The psychological impact of COVID-19 pandemic among communities living in Dilla town, Ethiopia, April 2020. List of Authors Chalachew kassaw1 1* Department of Psychiatry, College of Health Science, Dilla University, P.O. Box 419) email, (1234berekassa@gmail.com), Dilla University, Dilla, Ethiopia. Corresponding Author: Chalachew Kassaw, Department of Psychiatry, College of Health Science, Dilla University, and Dilla, Ethiopia. Email: (1234berekassa@gmail.com) Mobile Phone number: +251937096759

28 **Abstract Background:** The COVID-19 pandemic is the global public health emergency concern and had 29 an impact on the day to day life of individuals. Its effect on an individual's mental health is 30 significant to the extent of suicide. 31 Objective: This study aimed to assess the magnitude of psychological problems and its 32 33 associated factor among communities living in Dilla town in response to the pandemic. 34 Methods: From Apr 1- Apr 15, 2020, a community-based cross-sectional study was conducted 35 using multi-stage sampling techniques. Self-administered the questioner, Depression, Anxiety 36 and Stress Scale (DASS-21), and logistic regression analysis (95% CI, p-value <0.05) was used. **Results:** This study included 445 respondents with a 94% non- response rate who was living in 37 Dilla town. In total, 34.4% of respondents had a psychological problem (11.4 % mild and 23%) 38 moderate level of the psychological problem). Female, Greater secondary level of education, 39 monthly income below 500 ETB, more than three family size, and wearing face mask were 40 variables associated with the outcome variable (p < 0.05). 41 42 **Conclusions:** Nearly one-third of the respondents had mild to moderate psychological among communities living in Dilla town. There is a need for mental health support on those identified 43 44 groups of peoples to enhance their resilience in response to the pandemic. **Keyword** – Anxiety, depression, stress, corona virus, Dilla, Ethiopia 45 46 47 48 49 50 51 52 53 54 55

Introduction

- 57 The first onset of the 2019 coronavirus disease (COVID-19) pandemic was in Wuhan city, china,
- and it kills more than 120 million peoples in the world, which is also much higher than the 2012
- 59 Saudi Arabia severe acute respiratory syndrome epidemic[1-2].
- Globally 2,143,703 confirmed cases and 143,258 deaths and in Africa from 52 countries 16,200
- confirmed cases, 873 deaths, 3,235 recoveries, and in Ethiopia 95 confirmed cases and three
- deaths were recorded within the month [3]. Since the number of cases was increasing day to day
- declare the COVID -19 outbreak of global public health emergency of international concern [4].
- The virus is most contagious and transmits to humans through respiratory droplets as main mode
- 65 transmission from humans and symptoms were fever, cough, fatigue, breathing difficulty [5].
- The incubation period of the virus was 6 days ranging from 2 to 11 days and this helps for a
- 67 quarantine period of duration for suspected cases [6]. Age greater than 65 years and chronic
- 68 medical comorbidities has a greater chance to get infected, with bad outcomes [7]. After the
- onset fourth confirmed cases of coronavirus in Addis Ababa, the capital city of Ethiopia,
- 70 Ethiopian ministry of health approve as it is epidemic starts to look different measures including
- 71 closing all schools and universities for one month, transmitting information through different
- social media about the different prevention strategies of the virus such wearing face masks,
- distributing hand washing facilities including soaps, sanitizers, alcohol and water [8].
- 74 Previous studies done showed infection outbreaks had a psychological impact on individuals
- 75 including the feeling of anxiety about contacting the illness, hopelessness, and fear of stigma at
- the international level [9].
- 77 The ongoing COVID-19 epidemic has a significant psychological impact on patients,
- 78 professionals, and communities around the world and in China, a country in which the first
- 79 epidemic has occurred, they were started online mental health service following a few days of
- the outbreak [10]. Almost half of the respondents had the fear and worry of contracting influenza
- during 2010 swine flu outbreak [11].
- 82 During the 2007 Singapore severe acute respiratory syndrome outbreak, almost half of non-
- 83 infected communities had psychiatry problems such as anxiety, depression, and post-traumatic
- stress disorder. The predictor variables associated with psychiatry problems were younger age,
- female, older, highly educated [12- 13].

