved. This implies that once we com-

pute the expression for the OTOC for a microcanonical type of statistical ensemble then

one can easily obtain further the expression for the OTOC at finite temperature after

taking the thermal average of gn(t).

Now to simplify the expression for microcanonical OTOC, gn(t) it is better to express

this in terms of the matrix elements of the previously mentioned canonically conjugate

operators, q(t) and p(0), respectively. To implement this strategy we need to use the

following completeness relations of the energy eigenstates:∑
n

|n〉〈n| = 1. (2.22)

Consequently, the microcannical OTOC can be expressed in terms of the required matrix
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elements as:

gn(t) =
∑
m

Inm(t)I∗nm(t), (2.23)

where the matrix element Inm(t) is defined as:

Inm(t) ≡ −i〈n| [q(t), p(0)] |m〉. (2.24)

Here one can note a basic property of this matrix I(t) is that it is Hermitian, which implies:

I∗nm(t) = Imn(t). (2.25)

Consequently, the expression for the microcannical OTOC can be further simplified as:

gn(t) =
∑
m

Inm(t)Imn(t). (2.26)

Further, considering the operator representation in Heisenberg picture one can write the

time dependent operator q(t) as:

q(t) = eiHtq(0)e−iHt. (2.27)

Consequently, the matrix element Inm(t) can be computed as:

Inm(t) = −i
∑
k

[
ei∆Enktqnk(0)pkm(0)− ei∆Ekmtpnk(0)qkm(0)

]
, (2.28)

where we define ∆Enm, qnm(0) and pnm(0) by the following expressions:

∆Enm = En − Em, (2.29)

qnm(0) = 〈n|q(0)|m〉, (2.30)

pnm(0) = 〈n|p(0)|m〉. (2.31)

As we know any kind of general any N particle Hamiltonian of a quantum system can be

represented by the following expression:

H =
N∑
i=1

p2
i + U(q1, · · · , qN). (2.32)

Here we have assumed that each of the N particle have the same mass, mi = 1/2 ∀ i =

1, · · · , N . Using the above mentioned general form of the Hamiltonian one can further
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simplify the expression for the matrix element Inm(t), which is given by:

Inm(t) =
1

2

∑
k

qnk(0)qkm(0)
[
Ekme

i∆Enkt − Enkei∆Ekmt
]
, (2.33)

where I have used the following fact:

pmn(0) = 〈m|p(0)|n〉 =
i

2
〈m| [H(0), q(0)] |n〉 =

i

2
Emnqmn(0). (2.34)

Consequently, the microcanonical OTOC is computed as:

gn(t) =
1

4

∑
m

∑
k

∑
s

qnk(0)qkm(0)qms(0)qsn(0)

×
[
Ekme

i∆Enkt − Enkei∆Ekmt
] [
Esne

i∆Emst − Emsei∆Esnt
]

=
1

4

∑
m

∑
k

∑
s

qnk(0)qkm(0)qms(0)qsn(0)

×
[
EkmEsne

i ˜∆Enkmst + EnkEmse
i ˜∆Ekmsnt − EnkEsnei

˜∆Ekmmst − EkmEmsei∆̃Enksnt
]
. (2.35)

where we define new energy shifts, ∆̃Enkms, ∆̃Ekmsn, ∆̃Ekmms and ∆̃Enksn as:

∆̃Enkms = ∆Enk + ∆Ems = En + Em − Ek − Es, (2.36)

∆̃Ekmsn = ∆Ekm + ∆Esn = Ek + Es − Em − En, (2.37)

∆̃Ekmms = ∆Ekm + ∆Ems = Ek − Es (2.38)

∆̃Enksn = ∆Enk + ∆Esn = Es − Ek. (2.39)

Finally the thermal OTOC can be computed as:

C(t) =
1

Z︸︷︷︸
Thermal partition function

∑
n

e−βEn︸ ︷︷ ︸
Thermal Boltzmann factor

gn(t)︸︷︷︸
Microcanonical OTOC︸ ︷︷ ︸

Thermal OTOC

=

(
4
∑
n

e−βEn

)−1

×
∑
n

∑
m

∑
k

∑
s

e−βEn qnk(0)qkm(0)qms(0)qsn(0)

×
[
EkmEsne

i ˜∆Enkmst + EnkEmse
i ˜∆Ekmsnt − EnkEsnei

˜∆Ekmmst − EkmEmsei∆̃Enksnt
]
. (2.40)

Once we determine the shifts in the energy eigen values and the matrix elements of the

canonically conjugate variable q(0) in the energy eigen basis, we can explicitly compute
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the expression for the thermal OTOC in the energy eigen basis itself.

2.3 Constructing OTOC in Cosmology

One can further map this idea to Quantum Field Theory of Curved Space Time as well.

To show this mapping let us start with a theory of N scalar fields in an arbitrary curved

gravitational background which is described the following (d+ 1) dimensional action:

S =

∫
dd+1x

√
−g

[
−1

2

N∑
a=1

N∑
b=1

gµνGab∂µφa∂νφb − U(φa, φb)

]
︸ ︷︷ ︸

Lagrangian density in curved space ≡L(φa,φb,∂µφa,∂νφb,gµν ,g)

∀ a, b = 1, · · · , N, (2.41)

where in the above action d represents the number of spatial dimension and the gravity

is minimally coupled with N scalar fields in an arbitrary background. In general one can

consider any arbitrary class of gravitational metric for this calculation. However to avoid

mathematical complication for any unwanted reason we restrict ourselves in the class of

gravitational metrics which can be expressed in diagonal form. Here Gab takes care of all

possible interaction between N scalar fields in the kinetic term. On the other hand, one

can consider between all possible interactions in the interaction potential U(φa, φb). In a

more generalised physical situation, In a simplest situation where a = b always then in that

case, Gab = δab, which means that all the off-diagonal components of the matrix is zero. In

that specific situation, the above action can be simplified to the following simplified form:

S =

∫
dd+1x

√
−g

[
−1

2

N∑
a=1

gµν∂µφa∂νφa − U(φa)

]
︸ ︷︷ ︸

Lagrangian density in curved space ≡L(φa,∂µφa,gµν ,g)

∀ a = 1, · · · , N . (2.42)

Here first term in the above action represents a very simplest kinetic term for N scalar

fields and the second term U(φa) corresponds to the simplest form of the self interacting

potential for the N scalar fields.

Now from this most generalised action one can compute the canonically conjugate mo-

menta of the each N scalar fields, which is given by the following expression:

Πφc =
∂L

∂φ̇c
= −1

2

√
−gg00

[
N∑
a=1

N∑
b=1

Gab
(
δcaφ̇b + δcbφ̇a

)]
= −
√
−gg00

N∑
a=1

Gcaφ̇a ∀ c = 1, · · · , N. (2.43)

Also in the simplest situation where Gac = δac we can further simplify the expression for

the canonically conjugate field momenta as:

Πφc = −
√
−gg00

N∑
a=1

δcaφ̇a =
√
−g φ̇c ⇒ φ̇c = − Πφc√

−gg00
∀ c = 1, · · · , N . (2.44)
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Consequently, for the simplest case non-interacting N scalar fields the Hamiltonian density

can be written as:

H =
N∑
c=1

Πφcφ̇c − L(φa, ∂µφa, g
µν , g),

= − 1√
−gg00

N∑
c=1

Π2
φc −

√
−g

[
−1

2

N∑
a=1

gµν∂µφa∂νφa − U(φa)

]

= −1

2

1√
−gg00

N∑
c=1

Π2
φc +

1

2

√
−ggii

N∑
c=1

(∂iφc)
2 +
√
−gU(φa). (2.45)

Now we consider a specific situation where space-time is such that the scalar field is inde-

pendent on space, but only function of time. This type of situation one usually consider in

the context of Cosmology. iIn this situation the general structure of the (d+1) dimensional

metric can be expressed using the following ansatz:

ds2
d+1 = g00dt2 +

d∑
i=1

giidxidxi. (2.46)

Particularly for (d + 1) dimensional De Sitter space the infinitesimal line element in the

planar inflationary coordinate is described by:

ds2
d+1 = −dt2 + a2(t)

d∑
i=1

dxidxi = −dt2 + a2(t)dx2
d, (2.47)

where we have fixed the diagonal component of the metric as:

g00 = 1, gii = a2(t). (2.48)

Also the scale factora(t) is defined as:

a(t) = eHt, (2.49)

where H is the Hubble parameter in the present context.

In this coordinate system, the above mentioned Hamiltonian density ofN non-interacting

scalar fields can be further simplified as:

H =
N∑
c=1

Π̃2
φc

+ Ũ(φa), (2.50)

which is exactly similar like the previously discussed Hamiltonian for N non-interacting

system in Quantum Mechanics.
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It is important to note that, here we have used the following redefinition:

Π̃2
φc

=
1

2ad(t)
Π2
φc , (2.51)

Ũ(φa) = ad(t)U(φa). (2.52)

In the flat Minkowski space limit one can fix a(t) = 1.

Now in the present context the Hamiltonian of the N non-interacting scalar fields can

be expressed as:

H =

∫
ddx H =

∫
ddx

[
N∑
c=1

Π̃2
φc

+ Ũ(φa),

]
. (2.53)

However in Quantum Field Theory we don’t have any sort of eigenstate representation

of the Hamiltonian similar like Quantum Mechanics. So for Quantum Field Theoretic

systems representing the thermal OTOC in terms of the microcanonical OTOC is not very

straight forward just like Quantum Mechanics. In Quantum Field Theory best possible

way is to express the Hamiltonian is in the Fourier space in normal ordered form, as given

by:

: H :=

∫
ddk

(2π)d
Eka

†
kak, (2.54)

where the energy Ek can be computed from the dispersion relation. Here a†k and ak

are the creation and annihilation operators in the present context. In the flat space the

corresponding vacuum is known as Minkowski vacuum which is unique,. On the other

hand, the corresponding curved space vacuum is not unique in nature. In the context of

De Sitter space we use Bunch Davies and α vacua for the computation which are SO(1,4)

invariant in nature.

Also in the further computation instead of using the usual time coordinate we use the

conformal coordinate in the above mentioned (d+ 1) dimensional De Sitter metric, which

can be expressed using the following ansatz:

ds2
d+1 = a2(τ)

(
−dτ 2 +

d∑
i=1

dxidxi

)
= a2(τ)

(
−dτ 2 + dx2

d

)
. (2.55)

Here we have introduced the concept of conformal time which can be expressed in planar

De Sitter space as:

τ =

∫ τ

−∞

dt

a(t)
= − 1

Ha(τ)︸ ︷︷ ︸
Conformal time during inflation −∞<τ<τinf

=⇒ a(τ) = − 1

Hτ︸ ︷︷ ︸
Scale factor during inflation

. (2.56)
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Here H is the Hubble parameter defined in the planar inflationary patch of De Sitter space.

This result can be used during stochastic particle production during inflation.

For the reheating case there is no closed form expression exists in literature. When

the inflaton oscillates around the potential minimum, the equation of state is that of

pressureless matter i.e. p = 0, so the scale factor would behave accordingly. It is nothing

but the non-relativitic matter with equation of state parameter w = p/ρ = 0. Then, as

new light particles are produced, the equation of state will switch to p = ρ/3, and the scale

factor will expand according to a radiation dominated phase. In this case the equation of

state parameter takes the form, w = p/ρ = 1/3. The first approximation is then to just

match the scale factor (and the conformal time) at these transitions. So it implies that

during reheating the scale factor is lying within the window, 0 ≤ wreh ≤ 1/3. Consequently

the conformal time on this epoch can be explicitly computed as:

τ =

∫ τ

0

dt

a(t)
=

3(1 + wreh)

(1 + 3wreh)
[a(τ)]

(1+3wreh)

2︸ ︷︷ ︸
Conformal time during reheating 0<τ<τreh

=⇒ a(τ) =

[
(1 + 3wreh)

3(1 + wreh)
τ

] 2
(1+3wreh)

︸ ︷︷ ︸
Scale factor during reheating

. (2.57)

In the present context, during the computation of OTOC’s both of the scale factors com-

puted during inflationary epoch (for stochastic particle production) and reheating epoch

are useful. Here it is important to note that, in general the equation of state parameter

during the reheating epoch can be expressed as a function of conformal time in general. If

we assume that the energy momentum tensor can be expressed using a perfect fluid with

pressure preh and energy density ρreh, then for a time dependent scalar field in De Sitter

FLRW background can be written as:

Equation of state parameter for reheating : 0 ≤ wreh(τ) =
preh(τ)

ρreh(τ)
≤ 1

3
. (2.58)

For N interacting scalar field the equation of state parameter can be computed as:

wreh(τ) =


− 1

2a2(τ)
g00

N∑
a=1

N∑
b=1

Gab∂τφa∂τφb − U(φa)

− 1
2a2(τ)

g00
N∑
a=1

N∑
b=1

Gab∂τφa∂τφb + U(φa)

, (2.59)

where the pressure preh and energy density ρreh for N interacting scalar field can be written
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as:

Pressure : preh(τ) =

[
− 1

2a2(τ)
g00

N∑
a=1

N∑
b=1

Gab∂τφa∂τφb − U(φa)

]
, (2.60)

Density : ρreh(τ) =

[
− 1

2a2(τ)
g00

N∑
a=1

N∑
b=1

Gab∂τφa∂τφb + U(φa)

]
. (2.61)

Similarly for N non-interacting scalar field the equation of state parameter can be com-

puted as:

wreh(τ) =

−
1

2a2(τ)
g00

N∑
a=1

(∂τφa)
2 − U(φa)

− 1
2a2(τ)

g00
N∑
a=1

(∂τφa)2 + U(φa)

, (2.62)

where the pressure preh and energy density ρreh for N non-interacting scalar field can be

written as:

Pressure : preh(τ) = − 1

2a2(τ)
g00

N∑
a=1

(∂τφa)
2 − U(φa) , (2.63)

Density : ρreh(τ) = − 1

2a2(τ)
g00

N∑
a=1

(∂τφa)
2 + U(φa) . (2.64)

For a single scalar field (N = 1) the equation of state parameter can be further simplified

as:

wreh(τ) =

[
− 1

2a2(τ)
g00(∂τφ)2 − U(φ)

− 1
2a2(τ)

g00(∂τφ)2 + U(φ)

]
, (2.65)

where the pressure preh and energy density ρreh for N non-interacting scalar field can be

written as:

Pressure : preh(τ) = − 1

2a2(τ)
g00(∂τφ)2 − U(φ) , (2.66)

Density : ρreh(τ) = − 1

2a2(τ)
g00(∂τφ)2 + U(φ) . (2.67)

For FLRW case the time component of the metric g00 = −1 = g00 10.

10Statutory warning: From the above mentioned results it is important to note that, when we are
dealing with massless scalar field then we have U(φ) = 0 and consequently the equation of state parameter
reduces to w = 1 6= wreh. But since 0 ≤ wreh ≤ 1

3 any values wreh >
1
3 is not physically allowed for the

reheating phenomena. So massless scalar field is not at allowed to describe the reheating phenomena as
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Now we will comment on some of the important future predictions from our analysis

for massless, partially massless and massive scalar field theory in the context of computing

OTOC which we will explicitly define in the following subsections. These predictions are

appended below:

1. We are dealing with commutative version of the quantum field theory i.e. all the

field momenta and the fields are commutative amongst themselves. Things will

change when one deals with the non commutative version of the quantum field

theory which means in that in that case all the field momenta and the fields are

non-commutative amongst themselves. Usually in both of the versions of quantum

field theories we mostly consider the equal time commutation relations at different

space points (ETCR) and the unequal time commutation relations (UETCR). In the

Fourier transformed versions which can be translated as computing commutation

relations at different momenta with same time for ETCR and with different time for

UETCR. However, if we look into the specific mathematical structure of OTOC, then

we see that the commutators are either ETCR or UETCR with fixed momentum or

position.

2. If we get divergence to compute OTOC, then like the previous cases we deform the

contour of integration in Schwinger Keldysh path integral formalism by introducing

one or more regulator in the theory. In the technical ground introducing the regulator

cut-off means one needs to deform the Schwinger Keldysh path integral contour at

finite temperature by introducing a single or more than one parameter. Consequently,

it predicts wreh = 1 which is strictly not allowed. So in the context of reheating, partially massless and
massive scalar fields are allowed to describe the physical phenomena. This is because of the fact that, in
both the cases due to presence of mass term in the effective potential contribution the equation of state
parameter computed from this setup expected to be lie within the allowed window, 0 ≤ wreh ≤ 1

3 . Because
of this reason during the computation of OTOC’s during reheating we only restrict on partially massless and
massive scalar fields. The details of these issues can be found in the next subsections. But one we introduce
the gauge invariant perturbation instead of field variable and translate the whole problem in terms of that

new language, then it is explicitly possible to show that, an effective mass m2
eff = 1

z(τ)
d2z(τ)
dτ2 ≈ 1

a(τ)
d2a(τ)
dτ2

and spatial gradient of the gauge invariant perturbation term will be induced. Here z =
√

2ε a is Mukhanov
Sasaki time dependent variable which controls the mathematical structure of the effective mass term
depending on the background physical phenomena in which we are interested in. These phenomena are
stochastic particle production during inflation and reheating respectively. There are many more, however
we restrict to these two fact only. At the leading order one can show that the effective mass term in the
gauge invariant description can be expressed in terms of scale factor of our Universe and its double time
derivative as a function of conformal time. Here a(τ) is the conformal time dependent scale factor and
ε = − 1

a(τ)H
dH
dτ captures the rate of Hubble expansion in Cosmology, which also shows that a little bit

deviation from constant Hubble parameter as appearing in De Sitter space. This deviation is very small at
the particle production during inflation and becomes unity at the end of inflation. On the other hand, at
the epoch of reheating this factor becomes large. Due to these all facts, it is expected that the equation of
state parameter during the epoch of reheating for massless scalar field in the gauge invariant description
will lie within the window, 0 ≤ wreh ≤ 1

3 . Details of the computation we will show in the next subsections
written for massless, partially massless and heavy scalar field in the gauge invariant perturbed description.
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in that context we will get a finite regulated result. On the other hand, in the context

of non-commutative version of the quantum field theory it is expected that the form

OTOC 11 we get non vanishing physically relevant answers. During the computation

of the OTOC if we get some divergences then like previous case here we also deform

the contour of integration by introducing a cut-off to get finite results.

3. The explicit time dependence of the OTOC is very important in the present context,

particularly the study the physics of out-of-equilibrium. If the second term of the

OTOC grows exponentially with time then one can quantify quantum chaos from the

present computation and check whether the final result saturated the chaos bound on

the Lyapunov exponent or not. On the other hand, if instead of getting an exponen-

tially growing time dependent behaviour if we get some other non-trivial characteris-

tic behaviour as a function of time that is also very important to study in the present

context to study the out-of-equilibrium behaviour of quantum mechanical systems

considered in the framework of Cosmology. Particularly in Cosmology, studying the

non trivial time dependent behaviour of the OTOC for stochastic particle production

during inflation, reheating are very useful to extract physical information from the

quantum mechanical systems studied. Since we are trying to compute the OTOC for

quantum field theory, it is expected to get some interesting physical outcomes from

the correlation functions. However, it is also expected from the studies of the OTOC

that at very large time limit the correlation functions reach thermal equilibrium and

saturates to a finite value. This may not indicate the saturation of the quantum

chaos, but this will also play significant role to study the time dependent behaviour

of OTOC. In this context, one can use this information as a limiting boundary con-

dition of OTOC. Apart from that, the early time behaviour of OTOC is also good

to know. The early time behaviour is physically important as it gives the idea about

the initial condition on the time dependent behaviour of the OTOC. Initial condition

OTOC actually fixes from which point in time scale the quantum system goes to out-

of-equilibrium. This information in the context of Cosmology is very useful because

it will give a physical picture about a particular out-of-equilibrium phenomena in

which we are interested in.

4. In this computation we are considering massless (m << H), partially massless

(m =
√

2H ≈ H) and massive (m >> H) scalar field for the computation of OTOC

in the context of Cosmology. In the context of Cosmology, the fundamental charac-

teristic scale is described by Hubble scale i.e. H. Now compared to this characteristic

scale we define massless, partially massless and massive scalar field in the De Sitter

gravitational background. In the context of massive scalar field theory one usually

consider various time dependent protocols to describe the stochastic particle produc-

11The mathematical definition of OTOC is provided in the next subsections explicitly for massless,
partially massless and massive scalar field theories.
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tion phenomena during inflation and reheating process in the context of primordial

Cosmology. For a few types of time dependent protocols one can exactly analytically

solve the field equations for the scalar field, which are commonly used in the study

of quantum quench. In general exact solution of the field equation is very difficult

so solve and for this purpose one use the WKB approximation method to find out

the analytical solution of the scalar field. These solutions are extremely important

to study in De Sitter cosmological background as it provide the key ingredient to

compute the previously mentioned OTOC in the present context. In the context of

stochastic particle production one consider Dirac Delta type of scatterer as a time

dependent protocol, which is nothing but the white noise in the present context.

In some cases, one also considers coloured noise time dependent protocol. In the

quantum description, the white noise is identified to be non-Markovian and coloured

noise is considered as Markovian at the level of correlation function 12 13.

In the next subsections, we will explicitly define the expressions for the thermal OTOC

in the context of the massless, partially massless, heavy scalar field and additionally for

the stochastic scalar field which is used to study the particle production procedure in Early

Universe Cosmology.

2.3.1 For massless scalar field

In this context we will give the definition of OTOC computed from a massless scalar field.

Here the terminology massless is used to consider scalar fields which have mass less than

12Quantum analogue: At the level of quantum correlation function for the white and coloured noise
are described by the following correlation functions:

White noise : 〈m(τ)m(τ
′
)〉 = A(τ)δ(τ − τ

′
)︸ ︷︷ ︸

Non−Markovian

, Coloured noise : 〈m(τ)m(τ
′
)〉 = B(τ)K(τ − τ

′
)︸ ︷︷ ︸

Markovian

, (2.68)

where A(τ) and B(τ) are the amplitude for the white and coloured noise respectively as a function of
conformal time. Here δ(τ − τ ′) represents a localised white noise function at τ = τ

′
time scale. On the

other hand, the coloured noise is represented by the general time dependent Kernel K(τ − τ ′) which is
not at all localised at τ = τ

′
time scale.

13Classical analogue: At the classical level Delta type of scatterer mimics the role of white noise
appearing in the quantum regime. On the other hand, other non trivial time dependent functions mimics
the role of coloured noise at the quantum level. For N number of scatterers at the classical level one can
then write:

White noise : m2(τ) =

N∑
j=1

A(τj)δ(τ − τj)︸ ︷︷ ︸
Classical Non−Markovian

, Coloured noise : m2(τ) =

N∑
j=1

B(τj)K(τ − τj)︸ ︷︷ ︸
Classical Markovian

, (2.69)

where A(τj) and B(τj) are the amplitudes respectively as a function of conformal time. Here δ(τ − τj)
represents a localised function at the point of j-th scatterer τ = τj∀ j = 1, · · · , N time scale. On the other

hand, the coloured noise is represented by the general time dependent Kernel K(τ − τ ′) which is not at
all localised at τ = τ

′
time scale. However, any reliable physically significant time dependent protocols

are allowed in this context to extract the unknown physical information from the OTOC computation.
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the characteristic Cosmological scale i.e. the Hubble scale (m << H). So here we are not

considering exactly massless scalar fields. But due to the approximation m << H one can

easily neglect such contribution in the effective action. A massless N number of scalar

fields can be generalized by the following simplified action:

S = −1

2

∫
dd+1x

√
−g

N∑
a=1

N∑
b=1

gµνGab∂µφa∂νφb. (2.70)

In the simplest non-interacting situation one can write, Gab = δab and in that case the

action for the N massless scalar field can be simplified as:

S = −1

2

∫
dd+1x

√
−g

N∑
a=1

gµν∂µφa∂νφa. (2.71)

From this action one can further compute the Hamiltonian density, which is given by the

following expression:

H =
N∑
c=1

Π̃2
c where Π̃2

c =
1

2ad(t)
Π2
c . (2.72)

In this case the following normalised OTOC for the non-interacting case are the interesting

one, which are given by:

2− point OTOC : Ycc(t, τ) = −〈
[
φc(t), Π̃c(τ)

]
〉β, (2.73)

4− point OTOC : Ccc(t, τ) = −
〈
[
φc(t), Π̃c(τ)

]2

〉β
N∑
a=1

〈φa(t)φa(t)〉β
N∑
b=1

〈Π̃b(τ)Π̃b(τ)〉β
. (2.74)

For the interacting case this OTOC is further generalised to the following expressions:

2− point OTOC : Ycm(t, τ) = −〈
[
φc(t), Π̃m(τ)

]
〉β, (2.75)

4− point OTOC : Ccm(t, τ) = −
〈
[
φc(t), Π̃m(τ)

]2

〉β
N∑
a=1

N∑
n=1

〈φa(t)φn(t)〉β
N∑
b=1

N∑
s=1

〈Π̃b(τ)Π̃s(τ)〉β
.(2.76)

For a single field (N = 1) case this action can be further simplified as:

S =
1

2

∫
dd+1x

√
−ggµν∂µφ∂νφ =

1

2

∫
dd+1x

√
−g (∂φ)2, (2.77)
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where we have expressed the Hamiltonian in (d + 1) dimensional De Sitter background,

which is given by the following expression:

H = Π̃2 where Π̃2 =
1

2ad(t)
Π2. (2.78)

In this case the following normalised OTOC for the non-interacting case are the interesting

one, which are given by:

2− point OTOC : Y (t, τ) = −〈
[
φ(t), Π̃(τ)

]
〉β, (2.79)

4− point OTOC : C(t, τ) = −
〈
[
φ(t), Π̃(τ)

]2

〉β

〈φ(t)φ(t)〉β〈Π̃(0)Π̃(τ)〉β
. (2.80)

During inflation (when we fix d = 3) we actually consider massless scalar field i.e. m << H.

In this context one needs to consider the following perturbation in the scalar field in the

De Sitter background:

Field after perturbation : φ(x, t) = φ(t)︸︷︷︸
Background

+ δφ(x, t)︸ ︷︷ ︸
Perturbation

(2.81)

to express the whole dynamics in terms of a gauge invariant description through a variable:

Curvature perturbation : ζ(x, t) = − H(t)

φ̇(t)︸ ︷︷ ︸
Background

δφ(x, t)︸ ︷︷ ︸
perturbation︸ ︷︷ ︸

First order contribution

+ · · ·︸︷︷︸
Higher order contribution

. (2.82)

For the further analysis we restrict ourself only upto the first order contribution and will

going to neglect all other higher order contributions as they are sufficiently small enough

compared to the first order contribution as appearing in the above equation. In this

context, geometrically the curvature perturbation ζ(x, t) measures the spatial curvature of

constant hypersurface, which is represented by the following equation:

Spatial curvature : R(3) = − 4

a2(t)
∂2ζ(x, t) =

4

a2(t)

H(t)

φ̇(t)
∂2δφ(x, t) + · · · . (2.83)

One can explicitly show that at the level of perturbations of De Sitter metric if we fix the

following gauge condition:

δφ(x, t) = 0, (2.84)

gij(x, t) = a2(t)
[
e2ζ(x,t)δij + hij(x, t)

]
≈ a2(t) [(1 + 2ζ(x, t)) δij + hij(x, t)], (2.85)

∂ihij(x, t) = 0 = hii(x, t). (2.86)

32

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2020                   doi:10.20944/preprints202007.0038.v1

Peer-reviewed version available at Symmetry 2020, 12, 1527; doi:10.3390/sym12091527

https://doi.org/10.20944/preprints202007.0038.v1
https://doi.org/10.3390/sym12091527


which actually fix the time and spatial reparameterizations for the dynamical fields. In

this gauge the spatial curvature of constant hypersurface becomes zero i.e. R(3) = 0, which

implies comoving curvature perturbation ζ(x, t) is conserved on superhorizon scales.

It can be explicitly shown that by doing ADM analysis that the second order perturbed

action for scalar modes can be expressed by the following action after gauge fixing 14:

S =

∫
dt d3x a3(t)

φ̇2(t)

2H2

[
ζ̇2(x, t)− 1

a2(t)
(∂iζ(x, t))2

]
. (2.88)

Now we further define a gauge invariant variable, which is in the cosmology literature

sometimes known as Mukhanov variable, as given by:

Mukhanov variable : f(x, t) ≡ z(t)ζ(x, t), where z(t) = a(t)
φ̇(t)

H
=
√

2ε a(t), (2.89)

which serves the purpose of field redefinition in terms of gauge invariant perturbation

variable. Here ε is known as the slow-roll parameter, which is defined as, ε = −Ḣ/H2. In

this context, Ḣ < 0 and ε < 1 during inflation and ε = 1 at the end of inflation.

Translating in terms of the conformal time and applying integration by parts the above

mentioned action can be recast in the following form:

S =

∫
dτ d3x

1

2

[
(∂τf(x, τ))2 − (∂if(x, τ))2 +

1

z(τ)

d2z(τ)

dτ 2
(f(x, τ))2

]
. (2.90)

However, dealing this problem in the coordinate space is very difficult as we are further

interested in OTOC’s in the present context. On the other hand, dealing this problem in

Fourier space gives many good underlying physical features for which we do the following

Fourier transform:

Fourier transform : f(x, τ) =

∫
d3k

(2π)3
fk(τ) eik.x , (2.91)

14It is important to note that here if we start with a scalar field theory with non-canonical kinetic term
(such as general P (X,φ) theory, where X = −1/2 gµν∂µφ∂νφ is the kinetic term) then we get an additional
factor of square of the sound speed appearing in the action:

S =

∫
dt d3x a3(t)

φ̇2(t)

2H2c2S

[
ζ̇2(x, t)− c2S

a2(t)
(∂iζ(x, t))

2

]
. (2.87)

If we further fix P (X,φ) = X for the massless scalar field case then we can get back the sound speed
cS = 1 as a special case.
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using which the previously mentioned action can be further simplified as:

S =

∫
dτ d3k

1

2

[
(∂τfk(τ))2 + ω2

k(τ) (fk(τ))2]︸ ︷︷ ︸
Lagrangian density of time dependent oscillator≡L(fk(τ),∂τ fk(τ))

, (2.92)

where we define the effective time dependent frequency ωk(τ) as:

Time dependent frequency : ω2
k(τ) ≡

(
k2 − 1

z(τ)

d2z(τ)

dτ 2

)
. (2.93)

This means that after gauge fixing in terms of gauge invariant scalar curvature perturbation

the problem is transformed to a time dependent parametric oscillator problem.

From the above mentioned action one can compute the canonically conjugate momen-

tum, which is given by the following expression:

Momentum density : Πk(τ) =
∂L(fk(τ), ∂τfk(τ))

∂ (∂τfk(τ))
= ∂τfk(τ) . (2.94)

Consequently the Hamiltonian of the system can be expressed in terms of the gauge in-

variant variables as:

H =

∫
d3k

1

2

 Π2
k(τ)︸ ︷︷ ︸

Kinetic term

+ ω2
k(τ)f 2

k(τ)︸ ︷︷ ︸
Potential term

 , (2.95)

Additionally, it is important to mention here that the following constraint have to be

satisfied:

f−k(τ) = f †k(τ) = f ∗k(τ). (2.96)

Consequently we have used a simplified notations in the above mentioned Hamiltonian in

Fourier space, which are given by the following expression:

Π2
k(τ) = Πk(τ)Π−k(τ) = (∂τfk(τ))(∂τf−k(τ)) = f

′

k(τ)f
′

−k(τ) = |f ′

k(τ)|2 = |Πk(τ)|2, (2.97)

f 2
k(τ) = fk(τ)f−k(τ) = |fk(τ)|2. (2.98)

In the present context one can interpret the time dependent effective frequency of the

gauge fixed field as the effective time dependent mass of that field:

Time dependent mass : m2
E(τ) = ω2

k(τ) . (2.99)
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where we explicitly compute the expression for the second term as:

1

z(τ)

d2z(τ)

dτ 2
=

1

a(τ)

d2a(τ)

dτ 2
+

1

2ε

d2ε

dτ 2
− 1

2ε2

(
dε

dτ

)2

+
1

a(τ)ε

(
dε

dτ

)(
da(τ)

dτ

)
︸ ︷︷ ︸

Sub−leading contributions

. (2.100)

for the massless scalar field. Now for inflation in the De Sitter background and at the

epoch of reheating one can further simplify this above mentioned expression by neglecting

the contributions from the sub-leading correction terms as:

1

z(τ)

d2z(τ)

dτ 2
=

(
ν2 − 1

4

)
τ 2

=


2

τ 2
De Sitter

2(1− 3wreh)

(1 + 3wreh)2

1

τ 2
, where 0 ≤ wreh ≤

1

3
Reheating

(2.101)

where the parameter ν is defined as:

ν =


3

2
De Sitter√

1

4
+

2(1− 3wreh)

(1 + 3wreh)2
, where 0 ≤ wreh ≤

1

3
Reheating

(2.102)

Now, using this setup in terms of the gauge invariant perturbation variables the following

interesting OTOC can be computed explicitly:

2− point OTOC : Y ζ(τ1, τ2) = −〈[ζ(τ1),Πζ(τ2)]〉β, (2.103)

4− point OTOC : Cζ(τ1, τ2) = − 〈[ζ(τ1),Πζ(τ2)]2〉β
〈ζ(τ1)ζ(τ1)〉β〈Πζ(τ2)Πζ(τ2)〉β

. (2.104)

On the other hand, if we want to express all the OTOC in terms of the gauge invariant

perturbation variables and the corresponding rescaled field content and momenta, then

one can use the following equivalent definition of OTOC in the present context, which are

given by the following expressions:

2− point OTOC : Y f (τ1, τ2) = −〈[f(τ1),Πf (τ2)]〉β, (2.105)

4− point OTOC : Cf (τ1, τ2) = − 〈[f(τ1),Πf (τ2)]2〉β
〈f(τ1)f(τ1)〉β〈Πf (τ2)Πf (τ2)〉β

. (2.106)

For the computation of all of these OTOC we use the SO(1,4) isommetric α vacua and the

well known Bunch Davies vacuum state as the quantum vacuum state.
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2.3.2 For partially massless scalar field

Partially massless fields share some intermediate features of massive and massless fields in

flat space. On the one hand, it is important to note that, they carry more than two degrees

of freedom in the context of quantum field theory. In this context we are interested in the

partially massless scalar fields because it is expected that may survive until the end of

inflation and therefore it is expected that during the stochastic particle production mech-

anism it plays significant role. Here the terminology partially massless is used to consider

scalar fields which have mass approximately same with the characteristic Cosmological

scale i.e. the Hubble scale (m ≈ H). To serve this purpose we consider scalar field which

is conformally coupled with the gravity and mass of such scalar fields can be written as,

m =
√

2H. A massless N number of scalar fields can be generalized by the following

simplified action:

S =
1

2

∫
dd+1x

√
−g

N∑
a=1

N∑
b=1

[
gµνGab∂µφa∂νφb − (m2)abφaφb

]
. (2.107)

In the simplest non-interacting situation one can write, Gab = δab, (m2)ab = c2H2δab and

preferably we consider, c =
√

2. In general c should not be a very large number. In this

case the action for the N partially massless scalar field can be simplified as:

S =
1

2

∫
dd+1x

√
−g

N∑
a=1

[
gµν∂µφa∂νφa − c2H2φ2

a

]
. (2.108)

From this action one can further compute the Hamiltonian density, which is given by the

following expression:

H =
N∑
a=1

Π̃2
a + Ũ(φa) with Π̃2

a =
1

2ad(t)
Π2
a, Ũ(φa) = ad(t)c2H2φ2

a. (2.109)

It is important to note that here all the previously mentioned definition of OTOC’s for

interacting and non-interacting N number of scalar fields in case of partially massless case

look like similar except the thermal Botzmann factor appearing in the thermal average

over ensembles . The prime reason is the expression for the Hamiltonian is different for

the partially massless case compared to the massless case discussed in the just previous

subsection.

For a single field (N = 1) case this action can be further simplified as:

S =
1

2

∫
dd+1x

√
−g
[
gµν∂µφ∂νφ− c2H2φ2

]
=

1

2

∫
dd+1x

√
−g

[
(∂φ)2 − (cHφ)2

]
, (2.110)

where we have expressed the Hamiltonian in (d + 1) dimensional De Sitter background,
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which is given by the following expression:

H =
[
Π̃2 + Ũ(φ)

]
with Π̃2 =

1

2ad(t)
Π2, Ũ(φ) = ad(t)c2H2φ2. (2.111)

To write down everything in terms of gauge invariant perturbations all expressions are

similar as appearing in the previous subsection, except the following one:

1

z(τ)

d2z(τ)

dτ 2
=

1

a(τ)

d2a(τ)

dτ 2
+

1

2ε

d2ε

dτ 2
− 1

2ε2

(
dε

dτ

)2

+
1

a(τ)ε

(
dε

dτ

)(
da(τ)

dτ

)
︸ ︷︷ ︸

Sub−leading contributions

. (2.112)

for the partially massless scalar field. Now for inflation in the De Sitter background and

at the epoch of reheating one can further simplify this above mentioned expression by

neglecting the contributions from the sub-leading correction terms as:

1

z(τ)

d2z(τ)

dτ 2
=

(
ν2 − 1

4

)
τ 2

=


(
2− c2

) 1

τ 2
, where c ≥

√
2 De Sitter

2(1− 3wreh)

(1 + 3wreh)2

1

τ 2
, where 0 ≤ wreh ≤

1

3
Reheating

(2.113)

where the parameter ν is defined as:

ν =



√
9

4
− c2, where c ≥

√
2 De Sitter√

1

4
+

2(1− 3wreh)

(1 + 3wreh)2
, where 0 ≤ wreh ≤

1

3
Reheating

(2.114)

For the conformally coupled partially massless scalar field (c = 2) it is clearly observed

from the above mentioned expressions that, for the De Sitter case we get, 1
z(τ)

d2z(τ)
dτ2 = 0

and ν = 1/2. This will be very useful for the further computation of the OTOC’s. Apart

from the the mathematical definitions of the OTOC’s in coordinate space or in momentum

space are exactly same apart from the exponential thermal Boltzmann factor where the

expression for the Hamiltonian will change in the partially massless scalar field case.

2.3.3 For massive scalar field

In this section we are interested in to discuss the outcomes from massive scalar field

theory. Here the terminology missive is used to consider scalar fields which have mass

much heavier the characteristic Cosmological scale i.e. the Hubble scale (m >> H). To

serve this purpose we consider scalar field which have constant and time dependent profile

both. A massless N number of scalar fields can be generalized by the following simplified
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action:

S =
1

2

∫
dd+1x

√
−g

N∑
a=1

N∑
b=1

[
gµνGab∂µφa∂νφb − (m2(t))abφaφb

]
. (2.115)

In the simplest non-interacting situation one can write, Gab = δab, (m2)ab = m2(t)δab and

in general m2(t) is a function of time coordinate. But for some special cases one can

consider constant time independent profiles as well for the mass function. We will choose

this simplest possibility for the further computation. In this case the action for the N

massive scalar field can be simplified as:

S =
1

2

∫
dd+1x

√
−g

N∑
a=1

[
gµν∂µφa∂νφa −m2φ2

a

]
. (2.116)

From this action one can further compute the Hamiltonian density, which is given by the

following expression:

H =
N∑
a=1

Π̃2
a + Ũ(φa) with Π̃2

a =
1

2ad(t)
Π2
a, Ũ(φa) = ad(t)m2φ2

a. (2.117)

It is important to note that here all the previously mentioned definition of OTOC for

interacting and non-interacting N number of scalar fields in case of massive case look

like similar except the thermal Boltzmann factor appearing in the thermal average over

ensembles.

For a single field (N = 1) case this action can be further simplified as:

S =
1

2

∫
dd+1x

√
−g
[
gµν∂µφ∂νφ−m2(t)φ2

]
=

1

2

∫
dd+1x

√
−g

[
(∂φ)2 − (mφ)2

]
, (2.118)

where we have expressed the Hamiltonian in (d + 1) dimensional De Sitter background,

which is given by the following expression:

H =
[
Π̃2 + Ũ(φ)

]
with Π̃2 =

1

2ad(t)
Π2, Ũ(φ) = ad(t)m2φ2. (2.119)

To write down everything in terms of gauge invariant perturbations all expressions are

similar as appearing in the previous subsection, except the following one:

1

z(τ)

d2z(τ)

dτ 2
=

1

a(τ)

d2a(τ)

dτ 2
+

1

2ε

d2ε

dτ 2
− 1

2ε2

(
dε

dτ

)2

+
1

a(τ)ε

(
dε

dτ

)(
da(τ)

dτ

)
︸ ︷︷ ︸

Sub−leading contributions

. (2.120)

for the massive scalar field. Now for inflation in the De Sitter background and at the epoch
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of reheating one can further simplify this above mentioned expression by neglecting the

contributions from the sub-leading correction terms as:

1

z(τ)

d2z(τ)

dτ 2
=

(
ν2(τ)− 1

4

)
τ 2

=


−
(
m2(τ)

H2
− 2

)
1

τ 2
, where m >> H De Sitter

2(1− 3wreh)

(1 + 3wreh)2

1

τ 2
, where 0 ≤ wreh ≤

1

3
Reheating

(2.121)

where the parameter ν is defined as:

ν(τ) =


i

√
m2

H2
− 9

4
, where m >> H De Sitter√

1

4
+

2(1− 3wreh)

(1 + 3wreh)2
, where 0 ≤ wreh ≤

1

3
Reheating

(2.122)

This will be very useful for the further computation of the OTOC’s. Apart from the the

mathematical definitions of the OTOC’s in coordinate space or in momentum space are

exactly same apart from the exponential thermal Boltzmann factor where the expression

for the Hamiltonian will change in the massive scalar field case.

If the massive scalar field is conformal time dependent then one can use the following

conformal time dependent protocols for the computation of OTOC’s with the massive

scalar fields:

m2(τ) =

{
δ(τ − τ ′) Non-Markovian White noise

K(τ − τ ′) Markovian Coloured noise
(2.123)

For the simplicity here we have fixed the amplitudes A(τ) = 1 = B(τ) for both the white

and coloured noise conformal time dependent effective mass profile protocols. Now for

the Markovian coloured noise case if we fix τ
′

= 0 then then for the phenomenological

purpose one can consider the following sets of protocols, which have huge applications in
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the context of quantum quench, information theory and condensed matter field theory:

m2(τ)

H2
=
K(τ)

H2
=



(a± b tanh(qτ)) Protocol I

Θ(τ ± τ0) Protocol II

sech2(qτ) Protocol III[
a

(
τ

τ0
− 1

)2

+ b

]
Protocol IV

tanh2(qτ) Protocol V

(a± b sech2(qτ)) Protocol VI

(2.124)

These Markovian coloured noise profiles are frequently used in the context of quantum

mechanical quench in the context of condensed matter field theory and quantum informa-

tion theory. Since for the above mentioned time dependent protocols the mode function

for the scalar perturbations are not exactly solvable the WKB approximated mentioned is

very useful to compute the expression for for cosmological OTOC in such cases.Though in

this paper we have not computed explicitly OTOC using WKB approximated method, but

have explicitly derived the general solution of the WKB approximated solution of general

conformal time dependent mass profile in the Appendix, which one can use further to

compute the expression for the cosmological OTOC from the present set up. In the next

section, we explicitly compute the expressions for the OTOC’s that we have defined in this

section for massless, partially massless and massive scalar (with time independent mass)

field theory.

