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Abstract. This research paper aims to explicate the complex issue of the Rie-
mann’s Hypothesis and ultimately presents its elementary proof. The method

implements one of the binomial coefficients, to demonstrate the maximal prime
gaps bound. Maximal prime gaps bound constitutes a comprehensive improve-
ment over the Bertrand’s result, and becomes one of the key elements of the

theory. Subsequently, implementing the theory of the primorial function and
its error bounds, an improved version of the Gauss’ offset logarithmic inte-
gral is developed. The integral serves as the Supremum bound of the prime
counting function π(n). Due to its very high precision, it permits to verify the

relationship between the prime counting function πn and the offset logarithmic
integral of Carl Gauss’. The collective mathematical theory, via the Niels F.
Helge von Koch [20] equation:

π(n) = Li(n) +O
(√

n log(n)
)

enables to prove the Riemann’s Hypothesis conclusively.
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2 JAN FELIKSIAK

1. Definitions section

Within the scope of the paper, prime gap of the size g ∈ N | g ≥ 2 is defined as
an interval between two primes (pi, pi+1], containing (g− 1) composite integers.
Maximal prime gap of the size g, is a gap strictly exceeding in size any preceding
gap. In this document, all computations pertaining to the logarithmic integral,
were carried out using the Gauss’ offset logarithmic integral :

∫ n

2
dt

log t .

All calculations and graphing were carried out with the aid of Mathematicar

software.

1.1. Mathematical constants definitions.

Definition 1.1 (Golden Mean).

GM =

√
5− 1

2
≈ 0.618033988749894848204586834365638117720309180

Definition 1.2 (Lambda constant).

λ =

(
14π

29
+ GM

)
≈ 2.1346649249656571012555181228453981307810116485

Definition 1.3 (Khinchin’s constant).

K = exp

(
1

log 2

∞∑
i=2

(−1)
i (
2− 2i

)
i

ζ ′(i)

)
≈ 2.685452001065306445309714835482

where ζ ′ is the derivative of the Riemann zeta function.

Definition 1.4 (Beta constant).

β = (1 + (exp (1)−K)) ≈ 1.0328298273937387900505726358708668039369

where K is the Khinchin’s constant.

Definition 1.5 (Glaisher - Kinkelin constant).

A = exp

(
1

12
− ζ ′ (−1)

)
≈ 1.28242712910062263687534256886979172776768893

Definition 1.6 (Double Twin primes constant).

T C = 2
∏
p>2

(
1− 1

(p− 1)2

)
≈ 1.32032363169373914785562422002911155686525
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RIEMANN’S HYPOTHESIS 3

2. The binomial expansion 2(n+G(n))

2.1. Preliminaries.
Bertrand’s Conjecture is a well known mathematical theorem concerning the

size of the prime gaps. The first elementary proof of the Bertrands Conjecture
regarding the existence of at least one prime within the interval from n to 2n
was due to Srinivasa Ramanujan, who in 1919 presented his elegant proof. Paul
Erdös at the age of 19 improved Ramanujan’s proof in 1932. In his proof of the
Bertrand’s conjecture Paul Erdös utilized the largest binomial coefficient of the
binomial expansion 22n:

N =

(
2n

n

)
=

(
(2n)!

(n!× n!)

)
=

(
(n+ 1)(n+ 2) · · · (2n)

n!

)
The problem of existence of at least one prime within the interval from n to

n+ c = t is substantially more difficult than the Bertrand’s Conjecture. The issue
pertains to the considerably shorter interval length of the function G(n), as com-
pared to the length of the interval n, pertinent to the research that both Srinivasa
Ramanujan and Paul Erdös worked on.

One of the major step-stones of this paper is the comprehensively improved
bound on the maximal prime gaps. This goal is achieved by an implementation of a
binomial expansion coefficient pertinent to the function G(n). For all n ∈ N | n ≥ 5,
we make the following definitions:

Definition 2.1 (Interval length). c = G(n) =
⌊
5 (log10 n)

2
⌋

Definition 2.2 (Interval endpoint). t = (n+ G(n)) = (n+ c)

Definition 2.3 (Inverse definition of n). n = ⌈10a⌉ where a =
√

c
5

The binomial coefficient M(t) related to the current research is a part of the
associated binomial expansion:

2t >>

(
n+ c

n

)
Definition 2.4 (Binomial coefficient).

M(t) =

(
n+ c

n

)
=

(
(n+ c)!

(n! c!)

)

Definition 2.5 (Logarithm of the binomial coefficient).

logM(t) = log

(
(n+ c)!

(n!× c!)

)
= log (t!)−log (n!)−log (c!) =

c∑
k=1

log (n+ k)−
c∑

k=1

log k

2.2. Bounds on the logarithm of the binomial coefficient.

Lemma 2.6 (Upper and Lower bounds on the log of n!).
The bounds on the logarithm of n! are given by:

(2.1) n log (n)− n+ 1 ≤ log (n!) ≤ (n+ 1) log (n+ 1)− n ∀n ∈ N | n ≥ 5
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4 JAN FELIKSIAK

Proof.
Evidently,

(2.2) log (n!) =
n∑

k=1

log(k) ∀n ∈ N | n ≥ 2

Now, the pertinent integrals to consider are:

(2.3)

∫ n

1

log(x) dx ≤ log (n!) ≤
∫ n

0

log(x+ 1) dx ∀n ∈ N | n ≥ 5

Accordingly, evaluating those integrals we obtain:

(2.4) n log (n)− n+ 1 ≤ log (n!) ≤ n log

(
(n+ 1)

e

)
+ log

(
(n+ 1)

e

)
+ 1

= (n+ 1) log (n+ 1)− n

Concluding the proof of Lemma 2.6. �
Remark 2.1.

Observe that logM(t) is a difference of logarithms of factorial terms:

logM(t) = (log (t!)− log (n!)− log (c!))

Consequently, implementing the lower/upper bounds on the logarithm of n! for the
bounds on logM(t), results in bounds of the form:

(2.5) log

(
(t+ k)

(t+k)

(n+ k)
(n+k)

(c+ k)
(c+k)

)
for ∀ k ∈ N ∪ {0}

Keeping the values of c, n and t constant and letting the variable k to increase un-
boundedly, results in an unbounded monotonically decreasing function. When im-
plementing the lower/upper bounds on the logarithm of n! for the Supremum/Infimum
bounds on logM(t), the variable k appears only with values k = {0, 1} respectively.
The combined effect of the difference of the logarithms of factorial terms in logM(t)

and the decreasing property of the function 2.5, imposes a reciprocal interchange
of the bounds 2.1, when implementing them for the bounds on logM(t).

Lemma 2.7 (logM(t) Supremum Bound).
The Supremum Bound on the logarithm of the binomial coefficient M(t) is given

by:

(2.6) logM(t) ≤ log

(
tt

nn cc

)
− 1 = UB(t) ∀n ∈ N | n ≥ 5

Proof.
Evidently, by Lemma 2.6 we have:

(2.7) (n log (n)− n+ 1) ≤ log (n!)

Substituting from the inequality 2.7 into the Definition 2.5 we obtain:

(2.8) (log (t!)− log (n!)− log (c!))

≤ ((t log (t)− t+ 1)− (n log (n)− n+ 1)− (c log (c)− c+ 1))

= t log (t)− n log (n)− c log (c)− 1 = log

(
tt

nn cc

)
− 1

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2020                   doi:10.20944/preprints202006.0365.v1

https://doi.org/10.20944/preprints202006.0365.v1
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Consequently,

(2.9) logM(t) ≤ log

(
tt

nn cc

)
− 1 = UB(t)

The Supremum bound UB(t) produces an increasing, strictly monotone sequence
in R. At n = 5, the difference UB(t) − logM(t) attains 0.143365 and diverges as
n → ∞. Therefore, Lemma 2.7 holds as specified. �

Lemma 2.8 (logM(t) Infimum bound).
The Infimum Bound on the natural logarithm of the binomial coefficient M(t)

for all n ∈ N | n ≥ 5 is given by:

(2.10) logM(t) ≥ log

(
(t+ 1)

(t+1)

(n+ 1)
(n+1)

(c+ 1)
(c+1)

)
= LB(t)

Proof.
From Lemma 2.6 we have:

(2.11) log (n!) ≤ n log (n+ 1)− n+ log (n+ 1)

Substituting from the inequality 2.11 into the Definition 2.5 we obtain:

(2.12) (log (t!)− log (n!)− log (c!))

≥ t log (t+ 1)− n log (n+ 1)− c log (c+ 1) + log (t+ 1)− log (n+ 1)− log (c+ 1)

= log

(
(t+ 1)

t

(n+ 1)
n

(c+ 1)
c

)
+ log

(
(t+ 1)

(n+ 1) (c+ 1)

)
Consequently,

(2.13) logM(t) ≥ log

(
(t+ 1)

(t+1)

(n+ 1)
(n+1)

(c+ 1)
(c+1)

)
= LB(t)

The Infimum bound LB(t) produces an increasing, strictly monotone sequence
in R. At n = 5, the difference logM(t) − LB(t) attains 0.455384 and diverges as
n → ∞. Therefore, Lemma 2.8 holds as specified. �

Consequently, from Lemma 2.8 and 2.7 we have:

(2.14) log

(
(t+ 1)

(t+1)

(n+ 1)
(n+1)

(c+ 1)
(c+1)

)
≤ logM(t) ≤ log

(
tt

nn cc

)
− 1

Inequality 2.14 presents very well streamlined Supremum/Infimum bounds on the
logM(t).

3. Maximal prime gaps

From the Prime Number Theorem we have that an average gap between consec-
utive primes is given by log n for any n ∈ N. There exist however prime gaps much
shorter - containing only a single composite number, and gaps which are much
longer than average - the maximal prime gaps. In 1929 R. Backlund [1] published
a paper in which he proved the lower bound on the maximal prime gaps:

p(n+1) − p(n) > (2− ϵ) log p(n) for any ϵ > 0
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6 JAN FELIKSIAK

Figure 1. The left drawing shows the graphs of the lower (blue)
and upper (red) bounds vs logM(t) (black). The right drawing
shows the graph of G(n) (red) and the actual maximal gaps (black)
with respect to ξ as given by the Definition 5.3. The graph has
been produced on the basis of data obtained from C. Caldwell as
well as from T. Nicely tables of maximal prime gaps.

This was the first major result in this area. It had been improved upon in 1935
by Paul Erdös [14] who proved that:

p(n+1) − p(n) >
c(log p(n)) log(log p(n))

(log(log(log p(n))))2

However, it was the pioneering work of H. Cramér [12] using sophisticated prob-
abilistic techniques, who attempted to establish the upper bound on the maximal
prime gaps:

p(n+1) − p(n) ≤ (log p(n))
2

We begin with a preliminary derivation. Since the integers from 1 to n contain⌊
n
p

⌋
multiples of the prime number p,

⌊
n
p2

⌋
multiples of p2 etc. Thus it follows

that:

n! =
∏
p

pu(n,p) ; where u(n,p) =
∑
m≥1

⌊
n

pm

⌋
In accordance with the definitions 2.1 of G(n), 2.2 of t and 2.4 of M(t) we obtain:

M(t) =
∏
p≤t

pKp

where

Kp =
∞∑

m=1

(⌊
t

pm

⌋
−
⌊

n

pm

⌋
−
⌊G(n)

pm

⌋)
it follows that

Kp ≤
⌊
log t

log p

⌋
and so by the above, Lemma 2.7 and 2.8 we have:

(3.1) LB(t) ≤ logM(t) = log
∏
p≤t

pKp =
∑
p≤t

Kp log p ≤ UB(t) ∀n ∈ N | n ≥ 5

Where p is as usual a prime number. Let’s define:
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RIEMANN’S HYPOTHESIS 7

Definition 3.1. s =
⌊
t
2

⌋
Lemma 3.2 (Prime Factors of M(t)).

The case when there does not exist any prime factor p of M(t) within the interval
from n to (n + G(n)) = t for any n ∈ N | n ≥ 8, imposes an upper limit on all
prime factors p of M(t). Consequently in this particular case, every prime factor

p must be less than or equal to s =
⌊
t
2

⌋
.

Proof.
Let p be a prime factor of M(t) so that Kp ≥ 1 and suppose that every prime

factor p ≤ n. If

s < p ≤ n

then,

p < (n+ G(n)) < 2p

and

p2 >

(
(n+ G(n))

2

)2

> (n+ G(n))

and so Kp = 0. Therefore p ≤ s for every prime factor p of M(t), for any
n ∈ N | n ≥ 8. �

3.1. Maximal prime gaps standard measure.
The binomial coefficient M(t):

2t/2 < n
c
2 < exp (LB(t)) ≤ M(t) =

(
(n+ c)!

(n!× c!)

)
≤ exp (UB(t)) < n

2c
3 < 2t

∀n ∈ N | n ≥ 22

The bounds on the logarithm of M(t) are given by Lemma 2.7 and 2.8:

(3.2) LB(t) = log

(
(t+ 1)

(t+1)

(n+ 1)
(n+1)

(c+ 1)
(c+1)

)

≤ logM(t) =
c∑

k=1

log (n+ k)−
c∑

k=1

log k ≤ log

(
tt

nn cc

)
− 1 = UB(t)

∀n ∈ N | n ≥ 5

Remark 3.1.

• The proof of the Maximal Gaps Theorem implements the Supremum bound
function UB(ts). Due to the fact that the Supremum function UB(t) applies
values of n, c and t directly, it imposes a technical requirement to generate
a set of pertinent values, to correctly approximate the interval s. This is to
ascertain that the generated interval is at least equal or greater than s as
given by Definition 3.1, as well as the corresponding value of c. Respective
definitions follow:

Definition 3.3. ns =
n
2

Definition 3.4. cs = 5 (log10 (ns))
2
+ 1

Definition 3.5. ts = ns + cs
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8 JAN FELIKSIAK

• The function Gs(n) due to the implementation of the Floor function in-
creases stepwise. The sudden increase in value of the function Gs(n) is mir-
rored by an analogous, simultaneous increase in both, implemented bounds
on the function logM(t) as well as the function logM(t) itself.

Theorem 3.6 (Maximal Prime Gaps Bound and Infimum for primes).
For any n ∈ N | n ≥ 8 there exists at least one p ∈ N | n < p ≤ n+ G(n) = t;

where p is as usual a prime number and the maximal prime gaps standard measure
G(n) is given by:

(3.3) G(n) =
⌊
5 (log10 n)

2
⌋

∀n ∈ N | n ≥ 8

Equivalently, pi+1 − pi ≤ G(pi)

Proof.
Suppose that there is no prime within the interval from n to t. Then in accor-

dance with the hypothesis, by Lemma 3.2 we have that, every prime factor p of
M(t) must be less than or equal to s =

⌊
t
2

⌋
. Invoking Definitions 3.3, 3.4 and 3.5,

Lemma 2.7, 2.8 and the inequality 3.1 we obtain for all n ∈ N | n ≥ 8:

(3.4) LB(t) = log

(
(t+ 1)

(t+1)

(n+ 1)
(n+1)

(c+ 1)
(c+1)

)

≤ logM(t) = log
∏

p≤t(s)

pKp =
∑

p≤t(s)

Kp log p ≤ log

(
(ts)

ts

(ns)ns (cs)cs

)
−1 = UB(ts)

In accordance with the hypothesis therefore, it must be true that:

(3.5) log

(
(t+ 1)

(t+1)

(n+ 1)
(n+1)

(c+ 1)
(c+1)

)
− log

(
(ts)

ts

(ns)ns (cs)cs

)
+ 1 < 0

However, at n = 43 the difference 3.5 attains ∼ 9.45885151 and diverges as n
increases unboundedly. Since it generates a positive sequence in R, we may therefore
apply the Cauchy’s Root Test for n ≥ 43:

(3.6) lim sup
c→∞

c
√
|ac| = lim sup

c→∞

c

√∣∣LB(t) − UB(ts)

∣∣→ 1

At n = 43 the Cauchy’s Root Test attains ≈ 1.17851 and tends asymptotically
to 1 decreasing strictly from above. Thus, by the definition of the Cauchy’s Root
Test, the series formed from the terms of the difference LB(t) − UB(ts) diverges to
infinity as c increases unboundedly. This implies that for all n ∈ N | n ≥ 43:

(3.7) LB(t) − UB(ts) > 0

Hence, we have a contradiction to the initial hypothesis. Necessarily therefore,
there must be at least one prime within the interval c for all n ∈ N | n ≥ 43.
Table 1 lists all values of n s.t. 8 ≤ n ≤ 47. Evidently, every possible sub-interval
contains at least one prime number. Thus we deduce that Theorem 3.6 holds in
this range as well. Consequently Theorem 3.6 holds as stated for all n ∈ N | n ≥ 8,
thus completing the proof. �
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Table 1. Low range G(n) vs primes within the range

n G(n) primes n G(n) primes
8 4 11 29 10 31, 37
11 5 13 31 11 37, 41
13 6 17, 19 37 12 41, 43, 47
17 7 19, 23 41 13 43, 47, 53
19 8 23 43 13 47, 53
23 9 29, 31 47 13 53, 59

Remark 3.2.
From now on, we may relax the function G(n), by dropping the floor function.

