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Abstract:   

In order to meet the needs of an increasingly complex research landscape, researchers engage in 

“collaborative prosumption” through open data sharing and reuse. Although significant gains have 

been achieved in this regards because of growing requirements from funding agencies, 

governments and journals, the question of how reuse of openly available data for new research 

contribute to sustainability is yet to be appropriately addressed in the literature.     

Therefore, relying on a three stage stratified clustered random sampling of the Journal of Applied 

Econometrics data archive (JAEDA), the present research provides a case study of the value of 

research data recycling for sustainable research and economic development. More specifically our 

analysis show that reformatting from wide to long format, openly shared equity price index data 

on eleven European countries’ extracted from JAEDA, and augmented with country level 

geospatial Meta data, provides a new basis for interesting descriptive analytics and spatio-temporal 

econometric modeling and inference.  

Given the ever-increasing volume of openly available research data, our study provides a first-

hand insight on open data reuse, which should benefit all stakeholders in the research community, 

as they seek sustainable solutions for scientific productivity and progress.   
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Introduction 

Although there is a plethora of literature data on the value of recycling in general by scholars, 

there is a paradoxical paucity of literature on the value of data recycling in particular among 

scholars. 

With the recent developments in computational simulation and modeling, automated data 

acquisition and communication technologies the concept of data has evolved to be more inclusive 

(Curty et al, 2017; Chawinga & Zinn, 2019). In addition to digital manifestations of literature, data 

refers as well to forms of databases generally requiring the assistance of computational machinery 

and software in order to be useful (Zhang et al, 2017). Consequently, the object of data has been 

rendered a key infrastructural component of science (Nielsen, 2020), at the root of a new era of 

research called “the fourth paradigm: data-intensive scientific discovery” (Tolle et al, 2011; 

Pasquetto et al, 2017; Wu et al, 2019). Cornerstone of the fourth industrial revolution, and a follow 

up to the previous research paradigms (including theoretical and experimental), the fourth 

paradigm seeks to have all of science literature, and all of science data openly inter-operating with 

each other online (Borst & Limani, 2020). Hence the emergence of “open research data” (Mancini 

et al, 2020), which has been defined as structured, machine-readable, data that is actively published 

on the internet for public re-use, and that is freely accessible, usable, modifiable, and sharable by 

academic researchers (Allen & Mehler, 2019; Mayernik, 2017; Powers & Hampton, 2019; Turki 

et al, 2019; Zuiderwijk & Hinnant, 2019).  

In this context, “Data sharing” is better understood as a problem of scarce research resources 

optimization. Indeed, researchers typically produce large amount of data, part of which may be 

useful to others for the reproduction and verification of previous research results (Hardwicke et al, 

2019; Powers & Hampton, 2019), the formulation of new research questions (Boté & Térmens, 

2019), and the advancement of research and innovation (Borgman et al, 2019). However, making 

potentially useful data available to others requires substantial investment, in documentation and 

data curation, beyond the actual conduct of the initial research for which the data was primarily 

collected (Wallis et al, 2013). Economically, this creates a misalignment in incitation, since the 

originating investigator bears the full cost (time and efforts) of making the data available openly, 

while unknown and often non-existent re-users reap the benefits. From the perspective of the 

researcher contemplating sharing, a valid question then is: 

 “Which data are worth the investment effort, as they might get reused by others?”  

Given that specific reuse intentions by other researchers only arise when the data are discoverable, 

accessible and usable (Stall et al, 2019), one can ask an equally valid question:  

How can demand of data reuse be built if potential users of the data are unaware of its existence 

and utility?  

Hence the need for studies (including data descriptors) that showcase the re-use potential of 

various data sources, so as to raise awareness of their utility for prospective investigations. 

Moreover, pointing out the potential collaborative effort needed to address data sharing and reuse 

for the well-being of all stakeholders in any economic system Hanson et al, (2011) declared: 
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“We must all accept that science is data and that data are science, and thus provide for, and justify 

the need for the support, of much-improved data curation”; while Borgman (2012) suggested:  

“if the rewards of the data deluge are to be reaped, then researchers who produce those data must 

share them and do so in such a way that the data are interpretable and reusable by others”. 

The present research therefore inscribes itself in this dynamic. Although previous authors have 

provided insights about the motivating factors of open data sharing and re-use in other fields 

including archaeobotany (Lodwick, 2019), astrophysics (Zuiderwijk & Spiers, 2019), biomedical 

(Park et al, 2018; Heller et al, 2019), ecology (Zimmerman, 2008), psychology (Houtkoop et al, 

2019), and science in general (Chawinga & Zinn, 2019; Federer et al, 2018; Tenopir et al, 2015), 

the economics literature is yet to properly fill this void. Indeed, although Waugh (2010) discusses 

the value of digital assets for sustainable economic development, to date a limited literature covers 

the specific value of data sharing and re-use within the field of economics (Cavallo & Rigobon, 

2016; Mullainathan & Spiess, 2017). An even fewer number addresses the idea of open research 

data sharing and re-use for sustainable economic development (Hilbert, 2016; Jetzek et al, 2019).  

Therefore the present study aims at filling this gap in the scientific discourse, by investigating the 

potential of the Journal of Applied Econometrics data archive to contribute to sustainable 

scientific research and economic development.  

As a case study of the sharing economy, within the specific context of digital goods/assets sharing 

and re-using, the present study is also in line with the United Nations (UN) global agenda for 

Sustainable Development.  Indeed, goal 12 of the UN sustainable development goals (SDGs) is 

broadly concerned with ensuring sustainable consumption and production patterns by 2030; while 

its target 12.5 specifically addresses the substantial reduction of waste generation through 

prevention, reduction, recycling, and reuse. In addition, SGDs target 12.8 is specifically concerned 

with ensuring that people everywhere have the relevant information and awareness for sustainable 

development and lifestyles in harmony with nature; while SDGs target 12.a looks at supporting 

developing nations to strengthen their scientific and technological capacity to move towards more 

sustainable patterns of consumption and production. Given that open data sharing in general has 

the potential to: 

(i) Facilitate the use of digital assets for scientific (academic) research   

(ii) Contribute to the expansion of the market for sharable “digital assets” 

(iii) Encourage multiple perspectives, discourage fraud, help identify errors 

(iv) Provide useful information for training new researchers, increase efficient use of 

funding and respondent population resources by avoiding duplicate data collection 

The key question that will be addressed in the present study in line with our above research 

objective is: 

How can data sharing and re-use through the Journal of Applied Econometrics data archive 

contribute to the promotion of sustainable scientific research and economic development?  