3 Quantum micro-canonical OTO amplitudes and OTOC in Cos-

mology

In this section we will derive and interpret the results for OTOC introduced and defined in

the previous section for massless, partially massless and massive scalar fields in the context

of Cosmology, which are useful to study the physical implications of the stochastic process

of particle production during the epoch of inflation and also during the reheating epoch as

well. We will show that how are derived result will be very useful to provide new informa-

tion regarding the above mentioned two processes appearing in the context of Cosmology

of Early Universe or Primordial Cosmology. Instead of computing the expressions for the

usual time ordered or the anti-time ordered correlation functions, which is commonly stud-

ied in the context of Cosmology, here we are actually interested to study the expressions

for the OTOC because in the present context we want to study the physical outcome of the

out-of-equilibrium phenomena driven Quantum Field Theory aspects of Cosmology. The

stochastic particle production and reheating phenomena are two most important significant
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facts during which the quantum system studied in this context goes to out-of-equilibrium,

and after waiting for a sufficient time scale all such quantum system reaches equilibrium

and it is expected in all those cases that the time dependent behaviour of the quantum

correlation function saturates for large late time scale in Cosmology. It is expected that

when the system goes to the out-of-equilibrium quantum state the behaviour of the quan-

tum correlation function will be solely controlled by the OTOC that we have defined in

the earlier sections. Since these type of correlations are not studied in the context of Cos-

mology, it is expected that many unexplored features of Cosmology at out-of-equilibrium

phase can be studied from the outcomes of the OTOC, which we will compute for massless,

partially massless and massive heavy scalar field theories. Apart from the application in

the context of stochastic particle production during inflation and reheating the present

computation can be applicable to the Dark Matter bound-state formation at higher order

and many more other places in the evolution of our Universe. Though we have not studied

this possibility in this paper, but one can think for doing such calculation in the context of

Dark Matter. Additionally it is important to note that, during the computation of OTOC

the quantum system studied in the context of the time evolution of our Universe is closed

or isolated or adiabatic quantum system. Here the terminology closed is used to describe

a quantum system of our Universe is not thermally or any other way interacting with any

kind of environment. So it is obvious here that when the system is interacting with the

environment thermally or any other way the corresponding quantum system is identified

to be a open or non-adiabatic system. So it might be a nice option to carry forward the

computation for OTOC for Cosmology with open quantum systems.

3.1 Computational strategy

The steps of computing the OTOC are appended below point-wise:

1. At first, we need find out the analytic solution of the equation of motion of the scalar

field in the corresponding FLRW flat spatial background.

2. From the above mentioned solution we need to find out the canonically conjugate

field momentum and using that we need to compute the square of the quantum

mechanical commutator bracket, proved during performing this operation we need

to quantize the field content in terms of the creation and annihilation operators.

3. From the above mentioned result we need to further compute the thermal aver-

age value of the square of the commutator bracket of the field and its canonically

conjugate momenta, which physically represents the four-point out-of-time ordered

correlation function.

4. Next, we need to compute the partition function the quantum system under consider-

ation by computing the thermal Boltzmann factor and the trace of the corresponding
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thermal Boltzmann factor. To serve this purpose we need to also compute the expres-

sion for the Hamiltonian from the quantum mechanical system under consideration.

5. Further, we need to compute the thermal two point out-of-time ordered correlation

functions from the field content and the corresponding canonically conjugate momen-

tum. This will help us to find out the expression for the normalised OTOC which is

defined in the earlier sections explicitly.

6. Side wise instead of computing these description in the coordinate space one can do a

similar computation of OTOC in Fourier space as well. For this purpose one needs to

compute all of the required operators in the Fourier transformed space. Sometimes

doing the computation in Fourier transformed space is simpler than the computation

in coordinate space. Most importantly, doing the computation in Fourier space is

really very helpful in the context of Cosmology. The prime reason is of doing the

computation in momentum space (which is the Fourier transformed version of the

coordinate space) in the context of Cosmology is more technically interesting. Actu-

ally in momentum space most of the quantum correlation functions in the context of

Cosmology preserves the conformal symmetry under conformal transformations. In

quasi De Sitter space this conformal symmetry is slightly broken in Fourier space by

the amount of slow-roll parameter, which we have taken into account in our compu-

tations.

7. In the present context it is better to perform the whole computation in a preferred

choice of gauge, which is commonly performed in the context of Cosmological Per-

turbation Theory. Following the same strategy here we work on δφ = 0 gauge, which

makes the computation of OTOC simpler than doing the computation doing without

the choice of a preferred gauge.

8. It is important to mention here that, doing the computation of OTOC for N inter-

acting scalar field analytically are extremely complicated. On the other hand, doing

the computation with N non-interacting multi scalar field is also not very simple.

For this reason we in this paper try to restrict ourself to the non-interacting single

field and N field case. For the single field case we also provide the computation of

OTOC in the previously mentioned preferred gauge choice.

9. Last but not the least, doing the computation of OTOC in any arbitrary dimensions

is not at all possible analytically. So we have restrict our computation in this article in

d = 3 spatial dimension which is compatible with our spatially flat 3 + 1 dimensional

space time in FLRW cosmological background.
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3.2 Classical mode functions in Cosmology

After varying the gauged action written in δφ = 0 gauge with respect to the redefined field

we get the following equation of motion in the Fourier transformed space:[
d2

dτ 2
+

(
k2 −

(
ν2 − 1

4

)
τ 2

)]
fk(τ) = 0, (3.1)

where the parameter ν is defined for the massless, partially massless and massive heavy

scalar field case as:

ν =



3

2
DS+massless√

9

4
− c2, where c ≥

√
2 (m ∼ H) DS+partially massless

i

√
m2

H2
− 9

4
, where m >> H DS+heavy√

1

4
+

2(1− 3wreh)

(1 + 3wreh)2
, where 0 ≤ wreh ≤

1

3
Reheating

(3.2)

Here for the third case the explicit form of the conformal time dependent mass functions

are mentioned in the earlier section.

One can further generalise the expression for the mass parameter ν if we introduce a

non-minimal coupling parameter ξ to the Ricci scalar curvature term in the action, by

replacing the mass term m2φ2 with the new rescaled term (m2 + ξR)φ2 i.e.

m2φ2 −→ m2
newφ

2 = (m2 + ξR)φ2 . (3.3)

When we consider the De Sitter space, there the Ricci scalar R is constant and given by

R = 12H2. In this case the the new mass parameter can be expressed as,

ν −→ νnew =

√
9

4
− m2

new

H2
=

√
9

4
− m2 + 12ξH2

H2
=

√
9

4
−
(

12ξ +
m2

H2

)
. (3.4)

Consequently, we will get same expressions everywhere with a newly rescaled mass param-

eter ν where non-minimal coupling have been introduced explicitly. So even in the most

generalised case where the effective mass term is conformal time dependent, there also if

we replace the term m2/H2 with the 12ξ +m2/H2 i.e.

m2

H2
−→ m2

new

H2
=

(
12ξ +

m2

H2

)
. (3.5)

In the expression for ν then in the approximated WKB solutions that fact will be prop-

agated. It is important to note that, the same prescription is followed in the context of

Higgs inflation where the quadric term in the Higgs field is non-minimally coupled to the
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gravitational sector through the scalar Ricci scalar curvature term. This is a necessary

requirement to have inflation from the Higgs sector within the framework of Einstein grav-

ity. Now one can consider a bit more complicated phenomenological situation where the

non minimal coupling in the FLRW spatially flat background itself dependent on confor-

mal time and in principal any arbitrary form of the conformal time dependent functions

are allowed for that computation. This will further modify the analytical WKB approxi-

mated expression for the mode functions for the scalar perturbation in that case for a given

conformal time dependent specific form of the effective mass m2(τ) and the non-minimal

coupling parameter ξ(τ) and in that case we have to consider the following rescaling:

m2(τ)

H2
−→ m2

new(τ)

H2
=

(
12ξ(τ) +

m2(τ)

H2

)
. (3.6)

In this case the the new conformal time dependent mass parameter can be expressed as,

ν(τ) −→ νnew(τ) =

√
9

4
− m2

new(τ)

H2
=

√
9

4
− m2(τ) + 12ξ(τ)H2

H2
=

√
9

4
−
(

12ξ(τ) +
m2(τ)

H2

)
. (3.7)

Now the most general solution of the mode equation for any constant mass profile (mass-

less, partially massless and heavy scalar production during inflation and during reheating)

is given by the following expression:

fk(τ) =
√
−τ
[
C1 H

(1)
ν (−kτ) + C2 H

(2)
ν (−kτ)

]
, (3.8)

where C1 and C2 are two arbitrary integration constants which are fixed by the choice of

the initial quantum vacuum state necessarily needed for this computation. Here H
(1)
ν (−kτ)

and H
(1)
ν (−kτ) are the Hankel functions of first and second kind with order ν.

In the general context the mass parameter ν may be a complex parameter. In this case,

the solution for the rescaled scalar perturbation mode can be recast as:

fk(τ) =
√
−τ [D1 Jν(−kτ) +D2 Yν(−kτ)], (3.9)

where the redefined two new arbitrary integration constants, D1 and D2 are defined in

terms of the previously defined two new arbitrary integration constants, C1 and C2 as,

D1 = C1 + C2,and D2 = i (C1 − C2). For the non-integer value of the mass parameter ν, the

solution for the rescaled scalar perturbation mode can be recast as:

fk(τ) =
√
−τ [E1(ν) Jν(−kτ) + E2(ν) J−ν(−kτ)], (3.10)

where the redefined two new arbitrary integration constants, E1 and E2 are defined in terms
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of the previously defined two new arbitrary integration constants, C1 and C2 as:

E1(ν) = (C1 + C2) + i (C1 − C2) cot νπ = D1 +D2 cot νπ , (3.11)

E2(ν) = −i (C1 − C2) cosec νπ = −D2 cosec νπ . (3.12)

In particular, when ν is an integer or not. In this case, the solution for the rescaled

scalar perturbation mode can be recast as:

fk(τ) =
√
−τ [G1(ν) Jν(−kτ) + G2(ν) J−ν(−kτ)], (3.13)

where the redefined two new arbitrary integration constants, G1 and G2 are defined in terms

of the previously defined two new arbitrary integration constants, C1 and C2 as:

G1(ν) = (C1 + C2) + i (C1 − C2) cot νπ = D1 +D2 cot νπ 6= E1(ν) , (3.14)

G2(ν) = i cosec νπ (C2 − C1) = −D2 cosec νπ 6= E2(ν) . (3.15)

The corresponding most general canonically conjugate momentum can be further com-

puted from this derived solution as:

Πk(τ) = ∂τfk(τ) =
1

2
√
−τ

[
C1

(
kτH

(1)
ν−1(−kτ)−H(1)

ν (−kτ)− kτH(1)
ν+1(−kτ)

)
+C2

(
kτH

(2)
ν−1(−kτ)−H(2)

ν (−kτ)− kτH(2)
ν+1(−kτ)

)]
. (3.16)

Also one can express the Bessel function of the first kind in terms of the Confluent Hy-

pergeometric limit functions in the present context, using which the most general solution

of the above mentioned equation of motion is given by the following expression:

fk(τ) = E1(ν)

√
−τ

Γ(ν + 1)

(
−kτ

2

)ν
0F1

(
ν + 1;−(kτ)2

4

)
−E2(ν)

√
−τ

Γ(1− ν)

(
−kτ

2

)−ν
0F1

(
1− ν;−(kτ)2

4

)
. (3.17)

Also, the asymptotic solution for the rescaled scalar perturbation can be expressed

within the window 0 < (−kτ) <
√
ν + 1, as:

fk(τ) =


(D1 +D2 cot νπ)

Γ(ν + 1)

(
−kτ

2

)ν
− D2Γ(ν)

π

(
−kτ

2

)−ν
if ν > 0 integer

D1(−1)ν

(−ν)!

(
−kτ

2

)−ν
+
D2(−1)ν+1Γ(−ν)

π

(
−kτ

2

)ν
, if ν < 0 integer

(3.18)

For large real arguments lying within the window, (−kτ) >>
∣∣ν2 − 1

4

∣∣, one cannot write
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an actual asymptotic form for the Bessel functions of the first and second kind (unless in

the situation where ν is a half-integer) because they have zeros all the way out to infinity,

which would have to be matched exactly by any asymptotic expansion. However, for a

given value of arg(−kτ) < π, one can write an equation containing a term of order of

| − kτ |−1, given by the following expressions:

fk(τ) =

√
2

πk

[
C1 exp(−ikτ) exp

(
−iπ

2

(
ν +

1

2

))
− C2 exp(ikτ) exp

(
iπ

2

(
ν +

1

2

))]
+

√
2

πk
exp (Im(−kτ))O

(
1

| − kτ |

)
(D1 −D2) . (3.19)

However, from the general structure of the obtained solution for the rescaled field and for

the canonically conjugate momentum it is very difficult to extract the physical informa-

tion out of that. For this reason the asymptotic solutions are really helpful for physical

interpretation in different cosmological scales. These asymptotic limits are kτ → 0 and

kτ → −∞, where we need to determine the behaviour of the Hankel functions of the first

and second kind of order ν. Here kτ → 0 and kτ → −∞ asymptotic limiting results are

used to describe the superhorizon (kτ << −1) and subhorizon (kτ >> −1) limiting results

in the context of primordial cosmological perturbation scenario. The transition point from

the subhorizon to superhorizon regime is identify by kτ = −1 , which in Cosmology known

as the horizon exit and play a pivotal role to measure various observables of primordial

Universe from different theoretical models.

Combining the behaviour in both the superhorizon and subhorizon limiting region we get

following asymptotic most general solution for the rescaled field and momentum variable

computed for the arbitrary quantum initial vacuum can be expressed as:

fk(τ) = 2ν−
3
2
i

τ

1
√

2k
3
2

(−kτ)
3
2
−ν

∣∣∣∣∣ Γ(ν)

Γ
(

3
2

)∣∣∣∣∣
×
[
C1 (1 + ikτ) exp

(
−i
{
kτ +

π

2

(
ν +

1

2

)})
− C2 (1− ikτ) exp

(
i

{
kτ +

π

2

(
ν +

1

2

)})]
,

(3.20)

Πk(τ) = 2ν−
3
2
i(−kτ)

3
2
−ν

√
2k

5
2

∣∣∣∣∣ Γ(ν)

Γ
(

3
2

)∣∣∣∣∣
[
C1

{(
1

2
− ν
)

(1 + ikτ)

k2τ 2
+ 1

}
exp

(
−i
{
kτ +

π

2

(
ν +

1

2

)})
−C2

{(
1

2
− ν
)

(1− ikτ)

k2τ 2
+ 1

}
exp

(
i

{
kτ +

π

2

(
ν +

1

2

)})]
, (3.21)

These general asymptotic expressions are extremely important to compute the expressions

for the OTOC’s in the later subsections. To server this purpose we need to promote both

of these classical solutions to the quantum level.
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3.3 Quantum mode function in Cosmology

Now, as we have mentioned earlier to explicitly compute OTOC we need to map the

classical solution of the equation of motion of the dynamical conformal time dependent

rescaled field and the corresponding canonically conjugate momentum to the quantum

operator description. Consequently, the classical poisson bracket will be replaced by the

quantum mechanical commutator bracket in the present context. The representative map

is given by the following expressions:

fk(τ)
Classical to quantum map−−−−−−−−−−−−−−−−→ f̂k(τ), (3.22)

Πk(τ)
Classical to quantum map−−−−−−−−−−−−−−−−→ Π̂k(τ), (3.23)

︸︷︷︸
Classical quantities

︸︷︷︸
Quantum operators

{fk(τ),Πk(0)} Classical to quantum map−−−−−−−−−−−−−−−−→
[
f̂k(τ), Π̂k(0)

]
, (3.24)

{fk(τ), fk(0)} Classical to quantum map−−−−−−−−−−−−−−−−→
[
f̂k(τ), f̂k(0)

]
, (3.25)

{Πk(τ),Πk(0)} Classical to quantum map−−−−−−−−−−−−−−−−→
[
f̂k(τ), Π̂k(0)

]
, (3.26)

︸︷︷︸
Poisson bracket

︸︷︷︸
Commutator bracket

Here in this context, the rescaled field operator and the corresponding canonically conju-

gate momentum in the quantum regime can be expressed as:

f̂k(τ) = fk(τ) ak + f ∗−k(τ) a†−k, (3.27)

Π̂k(τ) = Πk(τ) ak + Π∗−k(τ) a†−k. (3.28)

Here ak and a†−k are the annihilation and creation operators of the conformal time de-

pendent parametric oscillators after performing canonical quantization, which satisfy the

following commutation relation relations:[
ak, a

†
−k′

]
= (2π)3δ3(k + k′), [ak, a−k′ ] = 0 =

[
a†k, a

†
−k′

]
. (3.29)
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Consequently the curvature perturbation and the corresponding momentum operator in

the quantum regime can be re-expressed as:

ζ̂k(τ) =
f̂k(τ)

z
=
fk(τ) ak + f ∗−k(τ) a†−k

z
= ζk(τ) ak + ζ∗−k(τ) a†−k, (3.30)

Π̂ζ,k(τ) = ∂τ

(
f̂k(τ)

z

)
=

Π̂k(τ)

z
− ζ̂k(τ)

z(τ)

dz(τ)

dτ

=

Π̂k(τ)

z
− ζ̂k(τ)

d ln a(τ)

dτ
+

1

2

d ln ε(τ)

dτ︸ ︷︷ ︸
Sub−leading


 . (3.31)

Now neglecting the sub-leading contribution we get the following simplified expression for

the canonically conjugate momentum of the quantum curvature perturbation operator:

Π̂ζ,k(τ) =

[(
Πζ,k(τ) ak + Π∗ζ,−k(τ) a†−k

)
−
(
ζk(τ) ak + ζ∗−k(τ) a†−k

)( 1

a(τ)

da(τ)

dτ

)]
, (3.32)

where the scale factor a(τ) is different for De Sitter inflationary patch and during the epoch

of reheating, which is given by the following expression:

a(τ) =


− 1

Hτ
De Sitter

[
(1 + 3wreh)

3(1 + wreh)
τ

] 2
(1+3wreh)

with 0 ≤ wreh ≤
1

3
Reheating

(3.33)

Using the above mentioned expressions for the scale factors the corresponding parameter

ε for both of the cases can be calculated as:

ε = − 1

a(τ)H2

dH

dτ
=


2τg′(τ) (τg′(τ)− g(τ)− 1) De Sitter

3
2(1 + wreh) Reheating

(3.34)
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Also the expression for Mukhanov-Sasaki varibale is can be computed for both of the cases

as:

z(τ) =
√

2ε a(τ) =


− 2
H

√
g′(τ)
τ (τg′(τ)− g(τ)− 1) De Sitter

√
3(1 + wreh)

[
(1+3wreh)
3(1+wreh)τ

] 2
(1+3wreh) Reheating

(3.35)

Here it is important to note the following crucial facts which are helpful for the further

computations of OTOC’s:

1. In the De Sitter case with FLRW background g(τ) is a slowly varying conformal time

dependent function in general, which physically represents a very slight deviation

from the De Sitter solution, where the Hubble parameter H =
√

Λ/3 is dominated

by Cosmological Constant Λ > 0 in Planckian unit. It is observed that from the

computation that, ε(τ) and g(τ) both of the parameters captures the effect of such

deviation and for this reason sometimes one refer this to be the quasi De Sitter

space-time.

2. Another important fact is that since we strictly don’t know the explicit conformal

tie dependence of the reheating equation of state wreh(τ) as it is an open issue till

date, we have assumed that the time dependence is very slow and for this purpose

this crucial parameter exactly behaving like a constant with the restriction that,

0 ≤ wreh ≤ 1/3 in the present context. This fact is extremely important to mention

as it fixes the form of the scale factor a(τ), parameter ε(τ) 15 and the Mukhanov

Sasaki variable z(τ) in terms of conformal time τ as well as the equation of state

parameter wreh in the present context.

We will strictly follow the above mentioned two facts for the rest of the computations

that we have performed to mathematically quantify the expressions for the OTOC’s in the

15The slow-roll parameter ε = −Ḣ/H2 = −H ′/(aH2), is commonly used in the context of quasi De Sitter
inflationary phase where the scale factor can be expressed as, a(τ) = − 1

Hτ (1+ε) ∼ − 1
Hτ (1+g(τ)). During

inflation ε << 1 and at the end of inflationary phase ε = 1, which is very useful to determine corresponding
field value at the end of inflation. So during stochastic particle production during the inflationary phase
will respect these constraints on the slow-roll parameter ε. On the other hand, since reheating happened
after inflation then it is expected that the magnitude of the parameter ε > 1 during reheating, where the

scale factor can be expressed as, a(τ) =
[
(1+3wreh)
3(1+wreh)

τ
] 2

(1+3wreh) ∼
[(

1− 1
ε

)
τ
] 1

(ε−1) . This statement can be

justified very easily in the context during the epoch of reheating. From the previously derived expression
for the parameter ε in the context of reheating we have found that, ε ∼ 3

2 (1 +wreh), where the equation of
state parameter 0 ≤ wreh ≤ 1/3. This directly implies that during the epoch of reheating the parameter ε
will lie within the window, 3/2 ≤ ε ≤ 2 (alternatively one can say that the Hubble velocity is lying within
the window 3

2H
2 ≤ vH = |Ḣ| ≤ 2H2 in the Planckian units), which is obviously a very strong and specific

information we get from the from the present computation.
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context of stocahsic particle production during inflation, which is dominated by quasi De

Sitter space-time and during the epoch of reheating. This further implies that the physical

outcomes of the out-of-equilibrium studied in terms of OTOC’s respect both of the above

mentioned assumptions.

3.4 Canonical quantization of cosmological Hamiltonian: Classical to quan-

tum map

Now we have to promote the classical Hamiltonian that we have derived earlier to the

quantized Hamiltonian. This can be expressed as:

H
Classical to quantum map−−−−−−−−−−−−−−−−→ Ĥ =

∫
d3k

1

2

 Π̂2
k(τ)︸ ︷︷ ︸

Kinetic term

+ ω2
k(τ)f̂ 2

k(τ)︸ ︷︷ ︸
Potential term

 , (3.36)

Additionally, it is important to mention here that the following constraint have to be

satisfied:

f̂ †k(τ) =
(
fk(τ) ak + f ∗−k(τ) a†−k

)†
=
(
f−k(τ) a−k + f ∗k(τ) a†k

)
= f̂−k(τ), (3.37)

Π̂†k(τ) =
(

Πk(τ) ak + Π∗−k(τ) a†−k

)†
=
(

Π−k(τ) a−k + Π∗k(τ) a†k

)
= Π̂−k(τ). (3.38)

Consequently we have used a simplified notations in the above mentioned Hamiltonian in

Fourier space, which are given by the following expression:

Π̂2
k(τ) = Π̂k(τ)Π̂−k(τ) = |Πk(τ) ak + Π∗−k(τ) a†−k|

2

=
(

Πk(τ) ak + Π∗−k(τ) a†−k

)† (
Πk(τ) ak + Π∗−k(τ) a†−k

)
=
(

Π−k(τ) a−k + Π∗k(τ) a†k

)(
Πk(τ) ak + Π∗−k(τ) a†−k

)
= 2

(
a†kak +

1

2
δ3(0)

)
|Πk(τ)|2 = 2

(
a†kak +

1

2
δ3(0)

)
Π2

k(τ) (3.39)

f̂ 2
k(τ) = f̂k(τ)f̂−k(τ) = |fk(τ) ak + f ∗−k(τ) a†−k|

2

=
(
fk(τ) ak + f ∗−k(τ) a†−k

)† (
fk(τ) ak + f ∗−k(τ) a†−k

)
=
(
f−k(τ) a−k + f ∗k(τ) a†k

)(
fk(τ) ak + f ∗−k(τ) a†−k

)
= 2

(
a†kak +

1

2
δ3(0)

)
|fk(τ)|2 = 2

(
a†kak +

1

2
δ3(0)

)
f 2

k(τ). (3.40)
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Consequently, we get the following simplified form of the quantized Hamiltonian:

Ĥ =

∫
d3k

(
a†kak +

1

2
δ3(0)

)[
Π̂2

k(τ) + ω2
k(τ)f̂ 2

k(τ)
]
, (3.41)

After introducing the normal ordering one can neglect the contribution from the zero

point energy, which actually gives the divergent contribution. This further simplifies the

the expression for the Hamiltonian, which is given by:

: Ĥ :=

∫
d3k a†kak

[
Π̂2

k(τ) + ω2
k(τ)f̂ 2

k(τ)
]
. (3.42)

Here the expression for the time dependent frequency have already mentioned earlier, which

can be further expressed in terms of the particle production during inflation in quasi De

Sitter phase and during the epoch of reheating. The above mentioned expressions for

the Hamiltonians are extremely useful as it will appear in the expression for the thermal

Botzmann factor of all OTOC’s.

3.5 Cosmological two-point and four-point “in-in” OTO micro-canonical am-

plitudes

In this section our prime objective is to compute the explicit expression for the OTOC.

3.5.1 OTOC meets Cosmology

To compute this explicitly we need the following information in our hand:

1. Information I:

First of all, one need the quantum operators corresponding to the rescaled field and

its canonically conjugate momenta, which is actually written in terms of the classical

solution obtained from the mode equation and the creation and annihilation oper-

ators. Actually, in the context of Cosmology one can write down the Hamiltonian

of the system in terms of an Harmonic oscillator with conformal time dependent

frequency in a Fourier space and after constructing this Hamiltonian one needs to

integrate over all possible momenta. Using this prescription and using the canon-

ical quantization procedure one can easily quantize the system Hamiltonian in the

framework of Cosmology.

2. Information II:

Next, one needs to compute the expression for the expression for the square of the

commutator bracket in the background of FLRW space-time in curved space quantum

field theory in coordinate space. This is the prime component which will fix the final

expression for OTOC in the framework of Cosmology. We will explicitly show that

this contribution can be written in terms of four parts where each of the parts in
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Fourier transformed space mimics the role of some kind of scattering amplitudes after

taking its trace, which are functions of four momenta and two time scale as appearing

in the definition of OTOC. Precisely these four momenta are coming due to the fact

that in each contributions we are dealing with four quantum operators. Now if

we careful about the technicality then we have to say these four-point scattering

amplitudes are basically the four-point time dependent correlation functions in the

framework of Cosmology as during performing the trace operation we have to use

the same quantum vacuum state, which means that the initial and final state both

are same, and identified to be “in” state. So it is basically an in-in amplitude rather

than an usual “in-out” amplitude. The usual “in-out” amplitude can be usually

computed using the idea of S matrix, which is a Schwinger Dyson series in the

context of quantum field theory and this is an unitary matrix in the context of a closed

system in our Universe when the system under consideration is not exchanging any

information with the surroundings. On the other hand, in Cosmological set-up we

deal with “in-in” amplitudes which can be computed using the well known Schwinger

Keldysh formalism. Instead of calling this quantity which we want to evaluate as “in-

in” amplitude we call these contributions as “in-in” quantum correlation functions

in the framework of Cosmology.

3. Information III:

Further, we have to fix the definition of trace in the context of quantum field theory in

a classical gravitational background, specifically in the context of FLRW Cosmology.

To serve this purpose, we need to first use a standard definition of the quantum

wave function of our Universe. For these purpose, the most common choice is to use

the definition of standard Bunch Davies vacuum state, which is basically a thermal

ground state in the framework of Cosmology. Sometimes this vacuum is identified to

be the Hartle-Hawking or Cherenkov vacuum state in quantum field theory theory of

curved space-time with Cosmological background. Apart from that the another useful

vacua is, α vacua , which is mostly used in the context of interacting quantum field

theory in curved space-time with cosmological background. Here in the construction

of α vacua it appears as a one real parameter family which can take any continuous

value starting from the zero value. The zero value is a special case of α vacua which

is basically the well known Bunch Davies quantum vacuum ground state. One the

other hand, for the other values of α one can construct infinite number of states

which can be considered as some excited states which can be expressed in terms of

the known Bunch Davies vacuum state using Bogoliubov transformation.

4. Information IV:

Using the above mentioned α vacua or the Bunch Davies quantum vacuum one can

further compute the numerator of OTOC, which is the trace of the square of the

commutator bracket of the rescaled field variable and its canonically conjugate mo-
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menta along with the thermal Botzmann factor in which the system Hamiltonian is

appearing explicitly. Also one can compute the denominator of the OTOC represents

the expression for the trace of the only thermal Boltzmann factor, which is physically

identified to be the thermal partition function in the Cosmological framework. Then

putting a negative sign in front of the computed object one can derive the expression

for the OTOC in un normalized form. This overall negative sign is very important

as it makes the un normalized OTOC positive and growing with the combined time

scale in which both of the above mentioned quantum extended operators are defined.

In this computation, the thermal partition function and the trace of the commutator

bracket square at finite temperature are evaluated using semi classical approximation,

which means that we treat the fluctuation of scalar modes appearing from cosmo-

logical perturbation theory in the primordial universe. Precisely the perturbation in

the metric in the FLRW background can be written in terms of scalar, vector and

tensor modes in Fourier transformed space. This is commonly known as the SVT

decomposition in Cosmology. In this computation, we have restricted our attention

to scalar modes which can promoted to be a quantum operator during the compu-

tation of OTOC. It is obvious that, the canonically conjugate momenta computed

from the scalar modes can also be promoted to be a quantum mechanical operator.

But if we look into this problem very carefully, then we observe that the origin of the

quantum fluctuations from the scalar modes are coming from metric perturbation in

the FLRW background, which we actually treat purely classically. For this reason

we will do a semi-classical (not purely quantum or classical) computation for the

computation of OTOC in the framework of primordial cosmology.

5. Information V:

Last but not the least, we have to fix the normalization of OTOC. This can be

perfectly done using the previously mentioned thermal trace operation in presence

of α vacua or Bunch Davies quantum vacuum state in the context of Cosmology.

After normalization we can able to construct a dimensionless cosmological four-point

“in-in” amplitude or quantum OTOC. We have computed the normalization factor

in the Appendix in detail. Please look into the technical details in the Appendix.

3.5.2 Fourier space representation of the commutator bracket: Application

to two-point OTOC

Here our job is to compute the following commutator bracket, given by:[
f̂(x, τ1), Π̂(x, τ2)

]
= f̂(x, τ1)Π̂(x, τ2)︸ ︷︷ ︸

≡Γ1(x,τ1,τ2)

− Π̂(x, τ2)f̂(x, τ1)︸ ︷︷ ︸
≡Γ2(x,τ1,τ2)

, (3.43)

53

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2020                   doi:10.20944/preprints202007.0038.v1

Peer-reviewed version available at Symmetry 2020, 12, 1527; doi:10.3390/sym12091527

https://doi.org/10.20944/preprints202007.0038.v1
https://doi.org/10.3390/sym12091527


Now we use the following convention for the Fourier transformation, which is given by:

f̂(x, τ1) =

∫
d3k

(2π)3
exp(ik.x) f̂k(τ1), (3.44)

Π̂(x, τ1) = ∂τ1 f̂(x, τ1) =

∫
d3k

(2π)3
exp(ik.x) ∂τ1 f̂k(τ1) =

∫
d3k

(2π)3
exp(ik.x) Π̂k(τ1), (3.45)

which will be very useful for rest of the computation of this paper.

Here we can see that the commutator bracket splits the commutator into two parts

which we have written in terms of the perturbation field variable and its canonically con-

jugate momentum, which are appearing in the context of cosmological perturbation theory

performed in a specific scheme. In this computation instead of considering the perturbed

variable space independent, we start with space-time dependent perturbed cosmological

operators as after performing cosmological perturbation all the quantum operators are

inhomogeneous and anisotropic in general. Though at the end after performing all the

computation we will show that even one start with space-time dependent perturbed cos-

mological operators, the ultimate result will be independent of space coordinates and in the

OTOC only the information regarding the time coordinates will appear explicitly as from

the starting point we have started with time scale separated quantities. The obtained two

individual contribution actually represent the two point OTO amplitudes in coordinate

space which will finally contribute in the computation of the two-point micro-canonical

OTO amplitudes in Fourier space after performing the Fourier transformation following

the above mentioned convention. Finally, using this formalism one can explicitly compute

the expression for the two point micro-canonical OTOC in the context of Cosmology, which

will be only functions of the two conformal time scales in which the quantum operators

are associated in the cosmological perturbation theory.

Next, we explicitly compute the expressions for these individual quantum mechanical

operators, Γi(x, τ1, τ2) ∀ i = 1, 2, which can be expressed in Fourier space as:

Γ1(x, τ1, τ2) = f̂(x, τ1)Π̂(x, τ2)

=

∫
d3k1

(2π)3

∫
d3k1

(2π)3
exp(i(k1 + k2).x) f̂k1(τ1)Π̂k2(τ2)

=

∫
d3k1

(2π)3

∫
d3k1

(2π)3
exp(i(k1 + k2).x) ∆̂1(k1,k2; τ1, τ2), (3.46)

where we have introduced a momentum and conformal time dependent quantum mechan-

ical operator ∆̂1(k1,k2; τ1, τ2), which is defined as:

∆̂1(k1,k2; τ1, τ2) = f̂k1(τ1)Π̂k2(τ2) = D1(k1,k2; τ1, τ2) ak1ak2 +D2(k1,k2; τ1, τ2) a†−k1
ak2

+D3(k1,k2; τ1, τ2) ak1a
†
−k2

+D4(k1,k2; τ1, τ2) a†−k1
a†−k2

, (3.47)
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where we have introduced momentum and time dependent two-point OTO amplitudes,

Di(k1,k2; τ1, τ2) ∀ i = 1, 2, 3, 4, which are explicitly defined in the Appendix.

Γ2(x, τ1, τ2) = Π̂(x, τ2)f̂(x, τ1)

=

∫
d3k1

(2π)3

∫
d3k1

(2π)3
exp(i(k1 + k2).x) Π̂k1(τ2)f̂k2(τ1)

=

∫
d3k1

(2π)3

∫
d3k1

(2π)3
exp(i(k1 + k2).x) ∆̂2(k1,k2; τ1, τ2), (3.48)

where we have introduced a momentum and conformal time dependent quantum mechan-

ical operator ∆̂2(k1,k2; τ1, τ2), which is defined as:

∆̂2(k1,k2; τ1, τ2) = Π̂k1(τ2)f̂k2(τ1) = L1(k1,k2; τ1, τ2) ak1ak2 + L2(k1,k2; τ1, τ2) a†−k1
ak2

+L3(k1,k2; τ1, τ2) ak1a
†
−k2

+ L4(k1,k2; τ1, τ2) a†−k1
a†−k2

, (3.49)

where we have introduced momentum and time dependent two-point OTO amplitudes,

Li(k1,k2; τ1, τ2) ∀ i = 1, 2, 3, 4, which are explicitly defined in the Appendix.

This implies that one can write down the previously mentioned the commutator bracket

along with the thermal Boltzmann factor as:

e−βĤ(τ1)
[
f̂(x, τ1), Π̂(x, τ2)

]
= e−βĤ(τ1) [Γ1(x, τ1, τ2)− Γ2(x, τ1, τ2)]

= e−βĤ(τ1)

{∫
d3k1

(2π)3

∫
d3k2

(2π)3
exp [i (k1 + k2) .x]

[
∆̂1(k1,k2; τ1, τ2)− ∆̂2(k1,k2; τ1, τ2)

]}
=

∫
d3k1

(2π)3

∫
d3k2

(2π)3
exp [i (k1 + k2) .x]

[
∇̂1(k1,k2; τ1, τ2; β)− ∇̂2(k1,k2; τ1, τ2; β)

]
, (3.50)

where we define the new sets of quantum operators, : ∇̂i(k1,k2; τ1, τ2; β) : ∀ i = 1, 2 as:

∇̂i(k1,k2; τ1, τ2; β) = e−βĤ(τ1) ∆̂i(k1,k2; τ1, τ2) ∀ i = 1, 2 (3.51)

Here the thermal Boltzmann factor can be expressed in terms of creation and annihilation

operator as:

e−βH(τ1) = exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
, (3.52)

where we define Ek(τ1) by the following expressions:

Ek(τ1) :=
[
|Πk(τ1)|2 + ω2

k(τ1)|fk(τ)|2
]
. (3.53)
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3.5.3 Fourier space representation of square of the commutator bracket Ap-

plication to four-point OTOC

Now we explicitly compute the following square of the commutator bracket, given by:[
f̂(x, τ1), Π̂(x, τ2)

]2

= f̂(x, τ1)Π̂(x, τ2)f̂(x, τ1)Π̂(x, τ2)︸ ︷︷ ︸
≡ K1(x,τ1,τ2)

− Π̂(x, τ2)f̂(x, τ1)f̂(x, τ1)Π̂(x, τ2)︸ ︷︷ ︸
≡ K2(x,τ1,τ2)

− f̂(x, τ1)Π̂(x, τ2)Π̂(x, τ2)f̂(x, τ1)︸ ︷︷ ︸
≡ K3(x,τ1,τ2)

+ Π̂(x, τ2)f̂(x, τ1)Π̂(x, τ2)f̂(x, τ1)︸ ︷︷ ︸
≡ K4(x,τ1,τ2)

(3.54)

It is important to note that, in the expression for the square of the commutator bracket

defined in terms of the rescaled cosmological perturbation variable for scalar mode fluctu-

ation and its canonically conjugate momenta we actually have introduced few space-time

dependent new functions which basically divides the whole expression into four parts.

These four quantum operators after taking the thermal average represent the four-point

correlation function. However doing the computation in coordinate space is very compli-

cated. For this reason by making use of the mentioned convention of the Fourier transform

of each quantum operators we express all of them in momentum space. Now we mention

the explicit structure of these operators, Ki(x, τ1, τ2) ∀ i = 1, 2, 3, 4 which are expressed in

Fourier space as:

K1(x, τ1, τ2)

= f̂(x, τ1)Π̂(x, τ2)f̂(x, τ1)Π̂(x, τ2)

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp [i (k1 + k2 + k3 + k4) .x]

f̂k1(τ1)Π̂k2(τ2)f̂k3(τ1)Π̂k4(τ2)

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp [i (k1 + k2 + k3 + k4) .x]

T̂1(k1,k2,k3,k4; τ1, τ2), (3.55)
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where the function T̂1(k1,k2,k3,k4; τ1, τ2) is defined as:

T̂1(k1,k2,k3,k4; τ1, τ2)

= [M1(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3ak4

+M2(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2ak3ak4 +M3(k1,k2,k3,k4; τ1, τ2) ak1a

†
−k2

ak3ak4

+M4(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3ak4 +M5(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

ak4

+M6(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2a

†
−k3

ak4 +M7(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
ak4

+M8(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

a†−k3
ak4 +M9(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3a

†
−k4

+M10(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2ak3a

†
−k4

+M11(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3a
†
−k4

+M12(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3a
†
−k4

+M13(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

a†−k4
+M14(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2a
†
−k3

a†−k4

+M15(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
a†−k4

+M16(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

a†−k3
a†−k4

]
, (3.56)

where we define, Mj(k1,k2,k3,k4; τ1, τ2) ∀ j = 1, · · · , 16, in the appendix.

K2(x, τ1, τ2) = Π̂(x, τ2)f̂(x, τ1)f̂(x, τ1)Π̂(x, τ2)

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp [i (k1 + k2 + k3 + k4) .x]

Π̂k1(τ2)f̂k2(τ1)f̂k3(τ1)Π̂k4(τ2)

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp [i (k1 + k2 + k3 + k4) .x]

T̂2(k1,k2,k3,k4; τ1, τ2), (3.57)

where the function T̂2(k1,k2,k3,k4; τ1, τ2) is defined as:

T̂2(k1,k2,k3,k4; τ1, τ2)

=
[
J1(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3ak4 + J2(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2ak3ak4

+J3(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3ak4 + J4(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3ak4

+J5(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

ak4 + J6(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2a

†
−k3

ak4

+J7(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
ak4 + J8(k1,k2,k3,k4; τ1, τ2) a†−k1

a†−k2
a†−k3

ak4

+J9(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3a
†
−k4

+ J10(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2ak3a

†
−k4

+J11(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3a
†
−k4

+ J12(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3a
†
−k4

+J13(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

a†−k4
+ J14(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2a
†
−k3

a†−k4

+J15(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
a†−k4

+ J16(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

a†−k3
a†−k4

]
, (3.58)
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where we define, Jj(k1,k2,k3,k4; τ1, τ2) ∀ j = 1, · · · , 16, in the appendix.

K3(x, τ1, τ2) = f̂(x, τ1)Π̂(x, τ2)Π̂(x, τ2)f̂(x, τ1)

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp [i (k1 + k2 + k3 + k4) .x]

f̂k1(τ1)Π̂k2(τ2)Π̂k3(τ2)f̂k4(τ1)

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp [i (k1 + k2 + k3 + k4) .x]

T̂3(k1,k2,k3,k4; τ1, τ2), (3.59)

where the function T̂3(k1,k2,k3,k4; τ1, τ2) is defined as:

T̂3(k1,k2,k3,k4; τ1, τ2) = [N1(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3ak4

+N2(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2ak3ak4 +N3(k1,k2,k3,k4; τ1, τ2) ak1a

†
−k2

ak3ak4

+N4(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3ak4 +N5(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

ak4

+N6(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2a

†
−k3

ak4 +N7(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
ak4

+N8(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

a†−k3
ak4

+N9(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3a
†
−k4

+N10(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2ak3a

†
−k4

+N11(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3a
†
−k4

+N12(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3a
†
−k4

+N13(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

a†−k4

+N14(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2a

†
−k3

a†−k4

+N15(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
a†−k4

+N16(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

a†−k3
a†−k4

]
, (3.60)

where we define, Nj(k1,k2,k3,k4; τ1, τ2) ∀ j = 1, · · · , 16, in the appendix.

K4(x, τ1, τ2) =

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp [i (k1 + k2 + k3 + k4) .x]

Π̂k1(τ2)f̂k2(τ1)Π̂k3(τ2)f̂k4(τ1)

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp [i (k1 + k2 + k3 + k4) .x]

T̂4(k1,k2,k3,k4; τ1, τ2), (3.61)
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where the function T̂4(k1,k2,k3,k4; τ1, τ2) is defined as:

T̂4(k1,k2,k3,k4; τ1, τ2)

=
[
Q1(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3ak4 +Q2(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2ak3ak4

+Q3(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3ak4 +Q4(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3ak4

+Q5(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

ak4 +Q6(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2a

†
−k3

ak4

+Q7(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
ak4 +Q8(k1,k2,k3,k4; τ1, τ2) a†−k1

a†−k2
a†−k3

ak4

+Q9(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3a
†
−k4

+Q10(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2ak3a

†
−k4

+Q11(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3a
†
−k4

+Q12(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3a
†
−k4

+Q13(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

a†−k4
+Q14(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2a
†
−k3

a†−k4

+Q15(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
a†−k4

+Q16(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

a†−k3
a†−k4

]
, (3.62)

where we define, Qj(k1,k2,k3,k4; τ1, τ2) ∀ j = 1, · · · , 16, in the appendix.

