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Abstract 

Results are presented concerning the influence on the water splitting process of 

enantiopure tartaric acid present in bulk solution. Stainless steel and electrodeposited 

nickel are used as working electrode (WE) surface. The latter is obtained by 

electrodeposition on the two poles of a magnet. The influence and role played by the 

chiral compound in solution has been assessed by comparing the current values, in cyclic 

voltammetry (CV) experiments, recorded in the potential range at which oxygen 

evolution reaction (OER) occurs. In the case of tartaric acid and nickel WE a spin 

polarization of about 4 % is found. The use of the chiral environment (bulk solution) and 

ferromagnetic chiral Ni electrode allows for observing the OER at a more favourable 

potential: about 50 mV (i.e. a cathodic, less positive, shift of the potential at which the 

oxygen evolution is observed). 
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1. Introduction 

Spin dependent electrochemistry (SDE) is a quite recently proposed method branch of 

electrochemistry [1]. The peculiar characteristic of SDE is that it allows for the control, 

production and measurement of spin polarization currents within an electrochemical 

system, giving the opportunity to gain further physical insight on the influence and role 

of spin in the charge transport. From the technological point of view, a possible 

application of SDE is to enhance the efficiency of the hydrogen production via 

electrochemical dissociation of water: this process is commonly addressed as water 

splitting (WS) [2–7]. Nowadays, the energy problem is a crucial challenge to be faced. 

Hydrogen could be a decisive way out of it, because hydrogen is considered as the 

ultimate fuel for several reasons: i) it has the highest specific enthalpy of combustion of 

any chemical fuel ii) no carbon or 𝐶𝑂2 waste iii) water is the combustion final product. 

In the present situation, the 80% of the sources of energy production consists of the 

traditional ones (such as oil, coal and natural gas). The perspective related to pollution 

issues and future shortage of oil and coal leads to search for a different type of fuel. The 

latter should effectively be coupled with alternative energy sources: photovoltaic, 

hydroelectric, wind turbine, geothermal, tidal power. All these energy sources produce 

electricity as the final form of energy. On the whole, energy obtained via “renewable 

energy” sources in 2015 represented the 16.7% of the installed power in the U.S.A. for 

the 13.8% of the total world-wide electricity generation [8] (including the hydrogen 

production that reached 1010 kg in 2015 in U.S.A.). In addition, the worldwide percentage 

of energy produced by renewable energy is higher than in the U.S.A., reaching the 24% 

of the total [5], with the 58% purchased from hydroelectric source. Within this picture, 

hydrogen role is growing in importance as it can be used as energy vector and/or fuel 

mixed with the fossil ones [9–11]. Concerning hydrogen, one of the hardest issues to be 

solved is its efficient storage, which has been the subject of extensive research and 

multiple solutions are currently viable. From classical liquid storage and high-pressure 

containers to “Metal hybrids” an “Metal hydride” compounds [12,13]. Moreover, an 

appealing positive feature of the hydrogen production obtained via water splitting is its 

potential use “in-situ” linked to solar energy photovoltaic electric generation in low-cost 

organic cells [14–16]. Here chirality comes into play in view of the spin filter effect, 

Chiral Induced Spin Selectivity (CISS) [17]. The positive boost due to the spin-filter 

effect has already been demonstrated for electrodes coated with chiral molecules [2,3,18–

20]. This because ideal spin filtering would produce 𝑂𝐻 radicals only of alpha (or only 
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for beta) spin state, hindering the production of 𝐻2𝑂2 (hydrogen peroxide). The latter is 

a highly reactive and corrosive compound, and it can be considered a side reaction’s 

undesirable product of the 𝑂𝐻 oxidation (compare equation (2)). In this work the CISS 

effect is exploited using chiral compounds in bulk solution, rather than adsorbed on the 

electrode surface. In principle, allowing to achieve a more efficient production of 

hydrogen through the water splitting but using a simpler and cheaper system. The water 

splitting process is studied as a function of different chiral additives/catalysers on both a 

stainless steel and nickel electrodes, the latter deposited directly on a magnetic surface. 