To address this question, we organize the rest of the paper as follows: in section 2 we review the 

literature on open data sharing and re-use; in section 3 we present the adopted methodology to 
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bring the research to fruition; in section 4 we present and discuss the results; and finally in section 

5 we conclude the analysis with policy recommendations and future directions for research.  

 

2) Literature review 

The topic of open data sharing and reuse has been an important and growing part of contemporary 

scholarly debates (Chapman et al, 2020; Pasquetto et al, 2019; Slota et al, 2020). The prospect for 

widely available data for all has garnered the attention of scholars from various fields of 

specialization (Borgman et al, 2019; Chawinga & Zinn, 2019); Wiggins et al, (2018), and featured 

earlier publications in Nature (Campbell, 2008; 2009), Science (Kum et al, 2011; Einav & Levin, 

2014), as well as the Journal of the American society for information science & technology 

(Borgman, 2012). Testament to its ongoing significance among scholars of diverse background is 

the recently published comment in nature’s journal Scientific Data (Lin et al, 2020).  

Motivations for research data sharing and reusing are diverse and reflect the interests of 

many stakeholders including researchers, and funders (Stall et al, 2019; Wu et al, 2019; Chapman 

et al, 2020). Underlying the arguments for open data sharing include time efficiency gains (Pronk, 

2019), providing others the ability to reproduce and verify past research (Allen & Mehler, 2019; 

Gray & Marwick, 2019; Hardwicke et al, 2019), allowing others to ask new questions using the 

data (Whitlock, 2011; Boté & Térmens, 2019; Pronk, 2019), advancing research and innovation 

(Borgman et al, 2019; Elsayed & Saleh, 2018), boosting faculty impact in their field of 

specialization through higher citations (Drachen et al, 2016; Colavizza et al, 2019; Park et al, 2018; 

Zeng et al, 2020), and finally making the outputs of government funded research available to the 

general public (Mayernik, 2017; Sholler et al, 2019; Zuiderwijk & Hinnant, 2019). 

Despite these and other arguments of the value of scientific research data beyond their 

original purpose (Faniel & Zimmerman, 2011; Stall et al, 2019; Wu et al, 2019), researchers are 

often protective of their data and may be reluctant in sharing (Piwowar & Chapman, 2010; Tenopir 

et al, 2011; Fecher et al, 2015; Houtkoop et al, 2018). Indeed, looking at general trends in data 

sharing among 1329 scientists from North America, Europe and Asia, Tenopir et al, (2011) found 

that despite the overwhelming support for data sharing and reuse, only 46% of the respondents 

made their data available openly, 36% agreed that their own data are readily accessible when 

needed, and less than 6% made their data available to others. Similarly, focusing on 337 

researchers from three Arab universities in Egypt, Jordan, and Saudi Arabia, Elsayed & Saleh 

(2018) reported that 64.4% of study participants shared their data, motivated by the potential of 

increased research visibility and citation, along with the drive to contribute to scientific progress. 

In a sub-sequent investigation 4 years later, Tenopir et al, (2015) looking at the changes in 

data sharing and reuse practices and perceptions among scientists worldwide found increased 

acceptance of and willingness to engage in data sharing behaviors. Although specific barriers to 

data sharing still persisted. Among the many barriers to data sharing reported by researchers 

recently are increased perceived risk associated with data sharing (Bektaş & Tayauova, 2019; 

Zipper et al, 2019), publications rights concerns (Meyer, 2018; Federer et al, 2018; Ross et al, 

2018), and the level of time and effort required to make data easily findable and reusable by others 
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(Mayernik, 2017; Stall et al, 2019). Among the most important factors reported by researchers to 

hinder data re-use are trust issues in other’s data content and quality (Boté & Térmens, 2019; Curty 

et al, 2017; Lin et al, 2020), the ability to interpret the data (Zimmerman, 2008; Boté & Térmens, 

2019), and the applicability of data to the problem at hand (Hartswood et al 2012; Gregory et al, 

2019a). In their follow study, Tenopir et al, (2015) also reported geographic differences in data 

sharing and reuse worldwide, which was attributed to collectivist vs individualist cultural 

differences. They further found significant cross-discipline heterogeneity in perceived constraints’ 

and enablers of data sharing and reuse.  

Despite the variety and richness of the literature on the topic, only a limited number of 

studies address how and when researchers reuse data they obtain from other researchers (Curty et 

al, 2017; Gregory et al, 2019b; Koesten et al, 2019; Borst & Limani, 2020), and even fewer studies 

address how such data recycling practices could potentially contribute to sustainability (Jetzek et 

al, 2019; Turki et al, 2019).   

While the nature of the value generated through openly shared data may vary depending 

on the particular use case, value creation is sustainable only if the data are used and reused again 

and again to create long-lasting value that benefits society at large. That is, the generated value 

can simultaneously benefit (i) private enterprises through new funding or profits; (ii) citizens that 

derive utility from the provided information, products or services; and (iii) society through happier 

and healthier citizens, better living environments, and more efficient and sustainable economic 

markets. Therefore, building on Hart and Milstein (2003), definition of sustainable value as “a 

contribution that simultaneously delivers both short and long-term economic, social, and 

environmental benefits”, our present analysis contributes to the literature “by looking at how data 

sharing and re-use through the Journal of Applied econometrics data archive could contribute to 

promoting sustainable scientific research and economic development” 

 

3) Methodology 

3.1. Data 

The idea of digital data archives as knowledge infrastructures mediating data sharing and reuse 

among researchers has been established in the field of information science and technology 

(Borgman et al, 2019; Lin et al, 2020). One of the key digital data archives in the field of economics 

is the Journal of applied economics data archive (JAEDA), which is a secondary data source of 

peer reviewed publications. Its current version hosted online (see http://qed.econ.queensu.ca/jae/), 

contains data for all papers accepted for publication after January 1994. Sampled from this latter 

archive, the data used in the current analysis is now described in the subsections below.  

3.1.1 Data source and sampling frame 

As of March 2020, JAEDA had 35 published volumes, with an average of 7 issues per volume. 

For the sake of our study, we define each publication volume as a strata (35 stratum total) of 

clustered (132 clusters total) publication issues. Within each clustered issue, research publications 

and thus research data are stratified in alphabetical order by authors’ last name (about 10 

publications in each cluster). 
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3.1.2 Secondary data sampling procedure 

For the purpose, our study we relied on a three stage stratified clustered random sampling of 

JAEDA. In the first stage of the sampling, volume 34 was randomly selected between all 35 

volumes (stratum), and then issue number 1 was subsequently selected at random between the 7 

issues (cluster) in the volume. Within issue 1, the shared data corresponding to the second 

alphabetically ranked published data source “bernardi-catania” (Bernardi & Catania, 2019) was 

selected at random.    

