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1. Introduction

The monitoring of the evolving state of a serious epidemic can be done during
and after its outbreak by estimating the daily values of basic ratios generally known
as reproductive or reproduction numbers [B] [6, [7, [13]. While not properly geared to
allow serious predictions of future values of the epidemic, they are nevertheless able
to display the past and present history with amazing clarity. However, as their calcu-
lation depends on the values of various mathematical parameters (like the length of
transmission and incubation periods), this ability may be impaired by inaccuracies
in their estimation. This is particularly true for the widely used basic reproduction
number, which measures the average number of secondary cases generated by a typ-
ical infectious individual in a full susceptible population (Figure 1).

Tirne evolution of basic reproduction nurmber (Brazil)
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. Fig. 1: Time evolution of standard

. basic reproduction numbers of Co-
vid-19 in Brazil since the date of
100 cases reported (¢ = 0), showing
the effect of two distinct hypothet-
ical transmission periods (7 = 20
and Ty = 10, resp.). In this example,
t = 0 corresponds to 03/13/2020.

(Data source: covid.saude.gov.br)
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On the other hand, once some mathematical model has been chosen to simulate
the disease dynamics and its parameters determined, several alternative reproduc-
tive numbers become automatically available at no additional computational cost,
many showing very little dependence on key parameters like transmission or incuba-
tion times. We will illustrate this fact in the context of deterministic SEIR models,
but our approach can be adapted to other mathematical models (deterministic or
stochastic) as well.

The idea is most easily explained by considering the simplest SEIR model of all,
defined by the equations (1.1) below. This model divides the entire population in
question into four classes: the susceptible individuals (class S), those ezposed (class E,
formed by infected people who are still inactive (i.e., not yet transmitting the dis-
ease), the active infected or infectious individuals (class I) and the removed ones.
The latter class is formed by those who have recovered from the disease (class R) or
who have died from it (class D). The dynamics between the various classes is given
in the universal language of calculus by the differential equations
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see e.g. [2, 4, 7,[12] for a detailed discussion of the various terms and their meanings.
The parameters  (AVERAGE TRANSMISSION RATE) and 7 (AVERAGE LETHALITY RATE
of the population I due to the disease) vary with ¢ (time, here measured in DAYS),
but ¢ and  are typically positive constants given by

v = —, o = —, (1.2)

where T; denotes the AVERAGE TRANSMISSION PERIOD and 7T; stands for the MEAN
INCUBATION TIME, which will be taken as 14 and 5.2, respectively [9] [10] 14]). In the
system (1.1), N denotes the full size of the susceptible population initially exposed,
so that we have S(to) + E(to) + I(to) +R(to) + D(ty) = N, where ¢, denotes the
initial time. Observing that, by the equations (1.1), the sum S(t)+ E(t)+1(t)+ R(¢)
+D(t) is invariant, it follows the CONSERVATION LAW

S(t)+ E(t)+ 1(t) + R(t)+ D(t) = N, YV t > to, (1.3)

since, for simplicity, the model neglects any changes in the population due to birth,
migration or death by other causes during the period of the epidemic (of the order of
a few months). To well define the model (1.1), besides informing the functions §(t)
and r(t) we need to provide the initial values S(to), E(to), I(to), R(to), D(to), which
is not a trivial task, since not all of these variables are reported, and those reported
may be in error — which may well be large in case of significant underreporting.

It thus seems clear that predicting reasonably right values for the variables S(t),
E(t), I(t), R(t) and D(t) at future times is not a simple problem, especially in the
long time range. The situation becomes even more complicated for more complex
(i.e., stratified) models, which add other variables and parameters to be determined.
Calibrating many parameters can quickly become a nightmare. For all its simplicity,
models with few variables and parameters like (1.1) can yield surprisingly good

results and thus should not be overlooked, as will be seen in the sequel.
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2. Implementing the SEIR model

Having introduced the SEIR equations (1.1), we now describe an implementation
of this model that is suitable for the computation of reproduction numbers.

(i) assigning a value to the population parameter N

In the case of Covid-19, which can be considered a new virus (SARS-CoV-2), it has
been common to assume the entire population susceptible and assign its whole value
to N. This is highly debatable, since this parameter refers to that particular fraction
of the susceptible population that is effectively subject to infection. For determinis-
tic models, this introduces the possibility that an outbreak might not happen after
the introduction or reintroduction of a few infected individuals, as it has been long
recognized in the stochastic literature [II, 9]. In any case, it turns out that N is not
so much important for the short range dynamics as it proves to be in the long run
(see Figures 2a and 2b), so that for our present purposes this is not a serious issue.
We have therefore taken for N the full population of the region under consideration.