- 86 A study done in Iran showed that there should be immediate psychological intervention
- 87 including supportive individual and group therapy, outpatient and inpatient mental health service
- for the confirmed and suspected case, family members, and the community [14].
- 89 Nearly more than half (53%) of Chinese communities were reported moderate to severe
- 90 psychological problems, including 16.5% depressive symptom, 28.8% anxiety symptoms, and
- 91 8.1% stress symptom [15]. There is no sufficient study done on the psychological and mental
- health impacts on the COVID-19 pandemic, especially low and middle-level countries.
- Therefore, the purpose of this study was to determine the magnitude of psychological symptoms
- and its associated factor related to the pandemic. This study result might be used for generating
- 95 appropriate mental health crisis management guidelines for the promotion of the psychosocial
- 96 wellbeing of the community in response to the epidemic.
- 97 Methods and Materials
- 98 Study area, study period and study design
- 99 It was a community-based cross-sectional study conducted from April 1- 15, 2020, in Dilla town.
- 100 It is located in the southern part Ethiopia, and 359 km far from Addis Ababa (the capital city of
- 101 Ethiopia, the main road from Addis Ababa to Kenya crosses), currently, 79,892 peoples are
- living in the city.
- 103 Eligibility criteria
- The inclusion criteria of this study were respondent's age 18+ and able to read and write either of
- the local languages, Amharic, or Gedeoffa local languages. The exclusion criteria of this study
- were those who weren't able to fill the self-administered questioner due to different reasons (not
- in the house during the data collection period, acutely or severely ill).
- 108 Sample Size calculation
- To calculate the sample size, we used the previous study done in China in the same epidemic
- which was 53.8 % (15) and by using a single proportion formula of cross-sectional study design.
- 111 It was calculated by using a single proportion formula from the study was done in china P=
- 112 0.54%
- Where, n = required sample size n= $Z(\alpha/2)$ 2 pq / d2, p= 0.54
- 114 = (1.96) (1.96) (0.54) (0.46) / (0.05) (0.05)
- 115 = 382
- Where z is the reliability coefficient at a 95% confidence interval (1.96)

- 117 W (margin of error) =0.05 and
- 118 N= non-response rate 15% = 63

The final total sample size was, 382 + 63 = 445

Sampling technique and procedure

The sampling technique of this study was a multi-stage random sampling. Dilla town has 03 kifle ketemas/sub-cities listed as Haro Wabalabu, Sessa, and Beddecha, and 09 kebeles (each sub-city has three kebeles). The dilla town has 18,307 households (K1= 2069 HH, K2= 2220 HH, K3= 2110 HH, K4= 2131 HH, K5=2564 HH, K6= 1982 HH, K7=2021 HH, K8=2131 HH, and K9 = 1079 HH), The numbers samples were proportionally allocated to each sub-city using the formula of proportionate stratification formula, nk = (Nk / N) * n (nk = a required number of households for each kebele, Nk = total household of each kebele, N= total population size in each sub-cities, n= total number of households assigned for each sub-cities), then to every three kebeles of the sub-city. Finally, the respondents were sampled at the household level using simple random sampling after the first a household was selected by the lottery method (fig.1.0).

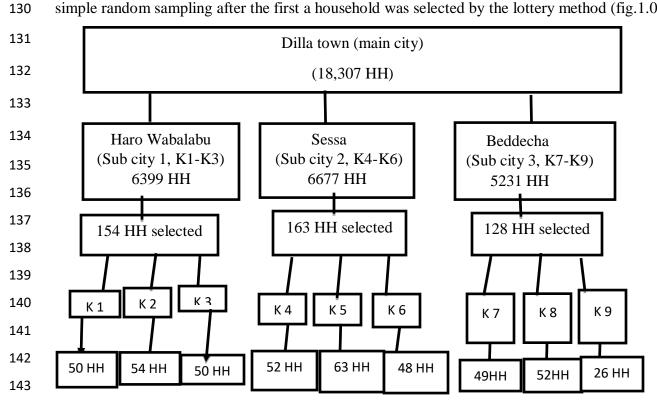


Fig 1.0. Schematic diagram of sampling procedure (K= kebele, HH= house hold) (n=445)