Corollary 3.7 (Cramér’s Conjecture).

There exist at least one prime p ∈ N | n < p ≤ (n+(log n)
2
) ∀n ∈ N | n ≥ 8.

Proof.
By Theorem 3.6 we have that there exist at least one prime p ∈ N | n < p ≤ t.

Since,

G(n) = 5 (log10 n)
2
< ((log 10) (log10 n))

2 ∀n ∈ N | n ≥ 8

Therefore the Cramér’s Maximal Gaps Conjecture follows ipso facto. �
Corollary 3.8 (Legendre’s Conjecture).

There exist at least one prime p ∈ N | n2 < p ≤ (n+ 1)2 ∀n ∈ N | n ≥ 2

Proof.
Suppose that Theorem 3.8 is false for some n ∈ N| n > 10. This implies that

πn2 = π(n+1)2

By Theorem 3.6 we have that

πn2 < π(n2+G(n2))
∀n ∈ N | n ≥ 8

Therefore, in accordance with the hypothesis it must be true that:

(n+ 1)
2
<
(
n2 + G(n2)

)
Thus,

(3.8)
2n+ 1

5 (log10 n
2)

2 < 1

However, for any n ∈ N | n > 10, the limit of 3.8 by the L’Hôpital’s rule is:

lim
n→∞

2n+ 1

5 (log10 n
2)

2 = lim
n→∞

n(log 10)2

20
→ ∞

Hence the ratio 3.8 increases unboundedly as n tends to infinity. At n = 10, the
value of the inequality 3.8 equals 1.05. It implies that:

(n+ 1)
2
>
(
n2 + G(n2)

)
∀n ∈ N | n ≥ 10

Hence we have a contradiction to the initial hypothesis. Consequently, Theorem 3.8
is satisfied for all n ∈ N | n ≥ 10. For all n ∈ N | 2 ≤ n < 10 a simple computer
verification shows that Theorem 3.8 holds in this range as well, thus concluding the
proof. �
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4. Theory of the Primorial Function

4.1. Upper Bound on the logarithm of the primorial function.
The natural logarithm of the primorial function is a key element of the definition

of the tailored logarithmic integral. It paves the way for the estimation of the prime
counting function π(n) with unparalleled accuracy. First, we define the primorial
function for all k ∈ N:

Definition 4.1. pk♯ =
∏k

i=1 (pi)

Definition 4.2. log (pk♯) = log (
∏k

i=1 (pi)) =
∑k

i=1 (log pi)

Lemma 4.3 (Upper Bound on the logarithm of the primorial).
The natural logarithm of the primorial function is strictly less than the respective

prime number p ∈ N:

(4.1) log p(n)♯ < p(n) ≤ n ∀n ∈ N | n ≥ 2, where pn is the largest prime p ≤ n

In particular the natural logarithm of the primorial function is asymptotic (from
below) to the respective prime number:

(4.2) log p(n)♯ ∼ p(n)

For the purpose of the proof we may assume that the twin primes
continue indefinitely, the proof validity will not be affected by this. This
issue will be expounded on in the Remark 4.2 below.

Proof.
From the inequality 4.1 we have:

(4.3) p(n)♯ < exp
(
p(n)

)
≤ exp (n) ∀n ∈ N | n ≥ 2

Since prime numbers continue indefinitely, both p(n)♯ and exp
(
p(n)

)
, are mono-

tonically increasing divergent sequences of positive real numbers for all n ∈ N | n ≥ 2
Suppose that Lemma 4.3 is false, in accordance with the hypothesis it implies that:

(4.4) exp
(
p(n)

)
− p(n)♯ < 0

However, at pn = 13 the difference 4.4 attains ∼ 412383.39201 and further diverges
exponentially. Therefore, we apply the d‘Alemberts Ratio Test. Define a sequence
for all prime numbers p(n−1), p(n) ∈ N| p(n) ≥ 13:

Definition 4.4. a(n) =
exp (p(n))−p(n)♯

exp (p(n−1))−p(n−1)♯

Remark 4.1. The sequence a(n) given by the Definition 4.4, has the least value at
the twin primes as the difference p(n)−p(n−1) = 2. Consequently, it is therefore both
necessary and sufficient, to consider the sequence a(n) at the twin prime numbers
only, with p(n) = 6i + 7 | i ∈ N, i ≥ 1.

At the twin primes:

(4.5) exp
(
p(n)

)
= exp

(
p(n−1) + 2

)
= exp

(
p(n−1)

)
× exp (2)

Further,

(4.6) p(n)♯ = p(n−1)♯
(
p(n)

)
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Thus, at the twin primes the sequence a(n) equals:
(4.7)

a(n) =
exp

(
p(n)

)
− p(n)♯

exp
(
p(n−1)

)
− p(n−1)♯

= exp (2)×

[
(exp

(
p(n−1)

)
)− (p(n−1)♯)

p(n)

exp (2)

exp
(
p(n−1)

)
− p(n−1)♯

]
The bracketed expression on the RHS, at the twin primes approaches the limit:

(4.8) lim
n→∞

[
(exp

(
p(n−1)

)
)− (p(n−1)♯)

p(n)

exp (2)

exp
(
p(n−1)

)
− p(n−1)♯

]
→ 1

at the twin primes therefore, the sequence a(n) must clearly approach the limit:
(4.9)

lim
n→∞

a(n) = lim
n→∞

[
exp (2)×

(
(exp

(
p(n−1)

)
)− (p(n−1)♯)

p(n)

exp (2)

exp
(
p(n−1)

)
− p(n−1)♯

)]
→ exp (2)

Consequently by the d‘Alemberts Ratio Test, the series formed from the terms of
the difference exp

(
p(n)

)
− p(n)♯, diverges as p(n) increases unboundedly. Thus, it

logically follows that:

(4.10) p(n)♯ ≤ exp
(
p(n)

)
∀ p(n) ∈ N| p(n) ≥ 13

Necessarily therefore, we have a contradiction to the initial hypothesis. Since at
the twin primes the sequence exp

(
p(n)

)
− p(n)♯ approaches:

(4.11)
[
exp

(
p(n)

)
− p(n)♯

]
∼ exp (2)

[
exp

(
p(n−1)

)
− p(n−1)♯

]
Rearranging the above, we obtain that at the twin primes the primorial approaches:

(4.12) p(n)♯ ∼ exp
(
p(n)

)
− exp (2)

[
exp

(
p(n−1)

)
− p(n−1)♯

]
This in turn implies that a strict inequality holds:

(4.13) p(n)♯ < exp
(
p(n)

)
Since increasing the gap between the consecutive primes has the effect of exponen-
tially increasing the value that the sequence a(n) attains, therefore this result holds
for all p(n) ∈ N| p(n) ≥ 13. By taking the logarithms, we obtain:

(4.14) log
(
p(n)♯

)
< p(n) ∀ p(n) ∈ N| p(n) ≥ 13

Thus, Lemma 4.3 holds for all p(n) ∈ N| p(n) ≥ 13. Direct computation verifies
that Lemma 4.3 holds for all p(n) ∈ N| 2 ≤ p(n) ≤ 13. Therefore, Lemma 4.3
holds as stated:

(4.15) log
(
p(n)♯

)
< p(n) ≤ n ∀ n ∈ N| n ≥ 2

Consequently, this implies that the sequence of the natural logarithm of the primo-
rial function is asymptotic from below:

(4.16) log
(
p(n)♯

)
∼ p(n)

Concluding the proof of Lemma 4.3. �

Lemma 4.3 also implies that:

(4.17) (p(n))

√(
p(n)♯

)
< (p(n))

√
exp

(
p(n)

)
= exp (1) ∀ p(n) ∈ N
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By the PNT, (Ruiz, 1997; Finch, 2003), and Lemma 4.3 we obtain therefore:

(4.18) lim
n→∞

(
(p(n))

√(
p(n)♯

))
→ exp (1)

Remark 4.2. The sequence:

(4.19) a(n) =
exp

(
p(n)

)
− p(n)♯

exp
(
p(n−1)

)
− p(n−1)♯

as it has been demonstrated for the twin primes example in the proof of Lemma
4.3; for primes such that

(
p(n) − p(n−1) = d | d ∈ N

)
for some given particular d,

the sequence a(n) at the respective prime pairs, converges to the limit:

(4.20) lim
n→∞

a(n) = lim
n→∞

[
exp

(
p(n)

)
− p(n)♯

exp
(
p(n−1)

)
− p(n−1)♯

]
→ exp (d)

The approximation improves rapidly as p(n) increases. This is the reason why the
validity of the twin primes conjecture is not essential.

4.2. The estimation error bounds on the difference of
(
p(n) − log p(n)♯

)
.

Lemma 4.5 (Lower Estimation Error Bound On The Difference pn − log pn♯).
The error of estimation of the primorial function by the use of the value of p(n)

imposes the following lower bound:

(4.21) LBp(n)
=
(√

5− 1
) (

4γ2 − 2γ
) (

log p(n)
)

3
√
p(n) <

(
p(n) − log p(n)♯

)
∀p(n) ∈ N | p(n) ≥ 2

where γ ≈ 0.57721566490153286060651209 is the Euler-Mascheroni constant.

Proof.
Both exp

(
p(n)

)
and p(n)♯ as well as exp (LBp(n)

) are monotone, divergent se-

quences of positive real numbers for all p(n) ∈ N | p(n) ≥ 2. Suppose that Lemma
4.5 is false. From inequality 4.21 therefore, in accordance with the hypothesis we
derive:

(4.22) exp
(
p(n)

)
−
(
p(n)♯

)
exp (LBp(n)

) < 0

However, at pn = 13 the difference 4.22 attains ∼ 328977.240182 and further di-
verges exponentially. Therefore we apply the d‘Alemberts Ratio Test. Define a
sequence for all prime numbers p(n−1), p(n) ∈ N| p(n) ≥ 13:

Definition 4.6. a(n) =
exp (p(n))−(p(n)♯) exp (LBp(n)

)

exp (p(n−1))−(p(n−1)♯) exp (LBp(n−1)
)

∀p(n) ∈ N | p(n) ≥ 13

Remark 4.3. The terms of the sequence a(n) given by the Definition 4.6 have the
least value at the twin primes since the difference p(n) − p(n−1) = 2. Consequently,
it is both necessary and sufficient, to consider the sequence 4.6 at the twin primes
only, with p(n) = 6i + 7 | i ∈ N, i ≥ 1.

At the twin primes:

(4.23) exp
(
p(n)

)
= exp

(
p(n−1) + 2

)
= exp

(
p(n−1)

)
× exp (2)
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Further:

(4.24) p(n)♯ = p(n−1)♯
(
p(n)

)
Thus, at the twin primes the sequence a(n) equals:

(4.25) a(n) = exp (2)×

[
(exp

(
p(n−1)

)
)− (p(n−1)♯) exp (LBp(n)

)
p(n)

exp (2)

exp
(
p(n−1)

)
− p(n−1)♯ exp (LBp(n−1)

)

]
The bracketed expression on the RHS, at the twin primes approaches the limit:

(4.26) lim
n→∞

[
(exp

(
p(n−1)

)
)− (p(n−1)♯) exp (LBp(n)

)
p(n)

exp (2)

exp
(
p(n−1)

)
− p(n−1)♯ exp (LBp(n−1)

)

]
→ 1

at the twin primes therefore, the sequence a(n) must clearly approach the limit:

(4.27) lim
n→∞

a(n)

= lim
n→∞

[
exp (2)×

(
(exp

(
p(n−1)

)
)− (p(n−1)♯) exp (LBp(n)

)
p(n)

exp (2)

exp
(
p(n−1)

)
− p(n−1)♯ exp (LBp(n−1)

)

)]
→ exp (2)

Consequently, by d‘Alemberts Ratio Test, the series formed from the terms of the
difference exp

(
p(n)

)
− p(n)♯ exp (LBp(n)

) diverges, as p(n) increases unboundedly.
Thus, it logically follows that:

(4.28) p(n)♯ exp (LBp(n)
) ≤ exp

(
p(n)

)
∀ p(n) ∈ N| p(n) ≥ 13

Necessarily therefore, we have a contradiction to the initial hypothesis. Since at
the twin primes the sequence exp

(
p(n)

)
− p(n)♯ exp (LBp(n)

) approaches:

(4.29)[
exp

(
p(n)

)
− p(n)♯ exp (LBp(n)

)
]

∼ exp (2)
[
exp

(
p(n−1)

)
− p(n−1)♯ exp (LBp(n−1)

)
]

Rearranging the above we obtain that, at the twin primes the primorial approaches:
(4.30)
p(n)♯ exp (LBp(n)

) ∼ exp
(
p(n)

)
− exp (2)

[
exp

(
p(n−1)

)
− p(n−1)♯ exp (LBp(n−1)

)
]

This in turn implies that a strict inequality holds:

(4.31) p(n)♯ exp (LBp(n)
) < exp

(
p(n)

)
Since increasing the gap between the consecutive primes has the effect of exponen-
tially increasing the value that the sequence a(n) attains, therefore this result holds
for all p(n) ∈ N| p(n) ≥ 13. By taking the logarithms, we obtain:

(4.32) LBp(n)
<
(
p(n) − log p(n)♯

)
∀ p(n) ∈ N| p(n) ≥ 13

Thus, Lemma 4.5 holds for all p(n) ∈ N| p(n) ≥ 13. Direct computation verifies
that Lemma 4.5 holds for all p(n) ∈ N| 2 ≤ p(n) ≤ 13. Therefore, Lemma 4.5
holds as stated, concluding the proof. �

Lemma 4.7 (Upper Estimation Error Bound On The Difference pn− log pn♯). The
error of estimation of the primorial function by the use of the value of p(n) imposes
the following upper bound:

(4.33)
(
p(n) − log p(n)♯

)
< 2

√
p(n) = UBp(n)

∀p(n) ∈ N | p(n) ≥ 2

where γ ≈ 0.57721566490153286060651209 is the Euler-Mascheroni constant.
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Proof.
Both exp

(
p(n)

)
and p(n)♯ as well as exp (UBp(n)

) are monotone, divergent se-

quences of positive real numbers for all p(n) ∈ N | p(n) ≥ 2. Suppose that Lemma
4.7 is false. From inequality 4.33, in accordance with the hypothesis we derive:

(4.34)
(
p(n)♯

)
exp (UBp(n)

)− exp
(
p(n)

)
< 0

However, at pn = 13 the difference 4.34 attains ∼ 4.02297598 × 107 and further
diverges exponentially. Therefore we apply the d‘Alemberts Ratio Test. Define a
sequence for all prime numbers p(n−1), p(n) ∈ N| p(n) ≥ 13:

Definition 4.8. a(n) =
(p(n)♯) exp (UBp(n)

)−exp (p(n))
(p(n−1)♯) exp (UBp(n−1)

)−exp (p(n−1))
∀p(n) ∈ N | p(n) ≥ 13

Remark 4.4. The terms of the sequence a(n) given by the Definition 4.8 have the
least value at the twin primes since the difference p(n) − p(n−1) = 2. Consequently,
it is both necessary and sufficient, to consider the sequence 4.8 at the twin primes
only, with p(n) = 6i + 7 | i ∈ N, i ≥ 1.