3.1.3 Brief Data content description 

Our randomly sampled, openly shared data “bernardi-catania” contains a collection of time series, 

representing European market equity price index changes, along with those of the eleven biggest 

European economies. These daily fluctuations in stock market returns are specifically recorded 

between September 8th 1999 and October 16th 2015, across national equity markets in Austria, 

Belgium, Denmark, France, Germany, Hungary, Italy, the Netherlands, Spain, Sweden, and the 

United Kingdom respectively. In addition to the individual national market fluctuations, the data 

also contains daily fluctuations of the STOXX Europe 600 Index, which is used as a proxy for the 

overall European equity market.  

In the original use of the data, Bernardi & Catania (2019) were interested in the first differences 

of the log returns of the various equity indexes. These were used to study the impact of the global 

financial crisis of 2007-2008, as well as the impact of the resulting European sovereign debt crisis 

that followed in 2010. Relying on the Conditional Value-at-risk (CoVaR) and the conditional 

Expected Shortfall (CoES) as systemic risk measures, the sharing authors analyzed the systemic 

spread of risks among the different European countries, through an examination of stock market 

co-movements overtime.  

3.1.4 Data generating process 

In the initial application, Bernardi & Catania (2019) looked at the data as a collection of 

time series, and therefore relied on time series methods of analysis to achieve their research 

objectives. In comparison, in our present analysis, we adopt a different perspective looking at the 

data as a collection of spatio-temporal processes, which we analyze using dynamic statistical 

modelling methods.  In our inherently conditional view, integrated stock markets are assumed to 

produce spatially dependent returns that evolve overtime. As a spatio-temporal phenomenon the 

future evolution of stock market returns depends on their past and present values. This feature 

allows spatio-temporal dynamic models a better chance at establishing answers to the "why" 

questions (causality), which is the ultimate goal in any scientific inquiry.  

Comparison between our adopted dynamic spatio-temporal modelling approach and the 

multivariate time series modelling approach in the previous investigation shows close features, yet 

two fundamental differences. The first difference is related to the fact that while not all 

relationships in a multivariate time-series model make economic sense, a dynamic spatio-temporal 

model has to represent realistically the kind of spatio-temporal interactions between the various 

stock market returns under investigation. The second distinguishing feature deals with 

dimensionality. Most often in spatio-temporal applications the dimensionality of the spatial 

component of the model prohibits standard inferential methods, as used in Multivariate time series 
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representation of the same phenomenon. In such case, special care is needed for model 

parametrization in order to obtain realistic yet parsimonious dynamics.  The development and 

introduction of basis functions within hierarchical statistical modeling, has allowed for the 

analytical leap-frogging of the computational bottleneck caused by inverting very large covariance 

matrices of spatially dependent data. Therefore, in our current view of stock market returns 

following spatio-temporal processes, we represent these processes as mixed (linear and non-linear) 

models with known covariates whose coefficients are unknown and non-random, together with 

known basis functions whose coefficients are unknown and random. The basis functions which 

are usually functions of space, have coefficients defined as multivariate time series random 

vectors, and provide computational advantages through reduced dimensionality of the covariance 

matrix.  

 

3.1.5 Data preparation for re-use 

Because of the open source nature of the R statistical software (R Core Team, 2015), we relied on 

it to perform all required reformatting and data preparation for reuse. The computer codes used for 

all data treatments and analyses in this paper are provided in the supplementary materials of this 

manuscript. As shown in the supplementary materials, the originally extracted data from the 

Journal of Applied Econometrics Data Archive, volume 34, issue 1 (Bernardi & Catania, 2019), 

was provided in excel format. As a wide format collection of time series, the data represented 

European market equity price index changes, along with that of 11 European countries’ between 

July 8th 1999 and October 16th 2015. 

Since we depart from the time series perspective by looking at the data as a collection of spatio-

temporal processes, which we analyze using dynamic statistical modelling methods, we transform 

the wide format time series into a long format panel data. We achieve this initial transformation 

by using the “melt()” function from the R library “reshape2” (Hadley, 2007).   

To facilitate graphical mappings in our spatio-temporal analysis, following the long transformation 

of the data, we downloaded from the open source GADM database of global administrative areas 

(Hijmans et al, 2018), the polynomial shape files for all 11 countries in our data sample. After 

appropriate treatments (see supplementary R codes) these shape files were used along with the 

long reformatted data for spatial analytics of country level aggregates, in addition to modelling the 

conditional mean and variance functions of the spatio-temporal process of equity price index 

fluctuations among the 11 countries in the European market, between 1999 and 2015.   

 Since the data are high frequency daily fluctuations of equity index values, we define three 

hierarchical temporal dimensions (daily, monthly, and yearly). To ease our analysis using 

conventional statistical methods, we proceed to various levels of data aggregations along these 

three hierarchical temporal dimensions. Our first data aggregation “CountryOutcDatm” averages 

over the days and computes the moments (mean, standard deviation, kurtosis and skewness) of 

monthly fluctuations in the index values for the 11 countries, over 1999 to 2015. The second level 

of aggregation “CountryOutcDaty” averages over the days and months and computes the moments 

(mean, standard deviation, kurtosis and skewness) of annual fluctuations in the index values for 

the 11 countries, observed between 1999 and 2015.  We also provide a third level of aggregation 

“CountryOutcDat”, which averages across days within months, within years, and compute the 
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moments of the panel wide aggregated fluctuations in index values for all 11 European countries. 

All data aggregations and empirical moments’ computations are done using functionalities from 

the R library “dplyr” (Hadley et al, 2019) as show in the attached supplementary R codes.  

3.1.6 Descriptive Statistics of the reformatted Data 

Table (1) summarizes the empirical distributional properties of the 12 series (daily fluctuations in 

equity index price), using their first four empirical moments, and the coefficient of variation. The 

mean results suggest that except for Italy that records an overall reduction in the average value of 

its national stock market index, all remaining 10 countries record an improvement between 1999 

and 2015. Similarly on the variance and standard deviations of equity price changes, among all 11 

national indices, that of Italy shows the greatest variations. The skewness and kurtosis results are 

in line with the characteristics of extreme value distributions, of which daily stock market 

fluctuations typically subscribe to. On the coefficient of variations, the daily fluctuations in index 

value appears to highlight the greatest variation above its mean value in France, while Italy records 

the greatest variation below its mean value.  

