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Abstract

High levels of air pollution can contribute to high rate of the COVID-19 outbreaks. Air pollutants
induce oxidative stress, inflammatory process, immune imbalance and coagulation at systemic
level, making the organism susceptible to complications caused by various pathogens, including
viruses, resulting in a possible important damage co-factor. Sperm cells are highly sensitive to the
pro-oxidant effects of environmental pollutants, and may represent an important alarm bell
indicating that the burden of environmental pressure in a certain area is causing damage to humans.
A comparison of the maps of COVID-19 case fatality rates, male infertility rates and air pollution
may suggest a way to understand the dynamics of the virus impact. Semen quality may be
considered as an early and sensitive environmental marker, and also a potential susceptibility

indicator to viral insults (including SARS-CoV-2 ) in heavily polluted areas. Therefore, assessing
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the burden of environmental exposure of a given population and its potential susceptibility to insults
through early biological stress indicators may be helpful for predicting the risk of the adverse
effects by the SARS-CoV-2 epidemic .

Key words: air pollution, COVID-19, semen quality, environmental marker, health marker,
oxidative stress, SARS-CoV-2

Air pollution and COVID-19

A recent review point out that chronic exposure to air pollutants in the most polluted areas of the
world leads to more severe and lethal forms of COVID-19*. Indeed, a preprint study, carried out in
3,080 counties in the United States calculated an 8% increase in the COVID-19 death rate adjusted
by 20 potential confounding factors for 1 microgram/m? elevation of fine particulate matter with a
diameter of 2,5 um or less (PMzs)?. Furthermore, in 2003, during SARS infection in China,
scientists reported that Case Fatality Rate (CFR) in the most polluted areas was twice as high as in
the least polluted ones®. Another preprint study has reported a higher CFR of COVID-19 in Wuhan,
China, with increasing of air particular matter with diameter of 10 um or less (PM10) and PM_ s after
adjusting for humidity and temperature*. Moreover, some authors pointed out that the regions of
Northern Italy most affected by COVID-19, were among those with the highest levels of PM1o and
PM_s in Europe>’. A recent preprint found a significant correlation between high levels of PMas,
carbon monoxide (CO), nitrogen dioxide (NOz) and COVID-19 spread and mortality in Italy,
U.S.A. and China®.

COVID-19 spread after initial outbreaks (China, South Korea, Iran) occurred in Italy before that
observed in the rest of Europe and Eastern U.S.A., between latitude 30° and 50° North, in Winter
(December to April), when weather patterns, such as low temperature (between 5 and 11 °C) and
low specific and absolute humidity of 3-6 g/kg and 4-7 g/m? respectively were favourable for the
spread of a respiratory virus®. Furthermore, it is significant that in the same seasonal period (May
for Brasilian winter) the highest local peak out of this belt is in Sao Paulo, Brazil, a heavily polluted
city (figure 1)*°. It’s known that in the winter period the air pollution rates are higher and the cities
where COVID-19 has hit hardest are those with PMz1o, PM25 and NO2 annual average above the

3 respectively (figure 1)

WHO recommended values of 20 pg/m3 10 pg/m® and 40 pg/m
Stability of SARS-CoV-2 in different environmental conditions supports the hypothesis that air
pollution may favour the human-to-human chain of transmission of the infection, particularly in

elevated crowding situations, COVID-19 severity and risk of related death*¢,
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Pollution and susceptibility to viral insults

The World health Organization (WHO) estimates that about a quarter of diseases is due to
prolonged exposure to environmental pollutants®?, including cardiovascular and chronic
degenerative disease, premature deaths and reproduction dysfunctions'®2%2® along with lifestyle, as
reported in the European Code against Cancer?*. Moreover, environmental pollutants can increase
susceptibility to non-communicable diseases (NCDs) and determine a significant decline in body’s
defences, possibly due to also transgenerational effects that may partly explain the worldwide
disease burden consisting not only in non-communicable but also communicable diseases (dengue,
yellow fever, tuberculosis, etc.)?*%. Furthermore, it shows that this is transmitted to the following
generations, by reducing the defence ability toward viral pathogens?®.

In particular, the chronic exposure to the air-born finest fraction of particulate matter (PM2s), not
only induces inflammation to alveolar district, but, passing the alveolar barrier, it reaches the blood
and hence the peripheral tissues, inducing oxidative stress both directly and through the guest
response to the chemical insult. This contributes to the activation of inflammasome and,
particularly, NLRP3, influencing the maturation and secretion of Cytokine such as IL-1 beta and IL-
18 both involved in the systemic inflammatory syndrome and in the conditions facilitating the
pathogen agent virulence, including vascular leakage and coagulopathy374°,

SARS-CoV-2 is able to unleash a fast process of autoimmune dysregulation, by inducing a
significant Cytokine storm, mainly TNF-a, IL-6 e IL-1pB, IL-17, IL-18, in genetically predisposed
individuals®*. Such a process could be even more important when pre-existing environmental
factors have already altered regulatory mechanisms for Cytokine release and/or even when there are
some polymorphisms for IL-6, such as in specific populations or ethnic groups who in fact make
them more susceptible to virus complications*?. Specifically, all populations are susceptible to
COVID-19, but the elderly, individuals with chronic diseases or low immune defences, pregnant
women and newborns are most exposed to complications*>.