At the twin primes:

(4.35) exp
(
p(n)

)
= exp

(
p(n−1) + 2

)
= exp

(
p(n−1)

)
× exp (2)

Further,

(4.36) p(n)♯ = p(n−1)♯
(
p(n)

)
Thus, at the twin primes the sequence a(n) equals:

(4.37) a(n) = p(n) ×


(
p(n−1)♯

)
exp (UBp(n)

)− exp (p(n))
(p(n))(

p(n−1)♯
)
exp (UBp(n−1)

)− exp
(
p(n−1)

)


The bracketed expression on the RHS, at the twin primes approaches the limit:

(4.38) lim
n→∞


(
p(n−1)♯

)
exp (UBp(n)

)− exp (p(n))
(p(n))(

p(n−1)♯
)
exp (UBp(n−1)

)− exp
(
p(n−1)

)
→ 1

at the twin primes therefore, the sequence a(n) must clearly approach the limit:

(4.39) lim
n→∞

a(n)

= lim
n→∞




(
p(n−1)♯

)
exp (UBp(n)

)− exp (p(n))
(p(n))(

p(n−1)♯
)
exp (UBp(n−1)

)− exp
(
p(n−1)

)
 p(n)

→ p(n)

Consequently by the d‘Alemberts Ratio Test, the series formed from the terms of the
difference

(
p(n)♯

)
exp (UBp(n)

)− exp
(
p(n)

)
diverges, as p(n) increases unboundedly.

Thus, it logically follows that:

(4.40) p(n)♯ exp (UBp(n)
) ≥ exp

(
p(n)

)
∀ p(n) ∈ N| p(n) ≥ 13

Necessarily therefore, we have a contradiction to the initial hypothesis. Since at
the twin primes the sequence

(
p(n)♯

)
exp (UBp(n)

)− exp
(
p(n)

)
approaches:

(4.41)[(
p(n)♯

)
exp (UBp(n)

)− exp
(
p(n)

)]
∼ (p(n))

[(
p(n−1)♯

)
exp (UBp(n−1)

)− exp
(
p(n−1)

)]
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Rearranging the above we obtain, that at the twin primes the primorial approaches:
(4.42)
p(n)♯ exp (UBp(n)

) ∼ exp
(
p(n)

)
+
(
p(n)

) [(
p(n−1)♯

)
exp (UBp(n−1)

)− exp
(
p(n−1)

)]
This in turn implies that a strict inequality holds:

(4.43) p(n)♯ exp (UBp(n)
) > exp

(
p(n)

)
Since increasing the gap between the consecutive primes has the effect of exponen-
tially increasing the value that the sequence a(n) attains, therefore this result holds
for all p(n) ∈ N| p(n) ≥ 13. By taking the logarithms, we obtain:

(4.44) UBp(n)
>
(
p(n) − log p(n)♯

)
∀ p(n) ∈ N| p(n) ≥ 13

Thus, Lemma 4.7 holds for all p(n) ∈ N| p(n) ≥ 13. Direct computation verifies
that Lemma 4.7 holds for all p(n) ∈ N| 2 ≤ p(n) ≤ 13. Therefore, Lemma 4.7
holds as stated, concluding the proof. �

5. The prime counting function π(n) Supremum

5.1. The Tailored logarithmic integral definitions.

Definition 5.1 (Upper integration limit).

θ(n) = log p(n)♯ where p(n) is the largest prime p ∈ N | p ≤ n

Definition 5.2 (Tailored logarithmic integral definition).

TLi(n) =

∫ θ(n)

2

dt

log t
∀n ∈ N | n ≥ 5

Graphs in this section implement a variant of logarithmic scaling of the horizontal
axis given by:

Definition 5.3 (Scaling factor). ξ =
log10(

n
24 )

log10(24)

5.2. Preliminary theory.

Tailored logarithmic integral given by the definition 5.2, presents a significantly
improved accuracy of estimation of the function π(n). Lemma 4.3 states:

log p(n)♯ < p(n) ≤ n ∀n ∈ N | n ≥ 2

Consequently,

(5.1)
log p(n)♯

log n
<

n

log n
∀n ∈ N | n ≥ 2
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Figure 2. The drawings contrast the difference in estimation er-
ror made by the Gauss’ Logarithmic Integral (black) vs the Tai-
lored Integral (red). The figures drawn with respect to ξ, give the
range up to n = 7919 (left), and up to n = 4256233 (right).

Remark 5.1. The classical offset logarithmic integral Li(n) of C.F. Gauss, is an im-
provement of the estimate of the number of primes, up to some n ∈ N given by n/log n.
Therefore, since the left side of the inequality 5.1 increases only at the primes as
πn does, it constitutes an improvement in π(n) estimation. Numerical comparison
of the performance of the Carl F. Gauss offset Li(n) vs the TLi(n) is given in Table
2, and graphically presented in Fig. 2.

The graph of the tailored integral is below that of π(n) for all n ∈ N | n <
43, please refer to Fig. 4a. Since the primorial function increases only at the
primes, necessarily therefore, the estimation error of the tailored integral increases
at the primes only. Hence, if the relation TLi(n) ≥ π(n) holds at the primes,
it therefore holds at every other point. This contrasts strongly with the Gauss’
logarithmic integral Li(n) in which, the estimation error term increases over the
intervals between the primes and decreases at the primes. As a result, it produces
large estimation error oscillations. On the other hand TLi(n), accurately duplicates
the pattern of the curve of π(n), with minimal error increase.

Table 2. Comparison: Gauss’ Li(n) vs TLi(n)

n π(n) Li(n) Li(n)−π(n) TLi(n) TLi(n)−π(n)

47 15 16.6506001 1.6506001 15.0538449 0.0538449
97 25 28.427383 3.42738 25.4798052 0.4798052
997 168 176.1301053 8.130105 170.2098996 2.2098996
9973 1229 1242.160134 13.160134 1233.7930553 4.7930553
99991 9592 9627.982104 35.982104 9601.4333493 9.4333493
999983 78498 78625.273494 127.273494 78516.778831 18.7788305
9999991 664579 664916.801506 337.801506 664618.2703 39.27032
99999989 5761455 5762207.73313 752.733129 5761542.23 87.22988
999999937 50847534 50849230.8718 1696.87178 50847736.926 202.925523
9999999967 455052511 455055612.108 3101.10829 455052999.99 488.985131
99999999977 4118054813 4118066398.67 11585.6684 4118056037.8 1224.81062
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Figure 3. The figures drawn at every n ∈ N in the range, show
the graphs of Li(n) (grey), π(n) (black) and TLi(n) (red).

Figure 4. The drawings show the estimation error TLi(n) − π(n)

curve drawn at every n ∈ N within the pertinent range. The right
figure drawn with respect to ξ, corresponding to: 3 ≤ n ≤ 5, 000.

5.3. Tailored integral TLi(n) step sequence.
Due to the fact that TLi(n) increases stepwise at the primes, the analysis of the

step size and its limit as n approaches infinity forms the core of the proof of the
tailored integral. Thus, for a pair of consecutive primes: pi and pi+1 we define the
stepwise limits of integration for all pi ∈ N | pi ≥ 2:

Definition 5.4 (Stepwise lower integration limit). θ1 = log p(i)♯

Definition 5.5 (Stepwise upper integration limit). θ2 = log p(i+1)♯

Definition 5.6 (Step sequence).

SSQ(p(i+1)) =
(
TLi(p(i+1)) − TLi(pi)

)
=

∫ θ2

θ1

dt

log t
∀pi ∈ N | pi ≥ 3

Definition 5.7 (Step estimation error sequence).

SER(p(i+1)) =
(
TLi(p(i+1)) − TLi(pi) − 1

)
=

∫ θ2

θ1

dt

log t
− 1 ∀pi ∈ N | pi ≥ 3

Remark 5.2. Both the tailored integral TLi(n) and πn are weakly monotone func-
tions, increasing unboundedly, hence producing a positive sequence of numbers
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which diverges to infinity. The initial estimates of the TLi(n) step size indicate
that the step sequence quickly approaches the value of 1 from above. Table 3
presents some of the values that the step sequence takes at the powers of 10.

It is obvious that the numerical value attained by the step sequence at various
points fluctuates as well, as a consequence of the size of the gap between the two
consecutive primes (as well as the distance to the preceding prime pair). The
effect however, of the gap interval length rapidly decreases as pi increases, since by
Theorem 3.6 the gaps Supremum is given by G(pi) = 5 (log10 pi)

2
.

Lemma 5.8 (Stepwise Convergence Of The Error of Estimation of the TLi(n)). The
step sequence of the tailored logarithmic integral TLi(n) is Cauchy and converges
asymptotically from above to the limit:

(5.2) lim
pi→∞

(∫ θ2

θ1

dt

log t

)
= 1

Furthermore, the difference of the step integral TLi(n) and its approximation has
the following bounds:

(5.3)

LDBp(i+1)
=

1

5(p(i+1))
≤

[∫ θ2

θ1

dt

log t
−

log p(i+1)

log
(
log p(i+1)♯

)] ≤ 1

p(i+1)
= UDBp(i+1)

for all p ∈ N | p ≥ 13

with θ1 and θ2 given by the Definitions 5.4 and 5.5 respectively.

Proof.
By the Prime Number Theorem we may estimate the integral TLi(n) step se-

quence for any prime number p ∈ N | p ≥ 3 :

(5.4)

∫ θ2

θ1

dt

log t
∼

θ2 − θ1
log θ2

=

(
log p(i)♯+ log p(i+1)

)
− log p(i)♯

log
(
log p(i+1)♯

) =
log p(i+1)

log
(
log p(i+1)♯

)
Thus by the PNT we have,

(5.5)

∫ θ2

θ1

dt

log t
∼

log p(i+1)

log
(
log p(i+1)♯

)
The logarithm of the primorial function is clearly a monotone function increasing

unboundedly, hence, producing a sequence of positive real numbers which diverges
to infinity. From Lemma 4.3 we have that log p(i+1)♯ is asymptotic from below to
p(i+1), as well as:

log p(i+1)♯ < p(i+1) ≤ n ∀n ∈ N | n ≥ 2,

where p(i+1) is the greatest prime p ∈ N | p ≤ n

Hence, for a prime number p ∈ N,

log
(
log p(i+1)♯

)
≤ log p(i+1)

This implies that the estimating sequence converges asymptotically from above to
the limit:

(5.6) lim
p(i+1)→∞

(
log p(i+1)

log
(
log p(i+1)♯

))→ 1
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Therefore it is Cauchy. The step integral TLi(n) at p6 = 13 attains ∼ 1.13056 and
the step sequence values decrease, asymptotically approaching 1 as pn increases
unboundedly. Please, also refer to the Table 3. Consequently,

(5.7) lim
p(i+1)→∞

(∫ θ2

θ1

dt

log t

)
= lim

p(i+1)→∞

(
log p(i+1)

log
(
log p(i+1)♯

))→ 1

Thus the step integral TLi(n) is Cauchy as well. Both LDBp(i+1)
and UDBp(i+1)

are
clearly strictly monotone decreasing Cauchy sequences. Suppose that the following
assertion is false:

(5.8)
1

5(p(i+1))
≤

[∫ θ2

θ1

dt

log t
−

log p(i+1)

log
(
log p(i+1)♯

)]
This implies that:

(5.9) 5(p(i+1)) −

[
1/

(∫ θ2

θ1

dt

log t
−

log p(i+1)

log
(
log p(i+1)♯

))] < 0

However, at p(n) = 13 the inequality 5.9 attains ∼ 48.6109 and diverges as p(n)
increases unboundedly with the rate of divergence ∝ k p(n) s.t. k ∼ 3 for larger
primes p(n). Consequently, we have a contradiction to the hypothesis. Inequality
5.8 therefore, is valid for all pn ∈ N | pn ≥ 13.

Suppose now, that the following inequality is false:

(5.10)

[∫ θ2

θ1

dt

log t
−

log p(i+1)

log
(
log p(i+1)♯

)] ≤ 1

p(i+1)

This implies that:

(5.11)

[
1/

(∫ θ2

θ1

dt

log t
−

log p(i+1)

log
(
log p(i+1)♯

))] − p(i+1) < 0

However, at p(n) = 13 the inequality 5.11 attains ∼ 3.38914 and diverges as p(n)
increases unboundedly with the rate of divergence ∝ k p(n) s.t. k ∼ 1 for larger
primes p(n). Consequently, we have a contradiction to the hypothesis. Inequality
5.10 therefore, is valid for all pn ∈ N | pn ≥ 13. Necessarily this implies that the
Inequality 5.3 holds as stated. This demonstrates therefore, that since UDBp(i+1)

is strictly monotone decreasing Cauchy sequence with a limit L = 0:

lim
(p(i+1))→∞

(
1

p(i+1)

)
= lim

(p(i+1))→∞

[∫ θ2

θ1

dt

log t
−

log p(i+1)

log
(
log p(i+1)♯

)]→ 0

Thus, from above we have that the estimating sequence 5.6 converges asymptoti-
cally from above to its limit L = 1. Since the step integral at p(i+1) = 11 attains
∼ 1.2171 necessarily therefore the step integral tends asymptotically from above:

(5.12) lim
p(i+1)→∞

(
log p(i+1)

log
(
log p(i+1)♯

)) = lim
p(i+1)→∞

(∫ θ2

θ1

dt

log t

)
→ 1
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This implies, that the sequence of the step estimation errors asymptotically con-
verges from above (also refer to Table 3):

lim
p(i+1)→∞

((∫ θ2

θ1

dt

log t

)
− 1

)
= lim

p(i+1)→∞

(
log p(i+1)

log
(
log p(i+1)♯

) − 1

)
→ 0

Thus concluding the proof of Lemma 5.8. �

Table 3. Step sequence values

pi pi+1 Actual step Est. step Eq. 5.4 Difference
7 11 1.284296315549 1.17139190927 0.112904406279
97 101 1.036036760682 1.029877441266 0.006159319416
997 1009 1.007295189211 1.006767382731 0.000527806480
9973 10007 1.001161895309 1.001111285430 0.000050609879
99991 100003 1.000271361223 1.000266343124 5.0180995783×10−6

999983 1000003 1.000109530674 1.00010902981 5.00863978704×10−7

9999991 10000019 1.000029984472 1.000029934445 5.0027059524×10−8

99999989 100000007 1.000006660234 1.000006655234 5.00067955427×10−9

Remark 5.3. The integral part of the step size clearly accounts for the prime
number found. Comparing each fractional part of the step (please refer to Table 3)
at pi with the corresponding term of the harmonic series ( 1

pi
), it becomes obvious

that it is greater than the term of the series. Since the error of estimation is the
sum of π(n) of such individual terms, comparing its sum with the divergent sum of
reciprocals of successive prime numbers leads to a conjecture, that the sum of the
estimation error terms diverges as pi tends to infinity.

5.4. Step sequence estimation error bounds.

Corollary 5.9 (Infimum and Supremum Step Sequence Estimation Error Bounds).
The step sequence error of estimation of the prime counting function π(n) by the
application of the tailored logarithmic integral TLi(n) ∀p(i) ∈ N | p(i) ≥ 13, is
bounded below/above by:

(5.13) INFp(i+1)
=

log p(i+1)

log
(
log p(i+1)♯

) + 1

5(p(i+1))
− 1 ≤

[∫ θ2

θ1

dt

log t
− 1

]

≤
log p(i+1)

log
(
log p(i+1)♯

) + 1

p(i+1)
− 1 = SUPp(i+1)

for all p ∈ N | p ≥ 13

where p(i) and p(i+1) are associated with lower/upper limits of integration and θ1,
θ2 are given by the Definitions 5.4 and 5.5 respectively.