Country Count Mean Sample 

Standard 

deviation 

Sample 

variance 

Skewness Kurtosis Coefficient 

of Variation 

(CV) 

Austria  4119  0.022152 1.102187 1.214816 -0.543877 5.805146    4975.47% 

Belgium 4119  0.012306 1.050494 1.103538 -0.051448 3.607236    8536.47% 

Denmark 4119  0.040774 1.286458 1.654974 -0.265674 4.667857    3155.08% 

France  4119  0.002052 1.457916 2.125519 -0.179472 4.085347  71048.82% 

Germany 4119  0.013624 1.318017 1.737169 -0.063657 4.384218    9674.45% 

Hungary 4119  0.008229 1.030806 1.062561 -0.402209 5.120901  12525.87% 

Italy 4119 -0.010520 1.531736 2.346216 -0.210106 2.777816 -14560.85% 

Netherlands 4119  0.013114 1.305638 1.704690 -0.194704 3.220536    9956.23% 

Spain 4119  0.015395 1.401671 1.964682 -0.165434 4.242557    9104.65% 

Sweden 4119  0.028910 1.349594 1.821404 -0.078664 4.095575    4668.20% 

United Kingdom  4119  0.016896 1.271958 1.617877 -0.224655 3.575333    7528.21% 

Market 4119  0.014812 1.090849 1.89952 -0.306491 4.804299    7364.58 % 

Table (1): Descriptive statistics of the raw time series (Daily equity price index fluctuations) 

Source: Author’s construction using the raw series shared in Bernardi & Catania (2019)   

 

Table (2) below shows a 12 X 12 correlation matrix, summarizing the results of the test of cross-

country correlation in daily equity price index fluctuations between the eleven European 

economies in the studied sample. The two tail test results at a critical correlation value of r = 1% 

suggest the statistical significance of all the correlation coefficients in the table, further suggesting 

a significant positive inter-dependence in equity price index fluctuations, between the 11 European 

equity markets under investigation.  In other words, the results suggest that the 11 European equity 

markets are significantly integrated. Figure (1) below provides a full graphical characterization of 

the process of equity index value fluctuations across the eleven European countries in our studied 

sample. As the figure shows the European equity index market evolves heterogeneously across 

both time and space, and therefore could be reasonably considered a spatio-temporal process in 

line with Dette et al, (2020).  
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 AUT BEL DEN FRA GER HUN ITA NET SPA SWE UK MKT 

AUT 1.000            

BEL 0.680 1.000           

DEN 0.643 0.696 1.000          

FRA 0.652 0.795 0.720 1.000         

GER 0.608 0.733 0.671 0.840 1.000        

HUN 0.441 0.448 0.466 0.474 0.451 1.000       

ITA 0.625 0.729 0.646 0.811 0.780 0.438 1.000      

NET 0.618 0.750 0.701 0.860 0.828 0.467 0.772 1.000     

SPA 0.663 0.728 0.679 0.796 0.754 0.465 0.812 0.750 1.000    

SWE 0.634 0.729 0.728 0.815 0.787 0.469 0.729 0.809 0.731 1.000   

UK 0.604 0.729 0.678 0.812 0.773 0.457 0.748 0.795 0.737 0.766 1.000  

MKT 0.764 0.859 0.820 0.929 0.891 0.585 0.880 0.904 0.879 0.886 0.875 1.000 

Table (2): Cross-country correlation matrix for the daily equity price index fluctuations.  

Source: Author’s construction using the raw series shared in Bernardi & Catania (2019) 

 

 
figure (1): Spatio-temporal plot of annualized average daily equity price index fluctuations.  

Source: Author’s construction using the reformatted data 

 

3.2.Econometric Model  

Economically, to be sustainable any society needs to take care of the needs and wants of its 

contemporary members, without compromising the ability of its future members to do so. Financial 

resource needs in modern society are usually met through financial markets where savers 

(investors) and borrowers (entrepreneurs) meet to trade. Each financial market is characterized by 

an equilibrium trade price, which evolves overtime based on both exogenous and endogenous 

market influences. Because of the typical integration of financial markets at various spatial 

locations (including regionally and internationally), equilibrium trade prices within integrated 

financial markets could be reasonably assumed to follow inter-related random spatio-temporal 

processes (RSTPs) (Dette et al, 2020), as previously discussed in the data generating process 

above. The mean and covariance functions of each national RSTP is assumed to depend on the 

regional average, but also on temporal influences (daily, monthly, and annually) as well as spatial 
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influences (fixed and random). The fixed spatial influences reflect national market fundamentals, 

while the random influences are spatial random walks, which we capture using Markov random 

field smoothing over the spatial random parameter space.   

3.2.1 Model specifications 

As previously discussed in the data generating process section, we represent the conditional mean 

and variance functions of the spatio-temporal processes of stock market returns as mixed (linear 

and non-linear) models with known covariates whose coefficients are unknown and non-random, 

together with known basis functions whose coefficients are unknown and random.    

We adopt a generalized modeling perspective that accounts for both linear as well as non-

linear model representations with spatial random effects. Our adopted framework builds on 

generalized additive models for location, scale and shape (GAMLSS) introduced by Rigby & 

Stasinopoulos (2005), where model parameters can be specified as functions of additive predictors 

with several types of covariate effects (including linear, non-linear, random and spatial effects).  

Given the nature of our empirical application, GAMLSS provide indeed the ideal framework for 

modeling the mean and variance functions of the spatio-temporal processes of stock market 

returns. To this end, we define a generic predictor 𝜂𝑖 as:   

𝜂𝑖 =  𝛽0 +  ∑ 𝑠𝑘(𝒛𝑘𝑖), ∀ 𝑖 = 1 … 𝑛, 𝑎𝑛𝑑 𝐾 = 5  𝐾
𝑘=1                                              (1) 

 

Or more explicitly: 

 

𝜂𝑖 =  𝛽0 + 𝑠1(𝒛1𝑖) + 𝑠2(𝒛2𝑖) + 𝑠3(𝒛3𝑖) + 𝑠4(𝒛4𝑖) +  𝑠5(𝒛5𝑖),   ∀ 𝑖 = 1 … 𝑛         (2) 

 

Where 𝛽0 is the overall model intercept,  𝒛𝑘𝑖 denotes the 𝑘𝑡ℎ sub-vector of the complete covariate 

vector 𝒛𝑖, which contains the three temporal predictors (day, month, year), one regional stock index 