147 **Data collection tools** 148 149 All questionnaires were adopted from the previous literatures done on the similar topic. The first part of the questioner is about the socio-demographic characteristics of respondents 150 adopted from the previous study done on the similar topic [12-15]. 151 The second part of the questioner was Depression, Anxiety and Stress Scale (DASS-21) a 21-152 153 item Likert scale and the total score of each subcomponent added and if the score was < 30 (Normal), 30-43 (mild) and 43-59 (moderate) > 60 (severe) psychological problem [16]. 154 The final part of the questioner was about the current knowledge, attitude, and practice of 155 coronavirus (KAP) assessed by a 16 item questioner adopted from the world health organization 156 COVID-19 training manual. The 12 items for knowledge, two questions for each attitude, and 157 practice. The higher score is Good knowledge, and the lowest score is poor knowledge. [17]. 158 Variables 159 160 Dependent variable - Psychological problem Independent variables- The list of independent variables was Age, sex, educational status, 161 occupational status, family size, and monthly income, and KAP about COVID-19. 162 **Data collection procedures** 163 After we prepare carefully designed questioner and training manual we give training for 164 supervisors for three days on the aims of the study, format questionnaire, how to gather house to 165 house from the respondents by considering the value of privacy and confidentiality, then we 166 administer self-administered questioner to each respondent of the household then fill within one 167 day of duration for complete and basic information and on the next day we collect all the 168 required number of samples by checking the completeness of questioner. 169 170 **Data quality control** The pretest was done for 5% of the respondents before two weeks of the actual data collection 171 172 period and not included in the main study. The questioner translated into the Amharic and 173 Gedeoffa language and back-translated to English to check the consistency. The Amharic and 174 Gedeoffa version questioner used for data collection. 175 176

Data processing and Analysis

Data was entered into the Epi-Data 3.4 software package and exported to the Statistical Package for Social Science version 22. Descriptive statistics (frequencies and percentages) and crosstabulation calculated to see the distribution of study variables among study participants. Bivariate and multivariable logistic regression was conducted to determine the associated variable of outcome variable at (95 CI and p-value < 0.05). Finally, the results of the study were summarized by frequency tables, graphs, and narrative descriptions.

Result

Sociodemographic characteristics result of the respondents

The response rate of this study was 94%. The mean age onset of the respondents 35 years of age, nearly two-thirds of respondents had more than three family sizes and the average mean monthly income was 500 ETB (Table 1).

Table 1. Socio-demographic characteristics results of respondents living in Dilla town Ethiopia 2020 (N = 445).

Variable	Category	Frequency	Percentage	
		(n=445)	(%)	
Sex	Male	200	45%	
	Female	245	55%	
Marital status	Single	95	21.4%	
	Married	229	51.4%	
	Divorced	89	20%	
	Widowed	32	7.12 %	
Educational status	No-formal education (able to read and write)	82	18.4%	
	Primary	44	9.88%	

196

197

198

	Secondary	110	24.7%
	More-than secondary	209	47%
Occupation	Private job	206	46.4%
	Government job	239	53.5 %
Family size	One	40	9.04 %
	Two	111	25%
	Three and above	294	65.9%

More than two third of the respondents avoid to go crowded place and only one third of wearing mask for protecting Covid-19 (Table 2).

Table 2.0 Knowledge, Attitude and Practice response of respondents living in Dilla town, Ethiopia (N=445)

	Knowledge assessment tool	True	False
			(I Don't know)
1	The main clinical symptoms of COVID-19 are fever,	334(75%)	111(25%)
	fatigue, dry cough, and myalgia		
2	Unlike the common cold, stuffy nose, runny nose, and	191(43%)	254(57%)
	sneezing are less common in persons infected with the		
	COVID-19 virus.		
3	Currently there is no effective cure for COVID-2019, but	165(37%)	280(63%)
3		103(37%)	280(03%)
	early symptomatic and supportive treatment can help most		
	patients recover from the infection.		
4	Not all persons with COVID-2019 will develop to severe	142(32%)	303(68%)
	cases. Only those who are elderly, have chronic illnesses,		
	and are obese are more likely to be severe cases.		