Proof. From Lemma 5.8 we have:

(5.14)

1

5(p(i+1))
≤

[∫ θ2

θ1

dt

log t
−

log p(i+1)

log
(
log p(i+1)♯

)] ≤ 1

p(i+1)
for all p ∈ N | p ≥ 13
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Which is equivalent to say that:

(5.15)
log p(i+1)

log
(
log p(i+1)♯

) + 1

5(p(i+1))
− 1 ≤

[∫ θ2

θ1

dt

log t
− 1

]

≤
log p(i+1)

log
(
log p(i+1)♯

) + 1

p(i+1)
− 1 for all p ∈ N | p ≥ 13

thus completing the proof. �

The Infimum and Supremum error bounds ISE(p(n)) and SSE(p(n)) for the tai-

lored integral step estimation error are computationally very demanding. Therefore,
Theorems: 5.10 and 5.11 that follow, establish simpler bounds.

Theorem 5.10 (The Step Sequence Estimation Error Lower Bound).
The estimation error of the tailored logarithmic integral TLi(n) at every step

exceeds the value of the inverse of the pertinent prime number hence, it is bounded
below by 1/p ∀p ∈ N | pi ≥ 13:

(5.16) SER(p(i+1)) =

(∫ θ2

θ1

dt

log t

)
− 1 >

1

p(i+1)

where p(i) and p(i+1) are associated with the lower/upper limit of integration θ1 and
θ2 respectively.

Proof.
By Lemma 5.8 the sequence SER(p(i+1)) is Cauchy and it converges from above

to the limit L = 0. The sequence of the reciprocals of prime numbers is clearly
Cauchy and converges to the limit L = 0. By Lemma 5.8 we have that:

(5.17)
1

5(p(i+1))
+

log p(i+1)

log
(
log p(i+1)♯

) − 1 ≤
∫ θ2

θ1

dt

log t
− 1 for all p ∈ N | p ≥ 13

Consequently Theorem 5.10 is valid if and only if:

(5.18)
1

p(i+1)
≤ 1

5(p(i+1))
+

log p(i+1)

log
(
log p(i+1)♯

) − 1

Now,

(5.19)
1

5(p(i+1))
+

log p(i+1)

log
(
log p(i+1)♯

) − 1− 1

p(i+1)

=

(
5(p(i+1))

(
log (p(i+1))

))
−
(
4 + 5(p(i+1))

) (
log
(
log
(
p(i+1)♯

)))(
5(p(i+1))

) (
log
(
log
(
p(i+1)♯

)))
From Lemma 4.3 we have that log p(i+1)♯ is asymptotic (from below):

log p(i+1)♯ ∼ p(i+1)

as well as:

log p(i+1)♯ < p(i+1) ≤ n ∀n ∈ N | n ≥ 2

Hence,

log
(
log p(i+1)♯

)
≤ log p(i+1)
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From Lemma 4.5 we have for all p(i+1) ∈ N | p(i+1) ≥ 2:
(5.20)

LBp(i+1)
=
(√

5− 1
) (

4γ2 − 2γ
) (

log p(i+1)

)
3
√
p(i+1) <

(
p(i+1) − log p(i+1)♯

)
Consequently, from the above we obtain:

(5.21)
(
p(i+1) − LBp(i+1)

> log p(i+1)♯
)

Bearing in mind that for all positive a, b ∈ R | a > b:

(5.22) log (a+ b) = log (a (1 + b/a)) = log (a) + log

(
1 +

b

a

)
Thus, by Lemma 4.3 we have:

(5.23) 5p(i+1)

(
log
(
p(i+1) − LBp(i+1)

))
≥ 5p(i+1)

(
log
(
log
(
p(i+1)♯

)))
Hence,

(5.24) 5p(i+1)

(
log
(
p(i+1)

))
= 5p(i+1)

(
log
(
p(i+1) − LBp(i+1)

+ LBp(i+1)

))
= 5p(i+1)

[
log
(
p(i+1) − LBp(i+1)

)
+ log

(
1 +

LBp(i+1)(
p(i+1) − LBp(i+1)

))]
≥ 5p(i+1)

(
log
(
log
(
p(i+1)♯

)))
Suppose that the Theorem 5.10 is false. Then it must be true that the numer-
ator of equation 5.19 is less than zero. From inequality 5.24 we see that without
loss of generality, upon substitution into the numerator of the inequality 5.19, we
can drop the common terms obtaining:

(5.25)
(
5(p(i+1))

(
log (p(i+1))

))
−
(
4 + 5(p(i+1))

) (
log
(
log
(
p(i+1)♯

)))
≥ 5p(i+1)

[
log

(
1 +

LBp(i+1)(
p(i+1) − LBp(i+1)

))]− 4
(
log
(
log
(
p(i+1)♯

)))
< 0

However at p(i+1) = 37 the difference 5.25 attains ∼ 0.20084385349345676 and
diverges. Hence we have a contradiction to our hypothesis which implies that the
inequality is true:

(5.26)
1

p(i+1)
≤ 1

5(p(i+1))
+

log p(i+1)

log
(
log p(i+1)♯

) − 1

Consequently this implies that Theorem 5.10 is satisfied for all pi ∈ N | pi ≥ 37,
a simple computer calculation verifies that this inequality also holds within the
interval 13 ≤ pi ≤ 37. This necessarily means that Theorem 5.10 is satisfied for all
pi ∈ N | pi ≥ 13, thus completing the proof. �

Theorem 5.11 (The Step Sequence Estimation Error Upper Bound).
The inverse of a root of the pertinent prime number at every step exceeds the

value of the estimation error of the tailored logarithmic integral TLi(n) step sequence
∀pi ∈ N | pi ≥ 13:

(5.27) SER(p(i+1)) =

(∫ θ2

θ1

dt

log t

)
− 1 <

1
a
√
p(i+1)

where a =
π

2
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where p(i) and p(i+1) are associated with the lower/upper limit of integration θ1 and
θ2 respectively.

Proof.
By Lemma 5.8 the sequence SER(p(i+1)) is Cauchy and it converges from above

to the limit L = 0. The sequence of the reciprocals of the root of prime numbers is
clearly Cauchy and converges to the limit L = 0. By Lemma 5.8 we have that:

(5.28)

∫ θ2

θ1

dt

log t
− 1 ≤ 1

p(i+1)
+

log p(i+1)

log
(
log p(i+1)♯

) − 1

for all p ∈ N | p ≥ 13

Consequently Theorem 5.11 is valid if and only if:

(5.29)
1

p(i+1)
+

log p(i+1)

log
(
log p(i+1)♯

) − 1 ≤ 1
a
√
p(i+1)

where a =
π

2

Now,

(5.30)
1

(p(i+1))
+

log p(i+1)

log
(
log p(i+1)♯

) − 1− 1
a
√
p(i+1)

=(
p(i+1) a

√
p(i+1)

(
log (p(i+1))

))
−
(
p(i+1)− a

√
p(i+1)+p(i+1) a

√
p(i+1)

)(
log
(
log
(
p(i+1)♯

)))(
p(i+1) a

√
p(i+1)

) (
log
(
log
(
p(i+1)♯

)))
From Lemma 4.3 we have that log p(i+1)♯ is asymptotic (from below):

log p(i+1)♯ ∼ p(i+1)

as well as:

log p(i+1)♯ < p(i+1) ≤ n ∀n ∈ N | n ≥ 2

Hence,

log
(
log p(i+1)♯

)
≤ log p(i+1)

From Lemma 4.5 we have for all p(i+1) ∈ N | p(i+1) ≥ 2:

(5.31) UBp(i+1)
= 2

√
p(i+1) >

(
p(i+1) − log p(i+1)♯

)
Consequently, from the above we obtain:

(5.32)
(
p(i+1) − UBp(i+1)

)
< log p(i+1)♯

Bearing in mind that for all positive a, b ∈ R | a > b:

(5.33) log (a+ b) = log (a (1 + b/a)) = log (a) + log

(
1 +

b

a

)
Thus, by Lemma 4.3 we have:

(5.34) p(i+1)
a
√
p(i+1)

(
log
(
p(i+1) − UBp(i+1)

))
≤ p(i+1)

a
√
p(i+1) log

(
log
(
p(i+1)♯

))
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Hence,

(5.35)

p(i+1)
a
√
p(i+1)

(
log
(
p(i+1)

))
= p(i+1)

a
√
p(i+1)

(
log
(
p(i+1) − UBp(i+1)

+ UBp(i+1)

))
= p(i+1)

a
√
p(i+1)

[
log
(
p(i+1) − UBp(i+1)

)
+ log

(
1 +

UBp(i+1)(
p(i+1) − UBp(i+1)

))]
≤ p(i+1)

a
√
p(i+1)

(
log
(
log
(
p(i+1)♯

)))
Suppose that the Theorem 5.11 is false. Then it must be true that the numer-
ator of equation 5.30 is greater than zero. From inequality 5.35 we see that without
loss of generality, upon substitution into the numerator of the inequality 5.30, we
can drop the common terms obtaining:

(5.36)(
p(i+1)

a
√
p(i+1)

(
log (p(i+1))

))
−
(
p(i+1)− a

√
p(i+1)+p(i+1)

a
√
p(i+1)

)(
log
(
log
(
p(i+1)♯

)))
≤ p(i+1)

a
√
p(i+1) log

(
1 +

UBp(i+1)

(p(i+1) − UBp(i+1)
)

)
−
(
p(i+1) − a

√
p(i+1)

)(
log
(
log
(
p(i+1)♯

)))
However at p(i+1) = 197 the difference 5.36 attains ∼ −1.20860443 and diverges.
Hence we have a contradiction to our hypothesis which implies that the inequality
is true:

(5.37)
1

p(i+1)
+

log p(i+1)

log
(
log p(i+1)♯

) − 1 ≤ 1
a
√
p(i+1)

where a =
π

2

Consequently this implies that Theorem 5.11 is satisfied for all pi ∈ N | pi ≥ 197,
a simple computer calculation verifies that this inequality also holds within the
interval 13 ≤ pi ≤ 197. This necessarily means that Theorem 5.11 is satisfied for
all pi ∈ N | pi ≥ 13, thus completing the proof. �

Hence, by Theorems 5.10 and 5.11, for the largest prime number p(i+1) that
satisfies the condition p(i+1) ≤ n ∈ N, we have:

1

p(i+1)
<

(∫ θ2

θ1

dt

log t

)
− 1 <

1
a
√
p(i+1)

∀p(i) ≥ 13 where a =
π

2

Remark 5.4.
We need to re-define the lower/upper limits of integration to conform with the

summation limits. The computation of the sum of step errors of the integral TLin
begins at p2 = 3, irrespective of the fact that the computation of the sums pertinent
to the bounds (Infimum, Supremum, Lower and Upper) begins first at p15 = 47.

Definition 5.12 (Theta applicable for summation). θ1 = log
(
p(2+(k−1))♯

)
Definition 5.13 (Theta applicable for summation). θ2 = log

(
p(2+k)♯

)
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Theorem 5.14 (TLi(n) Estimation Error Divergence).
The error arising in the estimation of the prime counting function π(n) by the

application of the tailored logarithmic integral TLi(n), diverges to infinity:

(5.38)

lim
n→∞

(
TLi(n) − π(n)

)
= lim

p(n)→∞

(π(n)−2)∑
(k=1)

{(∫ θ2

θ1

dt

log t

)
− 1

}
+

(∫ log 6

2

dt

log t
− π3

)→∞

Where the limits of integration θ1 and θ2 are given by the Definitions 5.12 and 5.13
respectively. Besides, the prime number p(n) is defined as being the biggest prime
p ≤ n. Furthermore,

(5.39)
(
TLi(n) − π(n)

)
>
∑
p≤n

1

p
∀ n ∈ N | n ≥ 983

(5.40) TLi(n) =

∫ θ(n)

2

dt

log t
> π(n) ∀n ∈ N | n ≥ 43

Proof.
By Lemma 5.8 for all pi ∈ N | pi ≥ 13 the relation holds at every step:

(5.41)

{(∫ θ2

θ1

dt

log t

)
− 1

}
>

1

p(i+1)

Because the sum of reciprocals of successive prime numbers diverges, conse-
quently, the sum:

(5.42) lim
p(n)→∞

(π(n)−2)∑
(k=1)

{(∫ θ2

θ1

dt

log t

)
− 1

}→ ∞

must necessarily diverge, by comparison with the divergent sum of reciprocals of
successive prime numbers. The complete estimation error of the tailored integral is
given by:

(5.43)
(
TLi(n) − π(n)

)
=

(π(n)−2)∑
(k=1)

{(∫ θ2

θ1

dt

log t

)
− 1

}
+

(∫ log 6

2

dt

log t
− π3

)
Consequently therefore, by the divergence of the sum 5.42, the estimation error

of the tailored integral 5.43 must necessarily diverge:

lim
n→∞

(
TLi(n) − π(n)

)
= lim

p(n)→∞

(π(n)−2)∑
(k=1)

{(∫ θ2

θ1

dt

log t

)
− 1

}
+

(∫ θ3

2

dt

log t
− π3

)→∞

In fact the sum of reciprocals of successive prime numbers and 5.43 intersect.
Direct calculation at n = 983 shows that the difference:(

TLi(n) − π(n)

)
−
∑
p≤n

1

p
≈ 0.0004199365947656908

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2020                   doi:10.20944/preprints202006.0365.v1

https://doi.org/10.20944/preprints202006.0365.v1


26 JAN FELIKSIAK

Because by Lemma 5.8 the inequality 5.41 holds for all pi ∈ N | pi ≥ 13, this
implies that: (

TLi(n) − π(n)

)
>
∑
p≤n

1

p
∀ n ∈ N | n ≥ 983

Direct computation verifies that the estimation error of TLi(n):(
TLi(n) − π(n)

)
> 0 for n ∈ N | 43 < n ≥ 983

At n = 43 the estimation error of TLi(n) attains the value of 0.002993180461560385.
Therefore, by the divergence of the tailored integral estimation error, it must be
true that:

TLi(n) =

∫ θ(n)

2

dt

log t
> π(n) ∀n ∈ N | n ≥ 43

This concludes the proof of Theorem 5.14. �

5.5. Supremum and Infimum estimation error bounds on TLi(n) − π(n).

Remark 5.5.
The estimation error of the TLi(n) increases stepwise at the primes. Since how-

ever the magnitude of the increase is small, as a result the curve presents itself
as a rising virtually smooth slope. It absolutely lacks the large amplitude varia-
tion, which is the intrinsic characteristic of the Gauss’ offset Li(n). Please refer
to Fig. 2. The Infimum and Supremum estimation error bounds, in conjunction
with the tailored logarithmic integral, give us both the most accurate estimate of
π(n) and the best estimation error bounds. The drawback is, that the formulae are
computationally quite demanding.

Theorem 5.15 (Infimum Estimation Error Bound).
The error of estimation of the prime counting function π(n) by the application

of the tailored logarithmic integral TLi(n), for all n ∈ N | n ≥ 47 is bounded below
by a divergent sum:

(5.44)

LB(n) =

(π(n)−14)∑
k=1

1

p(14+k)
< INF (n) =

(π(n)−14)∑
k=1

{
log p(14+k)

log
(
log p(14+k)♯

)+ 1

5(p(14+k))
− 1

}

<

(π(n)−2)∑
(k=1)

{∫ θ2

θ1

dt

log t
− 1

}
+

(∫ log 6

2

dt

log t
− π3

) =
(
TLi(n) − π(n)

)
Further, the limits of integration θ1, θ2 implement Definition 5.12 and 5.13 respec-
tively, while p(n) is the greatest prime p ∈ N | p ≤ n.