This implies that one can write down the previously mentioned square of the commu-

tator bracket along with the thermal Boltzmann factor as:

e−βĤ(τ1)
[
f̂(x, τ1), Π̂(x, τ2)

]2

= e−βĤ(τ1) [K1(x, τ1, τ2)−K2(x, τ1, τ2)−K3(x, τ1, τ2) +K4(x, τ1, τ2)]

= e−βĤ(τ1)

{∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp [i (k1 + k2 + k3 + k4) .x][

T̂1(k1,k2,k3,k4; τ1, τ2)− T̂2(k1,k2,k3,k4; τ1, τ2)

+T̂3(k1,k2,k3,k4; τ1, τ2)− T̂4(k1,k2,k3,k4; τ1, τ2)
]}

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp [i (k1 + k2 + k3 + k4) .x][

V̂1(k1,k2,k3,k4; τ1, τ2; β)− V̂2(k1,k2,k3,k4; τ1, τ2; β)

+V̂3(k1,k2,k3,k4; τ1, τ2; β)− V̂4(k1,k2,k3,k4; τ1, τ2; β)
]
, (3.63)

where we define the new sets of quantum operators, : V̂i(k1,k2,k3,k4; τ1, τ2; β) : ∀ i =

1, 2, 3, 4 as:

V̂i(k1,k2,k3,k4; τ1, τ2; β) = e−βĤ(τ1) T̂i(k1,k2,k3,k4; τ1, τ2) ∀ i = 1, 2, 3, 4, (3.64)

where the thermal Boltzmann factor can be expressed as:

e−βH(τ1) = exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
, (3.65)
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where we define Ek(τ1) by the following expressions:

Ek(τ1) :=
[
|Πk(τ1)|2 + ω2

k(τ1)|fk(τ1)|2
]
. (3.66)

Now to find the trace of the square of the commutator bracket along with the thermal

Boltzmann factor we need to first define the quantum vacuum state. In the present context,

the quantum vacuum is fixed by the initial condition that we choose to define the mode

functions obtained from the quantum fluctuations during the particle production during

inflation and reheating epoch of the primordial cosmology. To find out the expression

for the OTOC here we will concentrate on SO(1, 4) isommetric De Sitter vacua. in this

category the most famous example is the α -vacua, which is actually described by a one

real parameter family α and CPT symmetric. If we fix, α = 0, then we get the well

known Bunch Davies vacuum state. In the context of quantum field theory of curved

space time Bunch Davies vacuum actually represents the quantum ground state. On the

other hand, the α vacua represent the quantum excited states in the context of quantum

field theory of curved space. For α vacua the parameter α mimics the role of a super-

selection quantum number associated with a different bipartite Hilbert space. But it is

still a unresolved issue that whether the interaction picture of the quantum field theory

with any arbitrary value of the parameter α with any arbitrary super-selection rule are

consistent with the underlying physical requirements or not. It might be quite likely that

the Hilbert space of α vacua excited states and the Bunch Davies vacuum coincides with

each other in the underlying quantum field theory set up. In such a physical situation it is

perfectly consistent to describe quantum field theory of excited states in terms of Bunch

Davies vacuum in the ultraviolet regime. On the other hand, in the infrared regime of

the quantum field theory of curved space, due to the non-removal of physical infinities

appearing from various types of interaction, explaining the physics of excited states with

the Bunch Davies type of adiabatic vacuum state is not at all a viable good approximation.

As a consequence one can write an effective field theory description from the present set

up in the ultraviolet regime of quantum field theory. This further implies that identifying

the more appropriate candidate of quantum α vacua states which are highly fine tuned.

However, this only allows us to consider excited quantum states compared to ground state

described by the Bunch Davies vacuum in the context of quantum field theory. Using this

prescription apart from describing the inflationary paradigm in (quasi) De Sitter space,

one can use it to describe a lot of unexplored late time physical phenomena, i.e. stochastic

particle production phenomena, the process of reheating etc in presence of non-standard

quantum vacuum state.
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3.6 Cosmological thermal partition function: Quantum version

3.6.1 Quantum vacuum state in Cosmology

In the context of quantum field theory, one can define the class of all excited α vacua states

in terms of the well known adiabatic Bunch Davies vacuum state as:

|Ψα〉 =
1√
| coshα|

exp

(
− i

2
tanhα

∫
d3k

(2π)3
a†kak

)
|ΨBD〉 , (3.67)

which satisfy the following constraint condition:

ak|Ψα〉 = 0 ∀ k, α (3.68)

Here one can easily observed that, if we fix α = 0 then one can easily get back the usual

quantum adiabatic Bunch Davies vacuum state. Another important thing we have to

mention here that, at the level of solution of the mode function of the quantum fluctuations

that we have obtained earlier, one can introduce the concept of these excited α vacua states

in the integration constants C1 and C2 as:

C1 = coshα, C2 = sinhα, (3.69)

which satisfy the following normalization condition:

|C1|2 − |C2|2 = 1 =⇒ cosh2 α− sinh2 α = 1 ∀ α . (3.70)

If we fix here α = 0 then we get the following values of the normalization constants for the

well known adiabatic quantum Bunch Davies vacuum state:

C1 = 1, C2 = 0. (3.71)

Now, using the definition of the above mentioned excited α vacua states, which is explicitly

written in terms of the well known adiabatic Bunch Davies vacuum state we compute the

expression for previously mentioned OTOC in the present context. For this purpose, we

need to first of fix the quantum partition function.

3.6.2 Quantum partition function in terms of rescaled field variable

In presence of these excited α vacua states the quantum partition function can be expressed

as:

Zα(β; τ1) =

∫
dΨα 〈Ψα|e−βĤ(τ1)|Ψα〉 =

1

| coshα|

∫
dΨBD 〈ΨBD|

{
exp

(
i

2
tanhα

∫
d3k1

(2π)3
ak1a

†
k1

)
exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
exp

(
− i

2
tanhα

∫
d3k2

(2π)3
a†k2

ak2

)}
|ΨBD〉. (3.72)
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Then the quantum partition function for α vacua can be expressed as:

Zα(β; τ1) =
1

| coshα|
ZBD(β; τ1), (3.73)

where ZBD is the quantum partition function computed from adiabatic Bunch Davies

vacuum as:

ZBD(β; τ1) =

∫
dΨBD 〈ΨBD| exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
|ΨBD〉

= exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
. (3.74)

. This further implies that the expression for the quantum partition function for α vacua

can be simplified as:

Zα(β; τ1) =
1

| coshα|
exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
. (3.75)

Till now we have not derived the expressions for the quantum partition function for the α

vacua and the adiabatic Bunch Davies vacuum state by introducing normal ordering which

is used to remove unwanted infinities, like here it is coming from the zero point like energy

contribution δ3(0)/2, which is a divergent quantity. Another possibility is that, one can

also use the Dirac Delta regularization to remove the divergent contribution.

The normal ordered quantum partition function for Bunch Davies vacuum is given by:

: ZBD(β; τ1) := exp

(
−
∫

d3k

(2π)3
ln

(
2 sinh

βEk(τ1)

2

))
. (3.76)

. Then the normal ordered quantum partition function forα vacua can be simplified as:

: Zα(β; τ1) :=
1

| coshα|
exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
. (3.77)

3.6.3 Quantum partition function in terms of curvature perturbation field

variable

In this subsection our prime objective is to find out the expression for the partition function

in terms of the curvature perturbation field variable. To serve this purpose the time

dependent dispersion relation can be expressed in terms of the curvature perturbation
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variable as:

Ek(τ1) = |Πk(τ1)|2 + ω2
k(τ1)|fk(τ1)|2

= z2(τ1)

{∣∣∣∣Πζ
k(τ1) + ζk(τ1)

1

z(τ1)

dz(τ1)

dτ1

∣∣∣∣2 + ω2
k(τ1)|ζk(τ1)|2

}

= z2(τ1)

Ek,ζ(τ1) +
(

Πζ
−k(τ1)ζk(τ1) + Πζ

k(τ1)ζ−k(τ1)
)( 1

z(τ1)

dz(τ1)

dτ1

)
︸ ︷︷ ︸

Contribution from this term is negligibly small


≈ z2(τ1)Ek,ζ(τ1), (3.78)

where we define the time dependent energy dispersion relation in terms of the curvature

perturbation variable as:

Ek,ζ(τ1) : =
∣∣∣Πζ

k(τ1)
∣∣∣2 +

(
ω2

k(τ1) +

(
1

z(τ1)

dz(τ1)

dτ1

)2
)
|ζk(τ1)|2. (3.79)

Now, the thermal partition function for cosmology in terms of curvature perturbation

computed for α vacua can be expressed as:

Zζ
α(β; τ1) =

Zζ
BD(β; τ1)

| coshα|
. (3.80)

where Zζ
BD(β; τ1)is thermal partition function for cosmology in terms of curvature pertur-

bation for Bunch Davies vacuum which can be expressed as:

Zζ
BD(β; τ1) = exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βz2(τ1)Ek,ζ(τ1)

2

))
, (3.81)

and can be further simplified in the normal ordered form as:

: Zζ
BD(β; τ1) := exp

(
−
∫
d3k ln

(
2 sinh

βz2(τ1)Ek,ζ(τ1)

2

))
. (3.82)
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3.7 Trace of two-point “in-in” OTO amplitude for Cosmology

Now, we will explicitly compute the numerator of the two-point OTOC for quantum α

vacua, which is given by:

Tr
[
e−βĤ(τ1)

[
f̂(x, τ1), Π̂(x, τ2)

]]
(α)

=
1

| coshα|

∫
dΨBD

2∏
j=1

∫
d3kj
(2π)3

exp [ikj.x] 〈ΨBD|

[
2∑
i=1

∇̂i(k1,k2; τ1, τ2; β)

]
|ΨBD〉. (3.83)

Further, our aim is to compute the individual contributions which in the normal ordered

form is given by the following expression and computed in Appendix:∫
dΨBD 〈ΨBD| : ∇̂i(k1,k2; τ1, τ2; β) : |ΨBD〉 =

∫
dΨBD 〈ΨBD| : e−βĤ(τ1) ∆̂i(k1,k2; τ1, τ2) : |ΨBD〉

∀ i = 1, 2. (3.84)

Further, the trace of sum of these individual two-point “in-in” OTO micro-canonical am-

plitudes in normal ordered form can be expressed as:∫
dΨBD 〈ΨBD|

2∑
i=1

: ∇̂i(k1,k2; τ1, τ2; β) : |ΨBD〉

= (2π)3 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
︸ ︷︷ ︸
Micro−canonical thermal partition function

δ3(k1 + k2)︸ ︷︷ ︸
Momentum conservation in OTO amplitude D2(k1,k2; τ1, τ2)︸ ︷︷ ︸

Individual two point OTO amplitude

+ D3(k1,k2; τ1, τ2)︸ ︷︷ ︸
Individual two point OTO amplitude

− L2(k1,k2; τ1, τ2)︸ ︷︷ ︸
Individual two point OTO amplitude

− L3(k1,k2; τ1, τ2)︸ ︷︷ ︸
Individual two point OTO amplitude


= (2π)3δ3(k1 + k2) P(k1,k2; τ2, τ2; β). (3.85)

Here we introduce, P(k1,k2; τ2, τ2; β) is the temperature dependent two-point function,

which is defined as:

P(k1,k2; τ2, τ2; β) : = exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[D2(k1,k2; τ1, τ2) +D3(k1,k2; τ1, τ2)

−L2(k1,k2; τ1, τ2)− L3(k1,k2; τ1, τ2)] . (3.86)
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3.8 OTOC from regularised two-point “in-in” OTO micro-canonical ampli-

tude: rescaled field version

The cosmological OTOC without normalization for α vacua can be expressed as:

Y f (τ1, τ2) = − 1

Zα(β; τ1)
Tr
[
e−βĤ(τ1)

[
f̂(x, τ1), Π̂(x, τ2)

]]
(α)

= −(2π)3

∫
d3k1

(2π)3

∫
d3k2

(2π)3
exp [i (k1 + k2) .x] δ3(k1 + k2)︸ ︷︷ ︸

Momentum conservation in OTO amplitude D2(k1,k2; τ1, τ2)︸ ︷︷ ︸
Individual two point OTO amplitude

+ D3(k1,k2; τ1, τ2)︸ ︷︷ ︸
Individual two point OTO amplitude

− L2(k1,k2; τ1, τ2)︸ ︷︷ ︸
Individual two point OTO amplitude

− L3(k1,k2; τ1, τ2)︸ ︷︷ ︸
Individual two point OTO amplitude


= −

∫
d3k1

(2π)3
P(k1,−k1; τ1, τ2), (3.87)

where the two-point OTO micro-canonical amplitude function is explicitly given by the

following expression:

P(k1,−k1; τ1, τ2) : = [D2(k1,−k1; τ1, τ2) +D3(k1,−k1; τ1, τ2)

−L2(k1,−k1; τ1, τ2)− L3(k1,−k1; τ1, τ2)]

=
[
f ∗−k1

(τ1)Π−k1(τ2) + fk1(τ1)Π∗k1
(τ2)

−Π∗−k1
(τ2)f−k1(τ1)− Πk1(τ2)f ∗k1

(τ1)
]
. (3.88)

Here we define:

D2(k1,k2; τ1, τ2) = f ∗−k1
(τ1)Πk2(τ2), (3.89)

D3(k1,k2; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2), (3.90)

L2(k1,k2; τ1, τ2) = Π∗−k1
(τ2)fk2(τ1), (3.91)

L3(k1,k2; τ1, τ2) = Πk1(τ2)f ∗−k2
(τ1). (3.92)

Now we need to evaluate explicitly by doing the momentum integration over three volume.

Now to compute this integral one can express the volume element as:

d3k1

(2π)3
= 4π k2

1 dk1 0 < k1 < L. (3.93)

Here we have taken care of the fact that the individual contribution appearing in the two-

point OTOC momentum integral is isotropic. Also, we have introduced a momentum finite
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large cut-off to regulate the contribution of this integral.

Consequently, one can write the following simplified expressions for the two-point un-

normalized OTOC as:

Y f (τ1, τ2) = − 1

2π2
B(τ1, τ2) , (3.94)

where the conformal time scale dependent regularized integral, B(τ1, τ2) in the above ex-

pression, is defined as:

B(τ1, τ2) : =

∫ L

k1=0

k2
1 dk1

[
f ∗−k1

(τ1)Π−k1(τ2) + fk1(τ1)Π∗k1
(τ2)

−Π∗−k1
(τ2)f−k1(τ1)− Πk1(τ2)f ∗k1

(τ1)
]

= (−τ1)
1
2
−ν(−τ2)

3
2
−ν [Z(1)(τ1, τ2) + Z(2)(τ1, τ2)− Z(3)(τ1, τ2)− Z(4)(τ1, τ2)

]
,(3.95)

where we have introduced the time dependent four individual amplitudes, Z(i)(τ1, τ2) ∀ i =

1, 2, 3, 4:

Z(1)(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1 fk1(τ1)Π∗k1

(τ2), (3.96)

Z(2)(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1 f

∗
−k1

(τ1)Π−k1(τ2), (3.97)

Z(3)(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1 Πk1(τ2)f ∗k1

(τ1), (3.98)

Z(4)(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1 Π∗−k1

(τ2)f−k1(τ1), (3.99)

which satisfy the following symmetry properties:

Z(2)(τ1, τ2) = (−1)−(2ν+1)Z(1)(τ1, τ2), (3.100)

Z(4)(τ1, τ2) = (−1)−(2ν+1)Z(3)(τ1, τ2), (3.101)

using which the simplified form of the momentum integrated time dependent two-point

OTOC can be written as:

Y f (τ1, τ2) = − 1

2π2
B(τ1, τ2) =

(−τ1)
1
2
−ν(−τ2)

3
2
−ν

2π2

[
1 + (−1)−(2ν+1)

] (
Z(3)(τ1, τ2)− Z(2)(τ1, τ2)

)
. (3.102)

We need to explicitly evaluate this above mentioned integral which will going to fix the final

expression for the two-point micro-canonical OTOC for Cosmology. We have presented

the detailed computation of this integral in the Appendix.
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3.9 OTOC from regularised four-point “in-in” OTO micro-canonical ampli-

tude: curvature perturbation field version

Here we need to perform the computation for the two-point OTOC in terms of the scalar

curvature perturbation and the canonically conjugate momentum associated with it, which

we have found that is given by the following simplified expression:

Y ζ(τ1, τ2) = − 1

Zζ
α(β, τ1)

Tr
[
e−βĤ(τ1)

[
ζ̂(x, τ1), Π̂(x, τ2)

]]
(α)

=
1

z(τ1)z(τ2)
Y f (τ1, τ2) . (3.103)

Now substituting the explicit for of the two-point function that we have derived in the

previous section we get the following expression:

Y ζ(τ1, τ2) = − 1

2π2

B(τ1, τ2)

z(τ1)z(τ2)
=

(−τ1)
1
2
−ν(−τ2)

3
2
−ν

2π2 z(τ1)z(τ2)

[
1 + (−1)−(2ν+1)

] (
Z(3)(τ1, τ2)− Z(2)(τ1, τ2)

)
(3.104)

Now additionally, few points we have to mention that from the finally obtained answer for

the two-point OTOC’s obtained from the two different set-ups:

1. First of we have explicitly shown that the definition of the two-point OTOC is com-

pletely coordinate independent and just only depend on the time scale on which the

operators in cosmological perturbation theory are time scale separated. Even we

start defining the operators in a specific space point at different times, in the final re-

sult all such information are integrated out and we get completely a time dependent

two-point OTOC.

2. Next, it is important to note that, for ν = 0, which implies, m/H = 3/2 the two-

point OTOC trivially vanishes. But for partially massless and heavy scalar fields,

two-point OTOC become non-trivial and carry significant information of the theory.

3. We also have found that, the final obtained result of the two-point OTOC is β

independent even though we start with a thermal micro-canonical statistical ensemble

during definition the two-point OTOC in the trace formula.

4. Also we observe that, if we fix, τ1 = τ2 = τ , that means if both the quantum

operators representing the cosmological fluctuations are defined at the same time

then two-point OTOC explicitly gives diverging contribution in the quantum regime.

This is perfectly consistent with the definition of any general OTOC and also support

all the physical requirements to construct the foundational set-up to compute OTOC.

5. If we perform an explicit computation, then it is possible to show that, in our set-

up the one-point functions in the context of Cosmology are given by the following
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expressions:

〈f̂(x, τ)〉β =
1

Zα(β; τ)
Tr
[
e−βĤ(τ) f̂(x, τ)

]
(α)

= 0 ,

〈Π̂(x, τ)〉β =
1

Zα(β; τ)
Tr
[
e−βĤ(τ) Π̂(x, τ)

]
(α)

= 0 . (3.105)

The similar statement is also valid if we define the one-point functions for Cosmology

in terms of the curvature perturbation field variable and its canonically conjugate

momentum. This result implies that, there is no point of performing normalization

of the obtained two-point OTOC for Cosmology with respect to the above mentioned

one-point functions. So technically, it is sufficient enough to compute the two-point

OTOC without normalization in the context of Cosmology.

6. Another important point we have to mention that, not only the one point function

but also the three point functions in the present context is trivially zero which can

be explicitly proved by making use of the well known Kubo Martin Schwinger con-

dition in terms of time translational symmetry of the thermal correlation functions

computed for Cosmology. These possibilities are explicitly mentioned below:

〈f̂(x, τ1)Π̂(x, τ2)Π̂(x, τ3)〉β =
1

Zα(β; τ)
Tr
[
e−βĤ(τ) f̂(x, τ)Π̂(x, τ2)Π̂(x, τ3)

]
(α)

= 0 , (3.106)

〈Π̂(x, τ1)f̂(x, τ2)Π̂(x, τ3)〉β =
1

Zα(β; τ)
Tr
[
e−βĤ(τ) Π̂(x, τ1)f̂(x, τ2)Π̂(x, τ3)

]
(α)

= 0 , (3.107)

〈Π̂(x, τ1)Π̂(x, τ2)f̂(x, τ3)〉β =
1

Zα(β; τ)
Tr
[
e−βĤ(τ) Π̂(x, τ1)Π̂(x, τ2)f̂(x, τ3)

]
(α)

= 0 , (3.108)

〈f̂(x, τ1)f̂(x, τ2)Π̂(x, τ3)〉β =
1

Zα(β; τ)
Tr
[
e−βĤ(τ) f̂(x, τ1)f̂(x, τ2)Π̂(x, τ3)

]
(α)

= 0 , (3.109)

〈f̂(x, τ1)Π̂(x, τ2)f̂(x, τ3)〉β =
1

Zα(β; τ)
Tr
[
e−βĤ(τ) f̂(x, τ1)Π̂(x, τ2)f̂(x, τ3)

]
(α)

= 0 , (3.110)

〈Π̂(x, τ1)f̂(x, τ2)f̂(x, τ3)〉β =
1

Zα(β; τ)
Tr
[
e−βĤ(τ) Π̂(x, τ1)f̂(x, τ2)f̂(x, τ3)

]
(α)

= 0 , (3.111)

〈f̂(x, τ1)f̂(x, τ2)f̂(x, τ3)〉β =
1

Zα(β; τ)
Tr
[
e−βĤ(τ) f̂(x, τ1)f̂(x, τ2)f̂(x, τ3)

]
(α)

= 0 , (3.112)

〈Π̂(x, τ1)Π̂(x, τ2)Π̂(x, τ3)〉β =
1

Zα(β; τ)
Tr
[
e−βĤ(τ) Π̂(x, τ1)Π̂(x, τ2)Π̂(x, τ3)

]
(α)

= 0 , (3.113)

which in principle can be further generalized to any odd N point thermal correlation

function for micro-canonical ensemble within the framework of Cosmology.
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3.10 Trace of four-point “in-in” OTO amplitude for Cosmology

Now, we will explicitly compute the numerator of the four-point OTOC for quantum α

vacua, which is given by:

Tr

[
e−βĤ(τ1)

[
f̂(x, τ1), Π̂(x, τ2)

]2
]

(α)

=
1

| coshα|

∫
dΨBD

4∏
j=1

∫
d3kj
(2π)3

exp [ikj.x] 〈ΨBD|

[
4∑
i=1

V̂i(k1,k2,k3,k4; τ1, τ2; β)

]
|ΨBD〉. (3.114)

Further, our aim is to compute the individual contributions which in the normal ordered

form are given by the following expression and computed in Appendix:∫
dΨBD 〈ΨBD| : V̂i(k1,k2,k3,k4; τ1, τ2; β) : |ΨBD〉

=

∫
dΨBD 〈ΨBD| : e−βĤ(τ1) T̂i(k1,k2,k3,k4; τ1, τ2) : |ΨBD〉 ∀ i = 1, 2, 3, 4.(3.115)

Further, the trace of sum of these individual four-point “in-in” OTO micro-canonical am-

plitudes in normal ordered form can be expressed as:∫
dΨBD 〈ΨBD|

4∑
i=1

V̂i(k1,k2,k3,k4; τ1, τ2; β) : |ΨBD〉 = (2π)6 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
4∑
i=1

 Θ
(i)
4 (k1,k2,k3,k4; τ1, τ2)︸ ︷︷ ︸

Individual four point OTO amplitude

{
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude

+ Θ
(i)
6 (k1,k2,k3,k4; τ1, τ2)︸ ︷︷ ︸

Individual four point OTO amplitude

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude

+ Θ
(i)
7 (k1,k2,k3,k4; τ1, τ2)︸ ︷︷ ︸

Individual four point OTO amplitude

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude

+ Θ
(i)
10 (k1,k2,k3,k4; τ1, τ2)︸ ︷︷ ︸

Individual four point OTO amplitude

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude

+ Θ
(i)
11 (k1,k2,k3,k4; τ1, τ2)︸ ︷︷ ︸

Individual four point OTO amplitude

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude

+ Θ
(i)
13 (k1,k2,k3,k4; τ1, τ2)︸ ︷︷ ︸

Individual four point OTO amplitude

{
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude

 ,
∀ i = 1(≡M), 2(≡ −J ), 3(≡ N ), 4(≡ −Q). (3.116)
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3.11 OTOC from regularised four-point “in-in” OTO micro-canonical ampli-

tude: rescaled field version

3.11.1 Without normalization

The cosmological OTOC without normalization for α vacua can be expressed as:

Cf (τ1, τ2) = − 1

Zα(β; τ1)
Tr

[
e−βĤ(τ1)

[
f̂(x, τ1), Π̂(x, τ2)

]2
]

(α)

= −(2π)6

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp [i (k1 + k2 + k3 + k4) .x] E4(k1,k2,k3,k4; τ1, τ2)︸ ︷︷ ︸

Four−point OTO amplitude

{
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude

+ E6(k1,k2,k3,k4; τ1, τ2)︸ ︷︷ ︸
Four−point OTO amplitude

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude

+ E7(k1,k1,k3,k3; τ1, τ2)︸ ︷︷ ︸
Four−point OTO amplitude

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude

+ E10(k1,k2,k3,k4; τ1, τ2)︸ ︷︷ ︸
Four−point OTO amplitude

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude

+ E11(k1,k2,k3,k4; τ1, τ2)︸ ︷︷ ︸
Four−point OTO amplitude

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude

+ E13(k1,k2,k3,k4; τ1, τ2)︸ ︷︷ ︸
Four−point OTO amplitude

{
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}︸ ︷︷ ︸
Momentum conservation in OTO amplitude


= −

∫
d3k1

(2π)3

∫
d3k2

(2π)3
{E4(k1,k2,−k2,−k1; τ1, τ2) + E4(k1,k2,−k1,−k2; τ1, τ2)

+E6(k1,k2,−k2,−k1; τ1, τ2) + E7(k1,k2,−k1,−k2; τ1, τ2)

+E10(k1,k2,−k1,−k2; τ1, τ2) + E11(k1,k2,−k2,−k1; τ1, τ2)

+E13(k1,k2,−k1,−k2; τ1, τ2) + E13(k1,k2,−k2,−k1; τ1, τ2)

+E7(k1,−k1,k2,−k2; τ1, τ2) + E10(k1,−k1,k2,−k2; τ1, τ2) + E11(k1,−k1,k2,−k2; τ1, τ2)} , (3.117)

where we have introduced new four-point OTO micro-canonical amplitude functions, Em(k1,k2,k3,k4; τ1, τ2) ∀m =

4, 6, 7, 10, 11, 13, which are defined as:

Em(k1,k2,k3,k4; τ1, τ2) =
4∑
i=1

Θ(i)
m (k1,k2,k3,k4; τ1, τ2)

= Mm(k1,k2,k3,k4; τ1, τ2)− Jm(k1,k2,k3,k4; τ1, τ2)

+Nm(k1,k2,k3,k4; τ1, τ2)−Qm(k1,k2,k3,k4; τ1, τ2). (3.118)
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To understand the structure of these functions more clearly one can further write them in

terms of the redefined field and its canonically conjugate momenta as:

E4(k1,k2,−k2,−k1; τ1, τ2) = f ∗−k1
(τ1)Π∗−k2

(τ2)f−k2(τ1)Π−k1(τ2)− Π∗−k1
(τ2)f ∗−k2

(τ1)f−k2(τ1)Π−k1(τ2)

+f ∗−k1
(τ1)Π∗−k2

(τ2)Π−k2(τ2)f−k1(τ1)− Π∗−k1
(τ2)f ∗−k2

(τ1)Π−k2(τ2)f−k1(τ1), (3.119)

E4(k1,k2,−k1,−k2; τ1, τ2) = f ∗−k1
(τ1)Π∗−k2

(τ2)f−k1(τ1)Π−k2(τ2)− Π∗−k1
(τ2)f ∗−k2

(τ1)f−k1(τ1)Π−k2(τ2)

+f ∗−k1
(τ1)Π∗−k2

(τ2)Π−k1(τ2)f−k2(τ1)− Π∗−k1
(τ2)f ∗−k2

(τ1)Π−k1(τ2)f−k2(τ1), (3.120)

E6(k1,k2,−k2,−k1; τ1, τ2) = f ∗−k1
(τ1)Πk2(τ2)f ∗k2

(τ1)Π−k1(τ2)− Π∗−k1
(τ2)fk2(τ1)f ∗k2

(τ1)Π−k1(τ2)

+f ∗−k1
(τ1)Πk2(τ2)Π∗k2

(τ2)f−k1(τ1)− Π∗−k1
(τ2)fk2(τ1)Π∗k2

(τ2)f−k1(τ1), (3.121)

E7(k1,k2,−k1,−k2; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2)f ∗k1

(τ1)Π−k2(τ2)− Πk1(τ2)f ∗−k2
(τ1)f ∗k1

(τ1)Π−k2(τ2)

+fk1(τ1)Π∗−k2
(τ2)Π∗k1

(τ2)f−k2(τ1)− Πk1(τ2)f ∗−k2
(τ1)Π∗k1

(τ2)f−k2(τ1), (3.122)

E10(k1,k2,−k1,−k2; τ1, τ2) = f ∗−k1
(τ1)Πk2(τ2)f−k1(τ1)Π∗k2

(τ2)− Π∗−k1
(τ2)fk2(τ1)f−k1(τ1)Π∗k2

(τ2)

+f ∗−k1
(τ1)Πk2(τ2)Π−k1(τ2)f ∗k2

(τ1)− Π∗−k1
(τ2)fk2(τ1)Πk3(τ2)f ∗−k4

(τ1), (3.123)

E11(k1,k2,−k2,−k1; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2)f−k2(τ1)Π∗k1

(τ2)− Πk1(τ2)f ∗−k2
(τ1)f−k2(τ1)Π∗k1

(τ2)

+fk1(τ1)Π∗−k2
(τ2)Π−k2(τ2)f ∗k1

(τ1)− Πk1(τ2)f ∗−k2
(τ1)Π−k1(τ2)f ∗k2

(τ1), (3.124)

E13(k1,k2,−k1,−k2; τ1, τ2) = fk1(τ1)Πk2(τ2)f ∗k1
(τ1)Π∗k2

(τ2)− Πk1(τ2)fk2(τ1)f ∗k1
(τ1)Π∗k2

(τ2)

+fk1(τ1)Πk2(τ2)Π∗k1
(τ2)f ∗k2

(τ1)− Πk1(τ2)fk2(τ1)Π∗k1
(τ2)f ∗k2

(τ1), (3.125)

E13(k1,k2,−k2,−k1; τ1, τ2) = fk1(τ1)Πk2(τ2)f ∗k2
(τ1)Π∗k1

(τ2)− Πk1(τ2)fk2(τ1)f ∗k2
(τ1)Π∗k1

(τ2)

+fk1(τ1)Πk2(τ2)Π∗k2
(τ2)f ∗k1

(τ1)− Πk1(τ2)fk2(τ1)Π∗k2
(τ2)f ∗k1

(τ1), (3.126)

E7(k1,−k1,k2,−k2; τ1, τ2) = fk1(τ1)Π∗k1
(τ2)f ∗−k2

(τ1)Π−k2(τ2)− Πk1(τ2)f ∗k1
(τ1)f ∗−k2

(τ1)Π−k2(τ2)

+fk1(τ1)Π∗k1
(τ2)Π∗−k2

(τ2)f−k2(τ1)− Πk1(τ2)f ∗k1
(τ1)Π∗−k2

(τ2)f−k2(τ1), (3.127)

E10(k1,−k1,k2,−k2; τ1, τ2) = f ∗−k1
(τ1)Π−k1(τ2)fk2(τ1)Π∗k2

(τ2)− Π∗−k1
(τ2)f−k1(τ1)fk2(τ1)Π∗k2

(τ2)

+f ∗−k1
(τ1)Π−k1(τ2)Πk2(τ2)f ∗k2

(τ1)− Π∗−k1
(τ2)f−k1(τ1)Πk2(τ2)f ∗k2

(τ1), (3.128)

E11(k1,−k1,k2,−k2; τ1, τ2) = fk1(τ1)Π∗k1
(τ2)fk2(τ1)Π∗k2

(τ2)− Πk1(τ2)f ∗k1
(τ1)fk2(τ1)Π∗k2

(τ2)

+fk1(τ1)Π∗k1
(τ2)Πk2(τ2)f ∗k2

(τ1)− Πk1(τ2)f ∗k1
(τ1)Πk2(τ2)f ∗k2

(τ1), (3.129)

All the above mentioned quantities physically signify the momentum and conformal time

dependent amplitude of the OTOC which is written explicitly in terms of the contributions

from the four-point correlation function. Here we have to note down few symmetry prop-

erties of the above mentioned amplitudes under the exchange of the momenta appearing

in the third and fourth position i.e. if we replace −k2 → −k1 and −k1 → −k2, which are

given by:

E4(k1,k2,−k2,−k1; τ1, τ2) = E4(k1,k2,−k1,−k2; τ1, τ2), (3.130)

E13(k1,k2,−k2,−k1; τ1, τ2) = E13(k1,k2,−k1,−k2; τ1, τ2). (3.131)
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Using these symmetry properties the OTOC can be further simplified as:

C(τ1, τ2) = −
∫

d3k1

(2π)3

∫
d3k2

(2π)3
{2 (E4(k1,k2,−k2,−k1; τ1, τ2) + E13(k1,k2,−k1,−k2; τ1, τ2))

+E6(k1,k2,−k2,−k1; τ1, τ2) + E7(k1,k2,−k1,−k2; τ1, τ2)

+E10(k1,k2,−k1,−k2; τ1, τ2) + E11(k1,k2,−k2,−k1; τ1, τ2)

+E7(k1,−k1,k2,−k2; τ1, τ2) + E10(k1,−k1,k2,−k2; τ1, τ2) + E11(k1,−k1,k2,−k2; τ1, τ2)} , (3.132)

In the context of cosmology, we usually integrate over the time scale from −∞ to 0 to get

the momentum dependent trispectrum, which represents the amplitude of the four-point

correlation function. Instead of doing the integration over the conformal time here we

integrate over the moneta since in the present context we are interested to determine the

time dependent behaviour of the OTOC. Now our aim is to compute the explicit form of

the momentum integrated four-point amplitudes which will fix the mathematical structure

of the time time dependent OTOC in the present context. One of the important point we

need to mention here that, the individual parts of the amplitudes before integrating out

the momenta is only function of the magnitude of the momenta, not its direction. As a

consequence, the volume integrations over these momenta becomes very simpler and one

can treat the volume elements of the integrals as given by the following expression:

2∏
i=1

d3ki
(2π)6

=
1

(2π)6

2∏
i=1

k2
i dki sin θi dθi dφi ,

where 0 < ki <∞, 0 < θi < π, 0 < φi < 2π ∀ i = 1, 2. (3.133)

Now, it is clearly evident from the the expression for the above mentioned volume element

that the angular part sin θi dθi dφi ∀ i = 1, 2 are the infinitesimal solid angle subtended

for S2, which is dΩS2 and after performing the integration over the angular coordinates it

will give a factor of 4(2π)2 out of the integral over the volume elements of the momenta

appearing in the expression for OTOC. Another important point is to note that here it

might happen that the integral over the momenta within the range 0 < ki <∞ ∀ i = 1, 2

becomes infinite. For this reason we put cut-off 0 < ki < L ∀ i = 1, 2 to regulate the

integral over the momenta and consequently we can write:

C(τ1, τ2) = − 1

4π4

∫ L

0

k2
1 dk1

∫ L

0

k2
2 dk2

{2 (E4(k1,k2,−k2,−k1; τ1, τ2) + E13(k1,k2,−k1,−k2; τ1, τ2))

+E6(k1,k2,−k2,−k1; τ1, τ2) + E7(k1,k2,−k1,−k2; τ1, τ2)

+E10(k1,k2,−k1,−k2; τ1, τ2) + E11(k1,k2,−k2,−k1; τ1, τ2)

+E7(k1,−k1,k2,−k2; τ1, τ2) + E10(k1,−k1,k2,−k2; τ1, τ2) + E11(k1,−k1,k2,−k2; τ1, τ2)} , (3.134)
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Further, we define the following momenta integrated time dependent amplitudes:

I1(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 2E4(k1,k2,−k2,−k1; τ1, τ2), (3.135)

I2(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 2E13(k1,k2,−k2,−k1; τ1, τ2), (3.136)

I3(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E6(k1,k2,−k2,−k1; τ1, τ2), (3.137)

I4(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E7(k1,k2,−k1,−k2; τ1, τ2), (3.138)

I5(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E10(k1,k2,−k1,−k2; τ1, τ2), (3.139)

I6(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E11(k1,k2,−k2,−k1; τ1, τ2), (3.140)

I7(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E7(k1,−k1,k2,−k2; τ1, τ2), (3.141)

I8(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E10(k1,−k1,k2,−k2; τ1, τ2), (3.142)

I9(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E10(k1,−k1,k2,−k2; τ1, τ2). (3.143)

Consequently, the OTOC can be expressed in terms of the four-point time dependent

amplitudes as:

Cf (τ1, τ2) = − 1

4π4

7∑
j=1

wiIj(τ1, τ2) , (3.144)

where our prime motivation is to computed all of these non vanishing time dependent

amplitudes. Once we determine all of them then the mathematical structure of the OTOC

i.e. the time dependent behaviour in the OTOC will be fixed. Here it is important to

note that the weight factors for each individual contributions are given by the following

expression:

w1 = w2 = 2, wj = 1 ∀ j = 3, 4, · · · , 9. (3.145)

After computation we have found that:

I2(τ1, τ2) = (−τ1)1−2ν(−τ2)3−2ν

4∑
i=1

X
(i)
1 (τ1, τ2) = (−1)4νI1(τ1, τ2), (3.146)
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I3(τ1, τ2) = (−τ1)1−2ν(−τ2)3−2ν

4∑
i=1

X
(i)
1 (τ1, τ2) = (−1)2νI1(τ1, τ2), (3.147)

I4(τ1, τ2) = (−τ1)1−2ν(−τ2)3−2ν

4∑
i=1

X
(i)
1 (τ1, τ2) = (−1)2νI1(τ1, τ2), (3.148)

I5(τ1, τ2) = (−τ1)1−2ν(−τ2)3−2ν

4∑
i=1

X
(i)
1 (τ1, τ2) = (−1)2νI1(τ1, τ2), (3.149)

I6(τ1, τ2) = (−τ1)1−2ν(−τ2)3−2ν

4∑
i=1

X
(i)
1 (τ1, τ2) = (−1)2νI1(τ1, τ2), (3.150)

I7(τ1, τ2) = (−τ1)1−2ν(−τ2)3−2ν

4∑
i=1

X
(i)
1 (τ1, τ2) = (−1)2νI1(τ1, τ2), (3.151)

I8(τ1, τ2) = (−τ1)1−2ν(−τ2)3−2ν

4∑
i=1

X
(i)
1 (τ1, τ2) = (−1)2νI1(τ1, τ2), (3.152)

I9(τ1, τ2) = (−τ1)1−2ν(−τ2)3−2ν

4∑
i=1

X
(i)
1 (τ1, τ2) = (−1)2νI1(τ1, τ2). (3.153)

Consequently, we can further write:

7∑
j=1

wiIj(τ1, τ2) =
[
2 + 2(−1)4ν + 7(−1)2ν

]
I1(τ1, τ2)

= 2

[
1 + (−1)4ν +

7

2
(−1)2ν

]
(−τ1)1−2ν(−τ2)3−2ν

(−1)4ν

4∑
i=1

X
(i)
1 (τ1, τ2), (3.154)

where the explicit form of the time dependent functions X
(i)
1 (T, τ) ∀ i = 1, 2, 3, 4 are de-

fined in the appendix. Further using this result the un-normalised OTOC can be expressed

as:

Cf (τ1, τ2) = − 1

4π4

7∑
j=1

wiIj(τ1, τ2) =

[
1 + (−1)4ν +

7

2
(−1)2ν

]
(−τ1)1−2ν(−τ2)3−2ν

2π4(−1)4ν−1

4∑
i=1

X
(i)
1 (τ1, τ2) .

(3.155)

3.11.2 With normalization

Further, the normalisation factor of OTOC, which is given by the following expression:

N f (τ1, τ2) =
1

〈f̂(τ1)f̂(τ1)〉β〈Π̂(τ2)Π̂(τ2)〉β
=

π4

F1(τ1)F2(τ2)
. (3.156)
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where the time dependent functions F1(τ1) and F2(τ2) are defined in the Appendix. For

further details please look into the Appendix for the detailed computation of the normali-

sation factor of OTOC.

Finally, the normalised OTOC in the present context can be computed as:

Cf (τ1, τ2) =
Cf (τ1, τ2)

〈f̂(τ1)f̂(τ1)〉β〈Π̂(τ2)Π̂(τ2)〉β

= − 1

4F1(τ1)F2(τ2)

7∑
j=1

wjIj(τ1, τ2)

= − 1

2F1(τ1)F2(τ2)

[
1 + (−1)4ν +

7

2
(−1)2ν

]
I1(τ1, τ2)

=

[
1 + (−1)4ν +

7

2
(−1)2ν

]
(−τ1)1−2ν(−τ2)3−2ν

2(−1)4ν−1F1(τ1)F2(τ2)

4∑
i=1

X
(i)
1 (τ1, τ2) , (3.157)

which is obviously a new result in the context of primordial cosmology and we are very

hopeful that this result will explore various unknown physical phenomena happened in

early universe. The detailed explanation of this obtained result will be discussed in the

later half of this section.

3.12 OTOC from regularised four-point “in-in” OTO micro-canonical ampli-

tude: curvature perturbation field version

3.12.1 Without normalization

Here we need to perform the computation for the un-normalised OTOC in terms of the

scalar curvature perturbation and the canonically conjugate momentum associated with

it, which we have found that is given by the following simplified expression:

Cζ(τ1, τ2) = − 1

Zζ
α(β, τ1)

Tr

[
e−βĤ(τ1)

[
ζ̂(x, τ1), Π̂(x, τ2)

]2
]

(α)

=
1

z2(τ1)z2(τ2)
Cf (τ1, τ2) . (3.158)

3.12.2 With normalization

The normalised OTOC in terms of the scalar curvature perturbation and the canonically

conjugate momentum associated with it, which is basically the computation of the following

normalised OTOC, in the present context:

Cζ(τ1, τ2) =
Cζ(τ1, τ2)

〈ζ(τ1)ζ(τ1)〉β〈Πζ(τ1)Πζ(τ1)〉β
= N ζ(τ1, τ2) Cζ(τ1, τ2) , (3.159)
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Figure 1: Behaviour of the two-point function with respect to the T time scale of the
theory. Here we fix, mass parameter ν = −i/2,−3i/2, cut-off scale L = 1000, vacuum
parameter α = 0 (Bunch Davies vacuum), 1/2 (α vacua).
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Figure 2: Behaviour of the two-point function with respect to the T time scale of the
theory. Here we fix, mass parameter ν = −5i/2,−7i/2, cut-off scale L = 1000, vacuum
parameter α = 0 (Bunch Davies vacuum), 1/2 (α vacua).
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Figure 3: Behaviour of the two-point function with respect to the T time scale of the
theory. Here we fix, mass parameter ν = −9i/2, cut-off scale L = 1000, vacuum parameter
α = 0 (Bunch Davies vacuum), 1/2 (α vacua).

where the normalisation factor to normalise OTOC is given by:

N ζ(τ1, τ2) =
1

〈ζ(τ1)ζ(τ1)〉β〈Πζ(τ1)Πζ(τ1)〉β
=
π4z2(τ1)z2(τ2)

F1(τ1)F2(τ2)
= z2(τ1)z2(τ2)N f (τ1, τ2) . (3.160)

Consequently, the normalised OTOC computed from the curvature perturbation variable

is given by the following expression:

Cζ(τ1, τ2) = Cf (τ1, τ2) =

[
1 + (−1)4ν +

7

2
(−1)2ν

]
(−τ1)1−2ν(−τ2)3−2ν

2(−1)4ν−1F1(τ1)F2(τ2)

4∑
i=1

X
(i)
1 (τ1, τ2) . (3.161)

4 Numerical results I: Interpretation of two-point micro-canonical

OTOC in Cosmology

In this section, our objective is to to numerically study and give physical interpretation

of the obtained result of the two-point micro-canonical OTOC obtained for Cosmology in

the previous section of this paper.
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Figure 4: Behaviour of the two-point function with respect to the mass parameter ν and
the vacuum parameter α of the theory. Here we fix, cut-off scale L = 1000, and the two
time parameters, T = −200 and τ = −500.
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Figure 5: Behaviour of the two-point function with respect to the τ time scale of the
theory. Here we fix, mass parameter ν = −i/2,−3i/2, cut-off scale L = 1000, vacuum
parameter α = 0 (Bunch Davies vacuum), 1/2 (α vacua).
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Figure 6: Behaviour of the two-point function with respect to the τ time scale of the
theory. Here we fix, mass parameter ν = −5i/2,−7i/2, cut-off scale L = 1000, vacuum
parameter α = 0 (Bunch Davies vacuum), 1/2 (α vacua).
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Figure 7: Behaviour of the two-point function with respect to the τ time scale of the
theory. Here we fix, mass parameter ν = −9i/2, cut-off scale L = 1000, vacuum parameter
α = 0 (Bunch Davies vacuum), 1/2 (α vacua).