 

2. Experimental 

L-(+)-tartaric acid (the natural available enantiomer), L-(–)-aspartic acid, D-(+)-glucose 

were purchased from Sigma Aldrich and used without further purifications. The nickel 

electrodeposition was carried out using a classical Watt’s Bath (WB), whose composition 

is: 150 g/L of nickel sulphate, nickel chloride, 37 g/L boric acid H3BO3, pH = 5. Cyclic 

voltammetry (CV) measurements were performed using both Autolab PGSTAT 128N 

and CHI660A potentiostats, employing a typical three-electrode electrochemical cell 

arrangement concerning the measurements involving the stainless steel working 

electrode. A different arrangement was adopted in the case of the Ni electrodeposited on 

the magnet: a Teflon cell, featuring a hole (0.8 cm diameter) in the bottom, was used in a 

vertical configuration where the Ni-on-the-magnet working electrode was tightened from 

below, a Teflon ring was used to ensure no solution leakage from the cell.  Thus, Steel 

AISI 316L or the Ni-on-the-magnet surfaces were used as working electrodes (WE), 

while a Pt wire and a silver, silver chloride, KCl saturated solution (Ag/AgCl/KClsat) 

electrodes were the counter (CE) and reference electrodes (RE), respectively. In order to 

check the quality of the nickel surface obtained via electrodeposition on the magnet, 

control experiments were carried out using glassy carbon, Pt and evaporated gold as 

working electrodes [21]. A KOH 0.1 M aqueous solution is used as base electrolyte in all 

reported electrochemical measurements.  

 

3. Results 

The overall water splitting reaction is, in principle, a simple redox reaction: 

2𝐻2𝑂 → 2𝐻2 + 𝑂2   ∆E = 1.23 V vs RHE  (1) 

In fact, the reaction is much more complex, in particular concerning the water oxidation 

at the anode. Here, in fact, the oxygen evolution reaction (OER) occurs via a multi-step 
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process, which involves a rather complex reaction mechanism featuring the transfer of 4 

electrons [22]. The mechanism depends on a number of chemical as well as physical 

parameters, and in particular on the solution pH. In the following equations, (2)–(5), the 

overall half-cell reactions are reported:  

 Alkaline solution: 

4𝑂𝐻− → 𝑂2 + 2𝐻2𝑂 + 4𝑒− 𝐸𝑎
0= 0.401 V vs NHE (2) 

4𝐻2𝑂 + 4𝑒− → 2𝐻2 + 4𝑂𝐻− 𝐸𝑐
0 = –0.828 V vs NHE (3) 

 Acid solution: 

2𝐻2𝑂 → 𝑂2 + 4𝐻+ + 4𝑒− 𝐸𝑎
0 = 1.229 V vs NHE (4) 

4𝐻+ + 4𝑒− → 𝐻2 𝐸𝑐
0= 0.00 V vs NHE (5) 

In principle, the potentials associated to reactions (2) and (4) are the thermodynamic 

values relevant to the OER, but beyond the thermodynamic potential it is necessary to 

apply an overpotential to observe the gas evolution.  The key to improve the process 

efficiency is to minimize the overpotential [2–4]. The following sequence of elementary 

reaction steps represents the step-by-step overall reaction that occurs at the anode in an 

acid solution (where 𝑀 represent the anode metallic conductive substrate) [22–25].  

𝑀 + 𝐻2𝑂(𝑏𝑢𝑙𝑘) → (𝑀)𝑂𝐻(𝑎𝑑𝑠) + 𝐻(𝑠𝑜𝑙)
+ + 𝑒− ∆G1 (6) 

(𝑀)𝑂𝐻(𝑎𝑑𝑠) → (𝑀)𝑂(𝑎𝑑𝑠) + 𝐻(𝑠𝑜𝑙)
+  + 𝑒− ∆G2 (7) 

(𝑀)𝑂(𝑎𝑑𝑠) + 𝐻2𝑂(𝑏𝑢𝑙𝑘) → (𝑀)𝑂𝑂𝐻(𝑎𝑑𝑠) + 𝐻(𝑠𝑜𝑙)
+ + 𝑒− ∆G3 (8) 

(𝑀)𝑂𝑂𝐻(𝑎𝑑𝑠) → 𝑀 + 𝑂2(𝑔𝑎𝑠) + 𝐻(𝑠𝑜𝑙)
+ + 𝑒− ∆G4 (9) 