Proof.
Let’s consider both LB(n) and INF (n) stepwise first. Evidently, both of them

are Cauchy, convergent to zero sequences, while the lower bound function LB(n) is
strictly monotonic. Further, by Theorem 5.10 we have that:

1

p(i+1)
≤ 1

5(p(i+1))
+

log p(i+1)

log
(
log p(i+1)♯

) − 1
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The relation holds stepwise at every step for all p(n) ∈ N | p(n) ≥ 13. Adding
simultaneously the terms of both sequences and forming two respective sums, does
not invalidate the relation. Considering in turn stepwise the functions INF (n) and
the step sequence TLi(n), evidently both are Cauchy, convergent to zero sequences.
Further by Lemma 5.8 and Corollary 5.9 we have that at every step:

(5.45)
log p(i+1)

log
(
log p(i+1)♯

) + 1

5(p(i+1))
− 1 ≤

[∫ θ2

θ1

dt

log t
− 1

]
for all p ∈ N | p ≥ 13

The inclusion of the additional, first step term:

(5.46)

∫ log 6

2

dt

log t
− π3 =

∫ log 6

2

dt

log t
− 2 ≈ −2.3266013098834977

has clearly the effect of shifting the curve of the
(
TLi(n) − πn

)
significantly down,

thereby upsetting the stepwise inter-relationships. However, by Theorem 5.14 we
have that:

(5.47)
(
TLi(n) − π(n)

)
=(π(n)−2)∑

(k=1)

{∫ θ2

θ1

dt

log t
− 1

}
+

(∫ log 6

2

dt

log t
− π3

) =

(∫ θ(n)

2

dt

log t

)
− π(n) > 0

∀n ∈ N | n ≥ 43

with θ(n) given by the Definition 5.1. Thus, at pn = 43 the tailored integral
concludes the stage of recovery instigated by the addition of the initial term, vide
equation 5.46 above. The difference:

(5.48)

(π(n)−14)∑
k=1

1

p(14+k)

−

(π(n)−14)∑
k=1

{
log p(14+k)

log
(
log p(14+k)♯

)+ 1

5(p(14+k))
− 1

}
at p15 = 47 attains ∼ −0.0200272 and diverges decisively. Consequently, by Theo-
rem 5.10 it must be true that the relation 5.48 holds for all p(n) ∈ N | p(n) ≥ 47.
The difference:

(5.49)

(π(n)−14)∑
k=1

{
log p(14+k)

log
(
log p(14+k)♯

)+ 1

5(p(14+k))
− 1

}−
(
TLi(n) − π(n)

)
at p15 = 47 the difference attains ∼ −0.0125411 and further diverges. Since the
relation 5.45 holds stepwise for all p(n) ∈ N | p(n) ≥ 13, therefore, necessarily it
must be true that the relation 5.49 holds for all p(n) ∈ N | p(n) ≥ 47. Consequently,
for all p(n) ∈ N | p(n) ≥ 47 we obtain:

(5.50)

(π(n)−14)∑
k=1

1

p(14+k)
<

(π(n)−14)∑
k=1

{
log p(14+k)

log
(
log p(14+k)♯

)+ 1

5(p(14+k))
− 1

}

<

(π(n)−2)∑
(k=1)

{∫ θ2

θ1

dt

log t
− 1

}
+

(∫ log 6

2

dt

log t
− π3

) =

(∫ θ(n)

2

dt

log t

)
− π(n)

This concludes the proof of Theorem 5.15. �
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Remark 5.6.
Inclusion of the additional, initial term:∫ log 6

2

dt

log t
− π3 =

∫ log 6

2

dt

log t
− 2 ≈ −2.3266013098834977

to complete the domain of integration, when summing the step terms of the TLin
up to some predetermined n ∈ N, has a drawback. It upsets the established stepwise
balance with all its bounds. To resolve the issue decisively with the bounds, we have
to drop 14 of the initial terms of the sum, for each bound. This way, the balance
in their inter-relationships is restored, as

(
TLi(n) − π(n)

)
> 0 ∀n ∈ N | n ≥ 43.

Theorem 5.16 (Supremum Estimation Error Bound).
The error of estimation of the prime counting function π(n) by the application

of the tailored logarithmic integral TLi(n), for all n ∈ N | n ≥ 47 is bounded above
by a divergent sum:

(5.51) TLi(n) − π(n) < SUPR(n)

=

(π(n)−14)∑
(k=1)

{
log p(14+k)

log
(
log p(14+k)♯

) + 1

p(14+k)
−1

}
<

(π(n)−14)∑
(k=1)

1
a
√
p(14+k)

= UB(n)

where a = π
2 , while p(n) is the biggest prime number p ≤ n.

Proof.
Let’s consider both UB(n) and SUPR(n) stepwise first. Evidently, both of them

are Cauchy, convergent to zero sequences, while the upper bound function UB(n) is
strictly monotonic. Further, by Theorem 5.11 we have that:

1
a
√
p(i+1)

≥ 1

(p(i+1))
+

log p(i+1)

log
(
log p(i+1)♯

) − 1 where a =
π

2

the relation holds stepwise at every step for all p(n) ∈ N | p(n) ≥ 13. Adding
simultaneously the terms of both sequences and forming two respective sums, does
not invalidate the relation. Considering in turn stepwise the functions INF (n) and
the step sequence TLi(n), evidently both are Cauchy, convergent to zero sequences.
Further by Lemma 5.8 and Corollary 5.9 we have that at every step:

(5.52)
log p(i+1)

log
(
log p(i+1)♯

) + 1

(p(i+1))
− 1 ≥

[∫ θ2

θ1

dt

log t
− 1

]
for all p ∈ N | p ≥ 13

The inclusion of the additional, first step term:

(5.53)

∫ log 6

2

dt

log t
− π3 =

∫ log 6

2

dt

log t
− 2 ≈ −2.3266013098834977

has clearly the effect of shifting the curve of the
(
TLi(n) − πn

)
significantly down,

thereby upsetting the stepwise inter-relationships. However, by Theorem 5.14 we
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have that:

(5.54)
(
TLi(n) − π(n)

)
=(π(n)−2)∑

(k=1)

{∫ θ2

θ1

dt

log t
− 1

}
+

(∫ log 6

2

dt

log t
− π3

) =

(∫ θ(n)

2

dt

log t

)
− π(n) > 0

∀n ∈ N | n ≥ 43

with θ(n) given by the Definition 5.1. Thus, at pn = 43 the tailored integral
concludes the stage of recovery instigated by the addition of the initial term, vide
equation 5.53 above. The difference:

(5.55)

(π(n)−14)∑
k=1

1
a
√
p(14+k)

−

(π(n)−14)∑
k=1

{
log p(14+k)

log
(
log p(14+k)♯

)+ 1

(p(14+k))
− 1

}
at p15 = 47 attains ∼ 0.0278753 and diverges decisively. Consequently, by Theorem
5.11 it must be true that the relation 5.55 holds for all p(n) ∈ N | p(n) ≥ 47. The
difference:

(5.56)

(π(n)−14)∑
k=1

{
log p(14+k)

log
(
log p(14+k)♯

)+ 1

(p(14+k))
− 1

}−
(
TLi(n) − π(n)

)
at p15 = 47 the difference attains ∼ 0.00448015 and further diverges. Since the
relation 5.52 holds stepwise for all p(n) ∈ N | p(n) ≥ 13, therefore, necessarily it
must be true that the relation 5.56 holds for all p(n) ∈ N | p(n) ≥ 47. Consequently,
for all p(n) ∈ N | p(n) ≥ 47 we obtain:

(5.57)

(π(n)−14)∑
k=1

1
a
√
p(14+k)

>

(π(n)−14)∑
k=1

{
log p(14+k)

log
(
log p(14+k)♯

)+ 1

(p(14+k))
− 1

}

>

(π(n)−2)∑
(k=1)

{∫ θ2

θ1

dt

log t
− 1

}
+

(∫ log 6

2

dt

log t
− π3

) =

(∫ θ(n)

2

dt

log t

)
− π(n)

Thus, concluding the proof. �

Therefore on the basis of Theorems 5.15 and 5.16, the relation holds for all prime
numbers p ∈ N | p ≥ 47:

(5.58)

(π(n)−14)∑
k=1

1

p(14+k)
<

(π(n)−14)∑
k=1

{
log p(14+k)

log
(
log p(14+k)♯

)+ 1

5(p(14+k))
− 1

}

<

(π(n)−2)∑
(k=1)

{∫ θ2

θ1

dt

log t
− 1

}
+

(∫ log 6

2

dt

log t
− π3

) =

(∫ θ(n)

2

dt

log t

)
− π(n)

<

(π(n)−14)∑
k=1

{
log p(14+k)

log
(
log p(14+k)♯

)+ 1

(p(14+k))
− 1

}
<

(π(n)−14)∑
k=1

1
a
√
p(14+k)

where a =
π

2
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The tailored logarithmic integral yields the best estimate of π(n), while the Infi-
mum and Supremum estimation error bounds give us the tightest bounds.

5.6. The estimate of the TLi(n).
The calculation of the integral TLi(n) may become computationally quite de-

manding for larger values of n ∈ N. This attribute of computation of the tailored
integral TLi(n) pertains to the sequential, exhaustive process of calculation of the
value of log p(n)♯, which has exponential time complexity. This section therefore,
presents a method to obtain the approximate value of the integral TLi(n) in an
efficient manner.

Definition 5.17 (TLi(n) estimate).

EstTLi(n) =

∫ est

2

dt

log t
∀n ∈ N | n ≥ 3

where est =
(
p(n) −

(√
5− 1

) (
4γ2 − 2γ

) (
log p(n)

)
3
√
p(n)

)

Definition 5.18 (TLi(n) sub-estimate).

SEstTLi(n) =

∫ Sest

2

dt

log t
∀n ∈ N | n ≥ 11 where Sest =

(
p(n) − 2

√
p(n)

)
By Lemmas 4.5 and 4.7 we have:

(5.59)(
p(n) − 2

√
p(n)

)
< log p(n)♯ <

(
p(n) −

(√
5− 1

) (
4γ2 − 2γ

) (
log p(n)

)
3
√
p(n)

)
where pn is the greatest prime number p ∈ N | p ≤ n

At the cost of an increased estimation error we may estimate the true value of
the tailored integral quite easily.

Theorem 5.19 (Divergence Of The Difference Li(n) - EstTLi(n)).
The difference in values taken by the logarithmic integral Li(n) and the estimate

of the tailored logarithmic integral EstTLi(n) given by the definition 5.17, for all
n ∈ N | n ≥ 3, increases without a bound as n tends to infinity:

(5.60) lim
n→∞

(
Li(n) − EstTLi(n)

)
= lim

n→∞

(∫ n

est

dt

log t

)
→ ∞

Consequently, the value of the EstTLi(n) will always remain less than the value
obtained by the Gauss’ Li(n):

(5.61) Li(n) =

∫ n

2

dt

log t
> EstTLi(n) =

∫ est

2

dt

log t
∀n ∈ N | n ≥ 3

Proof.
Clearly,

(5.62)
(
p(n) −

(√
5− 1

) (
4γ2 − 2γ

) (
log p(n)

)
3
√
p(n)

)
< p(n) ≤ n ∀n ∈ N | n ≥ 3
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where p(n) is the largest prime p ≤ n. Since the limit diverges:

(5.63) lim
n→∞

((√
5− 1

) (
4γ2 − 2γ

) (
log p(n)

)
3
√
p(n)

)
→ ∞

the difference between the pertinent intervals of computation of Li(n) and EstTLi(n)
increases unboundedly. Due to the fact that,(√

5− 1
) (

4γ2 − 2γ
)
(log n) > 1 ∀n ∈ N | n ≥ 94

the difference between the intervals of computation increases at a rate proportional
to k

(
log p(n)

)
3
√
p(n) where k ≈ 0.220367 for all n ∈ N | n ≥ 94. The exact difference

between the intervals of computation of Li(n) and EstTLi(n) is given by:

(5.64) (n− est) =
(√

5− 1
) (

4γ2 − 2γ
) (

log p(n)
)

3
√
p(n) +

(
n− p(n)

)
However, because the difference

(
n− p(n)

)
is bounded above by the maximal

prime gaps Supremum given by Theorem 3.6, its contribution for large n is negligi-
ble. Therefore, we may drop the difference

(
n− p(n)

)
and by an application of the

PNT we obtain an estimate of the true value of the minimum difference between
the two integrals:
(5.65)∫ n

est

dt

log t
'
(√

5− 1
) (

4γ2 − 2γ
) (

log p(n)
)

3
√
p(n)

log p(n)
=
(√

5− 1
)(
4γ2 − 2γ

)
3
√
p(n)

The estimate 5.65 clearly increases monotonically without a bound. Consequently,

lim
n→∞

(∫ n

est

dt

log t

)
= lim

n→∞

(
(n− est)

log n

)
→ ∞

At n = 3 the difference:(
Li(n) − EstTLi(n)

)
=

∫ n

est

dt

log t
≈ 0.3367757764496686

and increases as n tends to infinity. This implies,

Li(n) =

∫ n

2

dt

log t
> EstTLi(n) =

∫ est

2

dt

log t
∀n ∈ N | n ≥ 3

Thus completing the proof. �

Remark 5.7. Due to the uneven distribution of primes, both the difference n−p(n)
and p(n) − log p(n)♯ are inherently highly oscillatory. Approximating log p(n)♯ by
the difference:

(5.66) p(n) −
(√

5− 1
) (

4γ2 − 2γ
) (

log p(n)
)

3
√
p(n)

as the upper integration limit for the EstTLi(n), incorporates this effect into the
estimation error of the EstTLi(n). Another consequence of the application of the
estimates of log p(n)♯ instead of the exact values, is that EstTLi(n) also exhibits
the tendency to follow the Gauss’ Li(n). This is clearly visible over the intervals
where both π(n) and TLi(n) tend to “sag”, the estimate EstTLi(n) keeps on go-
ing relatively unaffected. Please refer to the graph 14 in the Appendix. Because
EstTLi(n) uses the value of the greatest prime p ∈ N | p ≤ n in the calculation of
the upper limit of integration, as a result its graph continues in a straight level line
across every prime gap.
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Figure 5. The drawings show the graph of the true difference
(Li(n) −EstTLi(n)) (red), and the estimate of this value given by
5.67 (blue). The figures are drawn with respect to n ∈ N at every
n within the respective range.

Figure 6. The drawings show the graph of the difference of(
Li(n) − EstTLi(n)

)
and the estimate 5.67, computed at the

primes only. The figures are drawn with respect to n ∈ N at
every n within the respective range.

The omission of the term n − p(n) from the estimate of the difference of Li(n)
and EstTLi(n):

(5.67)

∫ n

est

dt

log t
'
(√

5− 1
) (

4γ2 − 2γ
)

3
√
p(n)

caused the results to be accurate at the primes only; since n = p(n) at such point.
In the intermittent space, the true value of Li(n) − EstTLi(n) increases.

The greater the gap between the primes, the greater the difference between the
estimate 5.67 and the true value of the difference Li(n)−EstTLi(n). Consequently,
for a given prime gap, we have that the locally biggest difference occurs at every
n ∈ N | n = p(n) − 1.

However, by Theorem 3.6, the difference n − p(n) is bound to be less than the
maximal gaps Supremum:

n− p(n)

log p(n)
<

G(p(n))

log p(n)
=

5

log 10

(
log10 p(n)

)
≈ 2.17147

(
log10 p(n)

)
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hence the relative contribution of the difference n − p(n) decreases as n increases,

consequently, gradually losing significance. In fact at 1015 the ratio:
5

log 10 (log10 n)((√
5− 1

)
(4γ2 − 2γ) 3

√
n
) ≈ 0.00147809

thus, the error made in estimation by omission of the term (n− est), is less than
0.15 percent at that point.

Theorem 5.20 (Infimum Of The Difference Li(p) − EstTLi(p)).
In an instance when n is a prime number, the Infimum bound on the

difference Li(p) − EstTLi(p) computed at the primes p ∈ N | p ≥ 3, is given by:

(5.68) LT I(p) =
(√

5− 1
) (

4γ2 − 2γ
)

3
√
p ≤ Li(p) − EstTLi(p)

In this case, the upper estimation error bound, for all p ∈ N | p ≥ 3 is given by,

(5.69)
[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]
≤ 1

(log (10) (log (pn)))2
≡

≡
[
Li(p(n)) − EstTLi(p(n))

]
≤ 1

(log (10) (log (pn)))2
+ LT I(p(n))

Similarly, the lower estimation error bound, for all p ∈ N | p ≥ 263 is given by:

(5.70)
1

p(n)
≤
[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]
≡

≡ 1

p(n)
+ LT I(p(n)) ≤

[
Li(p(n)) − EstTLi(p(n))

]
Proof.