(market) and one spatial predictor (country) as previously described.  The five functions 𝑠𝑘(𝒛𝑘𝑖) 

are generic smoothed effects chosen based on the type of each of the five covariates under 

consideration. Each 𝑠𝑘(𝒛𝑘𝑖)  is approximated as a linear combination of  𝐽𝑘 basis functions 

𝑏𝑘 𝐽𝑘
(𝒛𝑘𝑖) and regression coefficients 𝛽𝑘 𝐽𝑘

∈ ℝ, that is: 

∑ 𝛽𝑘 𝐽𝑘
𝑏𝑘 𝐽𝑘

(𝒛𝑘𝑖) 
𝐽𝑘
𝑗𝑘=1                                                                                             (3) 

 

In this form, Equation (3) implies that the vector of evaluations {𝑠𝑘(𝒛𝑘𝑖), … , 𝑠𝑘(𝒛𝑘𝑛)}𝑇 can be 

written as 𝒁𝑘𝜷𝑘 with 𝜷𝑘 = (𝛽𝑘1, … , 𝛽𝑘 𝐽𝑘
)𝑇 and the design matrix 𝑍𝑘[𝑖 ,  𝐽𝑘] = 𝑏𝑘 𝐽𝑘

(𝒛𝑘𝑖). Thus 

allowing the predictor in equation (1) to be written generically as: 

𝜼 = 𝛽0𝟏𝑛 +  𝒁1𝜷1 + 𝒁2𝜷2 + 𝒁3𝜷3 + 𝒁4𝜷4 +  𝒁5𝜷5                                         (4) 

Taking into account the actual temporal and spatial predictors, equation (4) can be specifically:  

𝜼 = 𝛽0𝟏𝑛 + 𝑫𝒂𝒚𝜷1 + 𝑴𝒐𝒏𝒕𝒉𝜷2 + 𝒀𝒆𝒂𝒓𝜷3 + 𝑴𝒂𝒓𝒌𝒆𝒕𝜷4 + 𝑪𝒐𝒖𝒏𝒕𝒓𝒚𝜷5    (5) 
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Where 𝟏𝑛  is an 𝑛-dimensional vector of ones. In a more compact notation, equation (4) and (5) 

can be rewritten as 𝜼 = 𝒁𝜷, with 𝜷 = ( 𝛽0, 𝛽1
𝑇 , … ,  𝛽5

𝑇)𝑇 and   𝒁 = (𝟏𝑛, 𝒁1, … , 𝒁5) =

 (𝟏𝑛, 𝑫𝒂𝒚, 𝑴𝒐𝒏𝒕𝒉, 𝒀𝒆𝒂𝒓, 𝑴𝒂𝒓𝒌𝒆𝒕, 𝑪𝒐𝒖𝒏𝒕𝒓𝒚 ).  

In this representation, the smooth functions may represent linear, non-linear; random and spatial 

effects. Moreover, each 𝛽𝑘 has an associated quadratic penalty 𝜆𝑘 𝛽𝑘
𝑇𝑫𝑘𝛽𝑘, which plays the role 

of enforcing specific properties on the 𝑘𝑡ℎ function, such as smoothness. Smoothing parameter 

𝜆𝑘 ∈ [0, ∞) controls the trade-off between fit and smoothness, and play the role of determining 

the shape of �̂�𝑘(𝒛𝑘𝑖). The overall penalty can be defined as 𝛽𝑇𝑫𝜆𝛽, with 𝑫𝜆 = 𝑑𝑖𝑎𝑔(0, 𝜆1𝑫1, … ,

𝜆5𝑫5). For identification purposes, the smooth functions are mean centered following the 

procedure in wood (2017).  

For variables with fully linear parametric effects, there is no assigned penalty such 

that 𝑫𝑘 = 0, and equation (3) becomes 𝒁𝑘𝑖
𝑇 𝜷𝑘, with the design matrix obtained by stacking all 

covariate vectors 𝒛𝑘𝑖 into 𝒁𝑘.  This is typically the case for dichotomous variables such as the 

temporal predictors (day, month, year), which are categorical random variables. To improve 

identifiability of the coefficients in those spatial predictors, a ridge penalty could be used (wood, 

2017), such that 𝑫𝑘 = 𝐼 (the identity matrix). We achieve this latter specification in the present 

study by specifically entering the temporal effects as random effects. This is done in the R 

statistical software using the following representation for the three temporal predictors in the mean 

and variance functions:  

𝜇 : eqreturn ~ (day, bs = “re”) + (month, bs = “re”) + (year, bs = “re”)               (6) 

𝜎 :               ~ (day, bs = “re”) + (month, bs = “re”) + (year, bs = “re”)               (7) 

Where “eqreturn” is the dependent variable, and more specifically the average index value or 

equity return; “day”, “month” and “year” are the categorical temporal predictors; “bs” is an 

argument specifying the type of spline basis used, which in this case is “re” for random effect.  

For continuous predictors of the mean and variance functions of the spatio-temporal 

processes of stock market returns, such as the proxied European stock index return (market), the 

smooth functions are represented using the regression spline approach (Eilers & Marx, 1996). In 

this case, 𝑠4(𝒛4𝑖) is approximated by ∑ 𝛽k 𝐽𝑘
𝑏k 𝐽𝑘

(𝑍𝑘𝑖) 
𝐽𝑘
𝑗𝑘=1 or equivalently 

∑ 𝛽k 𝐽𝑘
𝑏k 𝐽𝑘

(𝑀𝑎𝑟𝑘𝑒𝑡𝑖) 
𝐽𝑘
𝑗𝑘=1 where the 𝑏𝑘 𝐽𝑘

(𝑀𝑎𝑟𝑘𝑒𝑡𝑖) are low rank thin plate regression spline 

basis function evaluations for each daily market return 𝑖, and are numerically stable with 

convenient mathematical properties (wood, 2003). This specification allow us to avoid arbitrary 

modeling decisions, such as selecting the appropriate degree of a polynomial or specifying cut-

points, which could induce bias. Extending the mean and variance functions in equations (6) and 

(7), this specification is implemented in the R statistical software using the follow representations: 

𝜇 : eqreturn ~ (day, bs = “re”)+(month, bs = “re”)+(year, bs = “re”)+(market, bs = “tp”, k=10)(8) 

𝜎 :               ~ (day, bs = “re”)+(month, bs = “re”)+(year, bs = “re”)+(market, bs = “tp”, k=10)    (9) 
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Where “market” is the continuous covariate capturing the European stock index; with the basis 

spline argument “bs” set to “tp” for penalized low rank thin plate spline) and 10 basis functions 

since “k”=10.  Although not specifically used here, other available continuous basis spline 

functions include the cubic regression spline “cr”, and the P-spline, “ps”.  