∆𝐺𝑖  is the Gibb’s free energy of each elementary steps. As reported in literature [28,29], 

∆𝐺𝑂𝐸𝑅   is the max of the four ∆𝐺𝑖  values, namely ∆𝐺3. ∆𝐺𝑖  can be calculated with the 

formula ∆𝐺0 =  −𝑛𝐹𝐸 if all elementary steps are known and so the ∆𝐸0 of the redox 

couple involved [26–28]. Those values are useful in compiling the Latimer diagram of 

the reaction, a compact diagram of each step involved in the redox chain, reported in 

Scheme 1, where numbers in the purple arrows represent the ∆𝐸0 of the reactions from 

(6) to (9). The ∆𝐸0 of the total reaction is the results of the equation 
∑ 𝑛𝑖∆𝐸𝑖

04
1

∑ 𝑛𝑖
4
1

 where 𝑛𝑖 

represent the number of electrons exchanged during each step.  
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Scheme 1 – Water electrolysis: Latimer reaction mechanism. 

The energy for the reaction can be provided by different sources, e.g. with the use of light, 

often coupled with catalytic substrate, like TiO2  [29–31]. Remarkably, the final product 

at the anode, i.e. oxygen, is produced in its triplet state, which is the most stable molecular 

oxygen species. Here spin dependent electrochemistry can play a role. Thus, experiments 

of electrochemical water splitting were carried out using two different anodes: i) a 

stainless steel AISI 316 L electrode ii) Ni electrodeposited directly on the North (or 

South) pole surface of a permanent magnet (Ni-on-the-magnet electrode). Cyclic 

voltammetry results are presented focusing on the response of the anodic OER. In the 

case of the AISI 316L steel, results were collected using, L-(+)-tartaric acid, D-()-

aspartic acid and D-(+)-glucose. In the case of Ni-on-the-magnet electrode, CV 

measurements were still performed with bulk concentrations of D-(+)-glucose, L-(+)-

tartaric acid and D-()-tartaric acid, and particular focus was also payed to potential 

sweeps experiments in presence of L-(+)-tartaric acid.  On the whole, the experimental 

electrochemical outcome allows to discuss the role played on the OER efficiency by 

suitable spin injection; in relation to the chirality of compounds present in solution. 

 

3.1 Steel AISI 316L 

3.1.1 L-(+)-tartaric acid 

Figure 1 shows cyclic voltammetry curves, obtained as a function of different 

concentrations of bulk L-(+)-tartaric acid, on the stainless steel working electrode. In both 

the forward and backward curves, the current is nearly negligible in the 0.0 to 0.6 V range. 

In the case of the base electrolyte solution (blue curve, Figure 1), at potential values larger 

than 0.6 V the current starts to increase almost linearly until reaching a final 2.5 mA value 

at 0.8 V. Tartaric acid 0.5 mM solution (green curve, Figure 1) shows a lower current, 2.4 

mA, at 0.8 V. Tartaric acid 5 mM solution (red curve, Figure 1) shows an initial higher 

current but at the potential where the OER occurs (around 0.8 V) the current is lower 

when compared with the previous ones. Tartaric acid 25 mM solution (black curve, Figure 
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1) shows the lowest current, 1.2 mA, at 0.8 V. The current appears to be correlated to the 

concentration of the chiral compound with an inverse proportionality. The inset of Figure 

1 presents a more detailed CV, in the 0.5 to 0.75 V potential range. The inset shows a 

small but neat difference between the forward and backward scans. The current for the 

KOH base electrolyte solution is always higher than the one measured in presence of 

tartaric acid.  

 
Figure 1 – Cyclic voltammetry curves recorded on a steel AISI 316L WE. 50 mV/s 

potential scan rate, Pt sheet as CE and Ag/AgCl/KClsat as RE. KOH 0.1 M aqueous 

solution is the base electrolyte. L-(+)-tartaric acid concentration: (blue) 0 mM, (green) 

0.5 mM, (red) 5 mM, (black) 25 mM. The inset shows the CV detail in the 0.5 and 0.75 V 

potential range. 