. | N : L
a0 100 150 200
t (days)

Fig. 2a: Prediction by model (1.1) of the daily number of new cases of Covid-19 expected
to be reported in Brazil between the initial time ¢t = to = 60 (April 25th) and ¢ =
200 (September 12th), considering susceptible populations of N= 20 million (red
curve) and N= 50 million (black curve). Note the appreciable difference between
the predicted peak values (34 and 70 thousand, resp.) and their respective dates,
June 6th and July 4th. Actual data points are shown in blue. (Computed from
data available at the official site https://covid.saude.gov.br.)
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Fig.2b: Thirty day prediction by model (1.1) of the daily number of new cases of Covid-19
to be reported in Brazil between the initial time ¢ = to = 60 (04/25) and ¢ = 90
(05/25), considering susceptible exposed populations of N = 20 million (red curve)
and N = 50 million (black curve). Note the very close similarity of the two 30D
predictions in spite of the appreciable difference in the values of N. Points shown
in blue are the official values reported (cf. https://covid.saude.gov.br.)

(i) generation of initial data S(ty), E(to), I(to), R(to), D(to)

Initial values Sy, Ey, Iy, Rg, Dy for the five variables are generated from a starting
date t, on, which is taken so as to meet some minimum value chosen of total reported
cases (typically, 100). Denoting by C..(t) the total amount of reported cases up to
some time ¢, and letting EIR(¢) be the sum of the populations E(t), I(t) and R(t),

we set

EIR<ts> = fc ’ (Or(ts) - D(ts»a (21)

where f. > 1 denotes a CORRECTION FACTOR to account for likely underreportings on
the official numbers given. (In (2.1), we have neglected possible underreportings on
the number of deaths, which could of course be similarly accounted for if desired.)
Again, this factor will not play an important role in this paper and could be safely
ignored, but it should be carefully considered in the case of long time predictions.
Having estimated EIR(¢;), we then set

E(ts) = EO(ts) (1 _b) EIR( ) (2.2&)
I(t,) = Io(ts) = (1—a)-(1—b)- BIR(t,), (2.28)
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R(t,) = Ro(t,) := b-EIR(t,), (2.2¢)
S(ts) = Solts) := N — (E(t) + I(ts) + R(ts) + D(t,)), (2.2d)

where a = T;/(T; + T;) and b = 0.30, consistently with the literature (see e.g. [14]).
The arbitrariness in this choice of weights gets eventually corrected as we compute
more values Sy (o), Eo(to), Io(to), Ro(to), Do(to) at later initial times tg = ts+1,..., ¢,
where ¢, stands for the final (i.e., most recent) date of reported data available. For
each ty, the solution of the equations (1.1) with the previously obtained initial data
at to—1 is computed on the interval J(to) = [to—1, t1], t1 = min{ty— 1+ do, t,.},
with constant parameters § = [By(tg—1), r = ro(to — 1) determined so that the com-
puted values for C,.(t), D(t) best fit the reported data for these variables on [t¢, 1] in
the sense of LEAST sQUARES [12]. (Here, dy € [2, 10] is chosen according to the data
regularity.) Once this solution (S, E, I, R, D)(t) is obtained, we set Sy(to):= S(to),
Eo(to):= E(to), Lo(to):= I(to), Ro(to):= R(ty), Do(to):= D(to) and move on to the
next time level ¢y +1, repeating the procedure until ¢, is reached.

(#ii) computing the solution on some final interval [ty, T'| (PREDICTION PHASE)

Having completed the previous steps, we can address the possibility of prediction.
Although this is not important for our present goals, it is included for completeness.
Choosing an initial time to € (%, t,.], we then take the initial values

S(to) = So(to), E(to) = Eo(to), I(to) = Io(to), R(to) = Ro(to), D(to) = Do(to).