5	Eating or contacting wild animals would result in the infection by the COVID-19 virus.	114(25.7%)	331(74.3%)
6	Persons with COVID-2019 cannot infect the virus to others when a fever is not present	160(36%)	285(64%)
7	The COVID-19 virus spreads via respiratory droplets of infected individuals	409(92%)	36(8%)
8	Ordinary residents can wear general medical masks to prevent the infection by the COVID-19 virus	374(84%)	71(16%)
9	It is not necessary for children and young adults to take measures to prevent the infection by the COVID-19 virus	93(21%)	352(79%)
10	To prevent the infection by COVID-19, individuals should avoid going to crowded places such as train stations and Avoid taking public transportations.	423(95%)	22(5%)
11	Isolation and treatment of people who are infected with the COVID-19 virus are effective ways to reduce the spread of the virus.	390(87.5%)	55(12.5%)
12	People who have contact with someone infected with the COVID-19 virus should be immediately isolated in a proper place. In general, the observation period is 14 days	327(73.5%)	118(26.5%)
	Attitude	Agree	Disagree (I don't know)
13	Do you agree that COVID-19 will finally be successfully controlled?	254(57%)	191(43%)
14	Do you have confidence that Ethiopia can win the battle against the COVID-19 virus	289(65%)	156(35%)
	Practice	Yes	No
15	In recent days, have you gone to any crowded place?	160(36%)	285(64%)
16	In recent days, have you worn a mask when leaving home?	129(29%)	316(71%)

Nearly one -thirds of the respondents (34%) were reported as mild to moderate level of a psychological problem symptom (figure 2.0).

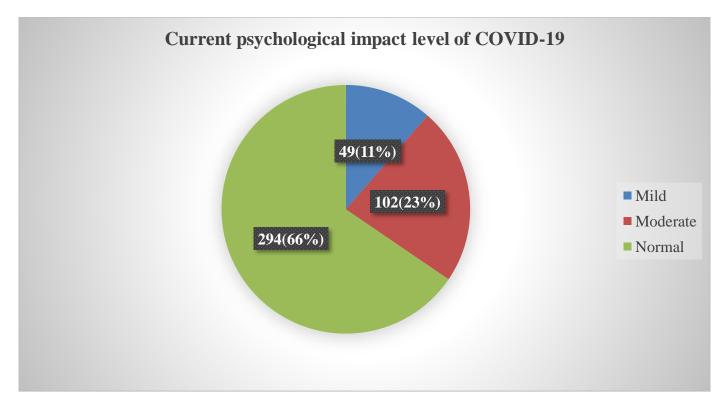


Figure 2.0. Current mental health status of respondents in response to corona virus who were living in Dilla town, Ethiopia (N=445).

Factors associated with psychological problem

Variables associated with the outcome variable during bivariate and multi variant logistic regression at 95% CI were female gender, greater than secondary level of educational status, less 500 ETB monthly incomes, more than three family size and those who wear face mask for prevention. The odds of being a female's gender 2.52 times more likely impacted by psychological problems, whereas having low educational status (≤ primary) 0.13 times less likely to develop psychological symptoms. Monthly income less than 500 ETB 2.12 times more likely to experience psychological problems whereas having less than one family size 0. 40 times less likely to develop a psychological problem in response to the pandemic (Table 3).

Table 3.0. Association of Sociodemographic characteristics and current mental health status of respondents living in Dilla town in response to COVID-19 epidemic, Ethiopia 2020, (N=445).

		Psycholo	ogical	COR	AOR
	Category	problem			
Variables	of variables	Yes	No		
Sex	Male	84	116	1	
	Female	181	64	2.72 (1.45-3.12)*	2.52 (2.01-3.45)*
Marital status	Single	50	45	1.28 (0.05 -1.54)	
	Divorced	33	56	0.841 (0.65-1.77)	
	Widowed	21	11	1.35(0.89-1.90)	
	Married	169	60	1	1
Educational status	No-formal education(able to read and write)	48	34	0.17(0.70-0.84)*	0.13(0.40-0.48)*
	Primary	30	14	0.12(0.10 -0.78)*	0.80(0.50-0.80)*
	Secondary	80	30	0.98 (0.79-1.46)	0.83(0.34-1.35)
	More-than secondary	180	29	1	1
Occupation	Private job	86	120	1.33(1.10-2.85)	
	Government job	184	55	1	
Monthly income	Above 500 ETB	154	99	1	1
	Below 500 ETB	118	74	2.76 (2.21-3.45)**	2.12(2.10-3.29)**
Number	One	15	25	0.11(0.60-0.23)**	0.40(0.10-0.16)**

of Family size	Two	70	41	0.33(0.12-0.55)**	0.24 (0.19-0.81)**
	Three and above	187	107	1	1
Wearing mask	Yes	122	7	1	1
	No	148	168	0.54(0.13-0.79)*	0.32(0.21-0.66)*
Avoid going into	Yes	26	134	1	
crowded place	No	111	174	0.43(0.89-1.50)	

1=Reference, for COR, * p < 0.25, and for AOR, *= p< =0.05 and, ** p < 0.01

Discussion

This study found 33.4% of the respondents were experienced mild to moderate psychological problems including stress, anxiety, and depression symptoms in response to COVID 19 global epidemic. This result was high as since there is no confirmed case identified in city and implicated as there is a need for immediate mental health crisis intervention in response to the epidemic in city.