 

3.1.2 L-(–)-aspartic acid 

Figure 2 shows CVs in solutions with different concentrations of L-(–)-aspartic acid. 

Qualitatively, CVs pattern is quite similar to that shown in Figure 1.  Quantitatively, all 

the tartaric acid solutions at different concentration feature a lower current with respect 

to that of the base electrolyte. Note that, no peaks are evident in the backward scan, 

indicating that any reaction (OER) occurring during the forward scan (oxidation regime) 

is irreversible.  
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Figure 2 – Cyclic voltammetry curves recorded on a steel AISI 316L WE. 50 mV/s 

potential scan rate, Pt sheet as CE and Ag/AgCl/KClsat as RE. KOH 0.1 M aqueous 

solution is the base electrolyte. L-(–)-aspartic acid concentration: (red) 0 mM, (blue) 1 

mM, (light blue) 10 mM, (green) 50 mM, (black) 100 mM. 

 

3.1.3 D-(+)-glucose 

Figure 3 shows CVs as function of the concentration of D-(+)-glucose. A systematic 

variation in the current as a function of the D-(+)-glucose concentration can be noted. The 

maximum efficiency, obtained comparing the current response at fixed potential values, 

is found for the 10 mM D-(+)-glucose concentration (green curve, Figure 3). The KOH 

base electrolyte solution is characterized by the lowest current values (red curve, Figure 

3). 

 

Figure 3 – Cyclic voltammetry curves recorded on a steel AISI 316L WE. 50 mV/s 

potential scan rate, Pt sheet as CE and Ag/AgCl/KClsat as RE. KOH 0.1 M aqueous 

solution is the base electrolyte. D-(+)-glucose concentration: (red) 0 mM, (light blue) 1 

mM, (green) 10 mM, (black) 100 mM. 
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3.2 Nickel electrodeposited on magnet 

3.2.1 D-(+)-glucose  

Figure 4 shows the cyclic voltammetry of Ni electrodeposited on the north surface of a 

permanent magnet used as working electrode in two different solutions: D-(+)-glucose 

0.1 M in base electrolyte (KOH 0.1 M) and bare base electrolyte. The experimental set-

up is the one with the Teflon cell described in Section 2 (2. Experimental). Note that 

Error! Reference source not found.4 and Error! Reference source not found.5 values 

are normalized to point out the differences between the current in the solution with the 

chiral compound and the one with only the support electrolyte KOH. The value that has 

been used to normalize the data was the current associated to the oxidation of the Ni 

surface, otherwise the current peak, in the forward scan, in the base electrolyte curve: an 

opportune dividing coefficient is adopted in order to make that peak current value equal 

to 1. In the case of pure electrolyte KOH solution (red curve, Figure 4) the Ni peaks are 

evident, with the oxidation one happening at 0.55 V in the forward scan while during the 

backward scan the reduction peak splits in two smaller peaks, one at 0.39 V and the other 

at 0.46 V. Otherwise, the curve describing the current in the solution containing the chiral 

compound is completely different, resulting more like the one found with the stainless 

steel electrode (Figure 3). In particular, the D-(+)-Glucose curve doesn’t have the peaks 

of the Ni nor in forward nor in backward scan. The absence of peaks in the glucose’s 

curve means that the redox process became irreversible if the glucose is added to the KOH 

solution. The anodic peak current in the solution containing the chiral compound results 

being 50% higher than the one measured with only the support electrolyte. 

 
Figure 4 – Normalized cyclic voltammetry curves recorded with electrodeposited Ni on 

the North pole of the magnet. Red curve: KOH 0.1 M aqueous solution. Black curve: 0.1 

D-(+)- Glucose 
North Pole 
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M of D-(+)-Glucose in KOH 0.1 M aqueous solution. 50 mV/s potential scan rate, a Pt 

as CE, Ag/AgCl/KClsat as RE. 

Error! Reference source not found.5 shows the cyclic voltammetry measured on Ni 

electrodeposited on the south pole of the permanent magnet used as working electrode; 

those experiments were carried out with the same solutions of Error! Reference source 

not found.4, in the same operative conditions. As in Error! Reference source not 

found., the D-(+)-Glucose’s curve doesn’t have the characteristic peaks associated to the 

oxidation and the reduction of the Ni.  