In order to predict the values of the variables S(t), E(t), I(t), R(t), D(t) for t > to,
it is important to have good estimates for the evolution of the key parameters [(t)
and r(t) beyond to. This is the most computationally intensive part of the algorithm
and is better executed in large computers. Such estimates can be given in the form

B(t) = Bo + age” Mt 1) (2.3a)
r(t) = ro + are Ar(t = to) (2.3b)

where By, ag, Ag, 0, ar, Ar € R are determined so as to minimize the maximum size
of weighted RELATIVE ERRORS in the computed values for C..(t), D(t) as compared
to the official data reported for these variables on some previous interval [ty — 7o, to]
(weighted CHEBYCHEFF PROBLEM) for some chosen 75 > 0 (usually, 20 < 7y < 30).
This problem is solved iteratively starting with an initial guess obtained from the
analysis of the previous values fy(t), 70(t) computed in the step (ii) above. The result
is illustrated in Figure 3 for the case of 5(t), with similar considerations for r(t).
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Fig. 3: Estimation of future values of the transmission parameter 5(t) beyond the initial time tq
= 70 (05/05/2020) for the outbreak of Covid-19 in Brazil, assuming the basic form (2.3a),
after solving the Chebycheff problem (red curve). The data points in the interval [40, 70],
shown here in blue, are values of the function y(t) computed in step (iz), which are used
to obtain the first approximation to 5(t). Values of fy(t) previous to ¢ = 40 (04/05/2020),
shown in black, are disregarded. The golden points beyond ¢y = 70 are future values of 5y(¢),
not available on 05/05/2020, displayed to allow comparison with the predicted values 5(¢).

Once ((t), r(t) have been obtained, the equations (1.1) are finally solved (Figure 4).

«10° 300 prediction of Total Cases reported in Brazil from May Sth on
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Fig. 4: Computation of C,(t) = (E(t) + I1(t) + R(t))/ fe + D(t) for t >ty = 70 (05/05/2020), with
initial data Cy(to) = (Eo(to) + Io(to) + Ro(to))/ fe + Do(to), after obtaining B(t), r(t) — see
Fig. 3 for 8(¢). The numerical solution of equations (1.1) is easily obtained by any method.
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3. Reproduction numbers

A natural by-product of the results generated by the algorithm is the estimate of
reproduction numbers of the epidemic, which measure the intensity of transmission
at various times and, in doing so, are useful indicators to monitor the situation and
the effects of intervention procedures that may have been taken. Using the generic
symbol R; to denote such quantitiesEl they signal a rise in the number of infections
in the case R; > 1, their decrease when R; < 1, and temporary steadiness if R; = 1.
For instance, rewriting the equation for the critical population I(¢) in the form

dl
o = o)), aft) == 6-E()/1({t) — r(t) =, (3.1a)
we see that I(t) will increase if a(t) > 0, decrease when «(t) < 0 and stay about
the same if a(t) = 0 — or, in terms of the ratio

0-E@)/1(t)

R, :=
' r(t) +

) (3.10)
whether we have R; > 1, R; < 1 or R; = 1, respectively. Another natural possibility
would be to consider basic ratios like

I(t+ d) E(t+d)+ I(t + d)

Re= T—ay = B —arIt—d) (32)

for some chosen d > 0. For example, the choice d = T;/2 corresponds to the standard
basic reproduction number, or the mean number of secondary infections caused by a
typical infected individual during his transmission period [9, 12]. The corresponding

expressions would be, using the calculations performed in step (i) of the algorithm,

0-Eo(t)/Io(t
RW .= S E/D(Y), (3.3)
ro(t) +
where r¢(t) denotes the lethality rates computed there, or else
Iy(t+3 Eo(t+3)+ Ip(t+3
R® . lolt+3) r® — Dot+3) + Lt +3) (3.4)
Iy(t — 3) Eo(t —3) + Ip(t — 3)

and so forth. These indicators point to similar scenarios (Figure5), with Rt(l) seem-

ingly more influenced by seasonal (weekly) variations in the data. We have found Rt@)

particularly useful, with numerical results that are consistent with previous analyses

!The notation R, is natural in stochastic models, and is adopted here as we have already used
R(t), Ro(t) with other meanings (size of the recovered population and their initial values, resp.).
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(see e.g. [13]). For time scales such as those of Covid-19, the choice d = 3 is good to
zoom in the scenario and facilitate the reading (Figure 6), while not compromising
robustness (Figure 7).

Time evolution of Covid-19 in Brazil as seen by RE”, RFJ, RES)
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Fig. 5: Comparison of the time evolution of Covid-19 in Brazil (since 100 cases reported) as seen
by the indicators defined in (3.3), (3.4), pointing to similar scenarios. In the three cases it
is clear that Brazil has not yet reached a state of control of the epidemic (R; < 1)

Time evolution of Covid-19 in Brazil as seen by indicators with different time span
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Fig. 6: Comparison of the time evolution of Covid-19 in Brazil (since 100 cases reported) as seen
by Ry = I(t + d)/1(t — d) for different values of d, showing similar scenarios. In the three
cases it is clear that Brazil has not yet reached a state of control of the epidemic (R; <1)
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“alues of Rfa for Covid-19 in Brazil assuming different transmission periods
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Fig.7: Robustness of R§2) with respect to large uncertainties on the value of transmission time.
Date zero refers to 100 cases reported, that is: 03/13/2020. (As in Fig. 5 and Fig. 6 above,
calculations were based upon official data reported at https://covid.saude.gov.br.)