The detailed interpretation of the two-point micro-canonical OTOC for Cosmology is

appended below:

• In fig. (1), fig. (2), fig. (3) and fig. (5), fig. (2) and fig. (7), conformal time dependent

behaviour of the two-point function with respect to the two time scale of the Cosmol-

ogy have explicitly shown. From these plots it is clearly observed that with respect

both the time scales the two-point function show random fluctuating behaviour. The

amplitude of the fluctuation is small for the result obtained from the Bunch Davies

vacuum state and very large for the general α vacua state.

• For both the cases it is observed that, we get the significant feature in the time

dependent two-point function for partially massless or heavy scalar field those who

have the imaginary value of the mass parameter ν. This behaviour of the two-point

spectrum is explicitly depicted in fig. (4). From this plot one can clearly see that

for the result obtained using Bunch Davies initial condition the two-point spectra

significantly decay very fast with respect to the magnitude of the mass parameter

ν. This implies that, for very heavy or partially massless scalar fields if we increase

the mass parameter value then the mentioned two-point correlation between the

cosmological perturbation variable and its canonically conjugate momenta decrease
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Figure 8: Behaviour of the four-point OTOC with respect to the T time scale of the
theory. Here we fix, mass parameter ν = −i/2,−3i/2, cut-off scale L = 1000, vacuum
parameter α = 0 (Bunch Davies vacuum), 1/2 (α vacua).
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Figure 9: Behaviour of the four-point OTOC with respect to the T time scale of the
theory. Here we fix, mass parameter ν = −5i/2,−7i/2, cut-off scale L = 1000, vacuum
parameter α = 0 (Bunch Davies vacuum), 1/2 (α vacua).
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Figure 10: Behaviour of the four-point OTOC with respect to the T time scale of the
theory. Here we fix, mass parameter ν = −9i/2, cut-off scale L = 1000, vacuum parameter
α = 0 (Bunch Davies vacuum), 1/2 (α vacua).

Figure 11: Behaviour of the four-point OTOC with respect to the T time scale of the
theory. Here we fix, mass parameter ν = −3i/2, cut-off scale L = 1000, vacuum parameter
α = 0 (Bunch Davies vacuum), 1/2 (α vacua), 1 (α vacua).
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Figure 12: Behaviour of the four-point OTOC with respect to the mass parameter ν and
the vacuum parameter α . Here we fix, time scale T = −200, τ = −500, cut-off scale
L = 1000.
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Figure 13: Behaviour of the four-point OTOC with respect to the τ time scale of the
theory. Here we fix, mass parameter ν = −i/2,−3i/2, cut-off scale L = 1000, vacuum
parameter α = 0 (Bunch Davies vacuum), 1/2 (α vacua).
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Figure 14: Behaviour of the four-point OTOC with respect to the τ time scale of the
theory. Here we fix, mass parameter ν = −5i/2,−7i/2, cut-off scale L = 1000, vacuum
parameter α = 0 (Bunch Davies vacuum), 1/2 (α vacua).
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Figure 15: Behaviour of the four-point OTOC with respect to the τ time scale of the
theory. Here we fix, mass parameter ν = −9i/2, cut-off scale L = 1000, vacuum parameter
α = 0 (Bunch Davies vacuum), 1/2 (α vacua).

Figure 16: Behaviour of the four-point OTOC with respect to the τ time scale of the
theory. Here we fix, mass parameter ν = −3i/2, cut-off scale L = 1000, vacuum parameter
α = 0 (Bunch Davies vacuum), 1/2 (α vacua), 1 (α vacua).
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Figure 17: Behaviour of the relative change in four-point OTOC with respect to the two
time scale T . Here we fix, cut-off scale L = 1000.
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Figure 18: Behaviour of the relative change in four-point OTOC with respect to the two
time scale τ . Here we fix, cut-off scale L = 1000.

91

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2020                   doi:10.20944/preprints202007.0038.v1

Peer-reviewed version available at Symmetry 2020, 12, 1527; doi:10.3390/sym12091527

https://doi.org/10.20944/preprints202007.0038.v1
https://doi.org/10.3390/sym12091527


very fast in a fixed time scale. On the other hand, if we change the quantum initial

condition by changing the initial vacuum state by introducing α vacua then it can

be clearly observed from the plot that, if increase the value of the vacuum parameter

α gradually then we get significant change compared to the feature observed for

the Bunch Davies vacuum state. We have explicitly have shown the behaviour of

the two-point spectrum for α = 1/2 and α = 1, where it is clearly observed that

the correlation decays very slowly with the increase in the magnitude of the mass

parameter value and for very large value of |ν it will saturate to a non-zero large

amplitude for a fixed time time scale. There is as such no significant change we have

observed from the plots that we have drawn for α = 1/2 and α = 1 cases, except form

a amplitude shift for the large values of the mass parameter. For very small value

of the mass parameter all the different profiles obtained for zero value and non-zero

values of the vacuum parameter α start approaching to meet together and at |ν| = 0

the amplitude of the two-point correlation of the out-of-time ordered spectrum in

Cosmology shoots up with a very large amplitude.

• Also we have observed from the plots that the random fluctuations with respect to

the conformal time scale show small but decaying time dependent behaviour upto

a very late time scale as far as the amplitude of the spectra are concerned. After

crossing that late time region the amplitude start increasing and reaches to a very

large value which we have not shown explicitly in these plots. After reaching this

maximum value it will again start decaying very fast upto to the present day epoch.

This large peak value of the spectrum is obtained at the scale when the two time

scales of the theory becomes same and the two operators of cosmological perturbation

theory taken to be exactly same. Physically this information is very important for

our study in this paper, as it pointing towards the fact that, at this particular time

scale we are actually getting zero information from the out-of-time ordered physics

in the present context. So at very early time scale of the universe and after crossing

the peak we will get the information regarding the out-of-time ordered physics from

the present cosmological set up.

• Last but not the least, in the second plot of fig. (4), we have explicitly depicted the

behaviour of the two-point spectrum of the out-of-time ordered aspect of Cosmology

with respect the vacuum parameter α. Here we get a very interesting symmetric fea-

ture for the positive and negative values of the vacuum parameter α around α = 0.

As we increase the value of α along the positive axis, then the two-point function

increase very fast with large amplitude. Similar symmetric behaviour is also observed

for α < 0 side as well. As we approach towards α→ 0, we see that the amplitude of

the two-point out-of-time ordered spectrum for the fixed values of the time parame-

ters of the theory asymptotically approaches to the zero value from both α > 0 and

α < 0 side.
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5 Numerical results II: Interpretation of four-point micro-canonical

OTOC in Cosmology

Now comparing the results of the OTOC computed from both rescaled variable and cur-

vature perturbation variable we get the following outcomes:

1. Before normalisation, OTOC computed from both the sides are not same and con-

nected via a time dependent Mukhanov Sasaki variable dependent factor (z(τ1)z(τ2))−2.

2. After normalisation, OTOC computed from both the sides are exactly same and this

is really good that after normalisation we don’t need to think about the explicit origin

or any preferred cosmological perturbation variable.

Next, we give the physical interpretation of the obtained result for the normalised OTOC

computed in the context of primordial cosmology:

• In our computed OTOC in the context of Cosmology two time scales are involved

which are associated with the two operators, rescaled field variable and its canoni-

cally conjugate momenta. During the study of the behaviour of the OTOC we have

actually have fixed one time scale and have studied the time dependent dynamical

behaviour of OTOC with respect to the other time scale, which have not fixed. We

have found that the behaviour with respect to both τ1 = T and τ2 = τ , using both

Bunch Davies and α vacua as quantum vacuum state. See fig. (8), fig. (9), fig. (10),

fig. (11) and fig. (13), fig. (14), fig. (15), fig. (16) to know about the detailed conformal

time dependent feature of the cosmological normalised OTOC. One crucial thing we

have to mention here that, since we are dealing with conformal time, it varies from,

−∞ (Big Bang) to 0 (present day universe), which will be very useful to understand

the physical outcomes of these plots. For this reason we get completely opposite

behaviour of the cosmological OTOC compared to the usual quantum mechanical

systems. In quantum mechanical random system we actually deal with the usual

time scale, which various from 0 to ∞. Here 0 corresponds to the initial condition

on the system when the quantum mechanical system goes to the out-of-equilibrium

state and it is expected from our basic understanding of statistical mechanics that

if we wait for a very longer time scale then the OTOC will saturates to a specific

value where the system actually achieve equilibrium, where one can associate an

equilibrium temperature with the quantum system under consideration. Just using

the concept of retarded quantum correlators explaining these features are extremely

difficult and at the end computation probing those results in experiments are also

very complicated job. OTOC plays here a significant role to probe such quantum

correlations experimentally in a very simpler fashion. In the cosmological set up

things are not same though we study the quantum correlations at out-of-equilibrium

case here also. The prime reason for the difference between the study of both types
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of OTOC is lying in the time scale. In usual quantum mechanical system we are

actually interested in the growth of correlation function and if it is an exponential

growth then we identify this feature as the signature of quantum chaos. On the

other hand, in the cosmological set up we expect the randomness or stochasticity

will decrease with respect to the conformal time scale and such decrease is follow-

ing an exponential decay with respect to the conformal time scale then this is the

signature of quantum chaos in the context of primordial universe. In the cosmolog-

ical set up at far past −∞ the quantum fluctuations appearing during the epoch of

reheating or during the stochastic particle production during inflation goes to the

out-of-equilibrium state and like usual quantum system it is expected that if we wait

for a longer conformal time scale then at late time it will achieve equilibrium, with

which similarly one can associate an equilibrium temperature. For this equilibrium

case in the context of Cosmology the OTOC if saturates to a constant value then one

can identify this phenomena as quantum mechanical chaos. We will discuss about

this particular feature in detail in the next section of this paper. In the next point, we

will discuss about the features obtained from the numerical studies of the quantum

OTOC we have studied from the primordial cosmology set up. We are very positive

that this discuss will explore various underlying features of primordial universe when

a cosmological system goes to out-of-equilibrium.

• If we fix the time scale, τ2 = τ and study the behaviour of OTOC with respect to

the scale τ1 = T then we found that as we approach from very early universe to

the late time scale the normalised OTOC in the context of cosmology shows random

decreasing behaviour. This behaviour is quite consistent we the usual expectation.

It is observed that in very early universe τ1 = T → −∞, near to Big Bang all

such random fluctuations are appearing with large amplitude and very significant to

describe the time dependent behaviour of the quantum correlation function during

stochastic particle production during inflation and during the epoch of reheating,

when the finite temperature out-of-equilibrium physics play significant role. If we

wait for longer time, specifically at the late time scale it is observed from the fig. (8),

fig. (9), fig. (10) and fig. (11), that the quantum correlation OTOC decrease very fast

and we get very small amplitude for the random or stochastic quantum mechanical

fluctuations. Now if we closely look all of these mentioned plots then we see that

we decreasing behaviour of OTOC in these cases would not follow any exponential

decaying behaviour. So we cannot identify the decreasing behaviour of this OTOC

computed from the primordial cosmological set-up with the concept of quantum

mechanical chaos. Though it is clear from the plots that the random fluctuations

originating from the out-of-equilibrium physics dominates in far past and becomes

very very small at the late time universe.

• If we fix the time scale, τ1 = T and study the behaviour of OTOC with respect to
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the scale τ2 = τ then we found that as we approach from very early universe to the

late time scale the normalised OTOC in the context of cosmology shows random

decreasing on top of it with a exponentially decaying behaviour. This behaviour is

quite consistent we the usual expectation of quantum mechanical chaos along with

stochastic randomness. It is observed that in very early universe τ2 = τ → −∞,

near to Big Bang all such random fluctuations are appearing with large amplitude

and very significant to describe the time dependent behaviour of the OTOC during

stochastic particle production during inflation and during the epoch of reheating like

the previous case. If we wait for longer time, specifically at the late time scale it

is observed from the fig. (13), fig. (14), fig. (15) and fig. (16), that OTOC decrease

very fast with an exponentially decaying amplitude for the random or stochastic

fluctuations. Now if we closely look all of these mentioned plots then we see that the

behaviour of OTOC in these cases would exactly follow the exponential decaying time

dependent behaviour. So we identify the such behaviour of this OTOC computed

from the primordial cosmological set-up with the concept of quantum chaos. It is

clear from the plots that the quantum chaos, which is a very specific kind of random

fluctuations originating in far past and becomes small at the late time scale.

• Additionally we have observed that we can get the expected behaviour from the

OTOC with respect to both the time scales when the mass parameter, ν can be

analytically continued to −iν. So massless De Sitter case, which is ν = 3/2 is clearly

discarded here. Consequently, we left with the following possibilities:

1. Partially massless De Sitter case is one of the possibilities, where we can esti-

mate the following parameter from the present understanding:

−iν =

√
9

4
− c2 =⇒ c =

√
9

4
+ ν2 =

3

2

√
1 +

(
2ν

3

)2

≥
√

2 , (5.1)

which immediately implies the following bound on the mass parameter:

ν ≥ i

2
=⇒ |ν| ≥ 1

2
. (5.2)

This is a very great fact because we have studied the plots for the following

values of the mass parameter:

ν =
i

2
,

3i

2
,

5i

2
,

7i

2
,

9i

2
=⇒ |ν| = 1

2
,

3

2
,

5

2
,

7

2
,

9

2
. (5.3)

2. Also we have to mention that since a lot of complex gamma function is appearing

and mass parameter is −iν, during the numerical analysis we have taken the
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absolute value of OTOC during numerical computation. Consequently, the final

expression for the cosmological OTOC can be re-expressed for α vacua as:

C(T, τ, α) =

∣∣∣∣∣
[
1 + (−1)−4i|ν| +

7

2
(−1)−2i|ν|

]
(−T )1+2i|ν|(−τ)3+2i|ν|

2(−1)−(4i|ν|+1)F̃1(T )F̃2(τ)

4∑
i=1

X̃
(i)
1 (T, τ)

∣∣∣∣∣ .(5.4)

Here in the factors appearing with ˜ we have replaced ν with −i|ν|.

3. Massive De Sitter case is one of the possibilities, where we can estimate the

following parameter from the present understanding:

ν = i

√
m2

H2
− 9

4
=
im

H

√
1−

(
3H

2m

)2

≈ im

H

(
1− 1

2

(
3H

2m

)2

+ · · ·

)
. (5.5)

Since we have studied the case for ν ≥ i/2, we get the following bound on the

mass of the heavy field, which is given by the following expression:

m ≥
√

5

2
H . (5.6)

4. Reheating case is the last possibility, where we can estimate the following pa-

rameter from the present understanding:

i

2
≤ ν ≤ 3i

2
=⇒ 1

2
≤ |ν| ≤ 3

2
for 0 ≤ wreh ≤

1

3
. (5.7)

• After fixing both the time scales at far past, the behaviour of OTOC with respect to

the mass parameter is depicted in the fig. (12) for Bunch Davies and α vacua as quan-

tum mechanical vacuum state. This plot explicitly shows that if we increase the value

of mass parameter then OTOC amplitude increases like an exponential growth. This

behaviour is consistent with constraints obtained for the partially massless scalar,

massive scalar and reheating phenomena mentioned in the previous point.

• After fixing both the time scales at far past and fix ν = 5i/2, the behaviour of

OTOC with respect to the vacuum parameter α is depicted in the fig. (12). This

plot explicitly shows that if we increase the value of mass parameter then OTOC

amplitude fluctuates like a random stochastic signal.

• All the momentum dependent integrals appearing in cosmological OTOC is divergent

at ∞, for which we have introduced an UV regulator at L = 1000 a finite but at

large value. This makes the final result of OTOC convergent and finite.
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• Further we define a relative change in normalized OTOC where the relativeness is

defined with respect to the definition of quantum mechanical vacuum state in the

definition of normalized OTOC, given by:

Rα(τi) =

(
C(τi, α)− C(τi, α = 0)

C(τi, α = 0)

)
∀ i = 1(T ), 2(τ) . (5.8)

In fig. (17) and fig. (18), we have explicitly shown the behaviour of the relative

change in normalized OTOC with respect to the two time scales appearing in the

computation of OTOC.Here once we see the behaviour of OTOC with respect to one

time scale, we keep the other time scale fixed for the computation and numerical

estimation of the relative change in the normalized OTOC. Here the relative change

we have studies for α = 1/2, 1, 3/2 with respect to α = 0 for all previously allowed

values of the mass parameter. this is a very important parameter where one can

explicitly see the role of mass parameter ν and vacuum parameter α together. Also

from this relative change one can also study about the fact that in which time scale

the stochastic randomness appearing in the quantum fluctuation appearing in cos-

mological OTOC is large or small. The detailed features obtained from these plots

show that the relative change in cosmological OTOC will not change much starting

from Big Bang to the present epoch, apart from the irregular random fluctuations.

However, the explicit time dependence of OTOC obtained from Bunch Davies and α

vacua is consistent with the expectation from the cosmological set up studied here.

• Also, we have to mention here that the computed cosmological OTOC is any specific

coordinate independent. If we go through the computation then we see that even

we have started defining the cosmological OTOC in coordinate space, after taking

Fourier transformation and applying the momentum conservation appearing in terms

of Dirac Delta functions, the exponential factor which captures both momenta and

coordinate will be unity. Finally, we get a momentum integrated cut-off regulated

result which only depend on the two dynamical conformal time scale in which we have

defined the rescaled perturbation variable and its canonically conjugate momenta.

So this implies that the final expression of cosmological OTOC is only conformal

time dependent, not depend on any specific choice of coordinate. This is quite

impressive outcome and physically consistent with the mathematical framework of

cosmological perturbation theory in the early universe. In general, when one define

the quantum operators in a specific time and in a specific coordinate system then

it always appears in the final result and captures the effect of inhomogeneity in the

space-time coordinate. In the context of Cosmology we have found that the final

result of OTOC captures the effect of inhomogeneity as we have defined the two

quantum cosmological operators in different time scales at the starting point of the

definition of OTOC. This have been done in such a way because in cosmology we are
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actually interested in the time evolution of the quantum cosmological operators which

are separated in time scale, which is one of the crucial constraint in the definition

of any general OTOC. But such OTOC in cosmology don’t capture the effects of

inhomogeneity at all.

• The final result of cosmological OTOC is not explicitly dependent of the factor

β = 1/T which is appearing in the expression for thermal partition function which we

have computed in the context of Cosmology. this implies that the final result is also

independent of the thermal partition function computed for Cosmology. This is quite

consistent with the basic understanding of out-of-equilibrium aspects of quantum

statistical mechanics. Because when a system goes to out-of-equilibrium one cannot

associate a temperature with that system as the concept of temperature is always

appearing from thermodynamic equilibrium. One can only associate a temperature

with the system if we wait for very longer time scale and wait for saturation of OTOC

at a finite value. If such feature appears in OTOC then in that specific context this

saturation is actually correspond to the thermodynamic equilibrium in which one can

define an equilibrium temperature. The similar phenomena we can actually observed

in the context of cosmological OTOC as well where we explicitly found that if we

wait for very late time scale during the evolution of our universe in conformal time

scale then the OTOC exponentially decays with time and saturates to a finite value

at late time scales. We can actually find the specific time scale in terms of conformal

time coordinate and associate the concept of quantum chaos, where we can give a

measure of quantum Lyapunov exponent from the present framework. In the next

section, we will show that even there is no explicit β dependence in the calculation

of cosmological OTOC, such dependencies will appear once we connect the present

concept with quantum chaos through quantum Lyapunov exponent λ and the well

known MSS bound on it , i.e. λ ≤ 2π/β.

6 Lyapunov spectrum and quantum chaos in Cosmology

In the previous section, we have found that by keeping the time scale τ1 = T fixed if

we study the time dependent behaviour of cosmological OTOC with respect to the time

scale τ2 = τ , then one can describe the phenomena of quantum chaos using our present

prescription. In terms of conformal time, one can express the normalized quantum OTOC

in the following generic form:

C(τ, α) := ε∆f ,∆Π
exp (−2λf |τ |) , (6.1)

where we have written the conformal time as, τ = −|τ | to avoid all confusion to study

the detailed feature of Lyapunov exponent in the quantum regime as we know very clearly

that starting from Big bang to the present day the conformal time varies as, −∞ < τ < 0
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which means 0 < |τ | < ∞. This is because of the fact that the negative signature we

have already extracted out in the redefinition of conformal time, τ = −|τ |. Here the

proportionality overall factor, ε∆f ,∆Π
, contain the information of the rescaled field variable

f(x, τ1 = T = Tf) and its canonically conjugate momenta Π(x, τ2 = τ). It is expected

that this overall proportionality factor exactly matches with the normalization factor of

cosmological OTOC that we have computed earlier in this paper. Consequently, we can

write the following expression for the proportionality overall factor, ε∆f ,∆Π
, in the context

of cosmological OTOC as:

ε∆f ,∆Π
= N f (Tf , τ) =

1

〈f̂(Tf)f̂(Tf)〉β〈Π̂(τ)Π̂(τ)〉β
=

π4

F̃1(Tf)F̃2(τ)
, (6.2)

where the explicit mathematical structure of the functions F1(Tf) and F2(τ) are provided

in the Appendix of this paper. Now if we replace ν with −i|ν| then one can able to get

the expressions for F̃1(Tf) and F̃2(τ), which are basically analytically continued version of

the previously mentioned functions for stochastic particle produced in the form of partially

massless scalar field and massive scalar field, and also for the prime field component which

is participating during the reheating phenomena in the context of primordial cosmology.

Now, here it is important to point that, since the proportionality overall factor con-

tains the explicit information of the quantum operators using which we have defined and

computed the cosmological OTOC, in different cosmological perturbation schemes the def-

inition of the quantum operators are different. This fact actually one can explicitly see in

the computation of the normalization factor of cosmological OTOC computed in terms of

two different cosmological perturbation operators at the quantum, though they are related

via conformal time dependent Mukhanov Sasaki variable. For this specific reason one can

write the normalized OTOC as:

C(τ, α) := ε∆ζ ,∆Πζ
exp (−2λζ |τ |) . (6.3)

However, the left side of the above expression is exactly same for two different choices of

variables in cosmological perturbation scheme. This is a very crucial information which

we have proved explicitly in the previous part of this paper.

Here the proportionality overall factor, ε∆ζ ,∆Πζ
, contain the information of the curvature

perturbation field variable ζ(x, τ1 = T = Tf) and its canonically conjugate momenta

Πζ(x, τ2 = τ). Exactly just like the previous case here also one can similarly expect that this

overall proportionality factor exactly matches with the normalization factor of cosmological

OTOC. Consequently, we can write the following expression for the proportionality overall
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factor, ε∆ζ ,∆Πζ
, in the context of cosmological OTOC as:

ε∆ζ ,∆Πζ
= N ζ(Tf , τ) =

1

〈ζ̂(Tf)ζ̂(Tf)〉β〈Π̂ζ(τ)Π̂ζ(τ)〉β
=
π4z2(Tf)z

2(τ)

F̃1(Tf)F̃2(τ)
, (6.4)

and consequently the proportionality overall factors in the two formalism are related via

the following relation:

ε∆ζ ,∆Πζ
= z2(Tf)z

2(τ) ε∆f ,∆Π
. (6.5)

On the other hand, for fixed T = Tf one can write the cosmological OTOC as:

C(τ, α) =

∣∣∣∣∣
[
1 + (−1)−4i|ν| +

7

2
(−1)−2i|ν|

]
(−Tf)

1+2i|ν|(−τ)3+2i|ν|

2(−1)−(4i|ν|+1)F̃1(T )F̃2(τ)

4∑
i=1

X̃
(i)
1 (Tf , τ)

∣∣∣∣∣ . (6.6)

here τ2 = τ is the only dynamical scale left once we fix the another time scale τ1 = T = Tf ,

which will be useful to study the feature of quantum chaos and the corresponding Lyapunov

exponent in terms of the cosmological OTOC computed in the previous section. The above

mentioned result is formalism independent completely.

This implies that, when we are describing the whole computation in terms of the rescaled

perturbation variable and its canonically conjugate momenta, the we get the following

estimation of the Lyapunov exponent from cosmological OTOC, given by:

λf =

∣∣∣∣∣∣∣∣∣∣
1

2τ
ln

 1[
1 + (−1)−4i|ν| +

7

2
(−1)−2i|ν|

]
(−Tf)

1+2i|ν|(−τ)3+2i|ν|

2π4(−1)−(4i|ν|+1)

4∑
i=1

X̃
(i)
1 (Tf , τ)


∣∣∣∣∣∣∣∣∣∣
. (6.7)

On the other hand, when we are describing the whole computation in terms of the curvature

perturbation variable and its canonically conjugate momenta, the we get the following

estimation of the Lyapunov exponent from cosmological OTOC, given by:

λζ =

∣∣∣∣∣∣∣∣∣∣
1

τ
ln

 z2(Tf)z
2(τ)[

1 + (−1)−4i|ν| +
7

2
(−1)−2i|ν|

]
(−Tf)

1+2i|ν|(−τ)3+2i|ν|

2π4(−1)−(4i|ν|+1)

4∑
i=1

X̃
(i)
1 (Tf , τ)


∣∣∣∣∣∣∣∣∣∣
.(6.8)

Here z(τ) = a(τ)
√
ε(τ) is the Mukhanov Sasaki variable, where a(τ) is the scale factor

and ε(τ) is very slowly varying function of conformal time scale. Further, substituting

100

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2020                   doi:10.20944/preprints202007.0038.v1

Peer-reviewed version available at Symmetry 2020, 12, 1527; doi:10.3390/sym12091527

https://doi.org/10.20944/preprints202007.0038.v1
https://doi.org/10.3390/sym12091527


the explicit form of the Mukhanov Sasaki variable in terms of the conformal time scale

dependent scale factor one can simplify the above mentioned expression for the Lyapunov

exponent computed from cosmological OTOC in terms of curvature perturbation is given

by the following expression:

λζ ≈

∣∣∣∣∣∣∣∣∣
1

2τ
ln

[[
1 + (−1)−4i|ν| +

7

2
(−1)−2i|ν|

]
(−Tf)

1+2i|ν|(−τ)3+2i|ν|

2π4(−1)−(4i|ν|+1)

4∑
i=1

X̃
(i)
1 (Tf , τ)

]−1

︸ ︷︷ ︸
Dominant contribution

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

2τ

 2 ln(a(Tf)a(τ))︸ ︷︷ ︸
Dominant contribution

+ ln(ε(Tf)ε(τ))︸ ︷︷ ︸
Very small contribution

∣∣∣∣∣∣ . (6.9)

After neglecting the very small slow-roll contribution we get following simplified expres-

sion for the Lyapunov exponent computed from cosmological OTOC in terms of curvature

perturbation:

λζ =

∣∣∣∣∣∣∣∣∣∣
1

2τ
ln

 a2(Tf)a
2(τ)[

1 + (−1)−4i|ν| +
7

2
(−1)−2i|ν|

]
(−Tf)

1+2i|ν|(−τ)3+2i|ν|

2π4(−1)−(4i|ν|+1)

4∑
i=1

X̃
(i)
1 (Tf , τ)


∣∣∣∣∣∣∣∣∣∣
.(6.10)

Now using the explicit form of the scale factor a(τ) for De Sitter inflationary patch dur-

ing partially massless and massive scalar field production and also during the epoch of

reheating, we get:

λζ ≈



∣∣∣∣∣∣∣∣∣∣
1

2τ
ln

 1/H2[
1 + (−1)−4i|ν| +

7

2
(−1)−2i|ν|

]
(−Tf)

2i|ν|−1(−τ)1+2i|ν|

2π4(−1)−(4i|ν|+1)

4∑
i=1

X̃
(i)
1 (Tf , τ)


∣∣∣∣∣∣∣∣∣∣

De Sitter

∣∣∣∣∣∣∣∣∣∣
1

2τ
ln


[

(1+3wreh)
3(1+wreh)

] 4
(1+3wreh)

(−Tf)
2

(1+3wreh) (−τ)
2

(1+3wreh)[
1 + (−1)−4i|ν| +

7

2
(−1)−2i|ν|

]
(−Tf)

1+2i|ν|(−τ)3+2i|ν|

2π4(−1)−(4i|ν|+1)

4∑
i=1

X̃
(i)
1 (Tf , τ)


∣∣∣∣∣∣∣∣∣∣

with 0 ≤ wreh ≤
1

3
Reheating

(6.11)

Next, the relationship between the two Lyapunov exponents computed from two differ-
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ent, but connecting cosmological perturbation variable is given by the following simplified

expression:

∆λ := λζ − λf =
1

|τ |
ln |z(Tf)z(τ)| = 1

|τ |

ln 2 + ln |a(Tf)a(τ)|︸ ︷︷ ︸
Dominant contribution

+
1

2
ln |ε(Tf)ε(τ)|︸ ︷︷ ︸

Very small contribution

 . (6.12)

So after neglecting the contribution from small slow-roll contribution we get the following

simplified expression for the connecting relationship between the two Lyapunov exponents

computed from two different, but connecting cosmological perturbation variable is given

by:

∆λ := λζ − λf ≈
1

|τ |
[ln 2 + ln |a(Tf)a(τ)|] . (6.13)

Now using the scale factor a(τ) for De Sitter inflationary patch during partially massless

and massive scalar field production and also during the epoch of reheating, we get:

∆λ ≈



1

|τ |
[ln 2− 2 ln |H| − ln |Tfτ |] De Sitter

1

|τ |

[
ln 2 +

2

(1 + 3wreh)

{
2 ln

∣∣∣∣(1 + 3wreh)

3(1 + wreh)

∣∣∣∣+ ln |Tfτ |
}]

with 0 ≤ wreh ≤
1

3
Reheating

(6.14)

Now, it is important to mention that, if we wait for longer time scale during the evolution

of our universe then the conformal time dependent behaviour of Lyapunov spectrum will

reach a saturation value, which is perfectly consistent with our finding in this paper and

discussed in detail in the previous section. To interpret our finding in this paper as a

signature of quantum mechanical chaos one essentially needs to satisfy the well known

MSS bound on the Lyapunov exponent. Consequently, one can write:

λf (τLate) ≤
2π

β
, λζ(τLate) ≤

2π

β
, where β =

1

T
(6.15)

where T represents the equilibrium temperature of our universe when the above condition

satisfies at late time scale to achieve quantum mechanical chaos.

Further, one can write down the following simplified bound on the equilibrium temper-
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ature of our universe, given by:

From f : T ≥
∣∣∣∣ 1

4πτLate

ln [O(Tf , τLate, |ν|)]
∣∣∣∣ . (6.16)

From ζ : T ≥



∣∣∣∣ 1

4πτLate

ln

[
1

H2
O(Tf , τLate, |ν|)

]∣∣∣∣ De Sitter

∣∣∣∣ 1

4πτLate

ln [U(Tf , wreh)O(Tf , τLate, |ν|)]
∣∣∣∣ with 0 ≤ wreh ≤

1

3
Reheating

(6.17)

where we define a new function, O(Tf , τLate, |ν|), which is given by the following expression:

O(Tf , τLate, |ν|) : =
1[

1 + (−1)−4i|ν| +
7

2
(−1)−2i|ν|

]
(−Tf)

1+2i|ν|(−τLate)
3+2i|ν|

2π4(−1)−(4i|ν|+1)

4∑
i=1

X̃
(i)
1 (Tf , τLate)

, (6.18)

U(Tf , wreh) : =

[
(1 + 3wreh)

3(1 + wreh)

] 4
(1+3wreh)

(−Tf)
2

(1+3wreh) (−τLate)
2

(1+3wreh) . (6.19)

7 Numerical results III: Interpretation of cosmological Lyapunov

spectrum

In this section, we give the physical interpretation of the obtained result for the Lyapunov

spectrum 16 factors computed in the context of primordial cosmology:

• First of all, in the cosmological OTOC when we have considered τ as the dynamical

variable and have fixed the other time scale then for very late time of the cosmo-

logical evolution of our universe we have found a exponentially decaying behaviour

with respect to the dynamical time scale under consideration. One can identify this

phenomena with the quantum chaos, which is actually estimated by the decay coeffi-

cient appearing in the exponential factor. This coefficient is known as the Lyapunov

exponent at late time scale. When the cosmological OTOC have started saturating

to a fixed non vanishing value at that point we fix the dynamical time scale and from

the OTOC using the exponential decaying behaviour one can explicitly compute the

expression for the Lyapunov exponent at fixed late time scale. But if anyone is inter-

ested to find out the whole conformal time dependent Lyapunov spectrum that can

also be found using the cosmological OTOC computed in the previous section of this

paper. We have explicitly computed this expression in this section for completeness.

16In this context, by the phrase Lyapunov spectrum, we actually define two exponential factors, exp(λfτ)
and exp(λζτ)), for the present computation.
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Figure 19: Behaviour of the Lyapunov spectrum with respect to the time scale T . Here
we fix, mass parameter ν = −i/2,−3i/2, cut-off scale L = 1000, vacuum parameter
α = 0 (Bunch Davies vacuum), 1/2 (α vacua).
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Figure 20: Behaviour of the Lyapunov spectrum with respect to the time scale T . Here
we fix, mass parameter ν = −5i/2,−7i/2, cut-off scale L = 1000, vacuum parameter
α = 0 (Bunch Davies vacuum), 1/2 (α vacua).
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Figure 21: Behaviour of the Lyapunov spectrum with respect to the time scale T .
Here we fix, mass parameter ν = −9i/2, cut-off scale L = 1000, vacuum parameter
α = 0 (Bunch Davies vacuum), 1/2 (α vacua).

• Additionally, it is important to note that, since we have used two different cosmo-

logical perturbation variable for our present computation, we get two equivalent but

not exactly same expression for the Lyapunov spectrum. If we compute the Lya-

punov spectrum for the rescaled perturbation variable f then we see that in the mass

parameter ν all the information regarding the background cosmological frameworks,

like, partially massless or heavy particle production during the epoch of inflation or

the phenomena of reheating are encoded. We don’t need to think about all of these

phenomena separately. On the other hand, if we do the computation in terms of

curvature perturbation variable ζ then we found that the the information regard-

ing the background cosmological frameworks, as mentioned above we have to think

separately. This is because in this framework, we have some additional contribution

which is actually appearing from the definition of Mukhanov Sasaki variable which

contain the scale factor of the cosmological expansion of De Sitter phase or reheating

phase and the very small contribution comping from slow-roll factor, which is basi-

cally taking care of the small deviation from exact evolution in De Sitter space or

during reheating and interpreted as SO(1, 4) conformal symmetry breaking parame-

ter. Now if we neglect such small contribution then one can separately compute the

expression for the Lyapunov spectrum from the variable ζ.
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• Further, we have also have estimated the relative difference between the Lyapunov

spectra computed from two different prescriptions. This difference is different for the

stochastic particle production during inflation and reheating epoch respectively.

• In our computed Lyapunov spectrum in the context of Cosmology two time scales

are involved which are associated with the two operators, rescaled field variable and

its canonically conjugate momenta. We have found that the behaviour with respect

to τ2 = τ , using both Bunch Davies and α vacua as quantum vacuum state. See

fig. (19), fig. (20) and fig. (21) to know about the detailed conformal time dependent

feature of the cosmological Lyapunov spectrum. In the cosmological set up we expect

the Lyapunov spectrum will decrease with respect to the conformal time scale and

such decrease is following an exponential decay with respect to the conformal time

scale then this carries the signature of quantum chaos in the context of primordial

universe.

• Here we fix the time scale, τ1 = T and study the behaviour of Lyapunov spectrum

with respect to the scale τ2 = τ and we found that as we approach from very early

universe to the late time scale the Lyapunov spectrum in the context of cosmol-

ogy shows random decreasing on top of it with a exponentially decaying behaviour.

This behaviour is quite consistent we the usual expectation of quantum mechanical

chaos along with stochastic randomness. It is observed that in very early universe

τ2 = τ → −∞, near to Big Bang all such random fluctuations are appearing with

large amplitude and very significant to describe the time dependent behaviour of the

Lyapunov spectrum during stochastic particle production during inflation and during

the epoch of reheating like the previous case. If we wait for longer time, specifically

at the late time scale it is observed from the fig. (19), fig. (20) and fig. (21), that

Lyapunov spectrum decrease very fast with an exponentially decaying amplitude for

the random or stochastic fluctuations.

• We have also observed that we can get the expected behaviour from the Lyapunov

spectrum with respect to both the time scales when the mass parameter, ν can be

analytically continued to −iν.

• Another important point we have to mention that, since the Lyapunov spectrum is

computed from the cosmological OTOC in which the information of the initial quan-

tum mechanical vacuum states are encoded, the final expressions for the Lyapunov

spectrum computed for the α vacua and Bunch Davies vacua are different. This non-

unique result appears due to the fact that in curved space-time definition of quantum

mechanical vacuum state is unique.

• Last but not the list, using the saturation bound on Lyapunov exponent obtained from

MSS bound we have finally estimated the bound on the equilibrium temperature of
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our universe at late time scale. Basically this equilibrium temperature correspond

to the starting point of saturation of the Lyapunov spectrum at the late time scale

τ = τLate.

8 Classical limit of micro-canonical OTO amplitudes and related

OTOC in Cosmology

In this section, our prime objective is to study the classical limit of the four-point cos-

mological OTOC that we have explicitly derived in this paper. This is a very important

computation to understand the behaviour of the four-point cosmological OTOC in the

classical limit and will gives us information regarding the fact that the result obtained

in this section is perfectly consistent with the classical limit of quantum chaos, which is

obviously a significant feature which we have clearly observed from the conformal time

dependent behaviour of our derived result for cosmological four-point OTOC. In the fol-

lowing subsections we will explicitly compute this result and give a physical interpretation

of the derived result in the framework of Cosmology.

8.1 Computational strategy

In this subsection we will illustrate our computational strategy to study the classical limit

of the cosmological four-point OTOC derived in this paper:

1. First of all, we have to take the quantum to classical map of all the operators that

we have used to compute the expression for cosmological four-point OTOC in this

paper. We have already demonstrated clearly in the previous sections that during

the computation of cosmological OTOC all the operators that we have considered

considered by making use of canonical quantization of these operators. This means

that we have written the quantum version of the modes in Fourier space in terms

of creation and annihilation operators just like quantum harmonic oscillators and

these creation and annihilation operators actually creates or destroy the quantum

mechanical vacuum state, which we have taken as the usual well known Bunch Davies

vacuum or the more general α vacua. Now during taking the classical limit of this

formulation we all know that there is no concept of vacuum as such exists. As

a result there is nothing called creation and annihilation of vacuum state in the

context of classical limit of quantum fluctuation of cosmological perturbation theory.

This further implies that writing down the quantum to classical map becomes very

simple. For this purpose we just have to consider the classical mode function and its

canonically conjugate momentum that we have derived already in the earlier section

of this paper.
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2. Next, instead of using commutator bracket square in the classical limit we have to

use the Poisson Bracket of the classical variables which are appearing as an outcome

of cosmological perturbation theory.

3. Further, we have to fix the definition and the representation of the trace in the clas-

sical limit. Since we don’t have any complete set of basis and any vacuum state in

the classical limit we have to be very careful to define the trace operation. Again

this can be easily done by making use the basic concepts of classical statistical me-

chanics. In the classical limit the usual definition of quantum mechanical trace will

be replaced by phase space volume, dfk(τ)dΠk(τ)/2π which is basically playing the

role of path integral measure, Dfk(τ)DΠk(τ)/2π in the classical field theory of scalar

field in FLRW cosmological background. We set, ~ = 1 = h/2π in natural units,

which implies h = 2π and this is the origin of the 2π factor which appearing in

the denominator of the phase space volume or in the path integral measure. Also

it is important to note that, only one power of h = 2π is appearing since we are

dealing with a one dimensional parametric oscillator problem with conformal time

time dependent frequency where the phase space is constructed out of two canoni-

cally conjugate variables, the cosmological perturbation variable and iyts conjugate

momentum, which are derived from the classical field theory of the scalar fields in

conformally and spatially flat FLRW background. As a consequence the phase space

trajectory is lying in a two dimensional plane. If we deal with N number of classical

scalar fields in that case in the denominator hN factor will appear and in the large

N thermodynamic limit we will get physically consistent result in the purely classi-

cal limit of quantum version of Cosmology. Additionally, it important to note that,

during this computation we have to take care of an additional thermal Boltzmann

factor as we are doing the computation for the finite temperature extended version

of the classical scalar field theory.

4. Next, by following the same procedure mentioned above we compute the expression

for the classical thermal partition function for Cosmology, which perfectly matches

with the the quantum mechanical thermal partition function for Cosmology.

5. Finally, we compute the expression for the normalisation factor of the classical ver-

sion of the cosmological four-point OTOC using the above mentioned phase space

formalism. This will help us to write down the normalised version of cosmological

four-point OTOC in the classical limit.

8.2 Classical limit of cosmological two-point “in-in” OTO micro-canonical am-

plitudes

In this subsection, our prime objective is to find out the classical limiting version of the two-

point micro-canonical amplitude computed from the quantum field theory side using the
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cosmological rescaled field variable and its canonically conjugate momentum as appearing

in the context of cosmological perturbation theory.

To compute the classical limit the starting point is the Poisson bracket of these operators,

which is given by the following expression:

{f(x, τ1),Π(x, τ2}PB =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
exp(i(k1 + k2).x)

[{fk1(τ1),Πk2(τ2)}PB + {fk2(τ1),Πk1(τ2)}PB] . (8.1)

In the Fourier transformed space, the Poisson bracket is given by the following expression:

{fk1(τ1),Πk2(τ2)}PB = (2π)3δ3(k1 + k2) R(τ1, τ2), (8.2)

{fk2(τ1),Πk1(τ2)}PB = (2π)3δ3(k2 + k1) R(τ1, τ2), (8.3)

which also implies that:

{fk1(τ1),Πk2(τ2)}PB = {fk2(τ1),Πk1(τ2)}PB (2π)3δ3(k1 + k2) R(τ1, τ2), (8.4)

since the three dimensional Dirac Delta function is symmetric.

Now for the further purpose we define the two-point random classical correlation func-

tion R(τ1, τ2) by the following expression:

R(τ1, τ2) : = W(τ1 − τ2) exp

(
−λf (|τ1|+ |τ2|)

2

)
, (8.5)

where λf is the Lyapunov exponent in the classical version of the theory, which justifies

the decay of the noise correlation function in the classical limit. Here, W(τ1 − τ2) is the

window function which is defined as:

W(τ1 − τ2) =
√
〈ηNoise(τ1)ηNoise(τ2)〉, (8.6)

where the two-point noise correlation at the classical level is given by the following expres-

sion:

〈ηNoise(τ1)ηNoise(τ2) := Gkernel(τ1 − τ2), (8.7)

where Gkernel(τ1 − τ2) is known as the noise kernel which is time translational symmetric

in nature. The detailed properties of this noise kernel in terms of the Gaussian and non-

Gaussian distributions are discussed in the previous subsection and in the Appendix. As

a consequence, we get following symmetry property:

R(τ1, τ2) = R(τ2, τ1). (8.8)
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8.3 Classical limit of cosmological four-point “in-in” OTO micro-canonical

amplitudes

In this section, our prime objective is to explicitly compute the classical limiting version

of the four-point “in-in” OTO micro-canonical amplitudes appearing in the expression or

OTOC. To serve this purpose in the classical limit we explicitly compute the following

square of the Poisson brackets instead of computing the commutator brackets which is the

key starting point in the quantum regime, given by:

{f(x, τ1),Π(x, τ2)}2
PB = {f(x, τ1),Π(x, τ2)}PB {f(x, τ1),Π(x, τ2)}PB . (8.9)

Here the subscript PB stands for the Poisson bracket of two classical object of interests

which are the rescaled cosmological perturbation variable f(x, τ1) and its canonically con-

jugate momentum Π(x, τ2) , which are separated in time scale in a specific cosmological

perturbation scheme written in, δφ = 0 gauge. So we are dealing with two space time

dependent objects of interest in the framework of classical field theory written in the clas-

sically perturbed spatially flat FLRW cosmological background. One important thing we

have to mention that, before perturbation the fundamental object (in this context a clas-

sical scalar field) is placed in a homogeneous isotropic spatially flat FLRW cosmological

background, where as an outcome the field is only time dependent, no space dependence

appears. But in the context of cosmological perturbation theory, once we perturb the

space-time metric the perturb quantities always become space-time dependent. This is

the main reason for which we are considering the two perturbed variables are space-time

dependent which is appearing in the Poisson bracket and consequently in the classical limit

of the four-point OTO micro-canonical ampltudes in Cosmology. Now, since we are not

studying the theory not in coordinate space, we next perform Fourier transformation on

these object of interests to convert them into momentum space.