From the Definition 5.17, the length of the interval separating the Li(n) and
EstTLi(n) is given by:

(n− est) =
(√

5− 1
) (

4γ2 − 2γ
) (

log p(n)
)

3
√
p(n) +

(
n− p(n)

)
where p(n) is the biggest prime p ≤ n. When n is a prime however,

(
n− p(n)

)
= 0.

By the application of the PNT therefore, we may approximate the true value of the
difference Li(p(n)) − EstTLi(p(n)) at the primes within the range:∫ p(n)

est

dt

log t
∼
(√

5− 1
) (

4γ2 − 2γ
) (

log p(n)
)

3
√
p(n)

log p(n)

=
(√

5− 1
)(
4γ2 − 2γ

)
3
√
p(n) = LT I(p(n))

LT I(p(n)) is a positive, monotone, increasing without a bound function. By

Theorem 5.19, for all n ∈ N | n ≥ 3 the difference Li(n) − EstTLi(n) > 0 and
diverges. The Gauss’ offset integral Li(n) clearly increases monotonically, as well
as the estimate of the tailored integral EstTLi(n). Suppose that Theorem 5.20 is
false, thus, in accordance with the hypothesis the difference:

(5.71) Li(p(n)) − EstTLi(p(n)) − LT I(p(n)) < 0

However, the inequality 5.71 at pn = 3 attains ∼ 0.0189521 and asymptotically
tends to zero as pn increases unboundedly. Therefore, it is a positive decreasing
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sequence of real numbers. We implement therefore the Second Ratio Test. Define
the test sequence:

(5.72) a(p(n)) =
{
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

}
the Second Ratio Test, given by max

{
a(2pn)

apn
,
a((2pn)+1)

apn

}
:

lim
pn→∞

a2pn

apn

∼
π

4

Thus, the test sequence converges from below asymptotically to ∼ π
4 > 1

2 . There-
fore, by the definition of the Second Ratio Test we conclude that, the series formed
by summing the terms of 5.72 diverges, as pn increases unboundedly. Consequently,
we have a contradiction to the initial hypothesis. Therefore, for all p ∈ N | p ≥ 3
the relation is valid:

(5.73) LT I(p(n)) ≤ Li(p(n)) − EstTLi(p(n))

Suppose now that ∀n ∈ N | n ≥ 347 the following inequality is false:

(5.74)
[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]−1

− p(n) < 0

However, the relation at pn = 347 attains ∼ −60.9818 and diverges with a rate
of divergence ∝ k pn| for k ∼ 1 for larger pn. Hence, we have a contradiction.
Therefore, define a positive valued test sequence:

(5.75) a(n) =

{
p(n) −

[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]−1
}

Subsequently, applying the Cauchy’s Root Test:

lim
n→∞

n
√
an =

lim
n→∞

n

√(
p(n) −

[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]−1
)

∼ 1.06138

The Root Test, at pn = 347 attains ∼ 1.06138 and converges asymptotically, strictly
from above to 1. Consequently, by the definition of the Cauchy’s Root Test, the
series formed from the terms of the sequence 5.75 diverges. Therefore, we have a
contradiction to the initial hypothesis. Hence, ∀n ∈ N | n ≥ 347 the inequality is
valid:

(5.76)
[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]−1

< p(n)

Suppose now in turn, that ∀n ∈ N | n ≥ 3 the following inequality is false:

(5.77)
[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]−1

− (log (10) (log (pn)))
2 > 0

However, inequality 5.77, at pn = 3 attains ∼ 46.3656 and diverges. Hence, we
have a contradiction. Therefore, define a positive valued test sequence:

(5.78) a(n) =

{[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]−1

− (log (10) (log (pn)))
2

}
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Applying the Cauchy’s Root Test:

lim
n→∞

n
√
an =

lim
n→∞

n

√{[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]−1

− (log (10) (log (pn)))2
}

→ 1

The Root Test of the sequence 5.78, at pn = 3 attains ∼ 6.80923 and converges
asymptotically, strictly from above to 1. Consequently, by the definition of the
Cauchy’s Root Test, the series formed from the terms of the sequence 5.78 diverges.
Therefore, we have a contradiction to the initial hypothesis. This implies that
∀n ∈ N | n ≥ 3 the inequality is valid:

(5.79)
[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]−1

> (log (10) (log (pn)))
2

Therefore, from the Inequalities 5.73, 5.76 and 5.79 for all p ∈ N | p ≥ 3 we have:

(5.80) LT I(p) =
(√

5− 1
) (

4γ2 − 2γ
)

3
√
p ≤ Li(p) − EstTLi(p)

as well as,

(5.81)
[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]
≤ 1

(log (10) (log (pn)))2
≡

≡
[
Li(p(n)) − EstTLi(p(n))

]
≤ 1

(log (10) (log (pn)))2
+ LT I(p(n))

Furthermore, for all p ∈ N | p ≥ 347 we have:

(5.82)
1

p(n)
≤
[
Li(p(n)) − EstTLi(p(n)) − LT I(p(n))

]
≡

≡ 1

p(n)
+ LT I(p(n)) ≤

[
Li(p(n)) − EstTLi(p(n))

]
A straightforward computer calculation verifies that the Inequality 5.82 holds for
all p ∈ N | 263 ≤ p ≤ 347 as well. Consequently, Inequality 5.82 holds for all primes
p ∈ N | p ≥ 263 as stated, thus concluding the proof. �

Theorem 5.20 implies that we have a very good approximation of the difference
Li(n)−EstTLi(n) at the primes within the range, hence the least difference Li(n)−
EstTLi(n).

5.7. Supremum of π(n) and the Skewes’ π(n) > Li(n) problem appraisal.
About 1792 Carl F. Gauss postulated the PNT on the basis of empirical evidence.

He thought that:
π(n) < Li(n) ∀n ∈ N | n ≥ 2

Gauss’ belief relied on his observations made, of the tables of primes up to
n = 3, 000, 000. Many of those he constructed by hand himself. His belief was
shared by Bernhard Riemann and indeed many other mathematicians of the 19-th
century. In 1914 John E. Littlewood presented the proof that:

(5.83) π(n) − Li(n) >
k
√
n

log n
log (log (log n))

Littlewood’s proof of 1914 [21], [18], depends upon the size of the log (log (logn))
for large n. Since however the Littlewood’s proof was not constructive [24], Stanley
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Skewes in 1933 presented a proof (assuming Riemann’s hypothesis), that there exist
values of n such that:

π(n) > Li(n) for n ∈ N | n < 1010
1034

In 1955 S. Skewes re-appraised the problem, this time without the assumption
of Riemann’s hypothesis he produced a different bound:

π(n) > Li(n) for n ∈ N | n < 1010
1010

3

This legendary bound has since been lowered very significantly, however, it still
remains out of reach of direct verification [2]. The theory of the tailored integral
developed up to this point permits us to attack Skewes’ problem and to prove
conclusively that Li(n) > π(n) ∀n ∈ N | n ≥ 11.

Theorem 5.21 (The Supremum Bound Of Estimation Of π(n)).
The Tailored Integral is less or at most equal in value to the estimate EstTLi(n):

(5.84) EstTLi(n) − TLi(n) =

∫ est

θ(n)

dt

log t
≥ 0 ∀n ∈ N | n ≥ 3

Further, the tailored logarithmic integral TLi(n) constitutes the Supremum esti-
mation bound of the prime counting function π(n):

(5.85) π(n) <

∫ θ(n)

2

dt

log t
≤
∫ est

2

dt

log t
<

∫ n

2

dt

log t
∀n ∈ N | n ≥ 43

consequently,

(5.86) Li(n) =

∫ n

2

dt

log t
> π(n) ∀n ∈ N | n ≥ 11

Proof.
By Theorem 5.19 we have that:

(5.87) Li(n) =

∫ n

2

dt

log t
> EstTLi(n) =

∫ est

2

dt

log t
∀n ∈ N | n ≥ 3

where the difference in values taken by the estimate of the tailored logarithmic
integral and the Gauss’ logarithmic integral diverges as n tends to infinity:

(5.88) lim
n→∞

(
Li(n) − EstTLi(n)

)
= lim

n→∞

(∫ n

est

dt

log t

)
→ ∞

On the other hand, by Theorem 5.14 we have:

(5.89) TLi(n) =

∫ θ(n)

2

dt

log t
> π(n) ∀n ∈ N | n ≥ 43

With the estimation error increasing unboundedly as n tends to infinity:

(5.90)

lim
n→∞

(
TLi(n) − π(n)

)
= lim

n→∞

 p(n)∑
p(i+1)=47

{(∫ θ2

θ1

dt

log t

)
− 1

}
+

(∫ θ43

2

dt

log t
−π43

)→∞

where

(∫ θ43

2

dt

log t
− 14

)
≈ 0.002993180461560385
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Now, by Lemma 4.5 we have for all p(n) ∈ N | p(n) ≥ 2 where pn is the greatest
prime number p ∈ N | p ≤ n:

(5.91) Sest =
(
p(n) − 2

√
p(n)

)
< log p(n)♯<

(
p(n)−

(√
5− 1

)(
4γ2 − 2γ

)(
log p(n)

)
3
√
p(n)

)
= est

Which gives the interval containing the true value of θ(n) = log p(n)♯:

(5.92) 2
√
p(n) −

(√
5− 1

) (
4γ2 − 2γ

) (
log p(n)

)
3
√
p(n)

=

 2
√
p(n)

(
log p(n)

) − (√
5− 1

) (
4γ2 − 2γ

)
p
2/3
(n)

× p(n)
(
log p(n)

)
The upper endpoint of the interval 5.92 is the est. In the case that the value

of log p(n)♯ is located close to the upper endpoint of the interval 5.91, this implies
that θ(n) / est. Consequently,

EstTLi(n) − TLi(n) =

∫ est

θ(n)

dt

log t
' 0

Hence, the Infimum of the difference EstTLi(n) − TLi(n) is:

inf
(
EstTLi(n) − TLi(n)

)
= inf

(∫ est

θ(n)

dt

log t

)
= 0 ∀ p(n) ∈ N | p(n) ≥ 3

The maximum possible value of the difference EstTLi(n) − TLi(n) may be esti-
mated by using the length of the interval 5.92 and applying the PNT:

(5.93) EstTLi(n) − TLi(n) =

∫ est

θ(n)

dt

log t

/

 2
√
p(n)

(
log p(n)

) − (√
5− 1

) (
4γ2 − 2γ

)
p
2/3
(n)

× p(n)

clearly, the limit of the estimated maximum value of the difference 5.93 diverges,
as n tends to infinity. Hence we have that:

(5.94) 0 ≤ EstTLi(n) − TLi(n) =

∫ est

θ(n)

dt

log t

≤

 2
√
p(n)

(
log p(n)

) − (√
5− 1

) (
4γ2 − 2γ

)
p
2/3
(n)

× p(n) ∀ p(n) ∈ N | p(n) ≥ 3

as well as by Theorem 5.14 we have:

TLi(n) − π(n) =

∫ θ(n)

2

dt

log t
− π(n) > 0 for n ∈ N | n ≥ 43

Since EstTLi(n) − TLi(n) ≥ 0 for all p(n) ∈ N | p(n) ≥ 3, TLi(n) − π(n) > 0 for
all n ∈ N | n ≥ 43, this implies that EstTLi(n) − π(n) > 0 for all n ∈ N | n ≥ 43.
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Direct computation shows that EstTLi(n) − π(n) > 0 for all n ∈ N | 23 ≤ n ≤ 43.
Please refer to Table 4 below. Consequently, from 5.87, 5.89 and 5.94 we have that:

π(n) <

∫ θ(n)

2

dt

log t
≤
∫ est

2

dt

log t
<

∫ n

2

dt

log t
for n ∈ N | n ≥ 43

This shows that TLi(n) constitutes the Supremum estimation bound on the prime
counting function π(n) for all n ∈ N | n ≥ 43. Direct computation confirms that
the difference EstTLi(n) − TLi(n) > 0 holds for all n ∈ N | 3 ≤ n ≤ 43. Please
refer to Fig. 7. Therefore, Theorem 5.21 holds as stated, concluding the proof. �

Table 4. Low range difference EstTLi(n) − π(n)

n EstTLi(n) − π(n) n EstTLi(n) − π(n)

23 0.202729 37 1.23064
29 0.9967 41 1.29738
31 0.569752 43 0.820459

Corollary 5.22 (Littlewood - Skewes’ problem).
Theorem 5.21 implies that we have a strong contradiction to the statement, that

infinitely often:

(5.95) π(n) − Li(n) > 0

Necessarily, this implies that the Littlewood’s theorem of 1914 and hence the rela-
tion 5.95 above are both false, disproving them for every n ∈ N | n ≥ 11. Since the
relation 5.95 is obviously false within the range n ∈ N | 2 ≤ n ≤ 11, consequently
this implies that the Littlewood’s theorem of 1914 is false for every n ∈ N.

Theorem 5.21 implies that Carl F. Gauss’ belief, shared by Bernhard Riemann
and indeed many other mathematicians of the 19-th century, was correct thereby
proving their historical guess.

Figure 7. The drawings show the graph of the true difference
(EstTLi(n)−TLi(n)) (blue), and the estimate of the maximal value
of the difference given by 5.93 (red). The left figure is drawn at
every n ∈ N | 3 ≤ n ≤ 151, while the right figure drawn with
respect to ξ at every n ∈ N | 3 ≤ n ≤ 500009.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2020                   doi:10.20944/preprints202006.0365.v1

https://doi.org/10.20944/preprints202006.0365.v1


RIEMANN’S HYPOTHESIS 39

5.8. Estimation error bounds on the difference TLi(n) − π(n).
Because the Infimum and Supremum estimation error bounds are inherently

difficult to compute for large n ∈ N, this section presents alternative lower and
upper estimation error bounds.

Theorem 5.23 (Lower Estimation Error Bound).
The error of estimation of the prime counting function π(m) by the application

of the tailored logarithmic integral TLi(m), for all m ∈ N | m ≥ 11 is bounded below
by:

(5.96) TLi(m) − π(m) ≥

LEB(m) =
A (log 10)

2γ(log10 m)(
√
3−1)

( √
m

(log10 m)
2 +

5

log 10
(log10 m)−6

)
−(exp(2))

Where γ is the Euler-Mascheroni constant and A is the Glaisher-Kinkelin constant
given by definition 1.5.

Proof.
Evidently, π(m) defines a weakly monotone, divergent function. By Theorem 5.14

the estimation error of the tailored logarithmic integral TLi(m) defines a monotone
divergent sequence. Also, the lower estimation error bound LEB(m) clearly defines a
monotone divergent sequence. Suppose that Theorem 5.23 is false for m ∈ N | m ≥
1000000007, then it has to be true that:

(5.97) TLi(m) <
(
LEB(m) + π(m)

)
Which is equivalent to say,

(5.98) exp
(
TLi(m)

)
− exp

(
LEB(m) + π(m)

)
< 0

However, at m = 1000000007 the difference 5.98 attains ∼ 9.9890903 ∗ 1022082891
and rapidly diverges as m increases unboundedly. Therefore, the difference 5.98
generates positive numerical sequence in R. Thus, we implement the Cauchy’s
Root Test1:

C = lim
n→∞

n
√
|an| = lim

n→∞
n

√
exp

(
TLi(m)

)
− exp

(
LEB(m) + π(m)

)
→

→ exp (1) ≈ 2.718281828 > 1

The test at m = 1000000007 attains ∼ 2.7182926769186047 and converges to
∼ exp (1) strictly from above. By the definition of the Cauchy’s Root Test this
implies that a series formed by the terms of the Inequality 5.98 necessarily diverges.
Consequently, the difference:

TLi(m)

−

(
A (log 10)

2γ(log10 m)(
√
3−1)

( √
m

(log10 m)
2 +

5

log 10
(log10 m)−6

)
−(exp(2)) + π(m)

)
> 0

for all m ∈ N| m ≥ 1000000007. This implies that we have a contradiction to
the hypothesis. Direct computer calculation confirms that Theorem 5.23 also holds
within the range for all m ∈ N| 11 ≤ m ≤ 1000000007. The pertinent data

1The degree n of the root pertains to the prime number pn being the n-th prime number, the
largest one that satisfies the relation pn ≤ m.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2020                   doi:10.20944/preprints202006.0365.v1

https://doi.org/10.20944/preprints202006.0365.v1


40 JAN FELIKSIAK

had been rendered in graphical form, please refer to Fig. 9 to 13 in the Appendix.
Therefore, Theorem 5.23 holds for allm ∈ N|m ≥ 11; thus concluding the proof. �
Theorem 5.24 (Upper Estimation Error Bound).