This study finding was lower than the study done in China in response to the COVID-19 epidemic which was 53.8% [15]. It might be due to the difference in literacy about the coronavirus and no reported confirmed case found in this study area.

This study showed found that female was 4.21 times more likely to develop stress 4.21 [AOR= 4.21; 95%CI: (2.01-7.45)] as compared with male and this result similar to the study done china (15) and might explain females in Ethiopia were highly responsible for family and worry much about the health of family moreover, they had a high chance contact with different people for their day to day activity inside and outside the home.

This study found that respondents who had no formal education 0.08 times 0.08 [AOR= 0.08; 95%CI: (0.04-0.15)] and primary level of education 0.35 times [AOR= 0.35; 95% CI: (0.50-0.80)] less likely to develop psychological problems as compared those who more than a secondary level of education and this finding was similar to the study done in china among volunteer health service providers of the epidemic [18] this might be explained not having more information and knowledge about the mortality and morbidity coronavirus among those who had low-level education might protective for not to worry much in response to the epidemic.

- 239 This study finding showed that respondents who had below 500 ETB monthly incomes were
- 1.80 times [AOR= 1.80; 95% CI: (1.10-3.29)] more likely to experience psychological problems
- and this result might be explained by those who had low income were daily labors, street market
- traders and farmers by their occupation and due to the government declares state of emergency
- due to COVID-19 and their daily income is not as previous as a result the can't afford to buy
- safety prevention methods including facemask, soap, alcohol and use private transport for
- 245 minimizing the chance of crowdedness and contact with different people.
- 246 This study found that respondents who had one family size were 0.31 times [AOR= 0.31; 95%]
- 247 CI:(0.10-0.66)] less likely to develop the psychological problem as compared to those who had
- 248 more than three and above family size and this result might be explained since each family
- 249 member was contacting daily with different people for a different purpose and the virus was high
- 250 contagious through contact their worry becomes significant about the chance of getting a disease.
- 251 This study found that respondents who were not using a face mask for prevention 3.32 times
- 252 [AOR=3.32; 95% CI: (1.21-6.66)] more likely to develop the psychological problem than those
- 253 who were not using a face mask and this might be explained face mask use decrease the worry
- and stress related to contacting the virus.

255 Limitation of the study

- As the study used a cross-sectional study design, no conclusions can be drawn regarding
- 257 causality and alternative explanations of the findings and cannot be ruled out.
- 258 Conclusions

262

- 259 This study found that a 34 % magnitude of psychological problem such as anxiety, stress and
- depression. The negative independent predictors were being female, secondary and above level
- of education, monthly income below 500 ETB, more than three family size and use face mask.

Recommendation

- All communities of the city especially government and private health sector organizations were
- 264 highly responsible for preventing and controlling mental health crisis of the epidemic through
- 265 transmitting Up-to-date and specific information through different social media about the
- prevention of the virus and how to cope with the psychological stress of the pandemic about
- 267 disease severity, social and economic crisis. There should be a continuous supply of
- 268 precautionary preventive equipment including, facemask, water, soap, alcohol, and sanitizer for
- those who had more than three family members and low income. The mental health professional

- should work hard by giving attention to the impact of respondents with severe economic and
- social crises. Moreover, work with the integration of stakeholders through teaching how to
- 272 handle stress in response to the epidemic through different social media is vital to lower the
- 273 psychological impact of the epidemic.
- 274 There is a need to formulate a local-based emergency mental health intervention guide for
- improving the mental health and psychological resilience of a community in response to the
- 276 pandemic.
- 277 List of abbreviations
- 278 AOR-adjusted odd ratio
- 279 CI: Confidence interval
- 280 COR -Crude odd ratio
- 281 COVID-19 Consider Coronavirus Disease 2019
- 282 DAAS- Depression, Anxiety and Stress Scale
- 283 ETB- Ethiopian birr
- 284 KAP- knowledge, awareness, and practice
- 285 Ethics approval and consent to participate
- 286 Ethical clearance was gained from the ethical review board of Dilla University and written
- consent was obtained from the study participants. The confidentiality of information obtained
- from respondents was ensured.
- 289 Acknowledgement
- The author would like to thank the clients who participated in the study and Dilla University.
- 291 Conflicts of Interest
- The author declare no potential conflicts of interest with respect to the research, authorship
- and/or publication of this article.