To perform this Fourier transformation we use the following convention, which is given

by:

f̂(x, τ1) =

∫
d3k

(2π)3
exp(ik.x) f̂k(τ1), (8.10)

Π̂(x, τ1) = ∂τ1 f̂(x, τ1) =

∫
d3k

(2π)3
exp(ik.x) ∂τ1 f̂k(τ1) =

∫
d3k

(2π)3
exp(ik.x) Π̂k(τ1), (8.11)

which will be very useful for the computation of the classical limiting result of four-point

OTOC in terms of the square of the Poisson bracket.

Consequently, we get the following simplified result:

{f(x, τ1),Π(x, τ2)}2
PB

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp (i(k1 + k2 + k3 + k4).x)
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[{fk1(τ1),Πk2(τ2)}PB {fk3(τ1),Πk4(τ2)}PB + {fk1(τ1),Πk3(τ2)}PB {fk2(τ1),Πk4(τ2)}PB

+ {fk1(τ1),Πk4(τ2)}PB {fk3(τ1),Πk2(τ2)}PB + {fk2(τ1),Πk3(τ2)}PB {fk4(τ1),Πk1(τ2)}PB

+ {fk2(τ1),Πk1(τ2)}PB {fk4(τ1),Πk3(τ2)}PB + {fk2(τ1),Πk4(τ2)}PB {fk1(τ1),Πk3(τ2)}PB

+ {fk3(τ1),Πk1(τ2)}PB {fk4(τ1),Πk2(τ2)}PB + {fk3(τ1),Πk2(τ2)}PB {fk1(τ1),Πk4(τ2)}PB

+ {fk3(τ1),Πk4(τ2)}PB {fk1(τ1),Πk2(τ2)}PB + {fk4(τ1),Πk1(τ2)}PB {fk2(τ1),Πk3(τ2)}PB

+ {fk4(τ1),Πk2(τ2)}PB {fk3(τ1),Πk1(τ2)}PB + {fk4(τ1),Πk3(τ2)}PB {fk2(τ1),Πk1(τ2)}PB]

= (2π)6

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp (i(k1 + k2 + k3 + k4).x)[

δ3(k1 + k2)δ3(k3 + k4) + δ3(k1 + k3)δ3(k2 + k4)

+δ3(k1 + k4)δ3(k3 + k2) + δ3(k2 + k3)δ3(k4 + k1)

+δ3(k2 + k1)δ3(k4 + k3) + δ3(k2 + k4)δ3(k1 + k3)

+δ3(k3 + k1)δ3(k4 + k2) + δ3(k3 + k2)δ3(k1 + k4)

+δ3(k3 + k4)δ3(k1 + k2) + δ3(k4 + k1)δ3(k2 + k3)

+δ3(k4 + k2)δ3(k3 + k1) + δ3(k4 + k3)δ3(k2 + k1)
]
GKernel(τ1 − τ2) exp (−λf [|τ1|+ |τ2|]) .(8.12)

where we have used the following fact:

{
fki(τ1),Πkj(τ2)

}
PB

= (2π)3δ3(ki + kj)W(τ1 − τ2) exp

(
−λf (|τ1|+ |τ2|)

2

)
.

where i 6= j ∀ i, j,= 1, 2, 3, 4. (8.13)

Here λf is the classical version of the Lyapunov exponent which measure the strength of

the chaos in the classical limit of the quantum chaos which we have discussed in the earlier

section.

It is important to point that, the individual contributions appearing in the previously

mentioned 12 contributions can be evaluated as:{
fki(τ1),Πkj(τ2)

}
PB
{fkl(τ1),Πkm(τ2)}PB = (2π)6δ3(ki + kj)δ

3(kl + km)

W2(τ1 − τ2) exp (−λf [|τ1|+ |τ2|]) .
= (2π)6δ3(ki + kj)δ

3(kl + km)

GKernel(τ1 − τ2) exp (−λf [|τ1|+ |τ2|]) .
where i 6= j 6= l 6= m ∀ i, j, l,m = 1, 2, 3, 4. (8.14)

In this computation we introduce a conformal time dependent coloured noise kernel GKernel(τ1−
τ2), which is defined as:

GKernel(τ1 − τ2) = W2(τ1 − τ2). (8.15)
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Here the coloured noise have the following properties:

1. For coloured noise two point classical correlation function is time translation invari-

ant.

2. For this random coloured noise, at the classical level we have:

〈ηCN(τ1)〉 = 0, (8.16)

〈ηCN(τ1)ηCN(τ2)〉 = GKernel(τ1 − τ2) = W 2(τ1 − τ2)〉 6= 0, (8.17)

〈ηCN(τ1) · · · · · · ηCN(τN)〉 = Akernel(τ1, · · · , τN) δ(τ1 + · · · · · ·+ τN) ∀ N > 2.(8.18)

where ηCN(τ) is the conformal time dependent coloured noise. Here we have assumed

that the time dependent kernel is in general have some non-Gaussian probability

distribution profile. In the computation, GKernel(τ1 − τ2) is the Green’s function

which is appearing from the two point classical correlation from the coloured noise

defined at two different time scales. In Cosmology, this conformal time dependent

function sometimes identified to be the power spectrum as well and for coloured

noise it is expected to be non-Gaussian from the above mentioned properties. Also,

Akernel(τ1, · · · , τN) is the amplitude of the spectrum of any N > 2 point classical

correlations. Here all point amplitudes are non-zero for non-Gaussian coloured noise

contributions, which are sourced from random, chaotic and stochastic fluctuations in

the classical limit in cosmological paradigm.

On the other hand, if we consider the Gaussian white noise instead of having non-Gaussian

coloured noise, in that case we have the following properties:

1. For white noise two point classical correlation function is time translation invariant,

which is exactly same as the coloured noise case.

2. For this random white noise, at the classical level we have:

〈ηWN(τ1)〉 = 0, (8.19)

〈ηWN(τ1)ηWN(τ2)〉 = GKernel(τ1 − τ2) = W 2(τ1 − τ2)〉 = B δ(τ1 − τ2), (8.20)

〈ηWN(τ1) · · · · · · ηWN(τN)〉 = 0 ∀ N = 3, 5, 7, · · · , (8.21)

〈ηWN(τ1) · · · · · · ηWN(τN)〉 = Bkernel(τ1, · · · , τN) δ(τ1 + · · · · · ·+ τN) ∀ N = 4, 6, 8, · · · .(8.22)

where ηWN(τ) is the conformal time dependent white noise. Here we have assumed

that the time dependent kernel is in general have some Gaussian probability distri-

bution profile. Also, B and Bkernel(τ1, · · · , τN) are the amplitude of the spectrum of

any N = 2 and N = 4, 6, 8, · · · even point classical correlations. Due to the Gaussian

probability distribution profile all the odd point classical correlation of white noise

exactly vanish trivially. Consequently, all even point amplitudes are non-zero and all
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odd point amplitudes become zero for Gaussian white noise contributions, which are

again sourced from random, chaotic and stochastic fluctuations in the classical limit

in cosmological paradigm.

Here we have actually presented the classical limit of the Fourier transformed version of

the four-point cosmological “in-in” OTO micro-canonical amplitude. From the mentioned

result we get the following characteristics:

1. In the obtained result, we have introduced a conformal time dependent noise kernel

phenomenologically to describe the randomness and chaoticity of the fluctuations at

the classical limit.

2. Also, we have included an exponentially conformal time dependent decay term as

we are interested in to explain the classical limit of the quantum chaotic behaviour

that we have obtained in the context of cosmological four-point OTOC at late time

scale of our universe. To get a similar behaviour we have included this decaying

feature in the classical version of the four-point OTO micro-canonical amplitude. In

usual literature this is appearing as an exponential time dependent growth factor.

But since we are dealing with conformal time scale in the context of Cosmology,

−∞ < τ < 0, we write it as, τ = −|τ | for the simplicity. So this negative sign in the

conformal time scale is responsible for the decaying feature of the classical limit of

the four-point cosmological OTOC, instead of having an exponential growth.

3. If we compare the obtained result in the classical limit with the quantum version of

the four-point “in-in” OTO micro-canonical amplitude then we can see that for both

the cases we get twelve contributions, but amplitudes in classical limit for all of these

contributions are same. On the other hand, in the quantum version of the amplitude

we have different individual contributions for these mentioned twelve terms. Addi-

tionally, we can observe another similarity in these two results are that, for both the

cases momentum conservation is applied through the momentum dependent three

dimensional Dirac Delta functions.

8.4 Cosmological micro-canonical partition function: Classical version

8.4.1 Classical micro-canonical partition function in terms of rescaled field

variable

In this section our aim is to derive the expression for the partition function for the cos-

mology in the classical regime. In terms of the rescaled cosmological perturbation field
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variable we define the following classical partition function for Cosmology:

ZClassical(β; τ1) : =

∫ ∫
DfDΠ

2π
exp (−βH)

=
∏
k

exp

(
−β
[
Ek(τ1)

2
+

1

β
ln (1− exp(−βEk(τ1))

])
=
∏
k

exp

(
− ln

(
2 sinh

βEk(τ1)

2

))
= exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
. (8.23)

This implies that:

ZClassical(β; τ1) =: ZBD(β; τ1) := | coshα| : Zα(β; τ1) : ∀ α . (8.24)

Now from the above expression we found that the expression for the classical partition

function and normal ordered partition function for Cosmology is exactly same.

8.4.2 Classical micro-canonical partition function in terms of curvature per-

turbation field variable

To construct the classical partition function in terms of the curvature perturbation field

variable and its conjugate momenta we are going to follow similar procedure and its given

by the following expression:

Zζ
Classical(β; τ1) : =

∫ ∫
DζDΠζ

2π
exp (−βH)

=
∏
k

exp

(
−β

[
z2(τ1)Eζ

k(τ1)

2
+

1

β
ln
(

1− exp(−βz2(τ1)Eζ
k(τ1)

)])

=
∏
k

exp

(
− ln

(
2 sinh

βz2(τ1)Eζ
k(τ1)

2

))

= exp

(
−
∫
d3k ln

(
2 sinh

βz2(τ1)Eζ
k(τ1)

2

))
. (8.25)

This further implies that:

Zζ
Classical(β; τ1) =: Zζ

BD(β; τ1) := | coshα| : Zα(β; τ1) : ∀ α

6= ZClassical(β; τ1) . (8.26)

So the classical partition functions for Cosmology computed in terms of two perturbation

variables are not same because of the presence of Mukhanov Sasaki varibale. On the
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other hand we have found out the individual results of the classical partition function

for Cosmology exactly match with the quantum mechanical thermal partition function

derived for Cosmology in the previous section. This observation actually consistent with

our expectations as in case of simple harmonic oscillator also we get similar result. In

the present context since we are dealing with a scalar field theory in cosmological FLRW

background where the effective frequency is conformal time dependent. However, after

doing Fourier transformation one can interpret this theory as a parameteric oscillator.

For this reason, we get similar type of results except for the Fourier integration over all

momentum modes, which are very relevant for Cosmology.

8.5 Classical limit of cosmological two-point micro-canonical OTOC: rescaled

field version

In this subsection, our prime objective is to find out the classical limiting version of the

two-point micro-canonical OTOC computed from the quantum field theory side using the

cosmological rescaled field variable and its canonically conjugate momentum as appearing

in the context of cosmological perturbation theory.

Next, we will compute the two-point OTOC using the above mentioned results. In the

classical limit, the two-point function is given by the following expression:

Y f
Classical(τ1, τ2) =

1

ZClassical(β; τ1)

∫ ∫
DfDΠ

2π
exp (−β H) {f(x, τ1),Π(x, τ2)}PB

=
1

ZClassical(β; τ1)

∫ ∫
DfDΠ

2π
exp (−β H)︸ ︷︷ ︸

≡ ZClassical(β;τ1)

×2(2π)3

∫
d3k1

(2π)3

∫
d3k2

(2π)3
exp (i(k1 + k2).x) δ3(k1 + k2)

W(τ1 − τ2) exp

(
−λf (|τ1|+ |τ2|)

2

)
= 2 W(τ1 − τ2) exp

(
−λf (|τ1|+ |τ2|)

2

) ∫
d3k1

(2π)3
. (8.27)

This result is divergent because of the presence of last terms which represent volume in

general. to get the finite contribution out of the above mentioned result derived in the

classical limit we regulate the momentum integrals by putting the cut-off scale L, for which

the momentum range are given by, 0 < k1 < L. By applying this regulator we get:∫
d3k1

(2π)3
=

1

2π2

∫ L

k1=0

k2
1 dk1 =

L3

6π2
. (8.28)
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After substituting the above factor finally we get:

Y f
Classical(τ1, τ2) =

L3

3π2
W(τ1 − τ2) exp

(
−λf (|τ1|+ |τ2|)

2

)
. (8.29)

Here L3/3π2, is the overall regulated two-point time independent amplitude of the cosmo-

logical two-point OTOC in the classical limit. From the above mentioned result one can

consider a situation when we have τ1 = τ2 = τ in the classical limit. In that case we get

further simplified answer, which is given by:

Y f
Classical(τ, τ) =

L3

3π2
W(0) exp (−λf |τ |) . (8.30)

This result only exists when W(0) is finite in the classical limiting case for the coloured

non-Gaussian noise and white Gaussian noise respectively.

Now to demonstrate the explicit role of a non-Gaussian coloured noise and Gaussian

white noise here we can consider the following mathematical forms of the window functions:

W(τ1 − τ2) =



√
A

γ
exp

(
−γ|τ1 − τ2|

2

)
, Coloured Noise

lim
C→0

√
B

|C|
√
π

exp

(
−(τ1 − τ2)

2

C2

)
White Noise

(8.31)

where A, B and C, represent the conformal time independent amplitudes of the coloured

and white random classical noise respectively. Also, γ represents the strength of the

dissipation in the context of coloured noise.

Now from the general structure of the white noise it is evident that, W(0) → ∞ is

giving diverging contribution for τ1 = τ2 case. So appearance of the possibility of the

equal time limit is completely discarded as it gives overall diverging contribution in the

classical limit of the two-point function. On the other hand, in the equal time limit we

have, W(0) =
√

A/γ, for the coloured noise case. This implies for coloured noise equal

time limit exists and one can write down the following simplified expression for the classical

limit of the two-point function as:

Y f
Classical(τ, τ) =

L3

3π2

√
A

γ
exp (−2λf |τ |) . (8.32)
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But for unequal time case both the results exist and we get:

Y f
Classical(τ1, τ2) =



L3

3π2

√
A

γ
exp

(
−(γ|τ1 − τ2|+ λf (|τ1|+ |τ2|))

2

)
, Coloured Noise

L3

3π2
lim
C→0

√
B

|C|
√
π

exp

(
−
{

(τ1 − τ2)2

C2
+
λf (|τ1|+ |τ2|)

2

})
White Noise

(8.33)

8.6 Classical limit of cosmological two-point micro-canonical OTOC: curva-

ture perturbation field version

Here we need to perform the computation for the classical version of the two-point OTOC

in terms of the scalar curvature perturbation and the canonically conjugate momentum

associated with it, which we have found that is given by the following simplified expression:

Y ζ
Classical(τ1, τ2) =

1

Zζ
Classical(β, τ1)

∫ ∫
DζDΠζ

2π
e−βH(τ1) {ζ(x, τ1),Π(x, τ2)}PB

=
1

z(τ1)z(τ2)
Y f

Classical(τ1, τ2) . (8.34)

In this result, cosmological two-point OTOC depend on the specific choice of the field

variable and its conjugate momentum in a given cosmological perturbation scheme due

to the presence of an overall factor (z(τ1)z(τ2))−1, which is originated from Mukhanov

Sasaki variable defined in two time scales, τ = τ1 and τ = τ2 respectively. In terms of the

curvature perturbation field variable then one can also justifies the physical consistency of

the classical limiting result with the result obtained in the quantum regime in the previous

section.

8.7 Classical limit of cosmological four-point micro-canonical OTOC: rescaled

field version

8.7.1 Without normalization

In this subsection, our aim is to compute the classical limiting version of un-normalized

cosmological four-point OTOC, which is given by the following expression:

Cf
Classical(τ1, τ2) : =

1

ZClassical(β; τ1)

∫ ∫
DfDΠ

2π
exp (−β H) {f(x, τ1),Π(x, τ2)}2

PB

=
1

ZClassical(β; τ1)

∫ ∫
DfDΠ

2π
exp (−β H)︸ ︷︷ ︸

≡ ZClassical(β;τ1)
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×(2π)6

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp (i(k1 + k2 + k3 + k4).x)[

δ3(k1 + k2)δ3(k3 + k4) + δ3(k1 + k3)δ3(k2 + k4)

+δ3(k1 + k4)δ3(k3 + k2) + δ3(k2 + k3)δ3(k4 + k1)

+δ3(k2 + k1)δ3(k4 + k3) + δ3(k2 + k4)δ3(k1 + k3)

+δ3(k3 + k1)δ3(k4 + k2) + δ3(k3 + k2)δ3(k1 + k4)

+δ3(k3 + k4)δ3(k1 + k2) + δ3(k4 + k1)δ3(k2 + k3)

+δ3(k4 + k2)δ3(k3 + k1) + δ3(k4 + k3)δ3(k2 + k1)
]

GKernel(τ1 − τ2) exp (−λf [|τ1|+ |τ2|]) (8.35)

where the classical version of the thermal partition function in Cosmology is given by the

following expression:

ZClassical(β; τ1) = exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
. (8.36)

Now, after doing a bit of algebraic manipulation we get the following simplified result for

the un-normalized version of the classical limit of four-point cosmological OTOC:

Cf
Classical(τ1, τ2) = 12 GKernel(τ1 − τ2) exp (−λf [|τ1|+ |τ2|])

∫
d3k1

(2π)3

∫
d3k2

(2π)3
. (8.37)

This result is divergent because of the presence of last terms which represent volume in

general. to get the finite contribution out of the above mentioned result derived in the

classical limit we regulate the momentum integrals by putting the cut-off scale L, for which

the momentum range are given by, 0 < k1 < L and 0 < k2 < L. By applying this regulator

we get: ∫
d3k1

(2π)3

∫
d3k2

(2π)3
=

1

4π4

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 =

L6

36π4
. (8.38)

After substituting the above factor finally we get:

Cf
Classical(τ1, τ2) =

L6

3π4
GKernel(τ1 − τ2) exp (−λf [|τ1|+ |τ2|]) . (8.39)

Here L6/3π4 the overall regulated four-point time independent amplitude of the cosmo-

logical un-normalized version of OTOC in the classical limit. From the above mentioned

result one can consider a situation when we have τ1 = τ2 = τ in the classical limit. In that
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case we get further simplified answer, which is given by:

Cf
Classical(τ, τ) =

L6

3π4
GKernel(0) exp (−2λfτ) . (8.40)

This result only exists when GKernel(0) is finite in the classical limiting case for the coloured

non-Gaussian noise and white Gaussian noise respectively.

Now to demonstrate the explicit role of a non-Gaussian coloured noise and Gaussian

white noise here we can consider the following mathematical forms of the two point classical

correlation functions:

GKernel(τ1 − τ2) =


A

γ
exp(−γ|τ1 − τ2|) , Coloured Non-Gaussian Noise

B δ(τ1 − τ2) White Gaussian Noise

(8.41)

where A and B, represent the conformal time independent amplitudes of the coloured

non-Gaussian and white Gaussian random classical noise respectively. Here both of them

satisfy the previously mentioned crucial properties separately for coloured and white noise.

Also, γ represents the strength of the dissipation in the context of coloured non-Gaussian

noise.

Now from the general structure of the white Gaussian noise it is evident that, GKernel(0) =

B δ(0)→∞ is giving diverging contribution for τ1 = τ2 case. So appearance of the possibil-

ity of the equal time limit is completely discarded as it gives overall diverging contribution

in the classical limit of the four-point cosmological OTOC. On the other hand, in the

equal time limit we have, GKernel(0) = A/γ for the non-Gaussian coloured noise case.

This implies for coloured noise equal time limit exists and one can write down the fol-

lowing simplified expression for the classical limit of the four-point cosmological OTOC

as:

Cf
Classical(τ, τ) =

A L6

3γπ4
exp (−2λfτ) . (8.42)

But for unequal time case both the results exist and we get:

Cf
Classical(τ1, τ2) =



AL6

3γπ4
exp (−γ|τ1 − τ2| − λf [|τ1|+ |τ2|]) , Coloured Noise

BL6

3π4
δ(τ1 − τ2) exp (−λf [|τ1|+ |τ2|]) White Noise

(8.43)
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8.7.2 With normalization

The normalisation factor of classical limit of OTOC for the rescaled field variable can be

computed as:

N f
Classical(τ1, τ2) =

36π4

L6W2(0) exp (−λf [|τ1|+ |τ2|])
=

36π4

L6GKernel(0) exp (−λf [|τ1|+ |τ2|])
. (8.44)

Now, considering the examples of non-Gaussian coloured noise and Gaussian white noise

we get the following answer for the normalization factor:

N f
Classical(τ1, τ2) =


36γπ4

L6A exp (−λf [|τ1|+ |τ2|])
, Coloured Noise

0 White Noise

(8.45)

Then the classical limit of normalized four-point OTOC can be expressed as:

CfClassical(τ1, τ2) = N f
Classical(τ1, τ2)Cf

Classical(τ1, τ2) = 12

(
GKernel(τ1 − τ2)

GKernel(0)

)
. (8.46)

Now, considering the examples of non-Gaussian coloured noise and Gaussian white noise

we get the following answer for the classical limit of normalized four-point OTOC:

CfClassical(τ1, τ2) =


12 exp (−γ|τ1 − τ2|) , Coloured Noise

0 White Noise

. (8.47)

Here for the non-Gaussian coloured noise then the dissipation strength γ plays the role of

Lyapunov exponent and in the classical limit the conformal time independent amplitude is

12. On the other hand, it is clearly seen that Gaussian white noise is not suitable for the

study of OTOC as it becomes trivially zero after normalization of OTOC in the classical

limit.

8.8 Classical limit of cosmological four-point micro-canonical OTOC: curva-

ture perturbation field version

8.8.1 Without normalization

Here we need to perform the computation for the classical version of the un-normalised

OTOC in terms of the scalar curvature perturbation and the canonically conjugate mo-

mentum associated with it, which we have found that is given by the following simplified
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expression:

Cζ
Classical(τ1, τ2) =

1

Zζ
Classical(β, τ1)

∫ ∫
DζDΠζ

2π
e−βH(τ1) {ζ(x, τ1),Π(x, τ2)}2

PB

=
1

z2(τ1)z2(τ2)
Cf

Classical(τ1, τ2) . (8.48)

Now, if we just compare with the obtained result from the quantum version, we clearly

see that that obeys also the similar kind of relation. This connection actually in first

hand verifies that the classical limit of the cosmological four-point OTOC obtained from

quantum fluctuation in the early universe is physically consistent. It is also important

to note that, in the un-normalized version of the classical limiting result the definition of

the cosmological four-point OTOC depend on the specific choice of the field variable and

its conjugate momentum in a given cosmological perturbation scheme due to the presence

of an overall factor (z(τ1)z(τ2))−2, which is originated from Mukhanov Sasaki variable

defined in two time scales, τ = τ1 and τ = τ2 respectively. This factor actually make a

bridge between the two definitions of four-point cosmological OTOC obtained from two

different field variables in cosmological perturbation theory both in quantum and classical

formalism.

8.8.2 With normalization

The classical version of the normalised four-point cosmological OTOC in terms of the

scalar curvature perturbation and the canonically conjugate momentum associated with

it, which is basically the computation of the following normalised OTOC, in the present

context:

CζClassical(τ1, τ2) =
Cζ

Classical(τ1, τ2)

〈ζ(τ1)ζ(τ1)〉β〈Πζ(τ1)Πζ(τ1)〉β
= N ζ

Classical(τ1, τ2) Cζ
Classical(τ1, τ2) , (8.49)

where the normalisation factor to normalise classical OTOC is given by:

N ζ
Classical(τ1, τ2) =

1

〈ζ(τ1)ζ(τ1)〉β〈Πζ(τ1)Πζ(τ1)〉β
= z2(τ1)z2(τ2)N f

Classical(τ1, τ2) . (8.50)

Consequently, the classical limit of the normalised four-point cosmological OTOC com-

puted from the curvature perturbation variable is given by the following expression:

CζClassical(τ1, τ2) = CfClassical(τ1, τ2) = 12

(
GKernel(τ1 − τ2)

GKernel(0)

)
. (8.51)
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Now, considering the examples of non-Gaussian coloured noise and Gaussian white noise

we get the following answer for the classical limit of normalized four-point OTOC:

CζClassical(τ1, τ2) = CfClassical(τ1, τ2) =


12 exp (−γ|τ1 − τ2|) , Coloured Noise

0 White Noise

.(8.52)

9 Summary and Outlook

To summarize, in this work, we have addressed the following issues to study the OTOC

from cosmology set up:

• First of all in this paper we have provided a detailed formalism using which it is pos-

sible now to compute the expression for OTOC in the context of Cosmology. OTOC

is a very strong probe to study the quantum correlation in presence of randomness

and chaoticity. It was used in different context except for Cosmology. As we all

know finding quantum correlation function in the early universe in presence of such

randomness or chaoticity was a long standing problem which no body have addressed

yet properly. We believe our computation and finding from the cosmological OTOC

in this paper will surely be helpful to understand the quantum field theory of various

unexplored random cosmological events, i.e. stochastic particle production during

inflation, reheating etc. Since we did the computation for the first time from a very

simple understandable cosmological perturbation theory, we believe that these re-

sults will also be used to study some other random cosmological events appear in the

evolutionary time scale of our universe.

• We have presented the computation of cosmological OTOC by making use of the well

know Bunch Davies and α vacua as a choice of initial quantum vacuum state. So it

is expected that the final results of cosmological OTOC may show similar feature,

but with different amplitude and in different scale. This statement we have verified

explicitly by numerically studying the obtained solutions of the cosmological OTOC

using both the definition of quantum mechanical vacuum state.

• It is a very well known fact that in general prescription OTOC’s are usually defined

with two quantum operators which are separated in time scale. Following the same

prescription in Cosmology we have also defined two quantum operators, which are the

cosmological perturbation variable describing the quantum fluctuation from scalar

modes and its associated canonically conjugate momentum, which are defined in two

different time scales in the evolution of our universe. During the computation of

cosmological OTOC, the final result for this reason depend on these two time scales.

Now, to study the cosmological consequences of the OTOC we fix one of the time
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scales between the two and study the dynamical feature with respect to the other

time variable which we have not fixed. We have found that both of the features

of cosmological OTOC with respect to the two different time scales describes the

randomness in the quantum correlation function at out-of-equilibrium. On top of that

we have additionally found that particularly once we fix the first time scale and study

the time evolution behaviour of the cosmological OTOC show exponentially decaying

behaviour, which supports the phenomena of quantum chaos in the cosmological

paradigm as well. In usual scenario one gets exponential growth with respect to the

time scale in OTOC. But, to remind everyone, it is important to note that instead of

dealing actual time scale which is varying from 0 (Big bang) < t < t0 (Present day)

in the present context we are dealing with the conformal time scale which is varying

from −∞ (Big bang) < τ < 0 (Present day), which is the most commonly used time

scale in the context of Cosmology. Because of this reason instead of exponentially

increasing behaviour we have observed exponentially decreasing behaviour. This

behaviour is perfectly consistent with the expectation from the time evolution of

the quantum mechanical correlations for the system when it goes to the out-of-

equilibrium state.

• Additionally from the present formalism we have derived the expression for the quan-

tum Lyapunov spectrum as well the lower bound on the equilibrium temperature

for Cosmology. At very early epoch of the evolution of our universe the quantum

fluctuations goes to the out-of-equilibrium state for which one cannot associate the

concept of temperature, as it is only interpreted when a system under study reaches

to equilibrium state. We have derived the expression for cosmological OTOC which

is very helpful to understand the quantum mechanical correlation function at out-of-

equilibrium state. Now from the exponential decay of this cosmological OTOC one

can easily estimate the lower bound on the equilibrium temperature associated with

our universe. This can be done in a very simple way. For this purpose we need to

identify the exact time scale at which the cosmological OTOC after decaying with

respect to the conformal time scale start saturate to a non vanishing small value.

From this time scale one can explicitly derive and give an estimate of the tempera-

ture of the system when cosmological OTOC saturates to an equilibrium value. After

getting an estimate of this lower bound of equilibrium temperature one can give a

physical interpretation of this temperature in the cosmological paradigm. One can

associate the obtained lower bound on the equilibrium temperature with the temper-

ature of De Sitter space for the stochastic particle production during inflation and

with the reheating temperature. Usually in the cosmology literature one actually

compute the expression for the reheating temperature by making use of information

from quantum statistical mechanics. Using the approximate energy scale for inflation

and by making use the information regarding the number of relativistic degrees of

124

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2020                   doi:10.20944/preprints202007.0038.v1

Peer-reviewed version available at Symmetry 2020, 12, 1527; doi:10.3390/sym12091527

https://doi.org/10.20944/preprints202007.0038.v1
https://doi.org/10.3390/sym12091527


freedom one computes a bound on the reheating temperature in the framework of

primordial cosmology. Since earlier we don’t have any information regarding time de-

pendent behaviour of the cosmological OTOC one don’t have any option to compute

reheating temperature from the quantum field theory side. So the derived bound

on the reheating temperature can be treated as a model independent bound, which

is anyway better than the previously known model dependent bound on reheating

temperature.

• Also, we have found that the cosmological OTOC at finite temperature is dependent

on two time scale and independent of any preferred choice of the coordinate system

and the parameter β = 1/T . In short, the derived expression for the cosmologi-

cal OTOC is homogeneous in nature with respect to the space coordinate, or its

Fourier transformed momentum coordinate. Also the final result obtained for the

cosmological OTOC is independent of the partition function which we have com-

puted for Cosmology. This feature is exactly similar to the OTOC computed from

simple harmonic oscillator with time independent frequency. Basically, one can map

the stochastic particle production problem during inflation or solving the reheating

problem to a parametric oscillator problem whose frequency is function of the mag-

nitude of the momentum in the Fourier transformed space and conformal time scale,

where the time is actually associated with the evolution scale of our universe.

• By doing the numerical estimations and during the study of detailed time dependent

behaviour of the cosmological OTOC we have found that our analysis can give physi-

cally consistent result only for partially massless or massive scalar particle production

during inflation and during reheating epoch.

• We have also studied the classical limit of the two-point and four-point OTOC to

check the consistency with the late time behaviour which supports the exponential

decay of the quantum correlators in the classical regime.

• Finally, we have explicitly proved that the definition of cosmological OTOC is com-

pletely independent of the choice of preferred perturbation variable in a specific

scheme of cosmological perturbation theory. On the other hand, we have also found

that, this statement not holds good for the un-normalized cosmological OTOC. We

have demonstrated that both the results are related through some factor which is

basically function of conformal time dependent Mukhanov Sasaki variable.

The future prospects of this work is as follows.

• In this we have restricted our analysis only for cosmological spatially flat FLRW

space-time, which is more observationally relevant. We are very hopeful that our

obtained result in this paper can be probed by various cosmological future missions
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and if the amplitudes of the cosmological OTOC can able to be measured with sig-

nificant statistical accuracy then the obtained result for cosmological OTOC can

be treated as a standard benchmark using which one can study various unexplored

features of early universe cosmology in presence random quantum fluctuations in out-

of-equilibrium state. To know about the cosmological consequences of our derived

result one can further extend the present methodology for computing OTOC for open

and flat FLRW space time as well. This study will give a better understanding to

know about the explicit role of spatial curvature in cosmological FLRW space-time

to explore the out-of-equilibrium features. Not only this, the present methodology of

computing cosmological OTOC one can further extend any arbitrary spatial dimen-

sions, which will give a clear picture that if one vary the spatial dimensions then at

very lower or higher dimensions how the cosmological OTOC behave with the time

scale. No one have explored such possibilities yet, so it will be good to study these

mentioned aspects in detail.

• The present methodology of computing the cosmological OTOC is not only restricted

to describe stochastic particle production during inflation and during the reheating

epoch, but also one can extend this tool to compute the quantum mechanical OTOC

in presence of non singular bounce. It may happen that during the non singular

bouncing phenomena somehow stochasticity or some random quantum mechanical

fluctuations appears and since now it is known how to quantify and compute the

quantum correlation functions at out-of-equilibrium state, one can carry forward the

similar calculation in this context as well.

• Another important aspect one can study, which is the role of quantum entanglement

[45–52] in cosmological OTOC at out-of-equilibrium. Quantum correlation functions

in presence of entanglement was studied at equilibrium in various earlier works.

It is good to apply the present methodology to know about cosmological OTOC in

presence of quantum entanglement in the early universe. Specifically if one can study

the cosmological OTOC in Bell’s inequality violating set-up then one can actually

study the effect of long range sustainable small amplitude cosmological correlation

at out-of-equilibrium.
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A Asymptotic behaviour of the cosmological mode functions

The most general solution of the above mentioned equation of motion is given by the

following expression:

fk(τ) =
√
−τ
[
C1 H

(1)
ν (−kτ) + C2 H

(2)
ν (−kτ)

]
, (A.1)

where C1 and C2 are two arbitrary integration constants which are fixed by the choice of the

initial quantum vacuum state necessarily needed for this computation. Here H
(1)
ν (−kτ) and

H
(1)
ν (−kτ) are the Hankel functions of first and second kind with order ν. In general, both

of them can be expressed in terms of the complex linear combination of the Bessel function

and the Neumann function of order ν, which are given by the following expressions:

H(1)
ν (−kτ) = Jν(−kτ) + iYν(−kτ) , (A.2)

H(2)
ν (−kτ) = Jν(−kτ)− iYν(−kτ) . (A.3)

In the general context the mass parameter ν may be a complex parameter. In this case,

the solution for the rescaled scalar perturbation mode can be recast as:

fk(τ) =
√
−τ [D1 Jν(−kτ) +D2 Yν(−kτ)], (A.4)

where the redefined two new arbitrary integration constants, D1 and D2 are defined in

terms of the previously defined two new arbitrary integration constants, C1 and C2 as:

D1 = C1 + C2 , (A.5)

D2 = i (C1 − C2) . (A.6)

For the non-integer value of the mass parameter ν, the Neumann function or the Bessel

function of the second kind can be written in terms of the usual Bessel function or the

Bessel function of the first kind as given by the following expression:

Yν(−kτ) =
1

sin νπ
[Jν(−kτ) cos νπ − J−ν(−kτ)] . (A.7)

In this specific situation, the Hankel functions of first and second kind with order ν can

be expressed in terms of usual Bessel function or the Bessel function of the first kind as:

H(1)
ν (−kτ) = Jν(−kτ) +

i

sin νπ
[Jν(−kτ) cos νπ − J−ν(−kτ)]

= [(1 + i cot νπ)Jν(−kτ)− i cosec νπ J−ν(−kτ)] , (A.8)
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H(2)
ν (−kτ) = Jν(−kτ)− i

sin νπ
[Jν(−kτ) cos νπ − J−ν(−kτ)]

= [(1− i cot νπ)Jν(−kτ) + i cosec νπ J−ν(−kτ)] . (A.9)

In this case, the solution for the rescaled scalar perturbation mode can be recast as:

fk(τ) =
√
−τ [E1(ν) Jν(−kτ) + E2(ν) J−ν(−kτ)], (A.10)

where the redefined two new arbitrary integration constants, E1 and E2 are defined in terms

of the previously defined two new arbitrary integration constants, C1 and C2 as:

E1(ν) = (C1 + C2) + i (C1 − C2) cot νπ = D1 +D2 cot νπ , (A.11)

E2(ν) = −i (C1 − C2) cosec νπ = −D2 cosec νπ . (A.12)

In particular, when, ν /∈ Z, we have the following further simplified expressions for the

Hankel functions of first and second kind, can be written as:

H(1)
ν (−kτ) =

1

i sin νπ
[J−ν(−kτ)− exp(−iνπ)Jν(−kτ)] , (A.13)

H(2)
ν (−kτ) =

i

sin νπ
[J−ν(−kτ)− exp(iνπ)Jν(−kτ)] . (A.14)

This implies the following simplified relations which are very useful for the further compu-

tations:

H
(1)
−ν (−kτ) = exp(iνπ) H(1)

ν (−kτ) , (A.15)

H
(2)
−ν (−kτ) = exp(−iνπ) H(1)

ν (−kτ) . (A.16)

The above mentioned relationships are valid, whether ν is an integer or not. In this case,

the solution for the rescaled scalar perturbation mode can be recast as:

fk(τ) =
√
−τ [G1(ν) Jν(−kτ) + G2(ν) J−ν(−kτ)], (A.17)

where the redefined two new arbitrary integration constants, G1 and G2 are defined in terms

of the previously defined two new arbitrary integration constants, C1 and C2 as:

G1(ν) = (C1 + C2) + i (C1 − C2) cot νπ = D1 +D2 cot νπ 6= E1(ν) , (A.18)

G2(ν) = i cosec νπ (C2 − C1) = −D2 cosec νπ 6= E2(ν) . (A.19)

In a specific situation, where one can express the mass parameter as a half-integer value

like, ν =
(
n+ 1

2

)
for all non-negative integer n, we can write down further the following

expressions, which are also very useful when we are dealing with these situations in the
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present context:

J−(n+ 1
2)(−kτ) = (−1)n+1 Y(n+ 1

2)(−kτ) , (A.20)

Y−(n+ 1
2)(−kτ) = (−1)n+1 J(n+ 1

2)(−kτ) . (A.21)

The corresponding most general canonically conjugate momentum can be further computed

from this derived solution as:

Πk(τ) = ∂τfk(τ) =
1

2
√
−τ

[
C1

(
kτH

(1)
ν−1(−kτ)−H(1)

ν (−kτ)− kτH(1)
ν+1(−kτ)

)
+C2

(
kτH

(2)
ν−1(−kτ)−H(2)

ν (−kτ)− kτH(2)
ν+1(−kτ)

)]
. (A.22)

Here we have used the following facts for the derivative of the Hankel function of the first

kind and second kind, which are very useful for the computation:

d

d(−kτ)
H(1)
ν (−kτ) = H

(1)
ν−1(−kτ) +

ν

kτ
H(1)
ν (−kτ) = −H(1)

ν+1(−kτ) +
ν

kτ
H(1)
ν (−kτ) ,(A.23)

d

d(−kτ)
H(2)
ν (−kτ) = H

(2)
ν−1(−kτ) +

ν

kτ
H(2)
ν (−kτ) = −H(2)

ν+1(−kτ) +
ν

kτ
H(2)
ν (−kτ) (A.24)

Also one can express the Bessel function of the first kind in terms of the Confluent Hyper-

geometric limit functions in the present context, which is given by:

Jν(−kτ) =
1

Γ(ν + 1)

(
−kτ

2

)ν
0F1

(
ν + 1;−(kτ)2

4

)
. (A.25)

For the non-integer value of the mass parameter ν, the Neumann function or the Bessel

function of the second kind can be written in terms of the Confluent Hypergeometric limit

functions in the present context, which are given by:

Yν(−kτ) =
cot νπ

Γ(ν + 1)

(
−kτ

2

)ν
0F1

(
ν + 1;−(kτ)2

4

)
−cosec νπ

Γ(1− ν)

(
−kτ

2

)−ν
0F1

(
1− ν;−(kτ)2

4

)
. (A.26)

In this specific situation, the Hankel functions of first and second kind with order ν can

be expressed in terms of usual Bessel function or the Bessel function of the first kind as:

H(1)
ν (−kτ) =

(1 + i cot νπ)

Γ(ν + 1)

(
−kτ

2

)ν
0F1

(
ν + 1;−(kτ)2

4

)
+i

cosec νπ

Γ(1− ν)

(
−kτ

2

)−ν
0F1

(
1− ν;−(kτ)2

4

)
, (A.27)
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H(2)
ν (−kτ) =

(1− i cot νπ)

Γ(ν + 1)

(
−kτ

2

)ν
0F1

(
ν + 1;−(kτ)2

4

)
−i cosec νπ

Γ(1− ν)

(
−kτ

2

)−ν
0F1

(
1− ν;−(kτ)2

4

)
. (A.28)

In this case, the most general solution of the above mentioned equation of motion is given

by the following expression:

fk(τ) = E1(ν)

√
−τ

Γ(ν + 1)

(
−kτ

2

)ν
0F1

(
ν + 1;−(kτ)2

4

)
−E2(ν)

√
−τ

Γ(1− ν)

(
−kτ

2

)−ν
0F1

(
1− ν;−(kτ)2

4

)
. (A.29)

Now, it is important to note that the Bessel function of first and second kind can be

expressed in the following asymptotic mathematical form for the small argument lying

within the window 0 < (−kτ) <
√
ν + 1, given by:

Jν(−kτ) =



1

Γ(ν + 1)

(
−kτ

2

)ν
if ν > 0 integer

(−1)ν

(−ν)!

(
−kτ

2

)−ν
, if ν < 0 integer

(A.30)

Yν(−kτ) =



2

π

[
ln

(
−kτ

2

)
+ γ

]
if ν = 0

−Γ(ν)

π

(
−kτ

2

)−ν
+

cot νπ

Γ(ν + 1)

(
−kτ

2

)ν
, if ν > 0 integer

(−1)ν+1Γ(−ν)

π

(
−kτ

2

)ν
, if ν < 0 integer

(A.31)

where γ is the Euler–Mascheroni constant, which is defined as:

γ = lim
n→∞

(
n∑
p=1

1

p
− lnn

)
= lim

n→∞

(
nn+ 1

2 Γ
(

1
n

)
Γ(n+ 1)

Γ
(
2 + n+ 1

n

) − n2

n+ 1

)

=
∞∑
n=2

(−1)n
ζ(n)

n
≈ 0.57721 . (A.32)

Consequently, the Hankel function of the first and second kind takes the following asymp-

totic mathematical form for the small argument lying within the window 0 < (−kτ) <
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√
ν + 1, as given by:

H(1)
ν (−kτ) =



(1 + i cot νπ)

Γ(ν + 1)

(
−kτ

2

)ν
− iΓ(ν)

π

(
−kτ

2

)−ν
if ν > 0 integer

(−1)ν

(−ν)!

(
−kτ

2

)−ν
+ i

(−1)ν+1Γ(−ν)

π

(
−kτ

2

)ν
, if ν < 0 integer

(A.33)

H(2)
ν (−kτ) =



(1− i cot νπ)

Γ(ν + 1)

(
−kτ

2

)ν
+ i

Γ(ν)

π

(
−kτ

2

)−ν
if ν > 0 integer

(−1)ν

(−ν)!