The error of estimation of the prime counting function π(m) by the application
of the tailored logarithmic integral TLi(m), for all m ∈ N | m ≥ 3 is bounded above
by:

(5.99) TLi(m) − π(m)

≤ UEB(m) = T C

( √
m

(log10 m)(
√
2+1)

+
5 (log10 m)

2

(log 10) (log10 m)(
√
2+1)

+
7

(log10 m)
√
2

)
Where T C is given by the Definition 1.6.

Proof.
Evidently, π(m) defines a weakly monotone, divergent function. By Theorem 5.14

the estimation error of the tailored logarithmic integral TLi(m) defines a monotone
divergent sequence. Also, the upper estimation error bound UEB(m) clearly defines
a monotone divergent sequence. Suppose that Theorem 5.24 is false form ∈ N |m ≥
1000000007, then it has to be true that:

(5.100) TLi(m) > UEB(m) + π(m)

Which is equivalent to say,

(5.101) exp
(
UEB(m) + π(m)

)
− exp

(
TLi(m)

)
< 0

However, at m = 1000000007 the difference 5.101 attains ∼ 3.81666351∗1029156538
and rapidly diverges as m increases unboundedly. Therefore, the difference 5.101
generates positive numerical sequence in R. Thus, we implement the Cauchy’s Root
Test2:

C = lim
n→∞

n
√
|an|

= lim
n→∞

n

√
exp

(
UEB(m) + π(m)

)
− exp

(
TLi(m)

)
→

→ exp (1) ≈ 2.718281828 > 1

The test at m = 1000000007 attains ∼ 2.71829300286192 and converges to ∼
exp (1) strictly from above. By the definition of the Cauchy’s Root Test this im-
plies that a series formed by the terms of the Inequality 5.101 necessarily diverges.
Consequently, the difference:(

T C

( √
m

(log10 m)(
√
2+1)

+
5 (log10 m)

2

(log 10) (log10 m)(
√
2+1)

+
7

(log10 m)
√
2

)
+ π(m)

)
− TLi(m) > 0

for all m ∈ N| m ≥ 1000000007. This implies that we have a contradiction to
the hypothesis. Direct computation ∀m ∈ N | 3 ≤ m ≤ 1000000007 verifies that
Theorem 5.24 also holds within this range. Pertinent data had been rendered in
graphical form, please refer to Fig. 9 to 13 in the Appendix. Therefore, Theorem
5.24 holds for all m ∈ N | m ≥ 3, concluding the proof. �

2The degree n of the root pertains to the prime number pn being the n-th prime number, the
largest one that satisfies the relation pn ≤ m.
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Remark 5.8. Both the lower and upper estimation error bound follow the TLi(n)
estimation error curve very closely. This situation extends over a prolonged interval.
Please refer to Table 6 in the Appendix for a listing of the local minima.

6. Gauss’ logarithmic integral Li(n) and Riemann’s hypothesis

This section develops the mathematical basis, to link unambiguously the tailored
integral theory with the Gauss’ logarithmic integral error term.

6.1. Divergence of the estimation error of Li(n).

Theorem 6.1 (Divergence of the estimation error of Li(n)).
The estimation error of the Gauss’ logarithmic integral Li(n) diverges as n tends

to infinity:

(6.1) lim
n→∞

(
Li(n) − π(n)

)
→ ∞

Proof.
By Theorems: 5.14, 5.19 and 5.21 we have that:

π(n) <

∫ θ(n)

2

dt

log t
≤
∫ est

2

dt

log t
<

∫ n

2

dt

log t
for n ∈ N | n ≥ 43

and clearly:

π(n) < Li(n) ∀n ∈ N | 11 ≤ n ≤ 43

The estimation error of the tailored integral TLi(n) by Theorem 5.14 diverges:

(6.2)

lim
n→∞

(
TLi(n) − π(n)

)
= lim

p(n)→∞

 p(n)∑
p(i+1)=5

{(∫ θ2

θ1

dt

log t

)
− 1

}
+

(∫ θ3

2

dt

log t
− π3

)→∞

where

(∫ θ3

2

dt

log t
− π3

)
≈ −2.3266013098834977

By Theorem 5.19 the difference in values between the estimate of the tailored
integral and the Gauss’ logarithmic integral diverges:

(6.3) lim
n→∞

(
Li(n) − EstTLi(n)

)
= lim

n→∞

(∫ n

est

dt

log t

)
→ ∞

Consequently therefore:

(6.4) lim
n→∞

(
Li(n) − π(n)

)
→ ∞

Thus concluding the proof of Theorem 6.1. �
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Figure 8. The figures show the estimation error Lin − πn (gray)
and the upper and lower bounds 6.10 and 6.6 (red), the figure is
drawn with respect to ξ at every n ∈ N | 11 ≤ n ≤ 3000 in left
figure and n ∈ N | 11 ≤ n ≤ 300000 in right figure.

6.2. Li(n) estimation error bounds.
The estimation error of the tailored logarithmic integral TLi(n) produces virtu-

ally oscillation free curve which by Theorem 5.14 diverges:

(6.5) lim
n→∞

(
TLi(n) − π(n)

)
→ ∞

The smooth characteristic of the curve makes it possible to establish the estima-
tion error bounds for the Li(n) by converting the estimation error bounds of the
tailored logarithmic integral TLi(n) − π(n) to the upper and lower bounds for the
estimation error of the logarithmic integral Li(n) − π(n), by the use of a specific
multiplier. The upper bound implements the multiplier:

Definition 6.2. M1 = 2γ
T C (log10 m)

√
2

for m ∈ N

The lower bound applies the multiplier:

Definition 6.3. M2 = (log10 m)(
√

3−1)

A(log 10) for m ∈ N

Where T C and A are given by the definitions: 1.6 and 1.5 respectively, and γ is
the Euler-Mascheroni constant gamma.

Theorem 6.4 (Lower Li(m) Estimation Error Bound).
For any m ∈ N | m ≥ 11, where pn is the n-th prime, the largest one satisfying

the relation: pn ≤ m, the following relation holds:
(6.6)

M2

(
TLi(m) − π(m)

)
=

(
(log10 m)(

√
3−1)

A (log 10)

)(
TLi(m) − π(m)

)
≤
(
Li(m) − π(m)

)
Where A is given by the definition 1.5.

Proof.
The estimation error of TLi(m) as given by Theorem 5.14, and the estimation

error of Li(m) as given by Theorem 6.1, both diverge as m tends to infinity. Due to
the fact that the TLi(m) estimation error increases only at the primes and remains
constant between them, consequently, for all m ∈ N | m ≥ 3 it defines a weakly
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monotone, divergent function. Clearly, π(m) defines a weakly monotone, divergent
function as well. Necessarily therefore,(

(log10 m)(
√
3−1)

A (log 10)

)(
TLi(m) − π(m)

)
+ π(m)

defines a monotone, divergent function. The Gauss’ logarithmic integral Li(m)

clearly is strictly monotone, divergent function. Suppose therefore, that Theorem
6.4 is false. Hence in accordance with the hypothesis we have that:

(6.7)

(
(log10 m)(

√
3−1)

A (log 10)

)(
TLi(m) − π(m)

)
+ π(m) > Li(m)

The difference Li(m) − πm clearly is highly oscillatory, which obviously applies
equally well to the difference Li(m) − TLi(m). Therefore to smooth out the charac-
teristics of the difference of the terms of Inequality 6.7 we take the exponential:

(6.8) 0 > exp
(
Li(m)

)
− exp

((
(log10 m)(

√
3−1)

A (log 10)

)(
TLi(m) − π(m)

)
+ π(m)

)
However at pn = 11, the difference attains ∼ 153.504313 and rapidly diverges.
Since the difference produces positive numerical output, we apply the Cauchy’s
Root Test3:

C = lim
n→∞

n
√
|an| =

lim
n→∞

n

√√√√exp
(
Li(m)

)
− exp

((
(log10 m)(

√
3−1)

A (log 10)

)(
TLi(m) − π(m)

)
+ π(m)

)
→

→ exp(1) ≈ 2.718281828 > 1

The test at pn = 47 attains ∼ 2.79234 and converges strictly from above to ∼
exp(1). By the definition of the Cauchy’s Root Test this implies that a series
formed by the terms of the Inequality 6.8 necessarily diverges. Consequently, the
difference:

(6.9) 0 < Li(m) −

((
(log10 m)(

√
3−1)

A (log 10)

)(
TLi(m) − π(m)

)
+ π(m)

)
for all m ∈ N| m ≥ 47. This implies that we have a contradiction to the hypothesis.
Computer calculation confirms that Theorem 6.4 also holds within the range for all
m ∈ N| 11 ≤ m ≤ 47. Therefore, Theorem 6.4 holds for all m ∈ N|m ≥ 11; thus
concluding the proof. �

Theorem 6.5 (Upper Li(n) Estimation Error Bound).
For any m ∈ N | m ≥ 3, where pn is the n-th prime, the largest one satisfying

the relation: pn ≤ m, the following relation holds:

(6.10)
2γ

T C
(log10 m)

√
2 (

TLi(m) − π(m)

)
+ 3.5 ≥

(
Li(m) − π(m)

)
Where T C is given by the definition 1.6.

3The degree n of the root pertains to the prime number pn being the n-th prime number, the
largest one that satisfies the relation pn ≤ m.
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Proof.
The estimation error of TLi(m) as given by Theorem 5.14, and the estimation

error of Li(m) as given by Theorem 6.1, both diverge as m tends to infinity. Due to
the fact that the TLi(m) estimation error increases only at the primes and remains
constant between them, consequently, for all m ∈ N | m ≥ 3 it defines a weakly
monotone, increasing without bound function. Clearly, π(m) defines a weakly mono-

tone, divergent function as well, as is (log10 m)
√
2
function. Necessarily therefore,

2γ

T C
(log10 m)

√
2 (

TLi(m) − π(m)

)
+ 3.5 + π(m)

defines a monotone, divergent function. The Gauss’ logarithmic integral Li(m)

clearly is monotone and divergent function. Suppose therefore, that Theorem 6.5
is false. Hence in accordance with the hypothesis we have that:

(6.11)
2γ

T C
(log10 m)

√
2 (

TLi(m) − π(m)

)
+ 3.5 + π(m) < Li(m)

The difference Li(m) − πm clearly is highly oscillatory, which obviously applies
equally well to the difference Li(m) − TLi(m). Therefore to smooth out the charac-
teristics of the difference of the terms of Inequality 6.11 we take the exponential:

(6.12) exp

(
2γ

T C
(log10 m)

√
2 (

TLi(m) − π(m)

)
+ 3.5 + π(m)

)
− exp

(
Li(m)

)
< 0

However at pn = 541, the difference attains ∼ 3.57932× 1047 and rapidly diverges.
Since the difference produces positive numerical output, we apply the Cauchy’s
Root Test4:

C = lim
n→∞

n
√
|an| =

lim
n→∞

n

√
exp

(
2γ

T C
(log10 m)

√
2 (

TLi(m) − π(m)

)
+ 3.5 + π(m)

)
− exp

(
Li(m)

)
→

→ exp(1) ≈ 2.718281828 > 1

The test at pn = 541 attains ∼ 2.95685 and converges strictly from above to
∼ exp(1). By the definition of the Cauchy’s Root Test this implies that a series
formed by the terms of the Inequality 6.12 necessarily diverges. Consequently, the
difference:

(6.13)

(
2γ

T C
(log10 m)

√
2 (

TLi(m) − π(m)

)
+ 3.5 + π(m)

)
− Li(m) > 0

for allm ∈ N|m ≥ 541. This implies that we have a contradiction to the hypothesis.
Direct computation ∀m ∈ N | 3 ≤ m ≤ 541 verifies that Theorem 6.5 also holds
within this range. Therefore Theorem 6.5 holds for all m ∈ N | m ≥ 3, concluding
the proof. �

Remark 6.1. Determining the Li(n) estimation error bounds by the application of
TLi(n) estimation error curve is computationally very inefficient process, applicable
to a relatively small values of n ∈ N only, a different more efficient method will be
presented shortly.

4The degree n of the root pertains to the prime number pn being the n-th prime number, the
largest one that satisfies the relation pn ≤ m.
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6.3. Primary estimation error bound of Li(n).

The equation arising in estimation of the true value of π(n) by the application of
the logarithmic integral

(6.14) π(n) = Li(n) +O
(√

n log(n)
)

has been shown in 1901 by Niels F. Helge von Koch, to be equivalent to the Rie-
mann’s Hypothesis. The size of the estimation error term which depends on the
gaps between primes, is intimately connected with the location of the zeroes of the
Riemann zeta function.

Theorem 6.6 (Primary Lower Bound Of Li(n) Estimation Error).
For any n ∈ N | n ≥ 53, the error made in estimation of the true value of π(n)

by the application of the logarithmic integral is bounded below by:

(6.15) GaussELB(n) =
∑
p≤n

1

p
≤
(
Li(n) − π(n)

)

Proof. By Theorems: 5.14, 5.19 and 5.21 we have that:

(6.16) π(n) <

∫ θ(n)

2

dt

log t
≤
∫ est

2

dt

log t
<

∫ n

2

dt

log t
for n ∈ N | n ≥ 43

The estimation error of the tailored integral TLi(n) by Theorem 5.14 diverges:

lim
n→∞

(
TLi(n) − π(n)

)
= lim

p(n)→∞

 p(n)∑
p(i+1)=5

{(∫ θ2

θ1

dt

log t

)
− 1

}
+

(∫ θ3

2

dt

log t
− π3

)→∞

where

(∫ θ3

2

dt

log t
− π3

)
≈ −2.3266013098834977

By Theorem 5.19 the difference in values attained between the estimate of the
tailored integral and the Gauss’ logarithmic integral diverges:

(6.17) lim
n→∞

(
Li(n) − EstTLi(n)

)
= lim

n→∞

(∫ n

est

dt

log t

)
→ ∞

Consequently therefore:

lim
n→∞

(
Li(n) − π(n)

)
→ ∞

Both Li(n) > π(n) and TLi(n) > π(n) for n ∈ N | n ≥ 43, from 6.16 we obtain:

(6.18) TLi(n) − π(n) < Li(n) − π(n) ∀n ∈ N | n ≥ 43

by Theorem 5.14 we have:(
TLi(n) − π(n)

)
>
∑
p≤n

1

p
∀ n ∈ N | n ≥ 983

Consequently,

(6.19)
(
Li(n) − π(n)

)
>
(
TLi(n) − π(n)

)
>
∑
p≤n

1

p
∀n ∈ N | n ≥ 983
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Direct evaluation confirms that:

(6.20)
(
Li(n) − π(n)

)
>
∑
p≤n

1

p
∀n ∈ N | 53 ≤ n ≤ 983

Please refer to the Table 7 in the Appendix. Therefore, the sum of reciprocals of
prime numbers is for all n ∈ N | n ≥ 53, the primary lower bound of the estimation
error, made by the application of the Gauss’ logarithmic integral. Concluding the
proof of Theorem 6.6. �

6.4. Lower bound on the error term of the Gauss’ logarithmic integral.
By Theorem 6.6 we have that the sum of reciprocals of prime numbers for all

n ∈ N | n ≥ 53 is the primary lower bound on the estimation error made by the
application of the Gauss’ logarithmic integral. However, despite the fact that this
bound may well serve its purpose, it is far from being optimal and evidently does
not prove equation 6.21.