For what concerns the support electrolyte, the graph shows one peak at 0.55 V in 

oxidation and one peak and a shoulder in reduction at 0.37 V and 0.45 V respectively, 

coherent to what has been already seen in Error! Reference source not found.4. As for 

Error! Reference source not found.4, the ordinate axis has been normalized using the 

value of the current associated to the oxidation peak of the support electrolyte, so that 

peak would result having value equals to 1 on the normalized axis. In comparison with 

Figure 4, the current of the solution containing the chiral compound is lower in the south 

pole, resulting having the maximum current in oxidation almost equal to the one measured 

with the support electrolyte. 

 
Figure 5 – Normalized cyclic voltammetry curves recorded with electrodeposited Ni on 

the south pole of the magnet. Red curve: KOH 0.1 M aqueous solution. Black curve: 0.1 

M of D-(+)-Glucose in KOH 0.1 M aqueous solution. 50 mV/s potential scan rate, Pt as 

CE, Ag/AgCl/KCl as RE. 

Error! Reference source not found. shows the comparison between CVs collected with 

a Ni electrode on top of north and south magnet polarities, recorded in a wider potential 

range. Remarkably, at 1.2 V it is present a peak for both the curves and the north pole 

peak current of the oxidation process is larger than the south pole corresponding value.  

D-(+)- Glucose 
South Pole 
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Figure 6 – Comparison between cyclic voltammetry curves recorded with 

electrodeposited Ni on both poles of the magnet. Red curve: south pole with 0.1 M of D-

(+)-Glucose in KOH 0.1 M aqueous solution. Black curve: north pole with 0.1 M of D-

(+)-Glucose in KOH 0.1 M aqueous solution. 50 mV/s potential scan rate, Pt as CE, 

Ag/AgCl/KCl as RE. 

 

3.3 Stepped sweeps 

For a more accurate visual detection of the actual OER starting potential, “stepped 

sweeps” technique measurements were performed. In fact, differently from the previous 

CVs, these experiments feature incremental values of potential which is maintained 

constant for a chosen amount of time. These measurements are reported in Figures 7 and 

8, showing the anodic current recorded as a function of time during the potential ramp for 

two different electrodes. 

 

3.3.1 Stepped sweeps on AISI 316 L 

Stepped sweeps were performed using the AISI 316 L steel sheet as working electrode, 

with the L-(+)-tartaric acid present in bulk solution. The applied potential programme as 

a function of time features a first potential ramp from 0 to 0.75 V at a 50 mVs-1 scan rate, 

followed by eight +0.01 V potential steps, up to 0.83 V. The potential was maintained 

constant for 10 s before the next step. Tartaric acid concentration 0.5 and 5 mM in bulk 

solution was used. A rather large increase in the current was found, which should reflect 

a more efficient way to produce oxygen. Indeed, visual observation of the anode shows 

that the oxygen evolution occurs at more negative (smaller) potentials, anticipating the 

OER between 20 to 30 mV with respect to the pure KOH base electrolyte solution (the 

relevant table (Table 1SI) is present in the Supporting Information). 

D-(+)- Glucose 
North vs. South 

Pole 
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Figure 7 – Stepped sweeps curves recorded on a steel AISI 316L WE, Pt sheet as CE and 

Ag/AgCl/KClsat as RE. KOH 0.1 M aqueous solution is the base electrolyte. A potential 

ramp from 0 to 0.75 V at a 50 mV/s was applied, followed by eight +0.01 V potential 

steps, up to 0.83 V. The potential was maintained constant for 10 s between each step. 