(
−kτ

2

)−ν
− i(−1)ν+1Γ(−ν)

π

(
−kτ

2

)ν
, if ν < 0 integer

(A.34)

Consequently, the asymptotic solution for the rescaled scalar perturbation can be expressed

within the window 0 < (−kτ) <
√
ν + 1, as:

fk(τ) =



(D1 +D2 cot νπ)

Γ(ν + 1)

(
−kτ

2

)ν
− D2Γ(ν)

π

(
−kτ

2

)−ν
if ν > 0 integer

D1(−1)ν

(−ν)!

(
−kτ

2

)−ν
+
D2(−1)ν+1Γ(−ν)

π

(
−kτ

2

)ν
, if ν < 0 integer

(A.35)

For large real arguments lying within the window, (−kτ) >>
∣∣ν2 − 1

4

∣∣, one cannot write

an actual asymptotic form for the Bessel functions of the first and second kind (unless in

the situation where ν is a half-integer) because they have zeros all the way out to infinity,

which would have to be matched exactly by any asymptotic expansion. However, for a

given value of arg(−kτ) < π, one can write an equation containing a term of order of

| − kτ |−1, given by the following expressions:

Jν(−kτ) =

√
2

π

1√
−kτ

[
cos

(
kτ +

π

2

(
ν +

1

2

))
+ exp (Im(−kτ))O

(
1

| − kτ |

)]
, (A.36)

Yν(−kτ) = −
√

2

π

1√
−kτ

[
sin

(
kτ +

π

2

(
ν +

1

2

))
+ exp (Im(−kτ))O

(
1

| − kτ |

)]
(A.37)

Consequently, the Hankel function of the first and second kind can be written in the
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following asymptotic form:

H(1)
ν (−kτ) =

√
2

π

1√
−kτ

exp(−ikτ) exp

(
−iπ

2

(
ν +

1

2

))
,

+
2√
π

1√
−kτ

exp

(
Im(−kτ)− iπ

4

)
O
(

1

| − kτ |

)
, (A.38)

H(2)
ν (−kτ) = −

√
2

π

1√
−kτ

exp(ikτ) exp

(
iπ

2

(
ν +

1

2

))
,

+
2√
π

1√
−kτ

exp

(
Im(−kτ) +

iπ

4

)
O
(

1

| − kτ |

)
, (A.39)

Using these asymptotic solution the general structure of the obtained solution for the

rescaled field can be expressed as:

fk(τ) =

√
2

πk

[
C1 exp(−ikτ) exp

(
−iπ

2

(
ν +

1

2

))
− C2 exp(ikτ) exp

(
iπ

2

(
ν +

1

2

))]
+

√
2

πk
exp (Im(−kτ))O

(
1

| − kτ |

)
(D1 −D2) . (A.40)

However, from the general structure of the obtained solution for the rescaled field and for

the canonically conjugate momentum it is very difficult to extract the physical informa-

tion out of that. For this reason the asymptotic solutions are really helpful for physical

interpretation in different cosmological scales. These asymptotic limits are kτ → 0 and

kτ → −∞, where we need to determine the behaviour of the Hankel functions of the first

and second kind of order ν. After taking these asymptotic limits we get the following

simplified results:

lim
kτ→−∞

H(1)
ν (−kτ) =

√
2

π

1√
−kτ

exp(−ikτ) exp

(
−iπ

2

(
ν +

1

2

))
, (A.41)

lim
kτ→−∞

H(2)
ν (−kτ) = −

√
2

π

1√
−kτ

exp(ikτ) exp

(
iπ

2

(
ν +

1

2

))
, (A.42)

lim
kτ→0

H(1)
ν (−kτ) =

i

π
Γ(ν)

(
−kτ

2

)−ν
, (A.43)

lim
kτ→0

H(2)
ν (−kτ) = − i

π
Γ(ν)

(
−kτ

2

)−ν
, (A.44)

and

lim
kτ→−∞

H
(1)
ν−1(−kτ) =

√
2

π

1√
−kτ

exp(−ikτ) exp

(
−iπ

2

(
ν − 1

2

))
, (A.45)
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lim
kτ→−∞

H
(2)
ν−1(−kτ) = −

√
2

π

1√
−kτ

exp(ikτ) exp

(
iπ

2

(
ν − 1

2

))
, (A.46)

lim
kτ→0

H
(1)
ν−1(−kτ) =

i

π
Γ(ν − 1)

(
−kτ

2

)1−ν

, (A.47)

lim
kτ→0

H
(2)
ν−1(−kτ) = − i

π
Γ(ν − 1)

(
−kτ

2

)1−ν

, (A.48)

and

lim
kτ→−∞

H
(1)
ν+1(−kτ) =

√
2

π

1√
−kτ

exp(−ikτ) exp

(
−iπ

2

(
ν +

3

2

))
, (A.49)

lim
kτ→−∞

H
(2)
ν+1(−kτ) = −

√
2

π

1√
−kτ

exp(ikτ) exp

(
iπ

2

(
ν +

3

2

))
, (A.50)

lim
kτ→0

H
(1)
ν+1(−kτ) =

i

π
Γ(ν + 1)

(
−kτ

2

)−(ν+1)

, (A.51)

lim
kτ→0

H
(2)
ν+1(−kτ) = − i

π
Γ(ν + 1)

(
−kτ

2

)−(ν+1)

, (A.52)

which implies that:

lim
kτ→0

H(1)
ν (−kτ) = − lim

kτ→0
H(2)
ν (−kτ), (A.53)

lim
kτ→−∞

H(1)
ν (−kτ) = − lim

kτ→−∞
H(2)
ν (−kτ), (A.54)

and

lim
kτ→0

H
(1)
ν−1(−kτ) = − lim

kτ→0
H

(2)
ν−1(−kτ), (A.55)

lim
kτ→−∞

H
(1)
ν−1(−kτ) = − lim

kτ→−∞
H

(2)
ν−1(−kτ), (A.56)

and

lim
kτ→0

H
(1)
ν+1(−kτ) = − lim

kτ→0
H

(2)
ν+1(−kτ), (A.57)

lim
kτ→−∞

H
(1)
ν+1(−kτ) = − lim

kτ→−∞
H

(2)
ν+1(−kτ). (A.58)

Here kτ → 0 and kτ → −∞ asymptotic limiting results are used to describe the superhori-

zon (kτ << −1) and subhorizon (kτ >> −1) limiting results in the context of primordial

cosmological perturbation scenario. The transition point from the subhorizon to super-

horizon regime is identify by kτ = −1 , which in Cosmology known as the horizon exit and

play a pivotal role to measure various observables of primordial Universe from different

theoretical models.
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Now we consider the following Laurent expansion of the Gamma function as appearing

in the superhorizon limiting approximation of the Hankel functions:

Γ(ν) =
2

ν
−γ +

1

2

(
γ2 +

π2

6

)
ν − 1

6

(
γ3 +

γπ2

2
+ 2ζ(3)

)
ν2 +O(ν3)︸ ︷︷ ︸

Small contribution

, (A.59)

Γ(ν − 1) =
2

ν − 1
−γ +

1

2

(
γ2 +

π2

6

)
(ν − 1)− 1

6

(
γ3 +

γπ2

2
+ 2ζ(3)

)
(ν − 1)2 +O((ν − 1)3)︸ ︷︷ ︸

Small contribution

,(A.60)

Γ(ν + 1) =
2

ν + 1
−γ +

1

2

(
γ2 +

π2

6

)
(ν + 1)− 1

6

(
γ3 +

γπ2

2
+ 2ζ(3)

)
(ν + 1)2 +O((ν + 1)3)︸ ︷︷ ︸

Small contribution

,(A.61)

where γ is known as the Euler Mascheroni constant and ζ(3) is the Riemann zeta function

of order 3. Further using this result the Hankel functions of the first and second kind of

order ν can be simplified as given by the following expression:

lim
kτ→0

H(1)
ν (−kτ) =

i

π

(
−kτ

2

)−ν [
2

ν
− γ +

1

2

(
γ2 +

π2

6

)
ν + · · ·

]
, (A.62)

lim
kτ→0

H(2)
ν (−kτ) = − i

π

(
−kτ

2

)−ν [
2

ν
− γ +

1

2

(
γ2 +

π2

6

)
ν + · · ·

]
, (A.63)

and

lim
kτ→0

H
(1)
ν−1(−kτ) =

i

π

(
−kτ

2

)1−ν [
2

ν − 1
− γ +

1

2

(
γ2 +

π2

6

)
(ν − 1) + · · ·

]
, (A.64)

lim
kτ→0

H
(2)
ν−1(−kτ) = − i

π

(
−kτ

2

)1−ν [
2

ν − 1
− γ +

1

2

(
γ2 +

π2

6

)
(ν − 1) + · · ·

]
, (A.65)

and

lim
kτ→0

H
(1)
ν+1(−kτ) =

i

π

(
−kτ

2

)−(ν+1) [
2

ν + 1
− γ +

1

2

(
γ2 +

π2

6

)
(ν + 1) + · · ·

]
, (A.66)

lim
kτ→0

H
(2)
ν+1(−kτ) = − i

π

(
−kτ

2

)−(ν+1) [
2

ν + 1
− γ +

1

2

(
γ2 +

π2

6

)
(ν + 1) + · · ·

]
. (A.67)

Similarly at the horizon exit transition point kτ = −1 the Hankel functions of the first

and second kind of order ν can be simplified as given by the following expression:

H(1)
ν (−kτ = 1) =

i

π

(
1

2

)−ν [
2

ν
− γ +

1

2

(
γ2 +

π2

6

)
ν − 1

6

(
γ3 +

γπ2

2
+ 2ζ(3)

)
ν2 + · · ·

]
, (A.68)
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H(2)
ν (−kτ = 1) = − i

π

(
1

2

)−ν [
2

ν
− γ +

1

2

(
γ2 +

π2

6

)
ν − 1

6

(
γ3 +

γπ2

2
+ 2ζ(3)

)
ν2 + · · ·

]
, (A.69)

and

H
(1)
ν−1(−kτ = 1) =

i

π

(
1

2

)1−ν [
2

ν − 1
− γ +

1

2

(
γ2 +

π2

6

)
(ν − 1) + · · ·

]
, (A.70)

H(2)
ν (−kτ = 1) = − i

π

(
1

2

)1−ν [
2

ν − 1
− γ +

1

2

(
γ2 +

π2

6

)
(ν − 1) + · · ·

]
, (A.71)

and

H
(1)
ν+1(−kτ = 1) =

i

π

(
−kτ

2

)−(ν+1) [
2

ν + 1
− γ +

1

2

(
γ2 +

π2

6

)
(ν + 1) + · · ·

]
, (A.72)

H(1)
ν+1(−kτ = 1) = − i

π

(
−kτ

2

)−(ν+1) [
2

ν + 1
− γ +

1

2

(
γ2 +

π2

6

)
(ν + 1) + · · ·

]
. (A.73)

Now, in the superhorizon limit (kτ << −1) and subhorizon limit (kτ >> −1) the ap-

proximated asymptotic form of the most general solution for the rescaled field variable and

the corresponding canonically conjugate momentum computed for the arbitrary quantum

initial vacuum can be expressed as:

lim
kτ→0

fk(τ) =

√
2

k

i

π
Γ(ν)

(
−kτ

2

) 1
2
−ν

(C1 − C2), (A.74)

lim
kτ→−∞

fk(τ) =

√
2

πk

[
C1 exp

(
−i
{
kτ +

π

2

(
ν +

1

2

)})
− C2 exp

(
i

{
kτ +

π

2

(
ν +

1

2

)})]
,(A.75)

and

lim
kτ→0

Πk(τ) =

√
2

k

i

2πk

(
ν − 1

2

)
Γ(ν)

(
−kτ

2

)−(ν+ 1
2)

(C1 − C2), (A.76)

lim
kτ→−∞

Πk(τ) =
1

i

√
2k

π

[
C1 exp

(
−i
{
kτ +

π

2

(
ν +

1

2

)})
+ C2 exp

(
i

{
kτ +

π

2

(
ν +

1

2

)})]
.(A.77)

Combining the behaviour in both the superhorizon and subhorizon limiting region we get

following combined asymptotic most general solution for the rescaled field variable and
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momenta computed for the arbitrary quantum initial vacuum can be expressed as:

fk(τ) = 2ν−
3
2

1

iτ

1
√

2k
3
2

(−kτ)
3
2
−ν

∣∣∣∣∣ Γ(ν)

Γ
(

3
2

)∣∣∣∣∣
×
[
C1 (1 + ikτ) exp

(
−i
{
kτ +

π

2

(
ν +

1

2

)})
− C2 (1− ikτ) exp

(
i

{
kτ +

π

2

(
ν +

1

2

)})]
,

(A.78)

Πk(τ) = 2ν−
3
2

1
√

2ik
5
2

(−kτ)
3
2
−ν

∣∣∣∣∣ Γ(ν)

Γ
(

3
2

)∣∣∣∣∣
×

[
C1

{(
1

2
− ν
)

(1 + ikτ)

k2τ 2
+ 1

}
exp

(
−i
{
kτ +

π

2

(
ν +

1

2

)})

−C2

{(
1

2
− ν
)

(1− ikτ)

k2τ 2
+ 1

}
exp

(
i

{
kτ +

π

2

(
ν +

1

2

)}) ]
,(A.79)

These general asymptotic expressions are extremely important to compute the expressions

for the OTOC’s in the later subsections. To server this purpose we need to promote both

of these classical solutions to the quantum level.
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B WKB solution of the cosmological mode functions for time

dependent protocols

For arbitrary conformal time dependence in the mass parameter m2(τ) we use the standard

WKB approximation, using which the general solution can be expressed as:

fk(τ) = [C1 uk(τ) + C2 u
∗
k(τ)], (B.1)

where C1 and C2 are the Bogoliubov coefficients in the two arbitrary integration constants

which can be fixed by the choice of the initial quantum vacuum. Here the WKB solutions

uk(τ) and its complex conjugate u∗k(τ) can be written as:

uk(τ) =
1

2ωk(τ)
exp

(
i

∫ τ

τ ′=−∞
dτ

′
ωk(τ

′
)

)
, u∗k(τ) =

1

2ωk(τ)
exp

(
−i
∫ τ

τ ′=−∞
dτ

′
ωk(τ

′
)

)
.(B.2)

Here the effective time dependent frequency ωk(τ) can be expressed as:

ωk(τ) =

√
k2 −

(
ν2(τ)− 1

4

)
τ 2

. (B.3)

Consequently, the canonically conjugate momentum from the above mentioned WKB

approximated solution can be expressed as:

Πk(τ) = ∂τfk(τ) = [C1 vk(τ) + C2 v
∗
k(τ)] , (B.4)

where we have introduced two conformal time dependent new functions vk(τ) and its

complex conjugate v∗k(τ) can be expressed as:

vk(τ) = ∂τuk(τ) = ∂τ

(
1

2ωk(τ)
exp

(
i

∫ τ

τ ′=−∞
dτ

′
ωk(τ

′
)

))
=

[
− 1

ωk(τ)

dωk(τ)

dτ
+ i

d

dτ

(∫ τ

τ ′=−∞
dτ

′
ωk(τ

′
)

)]
uk(τ) , (B.5)

v∗k(τ) = ∂τu
∗
k(τ) = ∂τ

(
1

2ωk(τ)
exp

(
−i
∫ τ

τ ′=−∞
dτ

′
ωk(τ

′
)

))
=

[
− 1

ωk(τ)

dωk(τ)

dτ
− i d

dτ

(∫ τ

τ ′=−∞
dτ

′
ωk(τ

′
)

)]
u∗k(τ) . (B.6)
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C Quantum two-point OTO micro-canonical amplitudes for Cos-

mology

C.1 Definition of micro-canonical OTO amplitude ∆̂1(k1,k2; τ1, τ2)

In this subsection we define a very important momentum and conformal time dependent

two-point OTO amplitude, which are given by the following expression:

∆̂1(k1,k2; τ1, τ2) = f̂k1(τ1)Π̂k2(τ2)

= fk1(τ1)Πk2(τ2) ak1ak2 + f ∗−k1
(τ1)Πk2(τ2) a†−k1

ak2

+fk1(τ1)Π∗−k2
(τ2) ak1a

†
−k2

+ f ∗−k1
(τ1)Π∗−k2

(τ2) a†−k1
a†−k2

= D1(k1,k2; τ1, τ2) ak1ak2 +D2(k1,k2; τ1, τ2) a†−k1
ak2

+D3(k1,k2; τ1, τ2) ak1a
†
−k2

+D4(k1,k2; τ1, τ2) a†−k1
a†−k2

, (C.1)

where we have introduced momentum and time dependent four individual two-point OTO

amplitudes, Di(k1,k2; τ1, τ2) ∀ i = 1, 2, 3, 4, which are explicitly defined as:

D1(k1,k2; τ1, τ2) = fk1(τ1)Πk2(τ2), (C.2)

D2(k1,k2; τ1, τ2) = f ∗−k1
(τ1)Πk2(τ2), (C.3)

D3(k1,k2; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2), (C.4)

D4(k1,k2; τ1, τ2) = f ∗−k1
(τ1)Π∗−k2

(τ2). (C.5)

These contributions are really helpful to compute the two-point micro-canonical OTO

amplitudes and the corresponding momentum integrated OTOC, which we have discussed

in this paper.

C.2 Definition of micro-canonical OTO amplitude ∆̂2(k1,k2; τ1, τ2)

In this subsection we define a very important momentum and conformal time dependent

two-point OTO amplitude, which are given by the following expression:

∆̂2(k1,k2; τ1, τ2) = f̂k1(τ1)Π̂k2(τ2)

= Πk1(τ2)fk2(τ1) ak1ak2 + Π∗−k1
(τ2)fk2(τ1) a†−k1

ak2

+Πk1(τ2)f ∗−k2
(τ1) ak1a

†
−k2

+ Π∗−k1
(τ2)f ∗−k2

(τ1) a†−k1
a†−k2

= L1(k1,k2; τ1, τ2) ak1ak2 + L2(k1,k2; τ1, τ2) a†−k1
ak2

+L3(k1,k2; τ1, τ2) ak1a
†
−k2

+ L4(k1,k2; τ1, τ2) a†−k1
a†−k2

, (C.6)

where we have introduced momentum and time dependent four individual two-point OTO

amplitudes, Li(k1,k2; τ1, τ2) ∀ i = 1, 2, 3, 4, which are explicitly defined as:

L1(k1,k2; τ1, τ2) = Πk1(τ2)fk2(τ1), (C.7)
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L2(k1,k2; τ1, τ2) = Π∗−k1
(τ2)fk2(τ1), (C.8)

L3(k1,k2; τ1, τ2) = Πk1(τ2)f ∗−k2
(τ1), (C.9)

L4(k1,k2; τ1, τ2) = Π∗−k1
(τ2)f ∗−k2

(τ1). (C.10)

These contributions are really helpful to compute the two-point micro-canonical OTO

amplitudes and the corresponding momentum integrated OTOC, which we have discussed

in this paper.
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D Quantum four-point OTO micro-canonical amplitudes for Cos-

mology

D.1 Definition of micro-canonical OTO amplitude T̂1(k1,k2,k3,k4; τ1, τ2)

The function T̂1(k1,k2,k3,k4; τ1, τ2) is defined as:

T̂1(k1,k2,k3,k4; τ1, τ2)

= [M1(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3ak4

+M2(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2ak3ak4 +M3(k1,k2,k3,k4; τ1, τ2) ak1a

†
−k2

ak3ak4

+M4(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3ak4 +M5(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

ak4

+M6(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2a

†
−k3

ak4 +M7(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
ak4

+M8(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

a†−k3
ak4 +M9(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3a

†
−k4

+M10(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2ak3a

†
−k4

+M11(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3a
†
−k4

+M12(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3a
†
−k4

+M13(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

a†−k4
+M14(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2a
†
−k3

a†−k4

+M15(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
a†−k4

+M16(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

a†−k3
a†−k4

]
, (D.1)

where we define new sets of functions, Mj(k1,k2,k3,k4; τ1, τ2) ∀ j = 1, · · · , 16, as:

M1(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Πk2(τ2)fk3(τ1)Πk4(τ2), (D.2)

M2(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Πk2(τ2)fk3(τ1)Πk4(τ2), (D.3)

M3(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2)fk1(τ1)Πk4(τ2), (D.4)

M4(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Π∗−k2

(τ2)fk3(τ1)Πk4(τ2), (D.5)

M5(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Πk2(τ2)f ∗−k3
(τ1)Πk4(τ2), (D.6)

M6(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Πk2(τ2)f ∗−k3

(τ1)Πk4(τ2) (D.7)

M7(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2)f ∗−k3

(τ1)Πk4(τ2), (D.8)

M8(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Π∗−k2

(τ2)f ∗−k3
(τ1)Πk4(τ2) (D.9)

M9(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Πk2(τ2)fk3(τ1)Π∗−k4
(τ2), (D.10)

M10(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Πk2(τ2)fk3(τ1)Π∗−k4

(τ2) (D.11)

M11(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2)fk3(τ1)Π∗−k4

(τ2), (D.12)

M12(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Π∗−k2

(τ2)fk3(τ1)Π∗−k4
(τ2) (D.13)

M13(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Πk2(τ2)f ∗−k3
(τ1)Π∗−k4

(τ2), (D.14)

M14(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Πk2(τ2)f ∗−k3

(τ1)Π∗−k4
(τ2) (D.15)

M15(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2)f ∗−k3

(τ1)Π∗−k4
(τ2), (D.16)

M16(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Π∗−k2

(τ2)f ∗−k3
(τ1)Π∗−k4

(τ2) (D.17)
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D.2 Definition of micro-canonical OTO amplitude T̂2(k1,k2,k3,k4; τ1, τ2)

The function T̂2(k1,k2,k3,k4; τ1, τ2) is defined as:

T̂2(k1,k2,k3,k4; τ1, τ2)

=
[
J1(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3ak4 + J2(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2ak3ak4

+J3(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3ak4 + J4(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3ak4

+J5(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

ak4 + J6(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2a

†
−k3

ak4

+J7(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
ak4 + J8(k1,k2,k3,k4; τ1, τ2) a†−k1

a†−k2
a†−k3

ak4

+J9(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3a
†
−k4

+ J10(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2ak3a

†
−k4

+J11(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3a
†
−k4

+ J12(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3a
†
−k4

+J13(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

a†−k4
+ J14(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2a
†
−k3

a†−k4

+J15(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
a†−k4

+ J16(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

a†−k3
a†−k4

]
, (D.18)

where we define new sets of functions, Jj(k1,k2,k3,k4; τ1, τ2) ∀ j = 1, · · · , 16, as:

J1(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)fk2(τ1)fk3(τ1)Πk4(τ2), (D.19)

J2(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)fk2(τ1)fk3(τ1)Πk4(τ2), (D.20)

J3(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)f ∗−k2
(τ1)fk3(τ1)Πk4(τ2), (D.21)

J4(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)f ∗−k2

(τ1)fk3(τ1)Πk4(τ2), (D.22)

J5(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)fk2(τ1)f ∗−k3
(τ1)Πk4(τ2), (D.23)

J6(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)fk2(τ1)f ∗−k3

(τ1)Πk4(τ2) (D.24)

J7(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)f ∗−k2
(τ1)f ∗−k3

(τ1)Πk4(τ2), (D.25)

J8(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)f ∗−k2

(τ1)f ∗−k3
(τ1)Πk4(τ2) (D.26)

J9(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)fk2(τ1)fk3(τ1)Π∗−k4
(τ2), (D.27)

J10(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)fk2(τ1)fk3(τ1)Π∗−k4

(τ2) (D.28)

J11(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)f ∗−k2
(τ1)fk3(τ1)Π∗−k4

(τ2), (D.29)

J12(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)f ∗−k2

(τ1)fk3(τ1)Π∗−k4
(τ2) (D.30)

J13(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)fk2(τ1)f ∗−k3
(τ1)Π∗−k4

(τ2), (D.31)

J14(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)fk2(τ1)f ∗−k3

(τ1)Π∗−k4
(τ2) (D.32)

J15(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)f ∗−k2
(τ1)f ∗−k3

(τ1)Π∗−k4
(τ2), (D.33)

J16(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)f ∗−k2

(τ1)f ∗−k3
(τ1)Π∗−k4

(τ2) (D.34)
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D.3 Definition of micro-canonical OTO amplitude T̂3(k1,k2,k3,k4; τ1, τ2)

The function T̂3(k1,k2,k3,k4; τ1, τ2) is defined as:

T̂3(k1,k2,k3,k4; τ1, τ2)

=
[
N1(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3ak4 +N2(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2ak3ak4

+N3(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3ak4 +N4(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3ak4

+N5(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

ak4 +N6(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2a

†
−k3

ak4

+N7(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
ak4 +N8(k1,k2,k3,k4; τ1, τ2) a†−k1

a†−k2
a†−k3

ak4

+N9(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3a
†
−k4

+N10(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2ak3a

†
−k4

+N11(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3a
†
−k4

+N12(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3a
†
−k4

+N13(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

a†−k4
+N14(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2a
†
−k3

a†−k4

+N15(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
a†−k4

+N16(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

a†−k3
a†−k4

]
, (D.35)

where we define new sets of functions, Nj(k1,k2,k3,k4; τ1, τ2) ∀ j = 1, · · · , 16, as:

N1(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Πk2(τ2)Πk3(τ2)fk4(τ1), (D.36)

N2(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)f ∗−k2
(τ1)Πk3(τ2)fk4(τ1), (D.37)

N3(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2)Πk1(τ2)fk4(τ1), (D.38)

N4(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Π∗−k2

(τ2)Πk3(τ2)fk4(τ1), (D.39)

N5(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Πk2(τ2)Π∗−k3
(τ2)fk4(τ1), (D.40)

N6(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Πk2(τ2)Π∗−k3

(τ2)fk4(τ1) (D.41)

N7(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2)Π∗−k3

(τ2)fk4(τ1), (D.42)

N8(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Π∗−k2

(τ2)Π∗−k3
(τ2)fk4(τ1) (D.43)

N9(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Πk2(τ2)Πk3(τ2)f ∗−k4
(τ1), (D.44)

N10(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Πk2(τ2)Πk3(τ2)f ∗−k4

(τ1) (D.45)

N11(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2)Πk3(τ2)f ∗−k4

(τ1), (D.46)

N12(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Π∗−k2

(τ2)Πk3(τ2)f ∗−k4
(τ1) (D.47)

N13(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Πk2(τ2)Π∗−k3
(τ2)f ∗−k4

(τ1), (D.48)

N14(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Πk2(τ2)Π∗−k3

(τ2)f ∗−k4
(τ1) (D.49)

N15(k1,k2,k3,k4; τ1, τ2) = fk1(τ1)Π∗−k2
(τ2)Π∗−k3

(τ2)f ∗−k4
(τ1), (D.50)

N16(k1,k2,k3,k4; τ1, τ2) = f ∗−k1
(τ1)Π∗−k2

(τ2)Π∗−k3
(τ2)f ∗−k4

(τ1) (D.51)
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D.4 Definition of micro-canonical OTO amplitude T̂4(k1,k2,k3,k4; τ1, τ2)

The function T̂4(k1,k2,k3,k4; τ1, τ2) is defined as:

T̂4(k1,k2,k3,k4; τ1, τ2)

=
[
Q1(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3ak4 +Q2(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2ak3ak4

+Q3(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3ak4 +Q4(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3ak4

+Q5(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

ak4 +Q6(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2a

†
−k3

ak4

+Q7(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
ak4 +Q8(k1,k2,k3,k4; τ1, τ2) a†−k1

a†−k2
a†−k3

ak4

+Q9(k1,k2,k3,k4; τ1, τ2) ak1ak2ak3a
†
−k4

+Q10(k1,k2,k3,k4; τ1, τ2) a†−k1
ak2ak3a

†
−k4

+Q11(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

ak3a
†
−k4

+Q12(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

ak3a
†
−k4

+Q13(k1,k2,k3,k4; τ1, τ2) ak1ak2a
†
−k3

a†−k4
+Q14(k1,k2,k3,k4; τ1, τ2) a†−k1

ak2a
†
−k3

a†−k4

+Q15(k1,k2,k3,k4; τ1, τ2) ak1a
†
−k2

a†−k3
a†−k4

+Q16(k1,k2,k3,k4; τ1, τ2) a†−k1
a†−k2

a†−k3
a†−k4

]
, (D.52)

where we define new sets of functions, Qj(k1,k2,k3,k4; τ1, τ2) ∀ j = 1, · · · , 16, as:

Q1(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)fk2(τ1)Πk3(τ2)fk4(τ1), (D.53)

Q2(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)f−k2(τ1)Πk3(τ2)fk4(τ1), (D.54)

Q3(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)f ∗−k2
(τ1)Πk1(τ2)fk4(τ1), (D.55)

Q4(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)f ∗−k2

(τ1)Πk3(τ2)fk4(τ1), (D.56)

Q5(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)fk2(τ1)Π∗−k3
(τ2)fk4(τ1), (D.57)

Q6(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)fk2(τ1)Π∗−k3

(τ2)fk4(τ1) (D.58)

Q7(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)f ∗−k2
(τ1)fΠ∗−k3

(τ2)fk4(τ1), (D.59)

Q8(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)f ∗−k2

(τ1)Π∗−k3
(τ2)fk4(τ1) (D.60)

Q9(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)fk2(τ1)Πk3(τ2)f ∗−k4
(τ1), (D.61)

Q10(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)fk2(τ1)Πk3(τ2)f ∗−k4

(τ1) (D.62)

Q11(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)f ∗−k2
(τ1)Πk3(τ2)f ∗−k4

(τ1), (D.63)

Q12(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)f ∗−k2

(τ1)Πk3(τ2)f ∗−k4
(τ1) (D.64)

Q13(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)fk2(τ1)Π∗−k3
(τ2)f ∗−k4

(τ1), (D.65)

Q14(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)fk2(τ1)Π∗−k3

(τ2)f ∗−k4
(τ1) (D.66)

Q15(k1,k2,k3,k4; τ1, τ2) = Πk1(τ2)f ∗−k2
(τ1)Π∗−k3

(τ2)f ∗−k4
(τ1), (D.67)

Q16(k1,k2,k3,k4; τ1, τ2) = Π∗−k1
(τ2)f ∗−k2

(τ1)Π∗−k3
(τ2)f ∗−k4

(τ1) (D.68)
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E Computation of classical limit of four-point “in-in” OTO micro-

canonical amplitudes for Cosmology

In this section, our prime objective is to explicitly compute the classical limiting version

of the four-point ”in-in” OTO micro-canonical amplitudes appearing in the expression or

OTOC. To serve this purpose in the classical limit we explicitly compute the following

square of the Poisson bracket, given by:

{f(x, τ1),Π(x, τ2)}2
PB = {f(x, τ1),Π(x, τ2)}PB {f(x, τ1),Π(x, τ2)}PB . (E.1)

Now we use the following convention for the Fourier transformation, which is given by:

f̂(x, τ1) =

∫
d3k

(2π)3
exp(ik.x) f̂k(τ1), (E.2)

Π̂(x, τ1) = ∂τ1 f̂(x, τ1) =

∫
d3k

(2π)3
exp(ik.x) ∂τ1 f̂k(τ1) =

∫
d3k

(2π)3
exp(ik.x) Π̂k(τ1), (E.3)

which will be very useful for the computation of the classical limiting result of four-point

OTOC in terms of the square of the Poisson bracket.

Consequently, we get the following simplified result:

{f(x, τ1),Π(x, τ2)}2
PB

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp (i(k1 + k2 + k3 + k4).x)

[{fk1(τ1),Πk2(τ2)}PB {fk3(τ1),Πk4(τ2)}PB + {fk1(τ1),Πk3(τ2)}PB {fk2(τ1),Πk4(τ2)}PB

+ {fk1(τ1),Πk4(τ2)}PB {fk3(τ1),Πk2(τ2)}PB + {fk2(τ1),Πk3(τ2)}PB {fk4(τ1),Πk1(τ2)}PB

+ {fk2(τ1),Πk1(τ2)}PB {fk4(τ1),Πk3(τ2)}PB + {fk2(τ1),Πk4(τ2)}PB {fk1(τ1),Πk3(τ2)}PB

+ {fk3(τ1),Πk1(τ2)}PB {fk4(τ1),Πk2(τ2)}PB + {fk3(τ1),Πk2(τ2)}PB {fk1(τ1),Πk4(τ2)}PB

+ {fk3(τ1),Πk4(τ2)}PB {fk1(τ1),Πk2(τ2)}PB + {fk4(τ1),Πk1(τ2)}PB {fk2(τ1),Πk3(τ2)}PB

+ {fk4(τ1),Πk2(τ2)}PB {fk3(τ1),Πk1(τ2)}PB + {fk4(τ1),Πk3(τ2)}PB {fk2(τ1),Πk1(τ2)}PB] . (E.4)

Now, here our job is to explicitly compute each of the Poisson brackets, which are appearing

in the above mentioned twelve terms. The explicit computation gives the following result:

{
fki(τ1),Πkj(τ2)

}
PB

=

∂fki(τ1)

∂fkj(τ2)

∂Πkj(τ1)

∂Πkj(τ2)︸ ︷︷ ︸
=1

− ∂fki(τ1)

∂Πkj(τ2)

∂Πkj(τ2)

∂fkj(τ2)︸ ︷︷ ︸
=0


= (2π)3δ3(ki + kj) R(τ1, τ2). ∀i 6= j with i, j = 1, 2, 3, 4. (E.5)

Here from these computed Poisson bracket we can extract the following sets of information,
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which will further helps us to understand more about the classical limit of the four-point

OTO micro-canonical amplitude in the present computation for Cosmology:

1. The time dependent part as such very complicated as it contain the information

regarding classical statistical version of random chaotic stochastic quantum fluctu-

ations in the primordial universe. In the present context it is hypothesized by a

random function R(τ1, τ2) which incorporates the two conformal time scales.

2. Also it is important to not that, R(τ1, τ2) is a homogeneous and isotropic function,

which captures the dynamical effect of the classical spatially flat FLRW geometrical

background. For this reason the random function, R(τ1, τ2) is completely i and j

momentum index independent.

3. Moreover, the interesting to point here that, one can explicitly separately write

down the contribution of the inhomogeneity and time dynamics in Fourier space

after computing the classical Poisson bracket in this context.

4. Finally, the appearance of the three dimensional Dirac Delta function confirms the

momentum conservation in the Fourier space in the classical two point OTO micro-

canonical amplitude in Cosmology.

Further, we compute the square of the Poisson bracket, which after performing the Fourier

transformation can be expressed as:

{
fki(τ1),Πkj(τ2)

}
PB
{fkl(τ1),Πkm(τ2)}PB =

∂fki(τ1)

∂fkj(τ2)

∂Πkj(τ1)

∂Πkj(τ2)︸ ︷︷ ︸
=1

− ∂fki(τ1)

∂Πkj(τ2)

∂Πkj(τ2)

∂fkj(τ2)︸ ︷︷ ︸
=0


 ∂fkl(τ1)

∂fkm(τ2)

∂Πkl(τ1)

∂Πkl(τ2)︸ ︷︷ ︸
=1

− ∂fkl(τ1)

∂Πkm(τ2)

∂Πkl(τ2)

∂fkm(τ2)︸ ︷︷ ︸
=0


= (2π)6δ3(ki + kj)δ

3(kl + km) R2(τ1, τ2).

∀i 6= j 6= l 6= m with i, j, k, l = 1, 2, 3, 4. (E.6)

Consequently, we get the following simplified result:

{f(x, τ1),Π(x, τ2)}2
PB = (2π)6

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
exp (i(k1 + k2 + k3 + k4).x)

4∑
i,j,l,m=1,i 6=j 6=l 6=m

δ3(ki + kj)δ
3(kl + km)︸ ︷︷ ︸

Contribution from 12 terms

R2(τ1, τ2). (E.7)
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Here, the explicit computation gives:

4∑
i,j,l,m=1,i 6=j 6=l 6=m

δ3(ki + kj)δ
3(kl + km) =

[
δ3(k1 + k2)δ3(k3 + k4) + δ3(k1 + k3)δ3(k2 + k4)

+δ3(k1 + k4)δ3(k3 + k2) + δ3(k2 + k3)δ3(k4 + k1)

+δ3(k2 + k1)δ3(k4 + k3) + δ3(k2 + k4)δ3(k1 + k3)

+δ3(k3 + k1)δ3(k4 + k2) + δ3(k3 + k2)δ3(k1 + k4)

+δ3(k3 + k4)δ3(k1 + k2) + δ3(k4 + k1)δ3(k2 + k3)

+δ3(k4 + k2)δ3(k3 + k1) + δ3(k4 + k3)δ3(k2 + k1)
]
. (E.8)

Now, we give the following proposal to quantify the random function R2(τ1, τ2), which is

given by the following expression:

R2(τ1, τ2) := 〈ηNoise(τ1)ηNoise(τ2)〉︸ ︷︷ ︸
Contribution from randomness

exp (−λf [|τ1|+ |τ2|])︸ ︷︷ ︸
Chaos and decay of correlation

, (E.9)

where λf is the decay coefficient of the chaotic terms and will saturate after late time scale

of universe and ηNoise(τi) ∀ i = 1, 2 represent the conformal time dependent random noise

function. Also, the first term represent two point noise kernel, which is non-Gaussian for

coloured noise and Gaussian in nature for the white noise. Also it is important to note

that the noise kernel is time translation invariant, for which we have written:

〈ηNoise(τ1)ηNoise(τ2)〉 = GKernel(τ1, τ2) := GKernel(τ1 − τ2). (E.10)

Additionally, the conformal time dependent noise satisfy the following constraint condi-

tions:

〈ηNoise(τi)〉 = 0, Noise = Gaussian, Non−Gaussian, (E.11)

〈ηNoise(τ1)ηNoise(τ2)ηNoise(τ3)〉 = 0, Noise = Gaussian, (E.12)

〈ηNoise(τ1)ηNoise(τ2).......ηNoise(τN)〉 = fNoise(τ1, τ2, ...., τN) 6= 0 ∀ N ≥ 2,

Noise = Non−Gaussian. (E.13)

After substituting this result in the previously computed expression for the amplitude we

get the following simplified expression:

{f(x, τ1),Π(x, τ2)}2
PB

= (2π)6

4∏
p=1

∫
d3kp
(2π)3

exp (ikp.x)
4∑

i,j,l,m=1,i 6=j 6=l 6=m

δ3(ki + kj)δ
3(kl + km)

GKernel(τ1 − τ2) exp (−λf [|τ1|+ |τ2|]) . (E.14)
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F Computation of quantum micro-canonical partition function

in Cosmology

F.1 Quantum micro-canonical partition function in terms of rescaled field

variable

In the context of quantum field theory, one can define the class of all excited α vacua states

in terms of the well known adiabatic Bunch Davies vacuum state as:

|Ψα〉 =
1√
| coshα|

exp

(
− i

2
tanhα

∫
d3k

(2π)3
a†kak

)
|ΨBD〉 , (F.1)

which satisfy the following constraint condition:

ak|Ψα〉 = 0 ∀ k, α (F.2)

Here one can easily observed that, if we fix α = 0 then one can easily get back the usual

quantum adiabatic Bunch Davies vacuum state. In presence of these excited α vacua states

the quantum partition function can be expressed as:

Zα(β; τ1) =

∫
dΨα 〈Ψα|e−βĤ(τ1)|Ψα〉

=
1

| coshα|

∫
dΨBD 〈ΨBD|

{
exp

(
i

2
tanhα

∫
d3k1

(2π)3
ak1a

†
k1

)
exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
exp

(
− i

2
tanhα

∫
d3k2

(2π)3
a†k2

ak2

)}
|ΨBD〉. (F.3)

Now we will explicitly compute the individual contributions, which are given by:

exp

(
− i

2
tanhα

∫
d3k2

(2π)3
a†k2

ak2

)
|ΨBD〉 =

∞∑
n=0

(−1)n

n!

(
i

2
tanhα

∫
d3k2

(2π)3
a†k2

ak2

)n
|ΨBD〉

=
∞∑
n=0

(−1)n

n!

(
i

2
tanhα

∫
d3k2

(2π)3

)n
|ΨBD〉

= exp

(
− i

2
tanhα

∫
d3k2

(2π)3

)
|ΨBD〉., (F.4)

〈ΨBD| exp

(
i

2
tanhα

∫
d3k2

(2π)3
ak2a

†
k2

)
=

[
exp

(
− i

2
tanhα

∫
d3k2

(2π)3
a†k2

ak2

)
|ΨBD〉

]†
=

[
exp

(
− i

2
tanhα

∫
d3k2

(2π)3

)
|ΨBD〉

]†
= 〈ΨBD| exp

(
i

2
tanhα

∫
d3k2

(2π)3

)
. (F.5)
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Then the quantum partition function for α vacua can be expressed as:

Zα(β; τ1) =
1

| coshα|
ZBD(β; τ1), (F.6)

where ZBD is the quantum partition function computed from adiabatic Bunch Davies

vacuum as:

ZBD(β; τ1) = 1 +

∫
dΨBD

∞∑
n=1

n∑
p=0

nCp

(
1

2
δ3(0)

)n−p
(−1)nβn

n!

(∫
d3k Ek(τ1)

)n
〈ΨBD|

(
a†kak

)n
|ΨBD〉

= exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
. (F.7)

. This further implies that the expression for the quantum partition function for α vacua

can be simplified as:

Zα(β; τ1) =
1

| coshα|
exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
. (F.8)

After introducing the normal ordering the quantum partition function computed from

adiabatic Bunch Davies vacuum as:

: ZBD(β; τ1) := exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
. (F.9)

. Then the normal ordered quantum partition function for the α vacua can be simplified

as:

: Zα(β; τ1) :=
1

| coshα|
exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
. (F.10)

F.2 Quantum micro-canonical partition function in terms of curvature per-

turbation field variable

In this subsection our prime objective is to find out the expression for the partition function

in terms of the curvature perturbation field variable. To serve this purpose the time

dependent dispersion relation can be expressed in terms of the curvature perturbation

variable as:

Ek(τ1) = |Πk(τ1)|2 + ω2
k(τ1)|fk(τ1)|2

= z2(τ1)

{∣∣∣∣Πζ
k(τ1) + ζk(τ1)

1

z(τ1)

dz(τ1)

dτ1

∣∣∣∣2 + ω2
k(τ1)|ζk(τ1)|2

}
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= z2(τ1)

{∣∣∣Πζ
k(τ1)

∣∣∣2 +

(
ω2

k(τ1) +

(
1

z(τ1)

dz(τ1)

dτ1

)2
)
|ζk(τ1)|2

+
(

Πζ
−k(τ1)ζk(τ1) + Πζ

k(τ1)ζ−k(τ1)
)( 1

z(τ1)

dz(τ1)

dτ1

)}

= z2(τ1)

Ek,ζ(τ1) +
(

Πζ
−k(τ1)ζk(τ1) + Πζ

k(τ1)ζ−k(τ1)
)( 1

z(τ1)

dz(τ1)

dτ1

)
︸ ︷︷ ︸

Contribution from this term is negligibly small


≈ z2(τ1)Ek,ζ(τ1), (F.11)

where we define the time dependent energy dispersion relation in terms of the curvature

perturbation variable as:

Ek,ζ(τ1) : =
∣∣∣Πζ

k(τ1)
∣∣∣2 +

(
ω2

k(τ1) +

(
1

z(τ1)

dz(τ1)

dτ1

)2
)
|ζk(τ1)|2,

=
∣∣∣Πζ

k(τ1)
∣∣∣2 +

(
k2 − 1

z(τ1)

d2z(τ1)

dτ 2
1

+

(
1

z(τ1)

dz(τ1)

dτ1

)2
)
|ζk(τ1)|2. (F.12)

Now, the thermal partition function for cosmology in terms of curvature perturbation

computed for α vacua can be expressed as:

Zζ
α(β; τ1) =

Zζ
BD(β; τ1)

| coshα|
. (F.13)

where Zζ
BD(β; τ1)is thermal partition function for cosmology in terms of curvature pertur-

bation for Bunch Davies vacuum in terms which we have to compute now. To do this we

will now write the partition function for rescaled field variable in terms of the curvature

perturbation variable as:

Zζ
BD(β; τ1) = exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βz2(τ1)Ek,ζ(τ1)

2

))
, (F.14)

which can be further simplified in the normal ordered form as:

: Zζ
BD(β; τ1) := exp

(
−
∫
d3k ln

(
2 sinh

βz2(τ1)Ek,ζ(τ1)

2

))
. (F.15)
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G Computation of classical micro-canonical partition function

in Cosmology

G.1 Classical micro-canonical partition function in terms of rescaled field vari-

able

In this section our aim is to derive the expression for the partition function for the cosmol-

ogy in the classical regime which is basically the classical limit of the quantum partition

function derived in the previous section. This result will be further helpful to determine

the classical limit of the cosmological OTOC that we have derived in this paper.