In addition, air pollutants induce oxidative stress, inflammatory process, immune imbalance and
coagulation at systemic level, making the organism susceptible to complications arising from the
pathogen agents, including SARS-CoV-2, resulting as a possible important damage co-factor®.
This is even more true in those areas of the world where poor air quality (figure 2) could, favour
viral contagion and/or increased virulence, decreasing the antioxidant and immune defences of the

organism.

Sperm decline in polluted areas

d0i:10.20944/preprints202006.0314.v2


https://doi.org/10.20944/preprints202006.0314.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 July 2020

Many data suggest a decline in sperm parameters in different areas of the world, particularly in
developed ones or those undergoing strong industrial development with high levels of air
pollution®’. A systematic review and meta-regression analysis reported a decline of total sperm
counts by 59.3% in Europe, U.S.A., Canada and New Zealand between 1971 and 2011*. In Asia,
the infertility rate of Iranian men has increased by 20% over the last 20 years and in China, out of a
total of 30,636 young donors, the sperm concentration and percentage of sperm with normal
morphology decreased from 68 x 106/mL to 47 x 106/mL and from 31.8% to 10.8%,
respectively*®>, In Brasil, in the past 23 years a median reduction of 0.24 million/mL of
spermatozoa per year was reported®?.

The male reproductive system is, indeed, extremely sensitive to environmental pollutants. In
particular, chronic exposure to high levels of PM1o, PM2s and individual air pollutants such as NO>
and sulfur dioxide (SO>) are negatively associated with sperm count, motility and testicular volume
in infertile subjects®®°3. The mechanisms of spermatogenesis damage by environmental agents are
largely unknown, although radical oxygen species (ROS) imbalance and associated oxidative stress
may be the common denominator through which pollutants alter the most sensitive parameters of
seminal quality such as sperm count, motility, morphology and integrity of sperm DNA%, As a
matter of fact, sperm cells are highly sensitive to the pro-oxidant effects of environmental
pollutants, due to the limited volume of the cytoplasmic space, with less antioxidant defence, and
sperm membrane lipids are target of ROS®’. In this regard, we recently reported that male gametes
are the most sensitive cells to the accumulation of damaged DNA and showed, through molecular
investigations, that the sperm nuclear basic proteins from samples of men living in polluted areas
have a new and unexpected behaviour, resulting involved in DNA oxidative damage®. The
COVID-19 CFR map of the most important outbreaks in the world areas presenting, in recent
decades, a negative trend in sperm quality, together with the average annual levels of PM1o, PM25
and NO2, shows a certain overlapping (figure 1). It could be argued that sperm decline may

represent the earliest clinical sign of environmental pressure.

Human semen as environmental and health marker

We and other authors indicate human semen as a “sentinel biomarker” of subclinical biological
effect suitable for monitoring the impact of adverse environmental exposures®®-53,

Semen quality has also been found to reflect individuals’ general health condition, as recent studies
showed an association between semen quality and the onset of chronic diseases, with male

infertility as a predictor of future hospitalization and overall mortality®*8,
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We speculate that this observation could help understanding the dynamics that may have facilitated
the COVID-19 severity in polluted areas. As an early and sensitive environmental and health
marker, semen quality could be considered as a potential susceptibility indicator of external insults
to the health of the general population and be used for health risk management, innovative
prevention programs and health surveillance, especially in heavily polluted areas®>%. However,
although high population density (according for human-to-human transmission mechanisms),
climatic characteristics, age, comorbidity, different capacity of health systems to face the pandemic
and prevention policies adopted in the various countries currently play the central role, we should
not overlook the possible facilitating contribution of pollution in increasing the risk for people
living in areas with higher environmental pressure to the COVID-19 impact. Moreover, it must be
considered that higher incidence of non-communicable diseases (NCDs) and male infertility are
reported in these same areas because of a complex interaction between factors of chronic chemical
and physical exposure, along with the contribution of lifestyle behavioural risk factors and
individuals® genetic background. In particular, human sperm decline in the last decades, represent
an important alarm bell indicating how the burden of environmental pressure is becoming
increasingly unsustainable. In this perspective, the first signs of damage to organo-sentinel systems
such as the male reproductive system, detectable by the reduction in semen quality over time can be
an opportunity to know the health status of the population in a given environmental context,
including susceptibility to the virus impact in that population, and predict the medium to long term
adverse effects on human health.

However, in our opinion semen quality as an early environmental and health marker could help the
policy makers to intervene promptly in areas with significant environmental criticalities in order to
reduce air, water and soil pollution with an integrated approach in a One Health perspective, where
the sharing of information between different professional figures (clinicians, biologists, chemists,
virologists, veterinarians, economists, epidemiologists) can succeed to find a systemic approach that
could be effective on a global scale®®. Above all, it is necessary to estimate effectiveness of the
measures adopted to safeguard the health of community and also its social and productive
organization, with the aim to avoid, or at least reduce, the rapid and destructive spread of future

viruses.
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outbreaks, air pollution and world areas presenting, in recent decades, a negative trend in sperm quality. Some cities of

the same areas with PM1o, PM,s and NO; annual average above the WHO recommended values of 20 pg/m?, 10 pg/m?®
and 40 pg/m? respectively.
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Figure 2: World map of tropospheric NO, concentrations from the Copernicus Sentinel-5P satellite (2019)
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