L-(+)-tartaric acid concentration: (blue dash) 0 mM, (green) 0.5 mM, (red) 5 mM 

 

3.3.2 Stepped sweeps Ni-on-magnet 

Stepped potential sweeps experiments were recorded also exploiting a ferromagnetic 

electrode in tight contact with a magnet: the Ni electrodeposited on magnet (Ni-on-

magnet) electrode. This to possibly maximize the spin-injection efficiency. Figure 8 

shows the anodic current recorded as a function of time: measurements have been carried 

out with L-(+)-tartaric acid present in bulk solution, as well as with the pure 0.1 M KOH 

base electrolyte for reference purposes. The applied potential programme as a function of 

time features a first potential ramp from 0 to 0.70 V at a 50 mVs-1 scan rate, followed by 

+0.01 V potential steps, maintained constant for 15 s. The tartaric acid concentration is 

0.5 mM in bulk solution. Results show two different situations depending on the 

orientation of the substrate magnet. In fact, when the Nickel sheet lays on the south pole 

of the magnet, the oxidation current results slightly higher for the TA solution than the 

KOH alone; moreover, a huge current increase can be observed between the chiral 

solution and the basic one when the North pole of the magnet is used. A significant 

increase in the current is found, which reflects a more efficient way to produce oxygen. 

Indeed, for both the North and the South magnet pole visual observation of the anode 
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shows that the oxygen evolution occurs at more negative (smaller) potentials, anticipating 

the OER between 30 to 50 mV with respect to the pure KOH base electrolyte solution 

(Table 1SI in the Supporting Information). 

 
Figure 8 – Stepped sweeps curves recorded on a Ni deposited on magnet working 

electrode, a Pt sheet is the CE, Ag/AgCl/KCl is the RE. KOH 0.1 M aqueous solution the 

base electrolyte. First a potential ramp from 0 to 0.70 V at a 50 mV/s was applied, 

followed by eight +0.01 V potential steps, up to 0.78 V. The potential was maintained 

constant for 15 s between each step. L-(+)-tartaric acid concentration: (blue dash) South 

mag orientation 0 mM, (red dash) South mag orientation 0 mM, (light blue) South mag 

orientation 0.5 mM, (orange) North mag orientation 0.5mM  
 

4. Discussion 

It is known that the presence in bulk solution of chiral compounds is able to “induce” an 

enantio-selective or generate local spatial chirality effects: see for instance results 

obtained in chiral ionic liquids and enantio-recognition effects in achiral ionic liquids, 

this latter induced by the presence of suitable bulk chiral compounds (even in a low 

concentration) [32]. Thus, in this work we exploit this idea to induce chirality effects by 

simply performing electrochemical experiments in the presence of bulk chiral 

compounds.  As a whole, our results concerning the water electrolysis are consistent with 

such a picture already present in the literature. Concerning the CVs recorded by using a 

stainless steel anode, the L-(+)-tartaric acid and L-(–)-aspartic acid exert a blocking 

activity on the electrode. The anodic current is found to decrease as the concentration of 

the acid is increased (compare CVs shown in Figure 1 and Figure 2). Probably this effect 
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is due to simple coulombic attraction between the anode (charged positively) and the 

relevant acid anion, which can be adsorbed on the surface eventually leading to a decrease 

in the overall current. A different electrochemical behaviour is found when the D-(+)-

glucose is present in the solution, Figure 3. The current is always found larger than that 

of the base electrolyte, and in terms of efficiency the current increases as a function of 

the concentration until 10 mM, then starts to decrease for larger concentrations (compare 

black line, 100 mM, Figure 3). A different picture emerges when the ferromagnetic Ni 

surface, deposited on a magnet acting as substrate, is used as the anode. In the case of the 

L-(+)-tartaric acid, Error! Reference source not found.8 , the current recorded in 

response to potential sweeps in the presence of the bulk chiral compound is always larger 

than that of the base electrolyte. In this peculiar case, the effect of the presence of the 

chiral compound in bulk solution has been investigated by comparing the peak current 

values as a function of the magnet orientation (North vs. South), showing significant 

differences in the values of the current obtained at a fixed potential. Such an analysis is a 

crucial issue in unravelling the role of the spin. Moreover, to obtain a complete picture, 

the electrochemical results can be compared for the two enantiomers. Altogether four 

different situations are to be quantitatively compared: 1) L-(+)-tartaric acid North 2) L-

(+)-tartaric acid south 3) D-(-)-tartaric acid north 4) D-(–)-tartaric acid south. Table 2SI, 