In terms of the rescaled cosmological perturbation field variable we define the following

classical partition function for Cosmology:

ZClassical(β; τ1) : =

∫ ∫
DfDΠ

2π
exp (−βH)

=
∏
k

∫ ∫
dfk(τ1)dΠk(τ1)

2π
exp

(
−β

2

[
|Πk(τ1)|2 + ω2

k(τ1)|fk(τ1)|2
])

=
∏
k

exp

(
−β
[
Ek(τ1)

2
+

1

β
ln (1− exp(−βEk(τ1))

])
=
∏
k

exp

(
ln

(
exp

(
−βEk(τ1)

2

))
− ln (1− exp(−βEk(τ1))

)

=
∏
k

exp

ln

 exp
(
−βEk(τ1)

2

)
(1− exp (−βEk(τ1)))


=
∏
k

exp

(
− ln

(
2 sinh

βEk(τ1)

2

))
= exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
. (G.1)

where the conformal time dependent frequency is given by the following expression:

ω2
k(τ1) =

(
k2 − 1

z(τ1)

d2z(τ1)

dτ 2
1

)
. (G.2)

This implies that:

ZClassical(β; τ1) = exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
=: ZBD(β; τ1) : . (G.3)

Now from the above expression we found that the expression for the classical partition

function and normal ordered partition function for Cosmology is exactly same. But since
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we know there in no concept of vacuum exist in classical field theory, for that reason we

can write the following expression:

ZClassical(β; τ1) = | coshα| : Zα(β; τ1) : ∀ α . (G.4)

G.2 Classical micro-canonical partition function in terms of curvature per-

turbation field variable

To construct the classical partition function in terms of the curvature perturbation field

variable and its conjugate momenta we are going to follow similar procedure. In this

description, the classical partition function for Cosmology can be expressed as:

Zζ
Classical(β; τ1) : =

∫ ∫
DζDΠζ

2π
exp (−βH)

=
∏
k

∫ ∫
dζk(τ1)dΠζ

k(τ1)

2π

exp

(
−βz

2(τ1)

2

[∣∣∣Πζ
k(τ1)

∣∣∣2 +

(
ω2

k(τ1) +

(
1

z(τ1)

dz(τ1)

dτ1

)2
)
|ζk(τ1)|2

])

=
∏
k

exp

(
−β

[
z2(τ1)Eζ

k(τ1)

2
+

1

β
ln
(

1− exp(−βz2(τ1)Eζ
k(τ1)

)])

=
∏
k

exp

(
ln

(
exp

(
−βz

2(τ1)Eζ
k(τ1)

2

))
− ln

(
1− exp(−βz2(τ1)Eζ

k(τ1)
))

=
∏
k

exp

ln

 exp
(
−βz2(τ1)Eζk(τ1)

2

)
(

1− exp
(
−βz2(τ1)Eζ

k(τ1)
))



=
∏
k

exp

(
− ln

(
2 sinh

βz2(τ1)Eζ
k(τ1)

2

))

= exp

(
−
∫
d3k ln

(
2 sinh

βz2(τ1)Eζ
k(τ1)

2

))
. (G.5)

This further implies that:

Zζ
Classical(β; τ1) = exp

(
−
∫
d3k ln

(
2 sinh

βz2(τ1)Eζ
k(τ1)

2

))

=: Zζ
BD(β; τ1) := | coshα| : Zα(β; τ1) : ∀ α 6= ZClassical(β; τ1) . (G.6)

The derived classical partition functions for Cosmology computed in terms of two pertur-

bation variables are not same because of the presence of Mukhanov Sasaki varibale.
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H Computation of the trace of the two-point amplitude in micro-

canonical OTOC

Now, we will explicitly compute the numerator of the OTOC for quantum α vacua,which

is given by the following expression:

Tr
[
e−βĤ(τ1)

[
f̂(x, τ1), Π̂(x, τ2)

]]
(α)

=
1

| coshα|

∫
dΨBD

∫
d3k1

(2π)3

∫
d3k2

(2π)3
exp [i (k1 + k2) .x]

〈ΨBD|
[
∇̂1(k1,k2; τ1, τ2; β)− ∇̂2(k1,k2; τ1, τ2; β)

]
|ΨBD〉. (H.1)

Further, our aim is to compute the individual contributions which are given by:∫
dΨBD 〈ΨBD|∇̂1(k1,k2; τ1, τ2; β)|ΨBD〉 =

∫
dΨBD 〈ΨBD|e−βĤ(τ1) ∆̂1(k1,k2; τ1, τ2)|ΨBD〉, (H.2)∫

dΨBD 〈ΨBD|∇̂2(k1,k2; τ1, τ2; β)|ΨBD〉 =

∫
dΨBD 〈ΨBD|e−βĤ(τ1) ∆̂2(k1,k2; τ1, τ2)|ΨBD〉. (H.3)

Let us evaluate one by one each of the contributions, which are given by:∫
dΨBD 〈ΨBD|e−βĤ(τ1) ak1ak2|ΨBD〉 = 0, (H.4)∫
dΨBD 〈ΨBD|e−βĤ(τ1) ak1a

†
−k2
|ΨBD〉

= (2π)3 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
δ3 (k1 + k2) , (H.5)∫

dΨBD 〈ΨBD|e−βĤ(τ1) a†−k1
ak2|ΨBD〉

= (2π)3 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
δ3 (k1 + k2) , (H.6)∫

dΨBD 〈ΨBD|e−βĤ(τ1) a†−k1
a†−k2
|ΨBD〉 = 0. (H.7)

Further, introducing the normal ordering we get:∫
dΨBD 〈ΨBD| : e−βĤ(τ1) ak1ak2 : |ΨBD〉 = 0, (H.8)∫
dΨBD 〈ΨBD| : e−βĤ(τ1) ak1a

†
−k2

: |ΨBD〉

= (2π)3 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
δ3 (k1 + k2) , (H.9)
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∫
dΨBD 〈ΨBD| : e−βĤ(τ1) a†−k1

ak2 : |ΨBD〉

= (2π)3 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
δ3 (k1 + k2) , (H.10)∫

dΨBD 〈ΨBD| : e−βĤ(τ1) a†−k1
a†−k2

: |ΨBD〉 = 0. (H.11)

Consequently, the individual contributions can be computed as:∫
dΨBD 〈ΨBD|∇̂1(k1,k2; τ1, τ2; β)|ΨBD〉

= (2π)3 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
δ3(k1 + k2)

[D2(k1,k2; τ1, τ2) +D3(k1,k2; τ1, τ2)] , (H.12)∫
dΨBD 〈ΨBD|∇̂2(k1,k2; τ1, τ2; β)|ΨBD〉

= (2π)3 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
δ3(k1 + k2)

[L2(k1,k2; τ1, τ2) + L3(k1,k2; τ1, τ2)] , (H.13)

Consequently, the individual contributions can be computed in the normal ordered form

as: ∫
dΨBD 〈ΨBD|∇̂1(k1,k2; τ1, τ2; β)|ΨBD〉

= (2π)3 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
δ3(k1 + k2)

[D2(k1,k2; τ1, τ2) +D3(k1,k2; τ1, τ2)] , (H.14)∫
dΨBD 〈ΨBD|∇̂2(k1,k2; τ1, τ2; β)|ΨBD〉

= (2π)3 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
δ3(k1 + k2)

[L2(k1,k2; τ1, τ2) + L3(k1,k2; τ1, τ2)] , (H.15)
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I Computation of the trace of the four-point amplitude in micro-

canonical OTOC

Now, we will explicitly compute the numerator of the OTOC for quantum α vacua,which

is given by the following expression:

Tr

[
e−βĤ(τ1)

[
f̂(x, τ1), Π̂(x, τ2)

]2
]

(α)

=
1

| coshα|

∫
dΨBD

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

exp [i (k1 + k2 + k3 + k4) .x]

〈ΨBD|
[
V̂1(k1,k2,k3,k4; τ1, τ2; β)

−V̂2(k1,k2,k3,k4; τ1, τ2; β)

+V̂3(k1,k2,k3,k4; τ1, τ2; β)

−V̂4(k1,k2,k3,k4; τ1, τ2; β)
]
|ΨBD〉. (I.1)

Further, our aim is to compute the individual contributions which are given by:∫
dΨBD 〈ΨBD|V̂1(k1,k2,k3,k4; τ1, τ2; β)|ΨBD〉

=

∫
dΨBD 〈ΨBD|e−βĤ(τ1) T̂1(k1,k2,k3,k4; τ1, τ2)|ΨBD〉, (I.2)∫

dΨBD 〈ΨBD|V̂2(k1,k2,k3,k4; τ1, τ2; β)|ΨBD〉

=

∫
dΨBD 〈ΨBD|e−βĤ(τ1) T̂2(k1,k2,k3,k4; τ1, τ2)|ΨBD〉, (I.3)∫

dΨBD 〈ΨBD|V̂3(k1,k2,k3,k4; τ1, τ2; β)|ΨBD〉

=

∫
dΨBD 〈ΨBD|e−βĤ(τ1) T̂3(k1,k2,k3,k4; τ1, τ2)|ΨBD〉, (I.4)∫

dΨBD 〈ΨBD|V̂4(k1,k2,k3,k4; τ1, τ2; β)|ΨBD〉

=

∫
dΨBD 〈ΨBD|e−βĤ(τ1) T̂4(k1,k2,k3,k4; τ1, τ2)|ΨBD〉. (I.5)

Let us evaluate one by one each of the contributions, which are given by:∫
dΨBD 〈ΨBD|e−βĤ(τ1) ak1ak2ak3ak4|ΨBD〉 = 0, (I.6)∫
dΨBD 〈ΨBD|e−βĤ(τ1) a†−k1

ak2ak3ak4|ΨBD〉 = 0, (I.7)
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∫
dΨBD 〈ΨBD|e−βĤ(τ1) ak1a

†
−k2

ak3ak4|ΨBD〉 = 0, (I.8)∫
dΨBD 〈ΨBD|e−βĤ(τ1) a†−k1

a†−k2
ak3ak4|ΨBD〉

= (2π)6 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

]
, (I.9)∫

dΨBD 〈ΨBD|e−βĤ(τ1) ak1ak2a
†
−k3

ak4|ΨBD〉 = 0, (I.10)∫
dΨBD 〈ΨBD|e−βĤ(τ1) a†−k1

ak2a
†
−k3

ak4|ΨBD〉

= (2π)6 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

]
, ,(I.11)

∫
dΨBD 〈ΨBD|e−βĤ(τ1) ak1a

†
−k2

a†−k3
ak4|ΨBD〉

= (2π)6 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

]
, ,(I.12)∫

dΨBD 〈ΨBD|e−βĤ(τ1) a†−k1
a†−k2

a†−k3
ak4|ΨBD〉 = 0, (I.13)∫

dΨBD 〈ΨBD|e−βĤ(τ1) ak1ak2ak3a
†
−k4
|ΨBD〉 = 0, (I.14)∫

dΨBD 〈ΨBD|e−βĤ(τ1) a†−k1
ak2ak3a

†
−k4
|ΨBD〉

= (2π)6 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

]
, ,(I.15)∫

dΨBD 〈ΨBD|e−βĤ(τ1) ak1a
†
−k2

ak3a
†
−k4
|ΨBD〉

= (2π)6 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

]
, ,(I.16)∫

dΨBD 〈ΨBD|e−βĤ(τ1) a†−k1
a†−k2

ak3a
†
−k4
|ΨBD〉 = 0, (I.17)
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∫
dΨBD 〈ΨBD|e−βĤ(τ1) ak1ak2a

†
−k3

a†−k4
|ΨBD〉

= (2π)6 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

]
, ,(I.18)∫

dΨBD 〈ΨBD|e−βĤ(τ1) a†−k1
ak2a

†
−k3

a†−k4
|ΨBD〉 = 0, (I.19)∫

dΨBD 〈ΨBD|e−βĤ(τ1) ak1a
†
−k2

a†−k3
a†−k4
|ΨBD〉 = 0, (I.20)∫

dΨBD 〈ΨBD|e−βĤ(τ1) a†−k1
a†−k2

a†−k3
a†−k4
|ΨBD〉 = 0. (I.21)

Further, introducing the normal ordering we get:∫
dΨBD 〈ΨBD| : e−βĤ(τ1) ak1ak2ak3ak4 : |ΨBD〉 = 0, (I.22)∫
dΨBD 〈ΨBD| : e−βĤ(τ1) a†−k1

ak2ak3ak4 : |ΨBD〉 = 0, (I.23)∫
dΨBD 〈ΨBD| : e−βĤ(τ1) ak1a

†
−k2

ak3ak4 : |ΨBD〉 = 0, (I.24)

〈ΨBD| : e−βĤ(τ1) a†−k1
a†−k2

ak3ak4 : |ΨBD〉

= (2π)6 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

]
, (I.25)∫

dΨBD 〈ΨBD| : e−βĤ(τ1) ak1ak2a
†
−k3

ak4 : |ΨBD〉 = 0, (I.26)

∫
dΨBD 〈ΨBD| : e−βĤ(τ1) a†−k1

ak2a
†
−k3

ak4 : |ΨBD〉

= (2π)6 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

]
, ,(I.27)∫

dΨBD 〈ΨBD| : e−βĤ(τ1) ak1a
†
−k2

a†−k3
ak4 : |ΨBD〉

= (2π)6 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

]
, ,(I.28)∫

dΨBD 〈ΨBD| : e−βĤ(τ1) a†−k1
a†−k2

a†−k3
ak4 : |ΨBD〉 = 0, (I.29)
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∫
dΨBD 〈ΨBD| : e−βĤ(τ1) ak1ak2ak3a

†
−k4

: |ΨBD〉 = 0, (I.30)∫
dΨBD 〈ΨBD| : e−βĤ(τ1) a†−k1

ak2ak3a
†
−k4

: |ΨBD〉

= (2π)6 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

]
, ,(I.31)∫

dΨBD 〈ΨBD| : e−βĤ(τ1) ak1a
†
−k2

ak3a
†
−k4

: |ΨBD〉

= (2π)6 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

]
, ,(I.32)∫

dΨBD 〈ΨBD| : e−βĤ(τ1) a†−k1
a†−k2

ak3a
†
−k4

: |ΨBD〉 = 0, (I.33)∫
dΨBD 〈ΨBD| : e−βĤ(τ1) ak1ak2a

†
−k3

a†−k4
: |ΨBD〉

= (2π)6 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

]
, ,(I.34)∫

dΨBD 〈ΨBD| : e−βĤ(τ1) a†−k1
ak2a

†
−k3

a†−k4
: |ΨBD〉 = 0, (I.35)∫

dΨBD 〈ΨBD| : e−βĤ(τ1) ak1a
†
−k2

a†−k3
a†−k4

: |ΨBD〉 = 0, (I.36)∫
dΨBD 〈ΨBD| : e−βĤ(τ1) a†−k1

a†−k2
a†−k3

a†−k4
: |ΨBD〉 = 0. (I.37)

Consequently, the individual contributions can be computed as:∫
dΨBD 〈ΨBD|V̂1(k1,k2,k3,k4; τ1, τ2; β)|ΨBD〉

= (2π)6 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))

[
M4(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+M6(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+M7(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+M10(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+M11(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+M13(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}]
, (I.38)
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∫
dΨBD 〈ΨBD|V̂2(k1,k2,k3,k4; τ1, τ2; β)|ΨBD〉

= (2π)6 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
J4(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+J6(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+J7(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+J10(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+J11(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+J13(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}]
, (I.39)∫

dΨBD 〈ΨBD|V̂3(k1,k2,k3,k4; τ1, τ2; β)|ΨBD〉

= (2π)6 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
N4(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+N6(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+N7(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+N10(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+N11(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+N13(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}]
, (I.40)∫

dΨBD 〈ΨBD|V̂4(k1,k2,k3,k4; τ1, τ2; β)|ΨBD〉

= (2π)6 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
Q4(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+Q6(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+Q7(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+Q10(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+Q11(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+Q13(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}]
, (I.41)

Consequently, the individual contributions can be computed in the normal ordered form

as: ∫
dΨBD 〈ΨBD| : V̂1(k1,k2,k3,k4; τ1, τ2; β) : |ΨBD〉

= (2π)6 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
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[
M4(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+M6(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+M7(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+M10(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+M11(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+M13(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}]
, (I.42)∫

dΨBD 〈ΨBD| : V̂2(k1,k2,k3,k4; τ1, τ2; β) : |ΨBD〉

= (2π)6 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
J4(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+J6(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+J7(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+J10(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+J11(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+J13(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}]
, (I.43)∫

dΨBD 〈ΨBD| : V̂3(k1,k2,k3,k4; τ1, τ2; β) : |ΨBD〉

= (2π)6 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
N4(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+N6(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+N7(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+N10(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+N11(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+N13(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}]
, (I.44)∫

dΨBD 〈ΨBD| : V̂4(k1,k2,k3,k4; τ1, τ2; β) : |ΨBD〉

= (2π)6 exp

(
−
∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
[
Q4(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k4) δ3 (k2 + k3) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+Q6(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+Q7(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+Q10(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k3) δ3 (k2 + k4)

}
+Q11(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k2) δ3 (k3 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}
+Q13(k1,k2,k3,k4; τ1, τ2)

{
δ3 (k1 + k3) δ3 (k2 + k4) + δ3 (k1 + k4) δ3 (k2 + k3)

}]
, (I.45)
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J Time dependent two-point amplitude in micro-canonical OTOC

We define the following momentum integrated time dependent amplitude:

B(T, τ) : =

∫ L

k1=0

k2
1 dk1 P(k1,−k1;T, τ)

=

∫ L

k1=0

k2
1 dk1

[
f ∗−k1

(T )Π−k1(τ) + fk1(T )Π∗k1
(τ)

−Π∗−k1
(τ)f−k1(T )− Πk1(τ)f ∗k1

(T )
]

= (−T )
1
2
−ν(−τ)

3
2
−ν [Z(1)(τ1, τ2) + Z(2)(τ1, τ2)− Z(3)(τ1, τ2)− Z(4)(τ1, τ2)

]
, (J.1)

where we have introduced the time dependent four individual amplitudes, Z(i)(T, τ) ∀ i =

1, 2, 3, 4:

Z(1)(T, τ) :=

∫ L

k1=0

k2
1 dk1 fk1(T )Π∗k1

(τ), (J.2)

Z(2)(T, τ) =

∫ L

k1=0

k2
1 dk1 f

∗
−k1

(T )Π−k1(τ), (J.3)

Z(3)(T, τ) :=

∫ L

k1=0

k2
1 dk1 Πk1(τ)f ∗k1

(T ), (J.4)

Z(4)(T, τ) :=

∫ L

k1=0

k2
1 dk1 Π∗−k1

(τ)f−k1(T ), (J.5)

which we are going to explicitly evaluate in this Appendix.

Now before going to evaluate the individual contributions from the symmetry properties

of the momentum dependent amplitudes we have derived the following results:

Z(2)(T, τ) = (−1)−(2ν+1)Z(1)(T, τ), (J.6)

Z(4)(T, τ) = (−1)−(2ν+1)Z(3)(T, τ), (J.7)

using which the simplified form of the momentum integrated time dependent amplitude

can be written as:

B(T, τ) : = (−T )
1
2
−ν(−τ)

3
2
−ν [1 + (−1)−(2ν+1)

] (
Z(1)(T, τ)− Z(3)(T, τ)

)
. (J.8)

Consequently, the two-point OTOC can be computed as:

Y f (T, τ) = − 1

2π2
B(T, τ) = (−T )

1
2
−ν(−τ)

3
2
−ν [1 + (−1)−(2ν+1)

] (
Z(3)(T, τ)− Z(1)(T, τ)

)
. (J.9)
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The expressions for Z(1)(T, τ) + Z(3)(T, τ) is given by the following expressions:

Z(1)(T, τ) + Z(3)(T, τ) =
(A2 −B2)L−2ν

2τ 2(τ − T )3
(T 3Γ(−2ν)(−iL(T − τ))2ν

+2ντ 3Γ(−2ν)(−iL(T − τ))2ν − τ 3Γ(−2ν)(−iL(T − τ))2ν + 3Tτ 2Γ(−2ν)(−iL(T − τ))2ν

−6Tντ 2Γ(−2ν)(−iL(T − τ))2ν − 2T 3νΓ(−2ν)(−iL(T − τ))2ν − 3T 2τΓ(−2ν)(−iL(T − τ))2ν

+6T 2ντΓ(−2ν)(−iL(T − τ))2ν − 2Tτ 2Γ(3− 2ν)(−iL(T − τ))2ν

−T 3Γ(−2ν,−iL(T − τ))(−iL(T − τ))2ν − 2ντ 3Γ(−2ν,−iL(T − τ))(−iL(T − τ))2ν

+τ 3Γ(−2ν,−iL(T − τ))(−iL(T − τ))2ν − 3Tτ 2Γ(−2ν,−iL(T − τ))(−iL(T − τ))2ν

+6Tντ 2Γ(−2ν,−iL(T − τ))(−iL(T − τ))2ν + 2T 3νΓ(−2ν,−iL(T − τ))(−iL(T − τ))2ν

+3T 2τΓ(−2ν,−iL(T − τ))(−iL(T − τ))2ν − 6T 2ντΓ(−2ν,−iL(T − τ))(−iL(T − τ))2ν

−T 3Γ(1− 2ν,−iL(T − τ))(−iL(T − τ))2ν − 2ντ 3Γ(1− 2ν,−iL(T − τ))(−iL(T − τ))2ν

+τ 3Γ(1− 2ν,−iL(T − τ))(−iL(T − τ))2ν − 3Tτ 2Γ(1− 2ν,−iL(T − τ))(−iL(T − τ))2ν

+6Tντ 2Γ(1− 2ν,−iL(T − τ))(−iL(T − τ))2ν + 2T 3νΓ(1− 2ν,−iL(T − τ))(−iL(T − τ))2ν

+3T 2τΓ(1− 2ν,−iL(T − τ))(−iL(T − τ))2ν − 6T 2ντΓ(1− 2ν,−iL(T − τ))(−iL(T − τ))2ν

−2τ 3Γ(2− 2ν,−iL(T − τ))(−iL(T − τ))2ν + Tτ 2Γ(2− 2ν,−iL(T − τ))(−iL(T − τ))2ν

+2Tντ 2Γ(2− 2ν,−iL(T − τ))(−iL(T − τ))2ν + T 2τΓ(2− 2ν,−iL(T − τ))(−iL(T − τ))2ν

−2T 2ντΓ(2− 2ν,−iL(T − τ))(−iL(T − τ))2ν + 2Tτ 2Γ(3− 2ν,−iL(T − τ))(−iL(T − τ))2ν

−T 3(iL(T − τ))2νΓ(−2ν) + 2T 3ν(iL(T − τ))2νΓ(−2ν)

−2ν(iL(T − τ))2ντ 3Γ(−2ν) + (iL(T − τ))2ντ 3Γ(−2ν)− 3T (iL(T − τ))2ντ 2Γ(−2ν)

+6Tν(iL(T − τ))2ντ 2Γ(−2ν) + 3T 2(iL(T − τ))2ντΓ(−2ν)

−6T 2ν(iL(T − τ))2ντΓ(−2ν) + (2ν − 1)
(
(iL(T − τ))2ν − (−iL(T − τ))2ν

)
(T − τ)3Γ(1− 2ν)

+
(
(−iL(T − τ))2ν − (iL(T − τ))2ν

)
(T − τ)τ(2νT − T − 2τ)Γ(2− 2ν)

+2T (iL(T − τ))2ντ 2Γ(3− 2ν) + T 3(iL(T − τ))2νΓ(−2ν, iL(T − τ))

−2T 3ν(iL(T − τ))2νΓ(−2ν, iL(T − τ)) + 2ν(iL(T − τ))2ντ 3Γ(−2ν, iL(T − τ))

−(iL(T − τ))2ντ 3Γ(−2ν, iL(T − τ)) + 3T (iL(T − τ))2ντ 2Γ(−2ν, iL(T − τ))

−6Tν(iL(T − τ))2ντ 2Γ(−2ν, iL(T − τ))− 3T 2(iL(T − τ))2ντΓ(−2ν, iL(T − τ))

+6T 2ν(iL(T − τ))2ντΓ(−2ν, iL(T − τ)) + T 3(iL(T − τ))2νΓ(1− 2ν, iL(T − τ))

−2T 3ν(iL(T − τ))2νΓ(1− 2ν, iL(T − τ)) + 2ν(iL(T − τ))2ντ 3Γ(1− 2ν, iL(T − τ))

−(iL(T − τ))2ντ 3Γ(1− 2ν, iL(T − τ)) + 3T (iL(T − τ))2ντ 2Γ(1− 2ν, iL(T − τ))

−6Tν(iL(T − τ))2ντ 2Γ(1− 2ν, iL(T − τ))− 3T 2(iL(T − τ))2ντΓ(1− 2ν, iL(T − τ))

+6T 2ν(iL(T − τ))2ντΓ(1− 2ν, iL(T − τ)) + 2(iL(T − τ))2ντ 3Γ(2− 2ν, iL(T − τ))

−T (iL(T − τ))2ντ 2Γ(2− 2ν, iL(T − τ))− 2Tν(iL(T − τ))2ντ 2Γ(2− 2ν, iL(T − τ))

−T 2(iL(T − τ))2ντΓ(2− 2ν, iL(T − τ)) + 2T 2ν(iL(T − τ))2ντΓ(2− 2ν, iL(T − τ))

−2T (iL(T − τ))2ντ 2Γ(3− 2ν, iL(T − τ))). (J.10)
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K Time dependent four-point amplitudes in micro-canonical OTOC

We define the following momenta integrated time dependent amplitudes:

I1(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 2E4(k1,k2,−k2,−k1; τ1, τ2), (K.1)

I2(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 2E13(k1,k2,−k2,−k1; τ1, τ2), (K.2)

I3(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E6(k1,k2,−k2,−k1; τ1, τ2), (K.3)

I4(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E7(k1,k2,−k1,−k2; τ1, τ2), (K.4)

I5(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E10(k1,k2,−k1,−k2; τ1, τ2), (K.5)

I6(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E11(k1,k2,−k2,−k1; τ1, τ2), (K.6)

I7(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E7(k1,−k1,k2,−k2; τ1, τ2), (K.7)

I8(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E10(k1,−k1,k2,−k2; τ1, τ2), (K.8)

I9(τ1, τ2) :=

∫ L

k1=0

k2
1 dk1

∫ L

k2=0

k2
2 dk2 E10(k1,−k1,k2,−k2; τ1, τ2). (K.9)

From the symmetry properties of the momentum dependent amplitudes we have derived

the following results:

I2(τ1, τ2) = (−1)4νI1(τ1, τ2) with weight w2 = 2, (K.10)

I3(τ1, τ2) = (−1)2νI1(τ1, τ2) with weight w3 = 1, (K.11)

I4(τ1, τ2) = (−1)2νI1(τ1, τ2) with weight w4 = 1, (K.12)

I5(τ1, τ2) = (−1)2νI1(τ1, τ2) with weight w5 = 1, (K.13)

I6(τ1, τ2) = (−1)2νI1(τ1, τ2) with weight w6 = 1, (K.14)

I7(τ1, τ2) = (−1)2νI1(τ1, τ2) with weight w7 = 1, (K.15)

I8(τ1, τ2) = (−1)2νI1(τ1, τ2) with weight w8 = 1, (K.16)

I9(τ1, τ2) = (−1)2νI1(τ1, τ2) with weight w9 = 1. (K.17)

The details of the all of these regularised four-point integral computations we have given in

the following subsections. These computations are useful to construct the final expression

for the cosmological OTOC. Also the detailed structure of these integrals in general, as

well as super horizon and sub horizon limiting regions are useful to physically understand
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the role of these integrals to fix the out of equilibrium behaviour of quantum mechanical

correlations in the context of Cosmology.

K.1 Computation of I1(τ1, τ2)

I1(T, τ) =

∫ L

k1=0

k2
1dk1

∫ L

k2=0

k2
2dk2E4(k1,k2,−k2,−k1;T, τ) =

(−T )1−2ν(−τ)3−2ν

(−1)4ν

4∑
i=1

X
(i)
1 (T, τ) , (K.18)

where we define four time dependent functions, X
(i)
1 (T, τ) ∀ i = 1, 2, 3, 4, which are given

by the following expressions:

X
(1)
1 =

L−4ν

4τ 4
(B2(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

−2B2ν(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

+
B2τ(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

τ − T

+
2B2Tντ(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−2B2τ 2(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−B
2Tτ(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−2B2Tτ 2(Γ(3− 2ν)− Γ(3− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)3

−2B2ντ(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

τ − T
+B2(−i)LT (Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν−1

+2B2iLTν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν−1

+A2(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))

−2A2ν(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))

−AB(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

+2ABν(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

−AB(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+2ABν(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+A2iLT (iL(T − τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

−2iA2LTν(iL(T − τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

+
A2(iL(T − τ))2ντ(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

τ − T
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+
2ABTν(−iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

T + τ

+
2ABντ(−iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

T + τ

+ABiLT (−iL(T + τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

+ABiLτ(−iL(T + τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

+
2ABTν(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

+
2ABντ(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

+
2A2Tν(iL(T − τ))2ντ(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

+
2ABτ 2(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABTντ(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABτ 2(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

+
2ABTντ(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

+
2ABTτ 2(−iL(T + τ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T + τ)))

(T + τ)3

+
2ABTτ 2(iL(T + τ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T + τ)))

(T + τ)3

−2A2(iL(T − τ))2ντ 2(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

−A
2T (iL(T − τ))2ντ(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

−2A2T (iL(T − τ))2ντ 2(Γ(3− 2ν)− Γ(3− 2ν, iL(T − τ)))

(T − τ)3

−2A2ν(iL(T − τ))2ντ(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

τ − T

−ABT (iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

−ABτ(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

−ABTτ(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

−ABTτ(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2
)
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(A2(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

−2A2ν(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

+
A2τ(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

τ − T

+
2A2Tντ(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−2A2τ 2(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−A
2Tτ(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−2A2Tτ 2(Γ(3− 2ν)− Γ(3− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)3

−2A2ντ(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

τ − T
+A2(−i)LT (Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν−1

+2A2iLTν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν−1

+B2(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))

−2B2ν(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))

−AB(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

+2ABν(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

−AB(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+2ABν(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+B2iLT (iL(T − τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

−2iB2LTν(iL(T − τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

+
B2(iL(T − τ))2ντ(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

τ − T

+
2ABTν(−iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

T + τ

+
2ABντ(−iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

T + τ

+ABiLT (−iL(T + τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

+ABiLτ(−iL(T + τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

+
2ABTν(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

+
2ABντ(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ
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+
2B2Tν(iL(T − τ))2ντ(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

+
2ABτ 2(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABTντ(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABτ 2(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

+
2ABTντ(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

+
2ABTτ 2(−iL(T + τ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T + τ)))

(T + τ)3

+
2ABTτ 2(iL(T + τ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T + τ)))

(T + τ)3

−2B2(iL(T − τ))2ντ 2(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

−B
2T (iL(T − τ))2ντ(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

−2B2T (iL(T − τ))2ντ 2(Γ(3− 2ν)− Γ(3− 2ν, iL(T − τ)))

(T − τ)3

−2B2ν(iL(T − τ))2ντ(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

τ − T

−ABT (iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

−ABτ(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

−ABTτ(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

−ABTτ(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2
) (K.19)

X
(1)
2 =

L−2ν

128τ 4
(−8A2L4T 2

ν − 2
− 8A2L2

ν − 1
+
AB4ν(ν − 3)Γ(4− 2ν) ((−iLT )2ν + (iLT )2ν)

(ν − 1)T 2

−AB4ν+1(−iLT )2νΓ(2− 2ν,−2iLT )

T 2
− AB4ν+1(−iLT )2νΓ(3− 2ν,−2iLT )

T 2

−AB4ν(−iLT )2νΓ(4− 2ν,−2iLT )

T 2
− AB4ν+1(iLT )2νΓ(2− 2ν, 2iLT )

T 2
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−AB4ν+1(iLT )2νΓ(3− 2ν, 2iLT )

T 2
− AB4ν(iLT )2νΓ(4− 2ν, 2iLT )

T 2
− 8B2L4T 2

ν − 2
− 8B2L2

ν − 1
)

(12A2τ 2L−2ν + 12B2τ 2L−2ν − 4A2ντ 2L−2ν − 4B2ντ 2L−2ν − 5A2τ 2L−2ν

ν
− 5B2τ 2L−2ν

ν

−A
2L−2(ν+1)

ν + 1
− B2L−2(ν+1)

ν + 1
− 4A2ν2L−2(ν+1)

ν + 1
− 4B2ν2L−2(ν+1)

ν + 1
+

4A2νL−2(ν+1)

ν + 1
+

4B2νL−2(ν+1)

ν + 1

−4A2τ 4L2−2ν

ν − 1
− 4B2τ 4L2−2ν

ν − 1
+

22ν+1AB(11ν − 5)τ 2 ((−iτ)2ν + (iτ)2ν) Γ(−2ν)

ν + 1

+
22ν+1ABντ 2 ((−iτ)2ν + (iτ)2ν) Γ(1− 2ν)

ν + 1
+ 3 22ν+1ABτ 2(−iτ)2νΓ(−2ν,−2iLτ)

−22ν+3ABν2(−iτ)2ντ 2Γ(−2ν,−2iLτ)− 22ν+3ABν(−iτ)2ντ 2Γ(−2ν,−2iLτ)

+3 22ν+1ABτ 2(iτ)2νΓ(−2ν, 2iLτ)− 22ν+3ABν2(iτ)2ντ 2Γ(−2ν, 2iLτ)

−22ν+3ABν(iτ)2ντ 2Γ(−2ν, 2iLτ) + 22ν+5ABντ 2(−iτ)2νΓ(−2(ν + 1),−2iLτ)

−22ν+5ABν2(−iτ)2ντ 2Γ(−2(ν + 1),−2iLτ)− 22ν+3AB(−iτ)2ντ 2Γ(−2(ν + 1),−2iLτ)

+22ν+5ABντ 2(iτ)2νΓ(−2(ν + 1), 2iLτ)− 22ν+5ABν2(iτ)2ντ 2Γ(−2(ν + 1), 2iLτ)

−22ν+3AB(iτ)2ντ 2Γ(−2(ν + 1), 2iLτ) + 22ν+5ABντ 2(−iτ)2νΓ(−2ν − 1,−2iLτ)

−22ν+5ABν2(−iτ)2ντ 2Γ(−2ν − 1,−2iLτ)− 22ν+3AB(−iτ)2ντ 2Γ(−2ν − 1,−2iLτ)

+22ν+5ABντ 2(iτ)2νΓ(−2ν − 1, 2iLτ)− 22ν+5ABν2(iτ)2ντ 2Γ(−2ν − 1, 2iLτ)

−22ν+3AB(iτ)2ντ 2Γ(−2ν − 1, 2iLτ) + 4ν+1ABτ 2(−iτ)2νΓ(1− 2ν,−2iLτ)

−22ν+3ABν(−iτ)2ντ 2Γ(1− 2ν,−2iLτ) + 4ν+1ABτ 2(iτ)2νΓ(1− 2ν, 2iLτ)

−22ν+3ABν(iτ)2ντ 2Γ(1− 2ν, 2iLτ)− 22ν+1AB(−iτ)2ντ 2Γ(2− 2ν,−2iLτ)

−22ν+1AB(iτ)2ντ 2Γ(2− 2ν, 2iLτ)) (K.20)

X
(1)
3 = − L−2ν

128τ 4
(−8A2L2−2ν

ν − 1
− 8A2T 2L4−2ν

ν − 2
− AB4ν+1(−iT )2νΓ(2− 2ν,−2iLT )

T 2

−AB4ν+1(−iT )2νΓ(3− 2ν,−2iLT )

T 2
− AB4ν(−iT )2νΓ(4− 2ν,−2iLT )

T 2

−AB4ν+1(iT )2νΓ(2− 2ν, 2iLT )

T 2
− AB4ν+1(iT )2νΓ(3− 2ν, 2iLT )

T 2

−AB4ν(iT )2νΓ(4− 2ν, 2iLT )

T 2
+
AB4ν(ν − 3)Γ(4− 2ν) ((−iT )2ν + (iT )2ν)

(ν − 1)T 2

−8B2L2−2ν

ν − 1
− 8B2T 2L4−2ν

ν − 2
)(−22ν+3ABν2τ 2Γ(−2ν,−2iLτ)(−iLτ)2ν

+3 22ν+1ABτ 2Γ(−2ν,−2iLτ)(−iLτ)2ν − 22ν+3ABντ 2Γ(−2ν,−2iLτ)(−iLτ)2ν

−22ν+5ABν2τ 2Γ(−2(ν + 1),−2iLτ)(−iLτ)2ν − 22ν+3ABτ 2Γ(−2(ν + 1),−2iLτ)(−iLτ)2ν

+22ν+5ABντ 2Γ(−2(ν + 1),−2iLτ)(−iLτ)2ν − 22ν+5ABν2τ 2Γ(−2ν − 1,−2iLτ)(−iLτ)2ν
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−22ν+3ABτ 2Γ(−2ν − 1,−2iLτ)(−iLτ)2ν + 22ν+5ABντ 2Γ(−2ν − 1,−2iLτ)(−iLτ)2ν

+4ν+1ABτ 2Γ(1− 2ν,−2iLτ)(−iLτ)2ν − 22ν+3ABντ 2Γ(1− 2ν,−2iLτ)(−iLτ)2ν

−22ν+1ABτ 2Γ(2− 2ν,−2iLτ)(−iLτ)2ν + 12A2τ 2 + 12B2τ 2 − 4A2ντ 2 − 4B2ντ 2

+
22ν+1AB(11ν − 5)τ 2 ((−iLτ)2ν + (iLτ)2ν) Γ(−2ν)

ν + 1
+

22ν+1ABντ 2 ((−iLτ)2ν + (iLτ)2ν) Γ(1− 2ν)

ν + 1

−22ν+3ABν2τ 2(iLτ)2νΓ(−2ν, 2iLτ) + 3 22ν+1ABτ 2(iLτ)2νΓ(−2ν, 2iLτ)

−22ν+3ABντ 2(iLτ)2νΓ(−2ν, 2iLτ)− 22ν+5ABν2τ 2(iLτ)2νΓ(−2(ν + 1), 2iLτ)

−22ν+3ABτ 2(iLτ)2νΓ(−2(ν + 1), 2iLτ) + 22ν+5ABντ 2(iLτ)2νΓ(−2(ν + 1), 2iLτ)

−22ν+5ABν2τ 2(iLτ)2νΓ(−2ν − 1, 2iLτ)− 22ν+3ABτ 2(iLτ)2νΓ(−2ν − 1, 2iLτ)

+22ν+5ABντ 2(iLτ)2νΓ(−2ν − 1, 2iLτ) + 4ν+1ABτ 2(iLτ)2νΓ(1− 2ν, 2iLτ)

−22ν+3ABντ 2(iLτ)2νΓ(1− 2ν, 2iLτ)− 22ν+1ABτ 2(iLτ)2νΓ(2− 2ν, 2iLτ)

−4A2L2τ 4

ν − 1
− 4B2L2τ 4

ν − 1
− 5A2τ 2

ν
− 5B2τ 2

ν
− A2

L2(ν + 1)
− B2

L2(ν + 1)

− 4A2ν2

L2(ν + 1)
− 4B2ν2

L2(ν + 1)
+

4A2ν

L2(ν + 1)
+

4B2ν

L2(ν + 1)
) (K.21)

X
(1)
4 = −L

−4ν

4τ 4
(B2(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

−2B2ν(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

+
B2τ(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

τ − T

+
2B2Tντ(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−2B2τ 2(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−B
2Tτ(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−2B2Tτ 2(Γ(3− 2ν)− Γ(3− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)3

−2B2ντ(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

τ − T
+B2(−i)LT (Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν−1

+2B2iLTν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν−1

+A2(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))
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−2A2ν(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))

−AB(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

+2ABν(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

−AB(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+2ABν(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+A2iLT (iL(T − τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

−2iA2LTν(iL(T − τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

+
A2(iL(T − τ))2ντ(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

τ − T

+
2ABTν(−iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

T + τ

+
2ABντ(−iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

T + τ

+ABiLT (−iL(T + τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

+ABiLτ(−iL(T + τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

+
2ABTν(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

+
2ABντ(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

+
2A2Tν(iL(T − τ))2ντ(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

+
2ABτ 2(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABTντ(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABτ 2(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

+
2ABTντ(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

+
2ABTτ 2(−iL(T + τ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T + τ)))

(T + τ)3

+
2ABTτ 2(iL(T + τ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T + τ)))

(T + τ)3

−2A2(iL(T − τ))2ντ 2(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

−A
2T (iL(T − τ))2ντ(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2
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−2A2T (iL(T − τ))2ντ 2(Γ(3− 2ν)− Γ(3− 2ν, iL(T − τ)))

(T − τ)3

−2A2ν(iL(T − τ))2ντ(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

τ − T

−ABT (iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

−ABτ(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

−ABTτ(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

−ABTτ(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2
)

(A2(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

−2A2ν(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

+
A2τ(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

τ − T

+
2A2Tντ(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−2A2τ 2(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−A
2Tτ(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

−2A2Tτ 2(Γ(3− 2ν)− Γ(3− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)3

−2A2ντ(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

τ − T
+A2(−i)LT (Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν−1

+2A2iLTν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T − τ)))(−iL(T − τ))2ν−1

+B2(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))

−2B2ν(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))

−AB(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

+2ABν(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

−AB(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+2ABν(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+B2iLT (iL(T − τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

−2iB2LTν(iL(T − τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))
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+
B2(iL(T − τ))2ντ(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

τ − T

+
2ABTν(−iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

T + τ

+
2ABντ(−iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

T + τ

+ABiLT (−iL(T + τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

+ABiLτ(−iL(T + τ))2ν−1(Γ(1− 2ν)− Γ(1− 2ν,−iL(T + τ)))

+
2ABTν(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

+
2ABντ(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

+
2B2Tν(iL(T − τ))2ντ(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

+
2ABτ 2(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABTντ(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABτ 2(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

+
2ABTντ(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

+
2ABTτ 2(−iL(T + τ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T + τ)))

(T + τ)3

+
2ABTτ 2(iL(T + τ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T + τ)))

(T + τ)3

−2B2(iL(T − τ))2ντ 2(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

−B
2T (iL(T − τ))2ντ(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

−2B2T (iL(T − τ))2ντ 2(Γ(3− 2ν)− Γ(3− 2ν, iL(T − τ)))