To incorporate the spatial effects into the regression model, the 11 European countries 

covered in the study are split into discrete contiguous geographic units, with spatial coordinates 

exploited through a Markov random field approach. This latter approach relies on the information 

contained in neighboring stock market returns from each country. In this case, equation (3) 

becomes 𝒁𝑘𝑖
𝑇 𝜷𝑘, with 𝜷𝑘 = ( 𝛽𝑘1, … , 𝛽𝐾𝑅)𝑇 representing the vector of spatial effects. 𝑅 = 11 

denotes the total number of countries and 𝒛𝑘𝑖 is made up of a set of country labels. The design 

matrix linking each daily stock return 𝑖 to the corresponding spatial effect is defined for 𝑟 =
1, … 11 by: 

 

𝒁𝑘[𝑖, 𝑟] = {
1         𝑖𝑓 𝑑𝑎𝑖𝑙𝑦 𝑠𝑡𝑜𝑐𝑘 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑜𝑢𝑛𝑡𝑟𝑦  𝑟 
0     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                          

                                    (10) 

The smoothing penalty is based on the neighborhood structure of the discrete contiguous 

geographic units, so that stock market returns from spatially adjacent countries share similar 

effects. Specifically the diagonal matrix associated with the quadratic penalty is given by: 

 

𝑫𝑘[𝑟, 𝑞] = {

−1   𝑖𝑓 𝑟 ≠ 𝑞 ∧  𝑟 ≈  𝑞
0    𝑖𝑓 𝑟 ≠ 𝑞 ∧  𝑟  ≉  𝑞
𝑁𝑟  𝑖𝑓 𝑟 = 𝑞                     

                                                                                   (11) 

 

Where 𝑟 ≈  𝑞 indicates whether any two countries 𝑟 and 𝑞 are adjacent neighbors, and 𝑁𝑟 is the 

total number of neighbors for country 𝑟. The resulting quadratic penalty is equivalent to Rue & 

Held (2005) stochastic interpretation that 𝜷𝑘 follows a Gaussian Markov random field. Finally, 

extending the mean and variance functions in equations (8) and (9), this specification is 

implemented in the R statistical software using the follow representations: 

 

𝜇 : eqreturn ~ (day, bs = “re”)+(month, bs = “re”)+(year, bs = “re”)+(market, bs = “tp”, k=10) +   

                       s(country, bs = "mrf", xt = xt)                                                                            (12) 

𝜎 :               ~ (day, bs = “re”)+(month, bs = “re”)+(year, bs = “re”)+(market, bs = “tp”, k=10) +     

                       s(country, bs = "mrf", xt = xt)                                                                            (13) 

 

Where “country” is a factor variable with 11 levels, indexing each country in the data. “mrf” is the 

Markov Random Field smoother. All described smoothers are available from the R package 

“GJRM”, whose documentation can be consulted for more details (see Wojtys & Marra, 2018). 

We estimate the parameters of the above described model specification within the R statistical 

software using the “gamlss()” function from the R library “SemiParBIVProbit” (see Marra & 

Radice, 2017). 
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Results  

Relying on the underlying philosophy of empirical process theory (Dehling & Philipp, 2002), our 

empirical analysis using the reformatted data, models jointly the mean function, and the variance 

function of the column vector of concatenated time series. In this model representation, the full 

vector is seen as random structure (Merlevède et al, 2019), describing the process of daily changes 

in equity price index across the eleven integrated European stock markets.   

Making distributional assumptions about the empirical moments generating function (Cabaña & 

Quiroz, 2005; Collender & Chalfant, 1986) for this random vector, we are able to study the 

properties of its first and second order moments. These are represented by the mean and variance 

equations capturing respectively the conditional expected fluctuations in equity price index, and 

the conditional variance in equity price index fluctuations over the period of September 8th 1999 

and October 16th 2015, across the 11 national equity markets in Austria, Belgium, Denmark, 

France, Germany, Hungary, Italy, the Netherlands, Spain, Sweden, and the United Kingdom. 

Table (2): Estimated Spatio-temporal process of equity price index fluctuations 

 
 Mean Equation 

Parametric Model Semi-parametric Model 
Est. Std. err. Edf p-value 

(intercept) -0.7138 1.293 0.0137*** 4.06e-07 
day -0.00005 0.00034 1.000 0.9903 
month 0.00101 0.00092 1.000 0.3694 
year 0.00035 0.00064 1.000 0.3858 
Market 1.024*** 0.00295 0.182*** <2e-16 
Country Edf = 2.902 p-value = 0.212 Edf = 2.832 p-value = 0.0626 

     

Variance Equation Est. Std. err. Edf p-value 

(intercept) 87.757*** 2.864 -0.9599*** <2e-16 
day -0.0036*** 0.00076 3.415*** <2e-16 
month 0.0054** 0.00203 8.657*** <2e-16 
year -0.0441*** 0.00143 8.955*** <2e-16 
Market -0.0134** 0.00422 8.052*** <2e-16 
Country Edf = 9.991 p-value <2e-16 9.992*** <2e-16 
Model Performance 

measures 

Est. (C.I.) Est. (C.I.) 

�̂�2 0.478 (0.456 , 0.502) 0.479 (0.439 , 0.524) 

Largest Absolute 

gradient value 
0.6973506 7.749248e-06 

Eigenvalue range [0.1218557 , 450442249023] [3.815519 , 1.292507e+12] 
Total edf 22.9 47.9 

N 45309 45309 
AIC 91537.82 85314.91 
BIC 91737.48 85732.68 

Note: Est. is estimated coefficient value; Std. err. Is the Standard error of the estimated coefficient; 

Edf is the estimated empirical density function; C.I. the confidence interval on the estimated coefficient.  

Significance code: *** for 0.1% level, ** for 1% level, and * for 5% significance level.  
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For sensitivity analysis, we estimate a linear process (parametric) model, and a non-linear process 

(semi-parametric) model, both with random country effects. The performances of these two 

specifications are subsequently contrasted based on the Bayesian and the Akaike information 

criteria. Table (2) above summarizes the results of these estimations. Based on the model 

performance measures the non-linear process model is adopted as the preferred specification, with 

its results now discussed in the sub-sections below.  