3SI, 4SI and Table 5SI report, in the most synthetic way, the current results obtained 

performing CVs in all four cases. Moreover, Table 6SI and Table 7SI aim to present in a 

clear and simple way, as much as possible, the catalytic effect observed in the different 

combination of enantiomers and the magnet pole. In particular, the sign found in column 

titled “sgn (Jratio North -  Jratio South)” (Table 6SI and Table 7SI) exhibit what is the most 

efficient combination. Remarkably, the L-(+)-tartaric acid North is more effective than 

L-(+)-tartaric acid South in a consistent way, while the D-(-)-tartaric acid south 

combination is found more effective than the D-(-)-tartaric acid North (coherently with 

the results of the stepped sweeps previously presented in Section 3.3.2). In the case of the 

glucose, only the D-(+)-glucose enantiomer was examined and it is found that the current 

for the D-(+)-glucose north combination is larger than the D-(+)-glucose south one, 

Error! Reference source not found.4 and Figure 5. Please note that due to fluctuations 

in the base electrolyte CVs, in Error! Reference source not found.4 and Error! 

Reference source not found.5 normalized data are presented. Table 8SI and Table 9SI 

report the percentage of spin polarization of currents in the experiments made on the 
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different Ni surface deposited on poles’ magnet. Those values are calculated with the 

formula (10). 

 

(
𝐽(𝑇𝑎𝑟𝑡)

𝐽(𝐾𝑂𝐻)
)

(𝑁𝑜𝑟𝑡ℎ)

−(
𝐽(𝑇𝑎𝑟𝑡)

𝐽(𝐾𝑂𝐻)
)

(𝑆𝑜𝑢𝑡ℎ)

(
𝐽(𝑇𝑎𝑟𝑡)

𝐽(𝐾𝑂𝐻)
)

(𝑁𝑜𝑟𝑡ℎ)

+(
𝐽(𝑇𝑎𝑟𝑡)

𝐽(𝐾𝑂𝐻)
)

(𝑆𝑜𝑢𝑡ℎ)

= 𝑆𝑃% (10) 

 

5. Conclusion 

In this work it was explored the influence of chiral compounds in bulk solution on the 

hydrogen production process pursued via water electrolysis, often addressed as “water 

splitting”. To this end two different electrode materials (steel and Ni) and three organic 

chiral compounds (tartaric acid, aspartic acid, glucose) have been selected. Assessment 

of the catalytic activity of the different combinations of organic compound and electrode 

material was performed by measuring CVs under controlled conditions. The KOH 0.1 M 

aqueous solution base electrolyte was selected as the experimental reference situation to 

evaluate the catalytic effect on the water splitting process. Chiral compounds have been 

selected because they are known to enhance the OER efficiency due to spin effects [2–7]. 

In this work the chiral compounds are present in bulk solution rather than adsorbed on 

the electrode surface. The results are encouraging both on steel and on Ni as well. The L-

(+)-tartaric acid yields a moderate potential shifting effect (50 mV in the most favourable 

case), just on the shoulder preceding the current ramp for the OER. On the contrary, the 

aspartic acid does not seem to exert any prominent effect. In the case of the Ni working 

electrode the effect of the magnetic field, to select “up” and “down” spin injection, was 

investigated. Here the most interesting results are obtained. The comparison of the 

oxidation current peak, essentially due to the oxygen evolution reaction, yields a final 

consistent picture. Where the L-(+)-tartaric acid is found to enhance the evolution when 

the north-pole of the magnet is placed in direct contact with the Ni anode surface, the 

situation is reversed, i.e. larger efficiency for the D-(-)-tartaric acid coupled with the south 

magnetic field orientation. By and large, it appears that the results obtained using bulk 

chiral compounds yield a consistent spin filtering effect.  On the whole, an average 4 % 

spin polarization value is obtained (average obtained by the SP values of each 

measurement), a value which is definitively less than the 15 % to 20 % SP range obtained 

in the case of well-ordered adsorbed monolayers directly on top of the electrode surface. 

In this case, using bulk compounds the preparation of the systems is by far easier and less 
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demanding. Without using exotic materials (for example cadmium based nanoparticles) 

which are also cheap and non-strategic. 

All in all, the results obtained especially on the Ni as a function of the magnet orientation, 

relate well with results previously presented in the literature. This gives further impulse 

to the scientific research in the field of spin effects in the OER process. 
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