(T − τ)3

−2B2ν(iL(T − τ))2ντ(Γ(1− 2ν)− Γ(1− 2ν, iL(T − τ)))

τ − T

−ABT (iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

−ABτ(iL(T + τ))2ν(Γ(1− 2ν)− Γ(1− 2ν, iL(T + τ)))

T + τ

−ABTτ(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2
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−ABTτ(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2
) (K.22)

In the super-horizon limit we get the following simplified results:

X
(1)
1 =

L−4ν

4τ 4

(
B2(Γ(−2ν)− Γ(−2ν,−iL(T − τ))

−2ν(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

−2B2τ 2(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

+A2(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ))− 2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ))))

−AB(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ))

−2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ))))

−AB(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ))

−2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ))))

+
2ABτ 2(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABτ 2(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

−2A2(iL(T − τ))2ντ 2(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

)
(
A2(Γ(−2ν)− Γ(−2ν,−iL(T − τ))

−2ν(Γ(−2ν)− Γ(−2ν,−iL(T − τ))))(−iL(T − τ))2ν

−2A2τ 2(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

+B2(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ))

−2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ))))

−AB(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

+2ABν(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

−AB(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+2ABν(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+
2ABτ 2(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABτ 2(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

−2B2(iL(T − τ))2ντ 2(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

)
(K.23)
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X
(2)
1 =

L−2ν

16τ 4

(
−4νAB(Γ(2− 2ν)− Γ(2− 2ν,−2iLT ))(−iLT )2ν

T 2

−4νAB(iLT )2ν(Γ(2− 2ν)− Γ(2− 2ν, 2iLT ))

T 2
+

2A2L2

ν − 1
+

2B2L2

ν − 1

)
(
−4(A2 +B2)τ 2L−2ν +

2(A2 +B2)τ 2L−2ν

ν
+

2(A2 +B2)ν2L−2(ν+1)

ν + 1

−2(A2 +B2)νL−2(ν+1)

ν + 1
+

(A2 +B2)L−2(ν+1)

2(ν + 1)
+

2(A2 +B2)τ 4L2−2ν

ν − 1

+4ν+1ABτ 2(−iτ)2ν(Γ(−2ν)− Γ(−2ν,−2iLτ))

−22ν+3ABν(−iτ)2ντ 2(Γ(−2ν)− Γ(−2ν,−2iLτ))

+4ν+1ABτ 2(iτ)2ν(Γ(−2ν)− Γ(−2ν, 2iLτ))

−22ν+3ABν(iτ)2ντ 2(Γ(−2ν)− Γ(−2ν, 2iLτ))

+4ν+2ABντ 2(−iτ)2ν(Γ(−2(ν + 1))− Γ(−2(ν + 1),−2iLτ))

+4ν+2ABν2(−iτ)2(ν+1)(Γ(−2(ν + 1))− Γ(−2(ν + 1),−2iLτ))

+4ν+1AB(−iτ)2(ν+1)(Γ(−2(ν + 1))− Γ(−2(ν + 1),−2iLτ))

+4ν+2ABντ 2(iτ)2ν(Γ(−2(ν + 1))− Γ(−2(ν + 1), 2iLτ))

+4ν+2ABν2(iτ)2(ν+1)(Γ(−2(ν + 1))− Γ(−2(ν + 1), 2iLτ))

+4ν+1AB(iτ)2(ν+1)(Γ(−2(ν + 1))− Γ(−2(ν + 1), 2iLτ))

−4νAB(−iτ)2ντ 2(Γ(2− 2ν)− Γ(2− 2ν,−2iLτ))

−4νAB(iτ)2ντ 2(Γ(2− 2ν)− Γ(2− 2ν, 2iLτ))
)

(K.24)

X
(3)
1 = −L

−2ν

8τ 4

(
4(A2 +B2)ν2

L2(ν + 1)
+

4(A2 +B2)L2τ 4

ν − 1
+

(A2 +B2)

L2(ν + 1)
− 4(A2 +B2)ν

L2(ν + 1)
+

4(A2 +B2)τ 2

ν

−8(A2 +B2)τ 2 + AB22ν+5ν2τ 2(−iLτ)2νΓ(−2(ν + 1),−2iLτ)

+AB22ν+5ν2τ 2(iLτ)2νΓ(−2(ν + 1), 2iLτ)

−AB22ν+1 (2ν3 + 7ν2 + 9ν + 1) τ 2Γ(2− 2ν) ((−iLτ)2ν + (iLτ)2ν)

ν(ν + 1)(2ν + 1)

+AB
(
−22ν+3

)
τ 2(−iLτ)2νΓ(−2ν,−2iLτ) + AB4ν+2ντ 2(−iLτ)2νΓ(−2ν,−2iLτ)

+AB22ν+3τ 2(−iLτ)2νΓ(−2(ν + 1),−2iLτ)− AB22ν+5ντ 2(−iLτ)2νΓ(−2(ν + 1),−2iLτ)

+AB22ν+1τ 2(−iLτ)2νΓ(2− 2ν,−2iLτ)− AB22ν+3τ 2(iLτ)2νΓ(−2ν, 2iLτ)

+AB4ν+2ντ 2(iLτ)2νΓ(−2ν, 2iLτ) + AB22ν+3τ 2(iLτ)2νΓ(−2(ν + 1), 2iLτ)

−AB22ν+5ντ 2(iLτ)2νΓ(−2(ν + 1), 2iLτ) + AB22ν+1τ 2(iLτ)2νΓ(2− 2ν, 2iLτ)
)(

(A2 +B2)L2−2ν

2(ν − 1)
+ AB4ν−1(−iT )2(ν−1)(Γ(2− 2ν)− Γ(2− 2ν,−2iLT ))

+AB4ν−1(iT )2(ν−1)(Γ(2− 2ν)− Γ(2− 2ν, 2iLT ))
)

(K.25)
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X
(4)
1 = −L

−4ν

4τ 4

(
B2(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

−2B2ν(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

−2B2τ 2(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

+A2(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))

−2A2ν(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))

−AB(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

+2ABν(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

−AB(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+2ABν(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+
2ABτ 2(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABτ 2(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

−2A2(iL(T − τ))2ντ 2(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

)
(
A2(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

−2A2ν(Γ(−2ν)− Γ(−2ν,−iL(T − τ)))(−iL(T − τ))2ν

−2A2τ 2(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))(−iL(T − τ))2ν

(T − τ)2

+B2(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))

−2B2ν(iL(T − τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T − τ)))

−AB(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

+2ABν(−iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν,−iL(T + τ)))

−AB(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+2ABν(iL(T + τ))2ν(Γ(−2ν)− Γ(−2ν, iL(T + τ)))

+
2ABτ 2(−iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(T + τ)2

+
2ABτ 2(iL(T + τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(T + τ)2

−2B2(iL(T − τ))2ντ 2(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

)
(K.26)

In the sub-horizon limit we get the following simplified results:
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X
(1)
1 =

L−4νT 2

4τ 2

(
A2(iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

+
2A2τ(iL(T − τ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T − τ)))

(T − τ)3

−2A2ν(iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

+
AB(−iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(τ + T )2

+
AB(iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(τ + T )2

−2ABν(−iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(τ + T )2

−2ABν(iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(τ + T )2

−2ABτ(−iL(τ + T ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T + τ)))

(τ + T )3

−2ABτ(iL(τ + T ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T + τ)))

(τ + T )3

+
B2(−iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))

(T − τ)2

+
2B2τ(−iL(T − τ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T − τ)))

(T − τ)3

−2B2ν(−iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))

(T − τ)2

)
(
A2(−iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))

(T − τ)2

+
2A2τ(−iL(T − τ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T − τ)))

(T − τ)3

−2A2ν(−iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))

(T − τ)2

+
AB(−iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(τ + T )2

+
AB(iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(τ + T )2

−2ABν(−iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(τ + T )2

−2ABν(iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(τ + T )2

177

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2020                   doi:10.20944/preprints202007.0038.v1

Peer-reviewed version available at Symmetry 2020, 12, 1527; doi:10.3390/sym12091527

https://doi.org/10.20944/preprints202007.0038.v1
https://doi.org/10.3390/sym12091527


−2ABτ(−iL(τ + T ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T + τ)))

(τ + T )3

−2ABτ(iL(τ + T ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T + τ)))

(τ + T )3

+
B2(iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

+
2B2τ(iL(T − τ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T − τ)))

(T − τ)3

−2B2ν(iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2
) (K.27)

X
(2)
1 = − L−4νT 2

128(ν − 1)ντ 2
(−8A2L4

ν − 2
+
AB4ν(−iLT )2ν(Γ(4− 2ν)− Γ(4− 2ν,−2iLT ))

T 4

+
AB4ν(iLT )2ν(Γ(4− 2ν)− Γ(4− 2ν, 2iLT ))

T 4
− 8B2L4

ν − 2
)

(4A2L2ντ 2 + 4A2ν3 − 8A2ν2 + 5A2ν − A2 + AB22ν+3ν4L2ν(−iτ)2νΓ(−2ν,−2iLτ)

+AB22ν+3ν4L2ν(iτ)2νΓ(−2ν, 2iLτ)− AB4ν+2ν3L2ν(−iτ)2νΓ(−2ν,−2iLτ)

−AB4ν+2ν3L2ν(iτ)2νΓ(−2ν, 2iLτ) + AB22ν+3ν3L2ν(iτ)2νΓ(1− 2ν, 2iLτ)

+5AB22ν+1ν2L2ν(−iτ)2νΓ(−2ν,−2iLτ) + 5AB22ν+1ν2L2ν(iτ)2νΓ(−2ν, 2iLτ)

+AB4ν+1ν
(
2ν2 − 3ν + 1

)
L2ν(−iτ)2νΓ(1− 2ν,−2iLτ)

−3AB4ν+1ν2L2ν(iτ)2νΓ(1− 2ν, 2iLτ) + AB22ν+1ν2L2ν(−iτ)2νΓ(2− 2ν,−2iLτ)

+AB22ν+1ν2L2ν(iτ)2νΓ(2− 2ν, 2iLτ) + AB4ν(ν − 1)L2ν
(
(−iτ)2ν + (iτ)2ν

)
Γ(2− 2ν)

−AB22ν+1νL2ν(−iτ)2νΓ(−2ν,−2iLτ)− AB22ν+1νL2ν(iτ)2νΓ(−2ν, 2iLτ)

+AB4ν+1νL2ν(iτ)2νΓ(1− 2ν, 2iLτ)− AB22ν+1νL2ν(−iτ)2νΓ(2− 2ν,−2iLτ)

−AB22ν+1νL2ν(iτ)2νΓ(2− 2ν, 2iLτ) + 4B2L2ντ 2 + 4B2ν3 − 8B2ν2 + 5B2ν −B2) (K.28)

X
(3)
1 = −T

2L−2ν

8τ 2

(
A2L4−2ν

4− 2ν
+
AB4ν−2(−iT )2ν(Γ(4− 2ν)− Γ(4− 2ν,−2iLT ))

T 4

+
AB4ν−2(iT )2ν(Γ(4− 2ν)− Γ(4− 2ν, 2iLT ))

T 4
+
B2L4−2ν

4− 2ν

)
(−4A2L2τ 2

ν − 1
− 4A2ν − A2

ν
+ 4A2 + AB

(
−22ν+3

)
ν2(−iLτ)2νΓ(−2ν,−2iLτ)

−AB22ν+3ν2(iLτ)2νΓ(−2ν, 2iLτ)− AB4νΓ(2− 2ν) ((−iLτ)2ν + (iLτ)2ν)

ν
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−AB22ν+1(−iLτ)2νΓ(−2ν,−2iLτ) + AB22ν+3ν(−iLτ)2νΓ(−2ν,−2iLτ)

−AB4ν+1(2ν − 1)(−iLτ)2νΓ(1− 2ν,−2iLτ)− AB22ν+1(−iLτ)2νΓ(2− 2ν,−2iLτ)

−AB22ν+1(iLτ)2νΓ(−2ν, 2iLτ) + AB22ν+3ν(iLτ)2νΓ(−2ν, 2iLτ)

+AB4ν+1(iLτ)2νΓ(1− 2ν, 2iLτ)− AB22ν+3ν(iLτ)2νΓ(1− 2ν, 2iLτ)

−AB22ν+1(iLτ)2νΓ(2− 2ν, 2iLτ)− 4B2L2τ 2

ν − 1
− 4B2ν − B2

ν
+ 4B2) (K.29)

X
(4)
1 = −T

2L−4ν

4τ 2

(
A2(iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

+
2A2τ(iL(T − τ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T − τ)))

(T − τ)3

−2A2ν(iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

+
AB(−iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(τ + T )2

+
AB(iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(τ + T )2

−2ABν(−iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(τ + T )2

−2ABν(iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(τ + T )2

−2ABτ(−iL(τ + T ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T + τ)))

(τ + T )3

−2ABτ(iL(τ + T ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T + τ)))

(τ + T )3

+
B2(−iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))

(T − τ)2

+
2B2τ(−iL(T − τ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T − τ)))

(T − τ)3

−2B2ν(−iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))

(T − τ)2

)
(
A2(−iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))

(T − τ)2

+
2A2τ(−iL(T − τ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T − τ)))

(T − τ)3
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−2A2ν(−iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T − τ)))

(T − τ)2

+
AB(−iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(τ + T )2

+
AB(iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(τ + T )2

−2ABν(−iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν,−iL(T + τ)))

(τ + T )2

−2ABν(iL(τ + T ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T + τ)))

(τ + T )2

−2ABτ(−iL(τ + T ))2ν(Γ(3− 2ν)− Γ(3− 2ν,−iL(T + τ)))

(τ + T )3

−2ABτ(iL(τ + T ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T + τ)))

(τ + T )3

+
B2(iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2

+
2B2τ(iL(T − τ))2ν(Γ(3− 2ν)− Γ(3− 2ν, iL(T − τ)))

(T − τ)3

−2B2ν(iL(T − τ))2ν(Γ(2− 2ν)− Γ(2− 2ν, iL(T − τ)))

(T − τ)2
) (K.30)

Here we have introduced two factors A and B which are defined as:

A = 2ν−
3
2

1√
2

∣∣∣∣∣ Γ(ν)

Γ
(

3
2

)∣∣∣∣∣ exp

(
−i
{
π

2

(
ν +

1

2

)})
C1, (K.31)

B = 2ν−
3
2

1√
2

∣∣∣∣∣ Γ(ν)

Γ
(

3
2

)∣∣∣∣∣ exp

(
i

{
π

2

(
ν +

1

2

)})
C2. (K.32)

Here for general α vacua we choose C1 = coshα and C2 = sinhα and for α = 0 we get

C1 = 1 and C2 = 0, which is the result for Bunch Davies vacuum state.

K.2 Computation of I2(τ1, τ2)

I2(T, τ) =

∫ L

k1=0

k2
1dk1

∫ L

k2=0

k2
2dk2E13(k1,k2,−k1,−k2;T, τ) = (−T )1−2ν(−τ)3−2ν

4∑
i=1

X
(i)
2 (T, τ) , (K.33)

where we define four time dependent functions, X
(i)
2 (T, τ) ∀ i = 1, 2, 3, 4, which are given
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by the following expressions:

X
(1)
2 = X

(1)
1 , (K.34)

X
(2)
2 = X

(2)
1 , (K.35)

X
(3)
2 = X

(2)
1 , (K.36)

X
(4)
2 = X

(4)
1 . (K.37)

Consequently, one can write:

I2(T, τ) = (−T )1−2ν(−τ)3−2ν

4∑
i=1

X
(i)
1 (T, τ) = (−1)4νI1(T, τ) . (K.38)

K.3 Computation of I3(τ1, τ2)

I3(T, τ) =

∫ L

k1=0

k2
1dk1

∫ L

k2=0

k2
2dk2E6(k1,k2,−k2,−k1;T, τ) =

(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
3 (T, τ) , (K.39)

where we define four time dependent functions, X
(i)
3 (T, τ) ∀ i = 1, 2, 3, 4, which are given

by the following expressions:

X
(1)
3 = X

(1)
1 , (K.40)

X
(2)
3 = X

(2)
1 , (K.41)

X
(3)
3 = X

(2)
1 , (K.42)

X
(4)
3 = X

(4)
1 . (K.43)

Consequently, one can write:

I3(T, τ) =
(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
1 (T, τ) = (−1)2νI1(T, τ) . (K.44)

K.4 Computation of I4(τ1, τ2)

I4(T, τ) =

∫ L

k1=0

k2
1dk1

∫ L

k2=0

k2
2dk2E7(k1,k2,−k1,−k2;T, τ) =

(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
4 (T, τ) , (K.45)

where we define four time dependent functions, X
(i)
4 (T, τ) ∀ i = 1, 2, 3, 4, which are given
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by the following expressions:

X
(1)
4 = X

(1)
1 , (K.46)

X
(2)
4 = X

(2)
1 , (K.47)

X
(3)
4 = X

(2)
1 , (K.48)

X
(4)
4 = X

(4)
1 . (K.49)

Consequently, one can write:

I4(T, τ) =
(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
1 (T, τ) = (−1)2νI1(T, τ) . (K.50)

K.5 Computation of I5(τ1, τ2)

I5(T, τ) =

∫ L

k1=0

k2
1dk1

∫ L

k2=0

k2
2dk2E10(k1,k2,−k1,−k2;T, τ) =

(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
5 (T, τ) , (K.51)

where we define four time dependent functions, X
(i)
5 (T, τ) ∀ i = 1, 2, 3, 4, which are given

by the following expressions:

X
(1)
5 = X

(1)
1 , (K.52)

X
(2)
5 = X

(2)
1 , (K.53)

X
(3)
5 = X

(2)
1 , (K.54)

X
(4)
5 = X

(4)
1 . (K.55)

Consequently, one can write:

I5(T, τ) =
(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
1 (T, τ) = (−1)2νI1(T, τ) . (K.56)

K.6 Computation of I6(τ1, τ2)

I6(T, τ) =

∫ L

k1=0

k2
1dk1

∫ L

k2=0

k2
2dk2E11(k1,k2,−k2,−k1;T, τ) =

(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
6 (T, τ) , (K.57)

where we define four time dependent functions, X
(i)
6 (T, τ) ∀ i = 1, 2, 3, 4, which are given
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by the following expressions:

X
(1)
6 = X

(1)
1 , (K.58)

X
(2)
6 = X

(2)
1 , (K.59)

X
(3)
6 = X

(2)
1 , (K.60)

X
(4)
6 = X

(4)
1 . (K.61)

Consequently, one can write:

I6(T, τ) =
(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
1 (T, τ) = (−1)2νI1(T, τ) . (K.62)

K.7 Computation of I7(τ1, τ2)

I7(T, τ) =

∫ L

k1=0

k2
1dk1

∫ L

k2=0

k2
2dk2E7(k1,−k1,k2,−k2;T, τ) =

(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
7 (T, τ) , (K.63)

where we define four time dependent functions, X
(i)
7 (T, τ) ∀ i = 1, 2, 3, 4, which are given

by the following expressions:

X
(1)
7 = X

(1)
1 , (K.64)

X
(2)
7 = X

(2)
1 , (K.65)

X
(3)
7 = X

(2)
1 , (K.66)

X
(4)
7 = X

(4)
1 . (K.67)

Consequently, one can write:

I7(T, τ) =
(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
1 (T, τ) = (−1)2νI1(T, τ) . (K.68)

K.8 Computation of I8(τ1, τ2)

I8(T, τ) =

∫ L

k1=0

k2
1dk1

∫ L

k2=0

k2
2dk2E10(k1,−k1,k2,−k2;T, τ) =

(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
8 (T, τ) , (K.69)

where we define four time dependent functions, X
(i)
8 (T, τ) ∀ i = 1, 2, 3, 4, which are given
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by the following expressions:

X
(1)
8 = X

(1)
1 , (K.70)

X
(2)
8 = X

(2)
1 , (K.71)

X
(3)
8 = X

(2)
1 , (K.72)

X
(4)
8 = X

(4)
1 . (K.73)

Consequently, one can write:

I8(T, τ) =
(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
1 (T, τ) = (−1)2νI1(T, τ) . (K.74)

K.9 Computation of I9(τ1, τ2)

I9(T, τ) =

∫ L

k1=0

k2
1dk1

∫ L

k2=0

k2
2dk2E11(k1,−k1,k2,−k2;T, τ) =

(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
9 (T, τ) , (K.75)

where we define four time dependent functions, X
(i)
9 (T, τ) ∀ i = 1, 2, 3, 4, which are given

by the following expressions:

X
(1)
9 = X

(1)
1 , (K.76)

X
(2)
9 = X

(2)
1 , (K.77)

X
(3)
9 = X

(2)
1 , (K.78)

X
(4)
9 = X

(4)
1 . (K.79)

Consequently, one can write:

I9(T, τ) =
(−T )1−2ν(−τ)3−2ν

(−1)2ν

4∑
i=1

X
(i)
1 (T, τ) = (−1)2νI1(T, τ) . (K.80)
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L Computation of the normalization factor in four-point micro-

canonical OTOC

L.1 Normalization factor of four-point micro-canonical OTOC computed from

rescaled field variable

Further, our aim is to compute the normalisation factor of OTOC computed from the

rescaled field variable f , which is given by the following expression:

N f (τ1, τ2) :=
1

〈f̂(τ1)f̂(τ1)〉β〈Π̂(τ2)Π̂(τ2)〉β
, (L.1)

for this we need to explicitly evaluate the denominator of the above mentioned expression.

Now, the product of the two thermal two point function is evaluated as:

〈f̂(τ1)f̂(τ1)〉β =
1

Zα(β; τ1)
Tr
[
e−βĤ(τ1)f̂(x, τ1)f̂(x, τ1)

]
(α)

, (L.2)

〈Π̂(τ2)Π̂(τ2)〉β =
1

Zα(β; τ2)
Tr
[
e−βĤ(τ2)Π̂(x, τ2)Π̂(x, τ2)

]
(α)

, (L.3)

where the thermal partition function for cosmology computed for α vacua can be expressed

as:

Zα(β; τi) =
ZBD(β; τi)

| coshα|
=

1

| coshα|
exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τi)

2

))
∀ i = 1, 2 . (L.4)

Next, we compute the expression for the numerator with respect to the α vacua, which is

given by:

Tr
[
e−βĤ(τ1)f̂(x, τ1)f̂(x, τ1)

]
(α)

=

∫
dΨα 〈Ψα|e−βĤ(τ1)f̂(τ1)f̂(τ1)|Ψα〉

=
1

| coshα|

∫
dΨBD 〈ΨBD|

{
exp

(
i

2
tanhα

∫
d3k1

(2π)3
ak1a

†
k1

)
exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
∫

d3k3

(2π)3

∫
d3k4

(2π)3
f̂k3(τ1)f̂k4(τ1) exp

(
− i

2
tanhα

∫
d3k2

(2π)3
a†k2

ak2

)}
|ΨBD〉
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=
1

| coshα|

∫
dΨBD 〈ΨBD|

{
exp

(
i

2
tanhα

∫
d3k1

(2π)3
ak1a

†
k1

)
exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
∫

d3k3

(2π)3

∫
d3k4

(2π)3
exp ((k3 + k4) .x)

[
fk3(τ1) ak3 + f ∗−k3

(τ1) a†−k3

] [
fk4(τ1) ak4 + f ∗−k4

(τ1) a†−k4

]
exp

(
− i

2
tanhα

∫
d3k2

(2π)3
a†k2

ak2

)}
|ΨBD〉

=
1

| coshα|

∫
dΨBD 〈ΨBD|

{
exp

(
i

2
tanhα

∫
d3k1

(2π)3
ak1a

†
k1

)
exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
∫

d3k3

(2π)3

∫
d3k4

(2π)3
exp ((k3 + k4) .x)

[
fk3(τ1)fk4(τ1) ak3ak4 + f ∗−k3

(τ1)fk4(τ1) a†−k3
ak4

+fk3(τ1)f ∗−k4
(τ1) ak3a

†
−k4

+ f ∗−k3
(τ1)f ∗−k4

(τ1) a†−k3
a†−k4

]
exp

(
− i

2
tanhα

∫
d3k2

(2π)3
a†k2

ak2

)}
|ΨBD〉. (L.5)

Now we will explicitly compute the individual contributions, which are given by:

exp

(
− i

2
tanhα

∫
d3k2

(2π)3
a†k2

ak2

)
|ΨBD〉 =

∞∑
n=0

(−1)n

n!

(
i

2
tanhα

∫
d3k2

(2π)3
a†k2

ak2

)n
|ΨBD〉

=
∞∑
n=0

(−1)n

n!

(
i

2
tanhα

∫
d3k2

(2π)3

)n
|ΨBD〉

= exp

(
− i

2
tanhα

∫
d3k2

(2π)3

)
|ΨBD〉., (L.6)

〈ΨBD| exp

(
i

2
tanhα

∫
d3k2

(2π)3
ak2a

†
k2

)
=

[
exp

(
− i

2
tanhα

∫
d3k2

(2π)3
a†k2

ak2

)
|ΨBD〉

]†
=

[
exp

(
− i

2
tanhα

∫
d3k2

(2π)3

)
|ΨBD〉

]†
= 〈ΨBD| exp

(
i

2
tanhα

∫
d3k2

(2π)3

)
, (L.7)

and we have the following sets of results:∫
dΨBD 〈ΨBD| exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
ak3ak4|ΨBD〉 = 0, (L.8)
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∫
dΨBD 〈ΨBD| exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
a†−k3

ak4|ΨBD〉

= (2π)3 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
δ3(k3 + k4), (L.9)∫

dΨBD 〈ΨBD| exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
ak3a

†
−k4
|ΨBD〉

= (2π)3 exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βEk(τ1)

2

))
δ3(k3 + k4), (L.10)∫

dΨBD 〈ΨBD| exp

(
−β
∫
d3k

(
a†kak +

1

2
δ3(0)

)
Ek(τ1)

)
a†−k3

a†−k4
|ΨBD〉 = 0. .(L.11)

Consequently, we can simplify the final result of the previously mentioned trace as given

by the following expression:

Tr
[
e−βĤ(τ1)f̂(x, τ1)f̂(x, τ1)

]
(α)

= Zα(β; τ1)

∫
d3k3

(2π)3

∫
d3k4

(2π)3
(2π)3δ3(k3 + k4)

[
fk3(τ1)f ∗−k4

(τ1) + f ∗−k3
(τ1)fk4(τ1)

]
=
Zα(β; τ1)

π2
F (α)

1 (τ1), (L.12)

where we define a regularised time dependent function F (α)
1 (τ1) as:

F (α)
1 (τ1) :=

∫ L

0

dk3 k
2
3 |fk3(τ1)|2,

=
iAB

32τ 3
1

(
2

L

)2ν [
32(A2 +B2)

iAB
τ 3

1L
3

(
L2τ 2

1

5− 2ν
+

1

3− 2ν

)
+

(2ν − 7)Γ(5− 2ν) ((−iLτ1)2ν − (iLτ1)2ν)

(2ν − 3)

+(iLτ1)2ν {4Γ(3− 2ν, 2iLτ1) + Γ(5− 2ν, 2iLτ1) + 4Γ(4− 2ν, 2iLτ1)}
−(−iLτ1)2ν {4Γ(3− 2ν, 2iLτ1) + Γ(5− 2ν,−2iLτ1) + 4Γ(4− 2ν,−2iLτ1)}

]
. (L.13)

Similarly, following the same steps one can show that:

Tr
[
e−βĤ(τ2)Π̂(x, τ2)Π̂(x, τ2)

]
(α)

= Zα(β; τ2)

∫
d3k3

(2π)3

∫
d3k4

(2π)3
(2π)3δ3(k3 + k4)

[
Πk3(τ2)Π∗−k4

(τ2) + Π∗−k3
(τ2)Πk4(τ2)

]
=
Zα(β; τ2)

π2
F (α)

2 (τ2), (L.14)
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where we define a regularised time dependent function F (α)
2 (τ2) as:

F (α)
2 (τ2) :=

∫ L

0

dk3 k
2
3 |Πk3(τ2)|2,

=
1

4τ 4
2

L−2ν
[
−i4ν+1ABτ 3

2 Γ(−2ν,−2iLτ2)(−iLτ2)2ν + 22ν+3ABiντ 3
2 Γ(−2ν,−2iLτ2)(−iLτ2)2ν

+22ν+5ABiν2τ 3
2 Γ(−2(ν + 1),−2iLτ2)(−iLτ2)2ν + 22ν+3ABiτ 3

2 Γ(−2(ν + 1),−2iLτ2)(−iLτ2)2ν

−i22ν+5ABντ 3
2 Γ(−2(ν + 1),−2iLτ2)(−iLτ2)2ν + 22ν+3ABi(1− 2ν)2τ 3

2 Γ(−2ν − 3,−2iLτ2)(−iLτ2)2ν

+22ν+3ABiν2τ 3
2 Γ(−2ν − 1,−2iLτ2)(−iLτ2)2ν − 3i22ν+1ABτ 3

2 Γ(−2ν − 1,−2iLτ2)(−iLτ2)2ν

+22ν+3ABiντ 3
2 Γ(−2ν − 1,−2iLτ2)(−iLτ2)2ν + 22ν+1ABiτ 3

2 Γ(1− 2ν,−2iLτ2)(−iLτ2)2ν

+
4(A2 +B2)Lτ 4

2

1− 2ν
− 4iB2τ 3

2 +
2B2iτ 3

2

ν

+
τ 2

2 [4ν2(2A2 +B2) +B2(4ν − 3)− 5A2]

L(2ν + 1)
+
B2iτ2[4ν(ν − 1) + 1]

L2(ν + 1)

+4ν+1ABiτ 3
2

(
7(−iLτ2)2ν − 13(iLτ2)2ν + 4ν3

(
(−iLτ2)2ν + 7(iLτ2)2ν

)
+ν
(
9(iLτ2)2ν − 25(−iLτ2)2ν

)
+ ν2

(
68(iLτ2)2ν − 28(−iLτ2)2ν

))
Γ(−2ν − 3)

−i22ν+5ABν2τ 3
2 (iLτ2)2νΓ(−2ν − 3, 2iLτ2)− i22ν+3ABτ 3

2 (iLτ2)2νΓ(−2ν − 3, 2iLτ2)

+22ν+5ABiντ 3
2 (iLτ2)2νΓ(−2ν − 3, 2iLτ) + 22ν+3ABiν2τ 3(iLτ)2νΓ(−2ν − 1, 2iLτ2)

+5 22ν+1ABiτ 3
2 (iLτ2)2νΓ(−2ν − 1, 2iLτ2)− 3i22ν+3ABντ 3

2 (iLτ2)2νΓ(−2ν − 1, 2iLτ2)

−i22ν+1ABτ 3
2 (iLτ2)2νΓ(1− 2ν, 2iLτ2) +

4(A2 +B2)[ν(1− ν)− 1]

L3(2ν + 3)

]
, (L.15)

Then we have found the following expression:

〈f̂(τ1)f̂(τ1)〉β =
1

Zα(β; τ1)
Tr
[
e−βĤ(τ1)f̂(x, τ1)f̂(x, τ1)

]
(α)

=
1

π2
F (α)

1 (τ1) , (L.16)

〈Π̂(τ2)Π̂(τ2)〉β =
1

Zα(β; τ2)
Tr
[
e−βĤ(τ2)Π̂(x, τ2)Π̂(x, τ2)

]
(α)

=
1

π2
F (α)

2 (τ2) . (L.17)

Consequently, the normalisation factor of OTOC for the rescaled field variable can be

computed as:

N f (τ1, τ2) =
1

〈f̂(τ1)f̂(τ1)〉β〈Π̂(τ2)Π̂(τ2)〉β
=

π4

F (α)
1 (τ1)F (α)

2 (τ2)
. (L.18)
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L.2 Normalization factor of four-point micro-canonical OTOC computed from

curvature perturbation field variable

Now, we are going to perform the similar computation when we express the normalisation

factor of OTOC written in terms of the scalar curvature perturbation field variable:

N ζ(τ1, τ2) :=
1

〈ζ̂(τ1)ζ̂(τ1)〉β〈Π̂ζ(τ2)Π̂ζ(τ2)〉β
, (L.19)

for this we need to explicitly evaluate the denominator of the above mentioned expression.

Now, the product of the two thermal two point function written in terms of curvature

perturbation and its canonically conjugate momenta are evaluated as:

〈ζ̂(τ1)ζ̂(τ1)〉β =
1

Zα(β; τ1)
Tr
[
e−βĤ(τ1)ζ̂(x, τ1)ζ̂(x, τ1)

]
(α)

, (L.20)

〈Π̂(τ2)Π̂(τ1)〉β =
1

Zα(β; τ2)
Tr
[
e−βĤ(τ2)Π̂(x, τ2)Π̂(x, τ2)

]
(α)

, (L.21)

where the thermal partition function for cosmology in terms of curvature perturbation

computed for α vacua can be expressed as:

Zζ
α(β; τi) =

Zζ
BD(β; τi)

| coshα|
∀ i = 1, 2 . (L.22)

Here the thermal partition function for cosmology in terms of curvature perturbation

computed for Bunch Davies vacuum as:

Zζ
BD(β; τi) ≈ exp

(
−
(

1 +
1

2
δ3(0)

)∫
d3k ln

(
2 sinh

βz2(τi)Ek,ζ(τi)

2

))
∀ i = 1, 2, (L.23)

where we define the time dependent energy dispersion relation in terms of the curvature

perturbation variable as:

Ek,ζ(τi) : =
∣∣∣Πζ

k(τi)
∣∣∣2 +

(
ω2

k(τi) +

(
1

z(τ1)

dz(τi)

dτi

)2
)
|ζk(τi)|2,

=
∣∣∣Πζ

k(τi)
∣∣∣2 +

(
k2 − 1

z(τi)

d2z(τi)

dτ 2
i

+

(
1

z(τi)

dz(τi)

dτi

)2
)
|ζk(τi)|2 ∀ i = 1, 2 (L.24)

Consequently, we can simplify the final result of the previously mentioned trace in terms of

the curvature perturbation and its canonically conjugate momenta as given by the following
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expression:

Tr
[
e−βĤ(τ1)ζ̂(x, τ1)ζ̂(x, τ1)

]
(α)

=
Zζ
α(β; τ1)

π2z2(τ1)
F (α)

1 (τ1), (L.25)

Tr
[
e−βĤ(τ2)Π̂ζ(x, τ2)Π̂ζ(x, τ2)

]
(α)

=
Zζ
α(β; τ2)

π2z2(τ2)
F (α)

2 (τ2), (L.26)

Then we have found the following expressions for the thermal two point functions:

〈ζ̂(τ1)ζ̂(τ1)〉β =
1

Zζ
α(β; τ1)

Tr
[
e−βĤ(τ1)ζ̂(x, τ1)ζ̂(x, τ1)

]
(α)

=
1

π2z2(τ1)
F (α)

1 (τ1) , (L.27)

〈Π̂ζ(τ2)Π̂ζ(τ2)〉β =
1

Zζ
α(β; τ2)

Tr
[
e−βĤ(τ2)Π̂ζ(x, τ2)Π̂ζ(x, τ2)

]
(α)

=
1

π2z2(τ2)
F (α)

2 (τ2) . (L.28)

This further implies that the connection between the two point thermal correlation func-

tions computed from the rescaled variable and curvature perturbation variable and their

conjugate momenta are given by:

〈f̂(τ1)f̂(τ1)〉β = z2(τ1)〈ζ̂(τ1)ζ̂(τ1)〉β , (L.29)

〈Π̂(τ2)Π̂(τ2)〉β = z2(τ2)〈Π̂ζ(τ2)Π̂ζ(τ2)〉β . (L.30)

Consequently, the normalisation factor of OTOC for the curvature perturbation variable

can be computed as:

N ζ(τ1, τ2) =
1

〈ζ̂(τ1)ζ̂(τ1)〉β〈Π̂ζ(τ2)Π̂ζ(τ2)〉β
=

π4z2(τ1)z2(τ2)

F (α)
1 (τ1)F (α)

2 (τ2)
= z2(τ1)z2(τ2)N f (τ1, τ2) . (L.31)

M Computation of the normalization factor in classical limit of

four-point micro-canonical OTOC

M.1 Normalization factor of the classical version of four-point micro-canonical

OTOC computed from rescaled field variable

Further, our aim is to compute the normalisation factor of the classical version of OTOC

computed from the rescaled field variable f , which is given by the following expression:

N f
Classical(τ1, τ2) :=

1

〈f(τ1)f(τ1)〉β〈Π(τ2Π(τ2)〉β
, (M.1)

for this we need to explicitly evaluate the denominator of the above mentioned expression.
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Now, the two thermal two point functions in the classical limit are evaluated as:

〈f(τ1)f(τ1)〉β =
1

ZClassical(β; τ1)

∫ ∫
DfDΠ

2π
e−βH(τ1) {f(x, τ1), f(x, τ1)}PB , (M.2)

〈Π(τ2)Π(τ2)〉β =
1

ZClassical(β; τ2)

∫ ∫
DfDΠ

2π
e−βH(τ2) {Π(x, τ2),Π(x, τ2)}PB , (M.3)

where the thermal partition function for cosmology in the classical limit is computed as:

ZClassical(β; τi) = exp

(
−
∫
d3k ln

(
2 sinh

βEk(τi)

2

))
∀ i = 1, 2 . (M.4)

Now we compute the Poission brackets as:

{f(x, τ1), f(x, τ1)}PB =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
exp(i(k1 + k2).x) {fk1(τ1), fk2(τ1)}PB

= W(0) exp (−λf |τ1|)
∫

d3k1

(2π)3

∫
d3k2

(2π)3
exp(i(k1 + k2).x) (2π)3 δ3(k1 + k2)

= W(0) exp (−λf |τ1|)
∫

d3k1

(2π)3
=

L3

6π2
W(0) exp (−λf |τ1|) (M.5)

{Π(x, τ2),Π(x, τ2)}PB =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
exp(i(k1 + k2).x) {Πk1(τ2),Πk2(τ2)}PB

= W(0) exp (−λf |τ2|)
∫

d3k1

(2π)3

∫
d3k2

(2π)3
exp(i(k1 + k2).x) (2π)3 δ3(k1 + k2)

= W(0) exp (−λf |τ2|)
∫

d3k1

(2π)3
=

L3

6π2
W(0) exp (−λf |τ2|) (M.6)

Then we have found the following expression:

〈f(τ1)f(τ1)〉β =
L3

6π2
W(0) exp (−λf |τ1|) , (M.7)

〈Π(τ2)Π(τ2)〉β =
L3

6π2
W(0) exp (−λf |τ2|) . (M.8)

Consequently, the normalisation factor of classical limit of OTOC for the rescaled field
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variable can be computed as:

N f
Classical(τ1, τ2) =

36π4

L6W2(0) exp (−λf [|τ1|+ |τ2|])
=

36π4

L6GKernel(0) exp (−λf [|τ1|+ |τ2|])
. (M.9)

Now, considering the examples of non-Gaussian coloured noise and Gaussian white noise

we get the following answer for the normalization factor:

N f
Classical(τ1, τ2) =


36γπ4

L6A exp (−λf [|τ1|+ |τ2|])
, Coloured Noise

0 White Noise

(M.10)

M.2 Normalization factor of the classical version of four-point micro-canonical

OTOC computed from curvature perturbation field variable

Now, we are going to perform the similar computation when we express the normalisation

factor of OTOC in the classical limit written in terms of the scalar curvature perturbation

field variable:

N ζ
Classical(τ1, τ2) :=

1

〈ζ(τ1)ζ(τ1)〉β〈Πζ(τ2)Πζ(τ2)〉β
, (M.11)

for this we need to explicitly evaluate the denominator of the above mentioned expression.

Now, the product of the two thermal two point function written in terms of curvature

perturbation and its canonically conjugate momenta are evaluated as:

〈ζ(τ1)ζ(τ1)〉β =
1

ZClassical(β; τ1)

∫ ∫
DfDΠ

2π
e−βH(τ1) {ζ(x, τ1), ζ(x, τ1)}PB , (M.12)

〈Π̂(τ2)Π̂(τ2)〉β =
1

ZClassical(β; τ2)

∫ ∫
DfDΠ

2π
e−βH(τ2) {Π(x, τ2),Π(x, τ2)}PB ,(M.13)

where the thermal partition function for cosmology in the classical limit in terms of cur-

vature perturbation computed as:

Zζ
Classical(β; τi) = exp

(
−
∫
d3k ln

(
2 sinh

βz2(τi)Ek,ζ(τi)

2

))
∀ i = 1, 2, (M.14)

where we define the time dependent energy dispersion relation in terms of the curvature
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perturbation variable as:

Ek,ζ(τi) : =
∣∣∣Πζ

k(τi)
∣∣∣2 +

(
ω2

k(τi) +

(
1

z(τ1)

dz(τi)

dτi

)2
)
|ζk(τi)|2,

=
∣∣∣Πζ

k(τi)
∣∣∣2 +

(
k2 − 1

z(τi)

d2z(τi)

dτ 2
i

+

(
1

z(τi)

dz(τi)

dτi

)2
)
|ζk(τi)|2 ∀ i = 1, 2 (M.15)

Now we compute the Poission brackets as:

{ζ(x, τ1), ζ(x, τ1)}PB =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
exp(i(k1 + k2).x) {ζk1(τ1), ζk2(τ1)}PB

=
L3

6π2z2(τ1)
W(0) exp (−λf |τ1|) (M.16)

{Πζ(x, τ2),Πζ(x, τ2)}PB =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
exp(i(k1 + k2).x) {Πζ;k1(τ2),Πζ;k2(τ2)}PB

=
L3

6π2z2(τ2)
W(0) exp (−λf |τ2|) (M.17)

Then we have found the following expressions for the thermal two point functions:

〈ζ(τ1)ζ(τ1)〉β =
L3

6π2z2(τ1)
W(0) exp (−λf |τ1|) , (M.18)

〈Πζ(τ2)Πζ(τ2)〉β =
L3

6π2z2(τ2)
W(0) exp (−λf |τ2|) . (M.19)

This further implies that the connection between the two point thermal correlation func-

tions computed from the rescaled variable and curvature perturbation variable and their

conjugate momenta in the classical limit are given by:

〈f(τ1)f(τ1)〉β = z2(τ1)〈ζ(τ1)ζ(τ1)〉β , (M.20)

〈Π(τ2)Π(τ2)〉β = z2(τ2)〈Πζ(τ2)Πζ(τ2)〉β . (M.21)

Consequently, the normalisation factor of OTOC in the classical limit for the curvature

perturbation variable can be computed as:

N ζ
Classical(τ1, τ2) =

1

〈ζ(τ1)ζ(τ1)〉β〈Πζ(τ2)Πζ(τ2)〉β
= z2(τ1)z2(τ2)N f

Classical(τ1, τ2) . (M.22)
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N Thermal trace operation in terms of wave function of the uni-

verse in Cosmology

In this appendix, we explicitly mention about the trace operation which is appearing almost

everywhere in the definition of two-point, four-point OTOC and during the computation of

quantum partition function. To illustrate this operation in detail let us first consider two

operators Ô1(τ1) and Ô2(τ2), which are separated in time scale. Here the trace operation

is defined as:

Tr
[
exp(−βĤ)

[
Ô1(τ1), Ô2(τ2)

]]
(α)

=

∫
dΨα 〈Ψα| exp(−βĤ)

[
Ô1(τ1), Ô2(τ2)

]
|Ψα〉 . (N.1)

Here Ψα is the wave function of our universe in Cosmology which is define with respect

α-quantum vacuum state. Since the Hamiltonian under consideration do not have any

eigenstate discrete representation, to define the trace operation we actually have to trans-

form this in the continuous representation by incorporating the integral over the wave

function of the universe. We have explicitly mention this definition to avoid any further

confusion regarding the computation of the thermal trace over the micro-canonical statis-

tical ensemble of the universe.
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