294

297

298 Reference

299 1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health

- 300 concern. The Lancet. 2020 Feb 15;395(10223):470-3.
- 2. Caini S, Schellevis F, Séblain CE, Paget J. Important changes in the timing of influenza
- epidemics in the WHO European Region over the past 20 years: virological surveillance
- 303 1996 to 2016. Eurosurveillance. 2018 Jan 4;23(1):17-00302.
- 304 3. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG,
- Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly
- reported confirmed cases: estimation and application. Annals of internal medicine. 2020
- 307 May 5;172(9):577-82.
- 308 4. Mahase E. China coronavirus: WHO declares international emergency as death toll
- exceeds 200. BMJ: British Medical Journal (Online). 2020 Jan 31;368.
- 310 5. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, Yan Y. The
- origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19)
- outbreak—an update on the status. Military Medical Research. 2020 Dec;7(1):1-0.
- 313 6. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus
- 314 (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020.
- 315 Eurosurveillance. 2020 Feb 6;25(5):2000062.
- 316 7. World Health Organization (WHO). WHO guidelines for investigation of cases of human
- infection with Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Online)
- 318 July. 2013.
- 319 8. Ayenew B, Pandey D. Challenges and opportunities to tackle COVID-19 spread in
- Ethiopia. Journal of PeerScientist. 2020;2(2):e1000014.
- 9. Hall RC, Hall RC, Chapman MJ. The 1995 Kikwit Ebola outbreak: lessons hospitals and
- physicians can apply to future viral epidemics. General hospital psychiatry. 2008 Sep
- 323 1;30(5):446-52.

- 325 10. Li W, Yang Y, Liu ZH, Zhao YJ, Zhang Q, Zhang L, Cheung T, Xiang YT. Progression
- of mental health services during the COVID-19 outbreak in China. International journal of

- 327 biological sciences. 2020;16(10):1732.
- 328 11. Rubin GJ, Potts HW, Michie S. The impact of communications about swine flu (influenza
- A H1N1v) on public responses to the outbreak: results from 36 national telephone surveys
- in the UK. Health Technology Assessment. 2010;14(34):183-266.
- 331 12. Sim K, Chan YH, Chong PN, Chua HC, Soon SW. Psychosocial and coping responses
- within the community health care setting towards a national outbreak of an infectious
- disease. Journal of psychosomatic research. 2010 Feb 1;68(2):195-202.
- 13. Leung GM, Lam TH, Ho LM, Ho SY, Chan BH, Wong IO, Hedley AJ. The impact of
- community psychological responses on outbreak control for severe acute respiratory
- syndrome in Hong Kong. Journal of Epidemiology & Community Health. 2003 Nov
- 337 1;57(11):857-63.
- 338 14. Banerjee D. The COVID-19 outbreak: Crucial role the psychiatrists can play. Asian
- journal of psychiatry. 2020 Apr;50:102014.
- 340 15. Wang C, Pan R, Wan X, Tan Y, Xu L, Ho CS, Ho RC. Immediate psychological
- responses and associated factors during the initial stage of the 2019 coronavirus disease
- 342 (COVID-19) epidemic among the general population in China. International journal of
- environmental research and public health. 2020 Jan;17(5):1729.
- 16. Le TA, Quynh M, Le T, Dang AD, Dang AK, Nguyen CT, et al. Multi-level predictors of
- psychological problems among methadone maintenance treatment patients in difference
- types of settings in Vietnam. BMC Psychiatry. 2019;4(73):1–10.
- 347 17. Zhong BL, Luo W, Li HM, Zhang QQ, Liu XG, Li WT, Li Y. Knowledge, attitudes, and
- practices towards COVID-19 among Chinese residents during the rapid rise period of the
- 349 COVID-19 outbreak: a quick online cross-sectional survey. International journal of
- 350 biological sciences. 2020;16(10):1745.
- 351 18. Huang Y, Zhao N. Generalized anxiety disorder, depressive symptoms and sleep quality
- during COVID-19 outbreak in China: a web-based cross-sectional survey. Psychiatry
- research. 2020 Apr 12:112954.