4. Applications

In this section we will illustrate the use of reproduction values by examining the
evolution of Covid-19 in various countries around the world under the view of such
numbers — choosing for definiteness the numeric ratio R\” defined in (3.4) above

as our basic indicator, unless explicitly stated otherwise. Thus, we set
Ry = —— (4.1)

where Iy(s) is the size of the active infected population at time s as computed in
the step (7i) of the SEIR algorithm (see Section 2).

Taking right decisions about intervention or relaxation measures is a very difficult
and complex process that involves a careful consideration of various mathematical
indicators and a lot of other factors including many health, economic and social
issues. In the following examples we consider only the single factor given by repro-
duction numbers. For all the simplicity and obvious limitations of this approach, it
offers nevertheless precious insight and information about the disease dynamics and

evolution.

Acknowledgements. In the following examples, the computation of all the curves
shown was based on data available for each country at worldometers/coronavirus.
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Example 1: Time evolution of Co- Tirne evolution of 70 reproduction number of Covid-19 in Argenting

vid-19 in Argentina since 03/18/
as

2020 (t = 0), the date of 97 total

cases reported. Strong containment

measures had begun 3 days earlier
(t = —3) and managed to keep the
number of cases and deaths down
low, with R; decreasing continually
until 05/04/2020 (¢t = 47), when it

reached a minimum value of 1.08.

Following that, the situation dete-

riorated with R; increasing to 1.54 0 I I L L L L L . .
on 05/24/2020 (t = 67), despite the t {days)

reinforcement of most intervention

procedures. Partial relaxation of some of these measures was introduced on 06/01/2020
(t = 75) and, in this new period, R; has remained relatively stable at 1.30 (yellow band),
but tending to slowly increase (present value is 1.32). Bringing the epidemic to a state of
nationwide control (R; < 1) still seems far away. This example illustrates the unfortunate
fact that having low numbers of infections does not necessarily mean having the epidemic

under control.

Example 2: Time evolution of CO— Time evolution of YD reproduction number of Covid-19 in Brazil

vid-19 in Brazil since 03/13/2020,

the date of 98 total cases reported

(t = 0). With very poor coordina-
tion between the central and local
authorities and with different levels
of intervention in the various states
of the country, the decreasing of R;
after reaching 1.5 by mid-April pro-

ceeded very slowly (green band) due

to the spread of the epidemic and

the emergence of new infection foci. 0 . L : : . . ! . . !
Relaxation measures began to be im- t (days)

plemented on different dates accord-

ing to the individual regions, but can be traced on average back to 06/01/2020 (¢ = 80).
Despite the encouraging behavior of R; shown in the following fortnight (yellow band),

10
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the indicator resumed increasing by mid-June due to further disease development in less

affected areas of the country, particularly the southern and central western states. An-

other negative factor is that flexibilization of control measures has been introduced before

the various regions had attained a state of epidemic control (R; < 1), which is not ideal.

Example 3: Time evolution of Co-
vid-19 in France since 02/29,/2020
(t = 0), the date of 100 total cases
reported.
began relatively late on 03/16/2020
(t = 16), with a strict eight-week
lockdown that reduced the value of
R, down to 0.81 (green band). Re-
strictions were afterwards relaxed
(yellow band), with R; stable for

a couple of weeks, when it began

Containment measures

increase. A peak value of 0.99 was
reached on 05/30/2020, followed by
a reduction to 0.89 on 06/08/2020
(t = 100), staying on a slow ascent
ever since (its present value is 0.94).
The situation requires careful moni-
toring, with the possibility of having
to impose some containment restric-
tions back to keep the epidemic
under nationwide control (R; < 1).
Plotting the size of the ACTIVE IN-
FECTED population (i.e., the func-
tion Iy(t) computed in the step (i)
of the algorithm, assuming f. = 2),
displayed on the right, shows a small
resurgent peak by late May (¢t = 92),
followed by a slower pace decrease

from that moment on.