Theorem 6.7 (Lower Estimation Error Bound on The Logarithmic Integral).
For any n ∈ N | n ≥ 4, the error made in estimation of the true value of π(n) by

the application of the logarithmic integral is bounded below by:

(6.21)

GaussLEB(n)=
1

2γ

( √
n

(log10 n)
2 +

5

log 10
(log10 n)−6

)
−

(
(exp(2)) (log10 n)

(
√
3−1)

A (log 10)

)
≤
(
Li(n) − π(n)

)
Proof.

The Theorem 6.4 states that:

(6.22)

(
(log10 n)

(
√
3−1)

A (log 10)

)(
TLi(n) − π(n)

)
≤
(
Li(n) − π(n)

)
∀n ∈ N | n ≥ 11

Theorem 5.23 states that the lower estimation error bound on the tailored loga-
rithmic integral is given by:

(6.23) LEB(n) =
A (log 10)

2γ(log10 n)
(
√
3−1)

( √
n

(log10 n)
2 +

5

log 10
(log10 n)−6

)
−(exp(2))

≤ TLi(n) − π(n) for any n ∈ N s.t. n ≥ 11

Therefore for all n ∈ N | n ≥ 11,

(6.24)

(
(log10 n)

(
√
3−1)

A (log 10)

)
×
(
LEB(n)

)
=

1

2γ

( √
n

(log10 n)
2 +

5

log 10
(log10 n)−6

)
−

(
(exp(2)) (log10 n)

(
√
3−1)

A (log 10)

)

≤

(
(log10 n)

(
√
3−1)

A (log 10)

)(
TLi(n) − π(n)

)
≤
(
Li(n) − π(n)

)
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Direct computation verifies that the lower bound is strictly less than
(
Li(n) − π(n)

)
for all n ∈ N | 4 ≤ n ≤ 11 with the difference at n = 4:(

Li(n) − π(n)

)
− LEB(n) ≈ 0.933759

Consequently, Theorem 6.7 holds for all n ∈ N | n ≥ 4, concluding the proof. �

6.5. Upper bound on the error term of the Gauss’ logarithmic integral.

Theorem 6.8 (Upper Estimation Error Bound on The Gauss’ Logarithmic Inte-
gral).

For any n ∈ N | n ≥ 3, the error made in estimation of the true value of π(n) by
the application of the logarithmic integral is bounded above by:

(6.25) GaussUEB(n) = 2γ

( √
n

(log10 n)
+
5 (log10 n)

(log 10)
+7

)
+ 3.5 ≥

(
Li(n) − π(n)

)
Proof.

Theorem 6.5 states that for all n ∈ N | n ≥ 3:

(6.26)
2γ

T C
(log10 n)

√
2 (

TLi(n) − π(n)

)
+ 3.5 ≥

(
Li(n) − π(n)

)
Theorem 5.24 states that the upper error bound on the tailored logarithmic integral
estimation error is given by:

(6.27) TLi(n) − π(n)

≤ UEB(n) = T C

( √
n

(log10 n)
(
√
2+1)

+
5 (log10 n)

2

(log 10) (log10 n)
(
√
2+1)

+
7

(log10 n)
√
2

)
for all n ∈ N | n ≥ 3

Consequently for all n ∈ N | n ≥ 3,

(6.28)
2γ

T C
(log10 n)

√
2 ×

(
UEB(n)

)
+ 3.5 = 2γ

( √
n

(log10 n)
+
5 (log10 n)

(log 10)
+7

)
+ 3.5

≥ 2γ

T C
(log10 n)

√
2 (

TLi(n) − π(n)

)
+ 3.5 ≥

(
Li(n) − π(n)

)
Direct computation verifies that the upper bound is strictly greater than

(
Li(n) − π(n)

)
at n = 2:

UEB(n) −
(
Li(n) − π(n)

)
≈ 18.7591

Therefore, Theorem 6.8 holds for all n ∈ N | n ≥ 2, concluding the proof. �

6.6. Estimation error bounds
(
Li(n) − π(n)

)
and

(
TLi(n) − π(n)

)
summary.

The
(
Li(n) − π(n)

)
estimation error bounds are given by Theorems 6.7 and 6.8:

1

2γ

( √
n

(log10 n)
2 +

5

log 10
(log10 n)−6

)
−

(
(exp(2)) (log10 n)

(
√
3−1)

A (log 10)

)

≤
(
Li(n) − π(n)

)
≤ 2γ

( √
n

(log10 n)
+
5 (log10 n)

(log 10)
+7

)
+ 3.5 ∀n ∈ N | n ≥ 4
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In an analogous way by Theorems 5.24 and 5.23 we have:

A (log 10)

2γ(log10 n)
(
√
3−1)

( √
n

(log10 n)
2 +

5

log 10
(log10 n)−6

)
−(exp(2)) ≤

(
TLi(n) − π(n)

)
≤ T C

(log10 n)
√
2

( √
n

log10 n
+

5 (log10 n)
2

log n
+ 7

)
∀n ∈ N | n ≥ 11

The Infimum and Supremum estimation error bounds are given by Theorems
5.15 and 5.16:

(π(n)−14)∑
k=1

{
log p(14+k)

log
(
log p(14+k)♯

) + 1

5
(
p(14+k)

) − 1

}

< TLi(n) − π(n) <

(π(n)−14)∑
k=1

{
log p(14+k)

log
(
log p(14+k)♯

) + 1

p(14+k)
− 1

}
∀n ∈ N | n ≥ 47 where p(n) is the greatest prime number p ∈ N | p ≤ n

6.7. Riemann’s hypothesis.
Riemann’s hypothesis is the final major objective of this research.

Theorem 6.9 (The Riemann’s Hypothesis).
The prime counting function π(n) is given by:

(6.29) π(n) = Li(n) +O
(√

n log n
)

∀n ∈ N | n ≥ 2

Proof.
By Theorem 6.8 we have that:

π(n) = Li(n) +O
(
GaussUEB(n)

)
∀n ∈ N | n ≥ 2

Where:

(6.30) GaussUEB(n) = 2γ

( √
n

(log10 n)
+
5 (log10 n)

(log 10)
+7

)
+ 3.5

Suppose that:
GaussUEB(n) >

√
n log n

Necessarily therefore,

(6.31)

√
n log n

GaussUEB(n)
< 1

By L’Hôpital’s rule we obtain:

(6.32) lim
n→∞

 √
n log n

2γ
( √

n
log10 n + 5(log10 n)

log 10 + 7
)
+ 3.5

 =

= lim
n→∞

 (2 + log n)

2γ
((

1
logn − 2

(logn)2

)
log 10 + 10√

n(log 10)2

)
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Every term in the denominator of 6.32 tends to zero as n increases unboundedly,
while the numerator diverges. Necessarily therefore,

(6.33) lim
n→∞

 √
n log n

2γ
( √

n
log10 n + 5(log10 n)

log 10 + 7
)
+ 3.5

→ ∞

Direct computation verifies that the ratio 6.31 attains the value ≈ 0.0551976 at
n = 2 and further increases. At n = 33 it exceeds the value of 1 and decisively
diverges. For all n ∈ N | n ≥ 967 the ratio 6.31 diverges at a rate exceeding log (n),
while further accelerating. Thus we have a contradiction to the initial hypothe-

sis. Since the ratio
√
n log (n)

GaussUEB(n)
diverges, this implies that the ratio

GaussUEB(n)√
n logn

asymptotically converges to zero, as n increases unboundedly. Analogous numerical
computation confirms that at n = 2 the difference:

√
n log n− (Li(n) − π(n)) ≈ 1.98026

and diverges. Therefore, for all n ∈ N | n ≥ 2:

GaussUEB(n) = o
(√

n log n
)

Since

(6.34) π(n) = Li(n) +O
(
GaussUEB(n)

)
this of course implies that

π(n) = Li(n) +O
(√

n log n
)

Concluding the proof of the Riemann’s hypothesis. �
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7. Appendix

7.1. Graphical comparison of functions.
The drawings 9 to 13 show the graphs of the upper and lower estimation error

bounds (red) and the estimation error TLi(pn) − π(pn) (blue). Due to the fact that
the estimation error curve TLi(pn) − π(pn) is relatively smooth, to reduce the size
of the resultant database, a technique had been implemented in construction of the
figures: 9 to 12. The figures were produced by computing the distance from the
curve TLi(pn) − π(pn) to each bound, at every prime within a sub-interval. Two
individual points exhibiting the least distance were stored per interval. The interval
widths for all n ∈ N | n ≤ 109 were computed in accordance with the criteria:

Table 5. Interval widths specifications

n Interval width
< 103 50
< 105 200
< 106 103

< 107 104

< 108 5 ∗ 104
< 109 105

< 1010 106

above 107

The graphs had been constructed in such a way that their ranges slightly overlap.
The points exhibiting locally/globally least distance from either estimation error
bound are indicated on the graphs by a black dot located on the respective bound
curve. Table 6, specifies the coordinates of such points.

Table 6. Critical points - minima

n ξ UEB(n) − (TLin − πn) attribute
1866373 3.5435062790146286 0.4783128416250477 local
3189553 3.71212639526346 0.4276359962528389 local
4890913 3.8466421193071674 0.3706127200088041 local
6862489 3.953214011532586 0.3374931519939466 global
10675969 4.092269278529259 0.42793313427111457 local
16957337 4.237863185491645 0.4720328466920449 local

n ξ (TLin − πn)− LEB(n) attribute
34189626 4.45850818707939 0.4403051640949798 local
84620646 4.743668868936391 0.39131309508213974 local
118888260 4.850654400251596 0.3233165712131978 local
197430720 5.010250084067886 0.14750273586641072 global
319028868 5.161252515015835 0.5455210759252225 local
502777012 5.304379467814857 0.2490621490423166 local
729743022 5.421603942627343 1.1090294068878563 local
876080592 5.479112609478988 1.8641473315881 local
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Figure 9. The figure is drawn with respect to ξ, which gives
the range n ∈ N | 11 ≤ n ≤ 7975013, which includes the global
minimum point at n = 6862489, ξ ≈ 3.9532140115325856. Please
refer to Table 6.
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Figure 10. The figure is drawn with respect to ξ, which gives the
range n ∈ N | 5799991 ≤ n ≤ 124499941.
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Figure 11. The figure is drawn with respect to ξ, which gives the
range n ∈ N | 101499997 ≤ n ≤ 212999959. The graph includes
the global minimum at n = 197430720, ξ ≈ 5.010250084067886.
Please refer to Table 6.
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Figure 12. The figure is drawn with respect to ξ, which gives the
range n ∈ N | 118888261 ≤ n ≤ 1036120507. The graph includes
the global minimum at n = 197430720, ξ ≈ 5.010250084067886,
as well as other minima given in Table 6.
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Figure 13. The figure is drawn with respect to ξ, which gives the
range n ∈ N | 700000001 ≤ n ≤ 108965188117.
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Figure 14. Characteristic behaviour of EstTLi(n) (blue) in
places where π(n) (black) and TLi(n) (red) tend to “sag”
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7.2. Tabular data.

Table 7. Lin − πn less the
∑

p≤n 1/p

Primary Lower Bound

n Lin − πn −
∑

1/p n Lin − πn −
∑

1/p
47 -0.0110464 467 2.32106
53 0.504175 479 3.26732
59 0.978044 487 3.55977
61 0.450138 491 3.20369
67 0.878096 499 3.49106
71 0.808767 503 3.13251
73 0.262727 509 3.09417
79 0.635637 521 4.01405
83 0.533859 523 3.33175
89 0.86971 541 5.1977
97 1.62457 547 5.14841
101 1.48517 557 5.73052
103 0.907901 563 5.67692
107 0.758054 569 5.62174
109 0.176037 571 4.93517
113 0.0165432 577 4.87793
127 1.93345 587 5.44696
131 1.7489 593 5.38569
137 1.96666 599 5.32296
139 1.36537 601 4.63394
149 2.37092 607 4.56927
151 1.76345 613 4.50318
157 1.9483 617 4.12445
163 2.12441 619 3.43405
167 1.90183 631 4.29647
173 2.06433 641 4.84405
179 2.2192 643 4.15188
181 1.59881 647 3.76864
191 2.50724 653 3.69347
193 1.88247 659 3.617
197 1.63597 661 2.92355
199 1.00914 673 3.76743
211 2.25885 677 3.37995
223 3.48497 683 3.29843
227 3.2191 691 3.52166
229 2.5831 701 4.04804
233 2.31378 709 4.26648
239 2.40774 719 4.78696
241 1.76851 727 5.00076
251 2.58098 733 4.90944
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Table 7. Continued

Primary Lower Bound (Continued)
257 2.66064 739 4.81701
263 2.73585 743 4.42099
269 2.80674 751 4.62884
271 2.16029 757 4.53313
277 2.22561 761 4.13495
281 1.93238 769 4.33849
283 1.28333 773 3.93891
293 2.0458 787 5.03997
307 3.49711 797 5.53695
311 3.19157 809 6.32988
313 2.53662 811 5.62728
317 2.22881 821 6.11762
331 3.64767 823 5.41439
337 3.6772 827 5.00883
347 4.38819 829 4.30529
349 3.72707 839 4.79081
353 3.40674 853 5.86664
359 3.42525 857 5.45796
367 3.77975 859 4.75289
373 3.7917 863 4.34362
379 3.80094 877 5.41089
383 3.47141 881 4.99983
389 3.47626 883 4.29359
397 3.81292 887 3.88195
401 3.47833 907 5.82244
409 3.80836 911 5.40851
419 4.46549 919 5.58063
421 3.79423 929 6.04396
431 4.4436 937 6.21276
433 3.77086 941 5.79608
439 3.75581 947 5.67092
443 3.41047 953 5.54496
449 3.3918 967 6.58268
457 3.69768 971 6.16336
461 3.34814 977 6.03425
463 2.67195 983 5.90437
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Table 8. Theorem 3.6

Maximal Prime Gaps

Gap start pi Actual gap g Gap estim. G(pi)

7 3 3
23 5 9
89 7 19
113 13 21
523 17 36
887 19 43
1129 21 46
1327 33 48
9551 35 79
15683 43 88
19609 51 92
31397 71 101
155921 85 134
360653 95 154
370261 111 155
492113 113 161
1349533 117 187
1357201 131 188
2010733 147 198
4652353 153 222
17051707 179 261
20831323 209 267
47326693 219 294
122164747 221 326
189695659 233 342
191912783 247 343
387096133 249 368
436273009 281 373
1294268491 287 415
1453168141 291 419
2300942549 319 438
3842610773 335 459
4302407359 353 464
10726904659 381 503
20678048297 383 532
22367084959 393 535
25056082087 455 540
42652618343 463 564
127976334671 467 616
182226896239 473 634
241160624143 485 647
297501075799 489 658
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Table 8. Continued

Maximal Prime Gaps (Continued)
303371455241 499 659
304599508537 513 659
416608695821 515 675
461690510011 531 680
614487453523 533 694
738832927927 539 704
1346294310749 581 735
1408695493609 587 737
1968188556461 601 755
2614941710599 651 770
7177162611713 673 826
13829048559701 715 863
19581334192423 765 883
42842283925351 777 929
90874329411493 803 974
171231342420521 805 1012
218209405436543 905 1028
1189459969825483 915 1136
1686994940955803 923 1159
1693182318746371 1131 1159
43841547845541059 1183 1384
55350776431903243 1197 1401
80873624627234849 1219 1429
203986478517455989 1223 1498
218034721194214273 1247 1503
305405826521087869 1271 1528
352521223451364323 1327 1539
401429925999153707 1355 1549
418032645936712127 1369 1552
804212830686677669 1441 1603
1425172824437699411 1475 1647
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