 

3.3. Conditional Mean equation results for equity price index fluctuations 

Recall that in semi-parametric models with smooth function estimates, when the empirical density 

function (edf) is close to 1, the respective estimated effect is linear, and hence the covariate can 

enter the model parametrically. However, the higher the edf value the more complex is the 

estimated curve, and thus the corresponding covariate cannot be assumed to have a linear 

relationship with the outcome variable.  

As shown in the lower portion of table (2) under “Semi-parametric model”, the edfs for the smooth 

components of day, month, and year, are all equal to 1, with statistically non-significant p-values. 

Conversely, the p-value of the overall European regional market effect appears significant at the 

5% significance level. Although the edf value of the random country effects is 2.832, thus above 

1 and suggesting its non-linear influence on the individual markets fluctuations. Since its 

corresponding p-value is 0.0626, this effect only reaches statistical significance at the 10% level.  

Together, the above suggest that expectations about future changes in equity price index, by 

economic actors within the individual national markets, are not significantly influenced by daily, 

monthly nor annual perturbations in each national economy. Instead, the mean function of the daily 

fluctuations in equity price index value appears to depend solely but weakly, on the fluctuations 

in the overall European average index price. These results are further confirmed by the smooth 

function plots in figure (2) below, which are estimated after fitting the spatio-temporal model.   

 

Figure (2): Smooth functions plots for the effects of daily, monthly, yearly, and market level 

perturbations on expected equity index price changes across the eleven financial markets.   
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3.4. Conditional Variance equation results for equity price index fluctuations 

Also shown in the lower portion of table (2) under “Semi-parametric model”, the edfs for the 

smooth components of daily (3.415), monthly (8.657), yearly (8.955), European market level 

(8.052), and individual country level (9.992) fluctuations are all well above 1, with statistically 

significant p-values at the 0.1% level. These indicate the non-linear and significant effects of all 

the above mentioned covariates, on the variances of the individual European equity price index 

fluctuations. Indeed, daily variations in price index fluctuations are seen to not only depend on 

overall European average index fluctuations, but also on daily, monthly and annual perturbations 

taking place in each individual market. These algebraic results are further confirmed by the smooth 

functions plots in figure (3) below, which are estimated after fitting the spatio-temporal model.   

The smooth function plot on the top-left panel of figure (3) shows that on the daily scale, 

equity price index fluctuations across the individual European stock markets, varies convexly in 

any given month. Indeed, the variance in daily price index fluctuations decreases on average during 

the first 15 days of the month, and increases back over the course of the last 15 days of the month.  

 

Figure (3): Smooth functions plots for the effects of daily, monthly, yearly, and market level 

perturbations on the variance of equity index price changes across the eleven financial markets.   

On the monthly scale, variations in equity price index changes seem to exhibit a cascading, but 

overall convex shape over the course of the year. The smooth function plots on the top-right panel 

of figure (3) shows that the variance in daily price index fluctuations, starts the year by increasing 

initially between January and February. Then from February, it decreases reaching its minimum 

in mid-year (June); from which point it starts to increase again reaching its maximum in November. 

It then decreases as the year end in December, to spike back up at the beginning of the next year. 
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On the annual scale, variations in equity price index changes seem to exhibit a cyclical pattern 

over the 15 years covered by the data sample as seen in the lower-left panel of figure (3). It can be 

noted that variations in equity index price changes is concave between 1999 and 2005 reaching a 

maximum in the early 2000’s. Although a local maxima appears to characterize the period of the 

2008 financial crises, the level of variations in daily equity price fluctuation during this period 

remained less than that observed in the early 2000. A relatively steeper reduction in the variance 

of equity price index fluctuations is observed between 2008 and 2010. This reduction appears to 

have persisted between 2010 and 2015 although at a slower pace.  

Finally, the lower-right panel of figure (3) suggests that changes in the overall European market 

average index value exert a convex effect on index price fluctuations in the individual national 

markets.  Indeed, variations in the individual national stock market fluctuations are minimized at 

overall European market index price changes of zero; while strictly increasing for overall European 

stock market index price changes above or below zero. Further validating the above described 

algebraic properties in table (2), are the country level spatial random expected changes in equity 

price index (left panel) and expected variations in the equity price index fluctuations (right panel), 

which are graphically summarized in figure (4) below. 

 

 

Figure (4): Spatial density plots of the random Mean (left panel) and Variance (right panel) of 

equity index returns 

3.5.Empirical results assessment 

Assessing our results through the lenses of time series modelling, it can be noted that they 

corroborate the theoretical predictions of stochastic mixing processes, which Meir (2000; p.13) 

shows converge uniformly under some regularity condition. Indeed, starting with the work of Yu 

(1994) on dependent sequences, scholars have shown that among time series exists a special class 
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of processes for which the “future” depends only weakly on the “past”, these have been referred 

to as “mixing processes” (Dehling & Philipp, 2002; Rio, 2017). In our analysis, the fact that the 

conditional expectation of equity index price changes weakly on the overall changes in the 

European regional average index value, while being free from individual market’s daily, monthly, 

and annual perturbations, suggest that European stock market index prices evolve stochastically 

as mixing processes. This is further reaffirmed by the results of the conditional variance equation, 

which shows the variations in daily equity index price in the European market to significantly 

depend on daily, monthly, and annual perturbations.  

These results have significant implications for the stability of the European stock market and 

financial sector, and should provide financial regulators in the region with additional evidence for 

their policy efforts. In line with the vision of the European Institute of Innovation and technology 

(EIT)1, which was created in 2008 by the European Commission as an open innovation program 

in charge of translating the knowledge of open science into platforms, architectures and systems 

that bring significant value to society, our empirical investigation points to the potential value of 

creating a unique index, in the like of the existing “ethical stock market indices”, which will track 

the equity values of European companies involved in open innovation. Doing so will allow open 

innovation investors to have key market updates for their portfolio investment decisions, and may 

contribute to driving further the needed funds to support European open innovation initiatives, 

such as ATTRACT2. This latter initiative by a group of big European research labs including 

CERN, the European molecular biology laboratory, and the European Synchrotron Radiation 

Facility aims to translate the outputs of open science into open innovations, in partnership with 

Universities, SMEs, multinationals and private investors. According to the quadruple helix 

framework (Miller et al, 2018; Yun, 2019), such open science based innovation practices are more 

sustainable than the previous closed innovation paradigm.  