Time evolution of 70 reproduction nurmber of Covid-19 in France

a 20 40 60 80 100 120

w10t Estimated size of Covid-19 active infected population in France

Iit

1
1] 20 40 g0 a0 100 120
t (days)
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Example 4: Time evolution of Co-
vid-19 in Italy since 02/22/2020,
the date of 79 total cases reported
(t = 0).
began fifteen days later, with a

Containment measures

strict eight-week national lockdown
imposed on 03/10/2020 (¢t = 17).
The strong intervention, embraced
by the population and maintained
for the whole period, succeeded in
reducing R; continually down to a
safe value of 0.80 on 05/18/2020
(t =

tention rules began being relaxed

86), when some of the con-

(yellow band). The descent contin-
ued for nineteen days, reaching a
bottom value of 0.77 on 06,/06/2020
(t = 105). After this, a steady and
very slow increase set in leading to
the present value of 0.83 (¢t = 123).
The epidemic presently seems very
much under control in Italy, with
the infected populations (classes E
and I) decreasing steadily, as seen
by plotting the variables Fy(t), Ip(t)
obtained in the step () with f. = 2,

shown on the right.

Example 5: Time evolution of Co-
vid-19 in Mexico since 03/18,/2020,
the date of 93 total cases reported
(t = 0). After containment measures
began on 03/22/2020 (¢t = 4), the
value of R; continually decreased to
1.20 (green band), when restrictions
began to be relaxed on 06/01/2020
(yellow band). Relaxation measures
have apparently not changed the be-

havior of R; afterwards, but reach-

Time evolution of 7D reproduction number of Covid-19 in taly

a0 20 40 G0 an 100 120
t (days)

4 10*  Estimated size of exposed and infectious populations in Italy

sl It
—EW

D 1 1 1 1 1 1 1 1 1
1] 20 40 &0 ali] 100

t (days)

1
120

Time evalution of 7O reproduction number of Covid-19 in Mexico

t (days)
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ing a state of control still looks a few weeks away. Similarly to Argentina and Brazil, the

flexibilization started before the country had properly entered the safe zone R; < 1.

Example 6: Time evolution of Co- Time evolution of YD reproduction number of Covid-19 in Spain

vid-19 in Spain since 03/01/2020,
b o1/ o}

the date of 84 total cases reported

(t = 0). After containment measures
began on 03/13/2020 (¢t = 12), the
value of R; continually decreased to
0.89 on 05/11/2020 (¢ = 71), when
restrictions began to be relaxed
(yellow band). A minimum value
of 0.75 was finally reached on
06/07/2020 (t = 98), after which a

slow, steady increase set in towards 0

o = 4 & 8 0 1w
the present value of 0.83 (¢t = 115), t (days)

in much the same way as Italy.

Example 7. Time evolution of Co- Time evolution of 7D reproduction number of Covid-13 in LIK

id-19 in the UK si 03/04,/2020,
vi in the since 03/04/ A

the date of 87 total cases reported

(t = 0). After containment measures
began relatively late on 03/20/2020  3r
(t = 16), including strict national 5|
lockdown and other rules three days
later, the value of R, continually
decreased to 0.98 on 05/13/2020

(t = 70), when restrictions began to

be relaxed, and then further down 05}

to 0.86 nineteen days later, when the 0 e S R R S

lockdown was removed (yellow band). t (days)
Despite successfully bringing the epi-
demic under control, the number of reported cases and deaths was very high due to the

initial delay in taking intervention action.
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Time evolution of 7D reproduction number of Covid-19 in LIS

Example 8: Time evolution of Co-
vid-19 in the US since 03/02,/2020,
the date of 100 total cases reported
(t = 0). After containment measures
began on 03/15/2020 (t =13), R;
successfully decreased continually to
0.97 on 05/15/2020 (¢t = 74), when
restrictions began to be relaxed,
and then slightly down to 0.96 on
05/27/2020 (t = 86), followed by

a slow and steady increase to the

present value of 1.11 (yellow band). = @ @ @ m 120
. o d
With a poor coordination between ! gaye]
central and local authorities in the
beginning of the epidemic the coun- 4 10°  Estimated size of Covid-19 active infected population in US
9y
try suffered a high mortality rate Bl It

(0.0388 %) and number of infections
(more than 2.6 million cases report-
ed). As of 06/27/2020, the US have
not succeeded in bringing down the
epidemic under nationwide control. sl
A second peak (“second wave”) in
the size of the active infected popu-
lation is now clear to happen some-

time in the future, as indicated by

the curve of Iy(t) shown on the right. gl—
0 20 40 B0 80 100 120
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