4. Discussion 

The sharing economy as an umbrella concept that encompasses several ICT developments 

and technologies (Acquier et al, 2017), including collaborative consumption of goods and services 

through online platforms, has emerged as an economic-technological phenomenon (Laurenti et al, 

2019). Its recent growth has been fueled by developments in ICT, growing consumer awareness, 

proliferation of collaborative web communities (Ranjbari, 2019), and increasing concerns over 

ecological, societal and developmental impact (Hamari et al, 2016). Though debates still persist as 

to whether it could be a successful pathway to sustainability in times of rapid technological 

developments, but constrained financial resources (Martin, 2016; Geissinger, 2019; Murillo, 

2020). Although others have focused on how the data deluge along with artificial intelligence is 

reshaping the field of economics altogether (Athey, 2018), in this study we explored instead how 

sharing and reusing scientific research data, as digital goods, could contribute to sustainable 

research output production and economic growth. We achieved this by relying on a three stage 

                                                           
1 www.eit.europa.eu 
 
2 www.attract-eu.org 
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stratified clustered random sample from the Journal of Applied Econometrics Data Archive, along 

with descriptive analytics and spatio-temporal econometric modelling and inference. 

We find that despite the strong deductive reasoning requirement for the successful reuse of 

openly shared data3 in subsequent analyses, such practice does provide a viable solution for the 

sustainability of research output production, innovation and economic development. Sustainable 

value creation is not only reflected in direct economic value, but also through better social and 

environmental outcomes (Geissinger, 2019). This is even more apparent if we adopt a “data value-

chain” perspective to link openly shared data as raw material to the digital contents, goods and 

services produced (De Reuver et al, 2018). Such perspective is underpinned however by the 

interplay of two fundamental mechanisms (Jetzek et al, 2019), the first of which is the information 

sharing mechanism that relates to how openly shared data are used to create informational content 

that creates value for society through increased transparency, reduced information asymmetry, and 

improved decision-making. The second channel is the market mechanism which relates to how 

openly shared data help make processes more efficient, and often satisfy previously unmet needs 

by providing the raw material for the production of digital goods and services that are subsequently 

sold in markets.  

Sustainable value generation through openly shared data is based on creating an 

opportunity for anyone to reuse data beyond the organizational boundaries of the data custodian 

and the technical boundaries of the originating system (Murillo, 2020). Making the value creation 

itself sustainable requires re-users to complement open data with proprietary data sources and use 

the enriched data in combination with specialized algorithms and technical infrastructures for the 

development of digital content, products, and services (Welle Donker & van Loenen, 2017). 

Although such idea of “data recycling” remains at present date under-researched, its connection 

with “collaborative consumption” through open data sharing and reuse is increasingly regarded as 

a practice that engages especially environmentally and ecologically conscious consumers (Jetzek 

et al, 2019).  

Our analysis further support the idea that viewing research data recycling as a sustainable 

practice, like any other recycling activity can lead to an increase in data sharing and reuse, 

especially when adopting this view leads to increased positive attitudes towards participation 

(Turki et al, 2019). Because aspirations to sustainability do not always strongly translate into 

action, expectations as to a wider diffusion of data sharing and reuse within the research 

community might be deflated. It may be that opportunistically, people seeking economic benefits 

end up adopting data sharing and reuse as an alternative mode of scientific research production 

(Houtkoop et al, 2018). Or, in a worst case scenario, some researchers might be altruistic and share 

openly their research data, while other researchers benefit mostly from such sharing. This situation 

however would undermine the sustainability of data sharing and reuse if proper compensating 

mechanisms are not put in place. As initiatives such as the “Research Data Alliance4”, and new 

                                                           
3 Explained as “reasoning from the general to the particular, the deductive approach follows the path of logic most 

closely. The reasoning starts with a theory and leads to a new hypothesis. This hypothesis is put to the test by 

confronting it with observations that either lead to a confirmation or a rejection of the hypothesis” (Russell, 2010).  
4 https://rd-alliance.org/about.html 
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journals such as Elsevier’s “data in brief”, MDPI’s “data”, and Nature’s “Scientific Data” are 

created with inter-disciplinary focus, and allowing researchers to openly publish and get full 

citable credit for their research data, the practice of data recycling through open data sharing and 

reuse should find its way to make scientific research production more sustainable. It is also our 

hope that initiatives such as “Open Science Grid5”, will successfully contribute to fostering the 

wider, faster, and cheaper access to new knowledge, promoting more rapid understanding and use 

of science.  

 

5. Conclusion 

The sharing economy has been emerging as one of the key paradigms in support of the Fourth 

Industrial Revolution (Kim & Lee, 2019). As a result in March 2017, the U.S. National Academies 

of Sciences, Engineering, and Medicine (NASEM) appointed an expert committee to evaluate 

more fully the benefits and challenges of broadening access to the results of scientific research, 

described as “open science”. The committee was charged with focusing on how to move toward 

open science as the default for scientific research results, and to indicate both the benefits of open 

science and the barriers to doing so. The resulting consensus report published by the NASEM 

pointed out significant benefits of open science moving forward (National Academies of Sciences, 

Engineering, and Medicine, 2018a). Since then, there have been a growing consensus in the 

scientific community that the transition to data-driven open science is best achieved by establishing 

a globally interoperable research infrastructure (National Academies of Sciences, Engineering, and 

Medicine, 2018b). This has led the Board on Research Data and Information (BRDI) of the 

NASEM to organize a follow up symposium on November 1st, 2017 to explore the issues of 

making research data findable, accessible, interoperable, and reusable (abbreviated as FAIR).  

The current investigation was carried out within this general context, with the understanding that 

the value-generating mechanisms of openly shared data remains mostly unobservable, and that 

research on the underlying topic of data recycling for sustainability is still in a nascent state (Meijer 

& Grimmelikhuijsen, 2017). Relying therefore on a resourceful research approach that focused on 

showcasing the re-use potential of a key digital data archive, we hoped to provide potential re-

users with a case study example that could assist in further prospective investigations using similar 

open data sources. This practice contributes to the literature on how and when researchers reuse 

data they obtain from openly shared sources, easing therefore the transition into the era of “citizen 

science” or “crowdscience” (Teo, 2020). As suggested in the recently published comment in 

nature’s “Scientific Data” journal (Lin et al, 2020), the issue of open data sharing and reuse, and 

its “trust” requirement between the different stakeholders including data repositories, needs to be 

at the center of ongoing scientific discourses. We hope that our current treatment, as a step in that 

direction, would draw further prospective interests on the topic.  

 

                                                           
 
5 Opensciencegrid.org 
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