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Abstract

Public transport systems are considered to be a crucial aspect of a sustainable urban development, as they allow more
passengers to efficiently travel across an urban area at low environmental and economic costs. Multiple factors can
influence the public transport level of service. All take roots in the network structure and the operating regime, i.e.
how bus lines are arranged atop the street network and how the service frequency is adjusted to meet urban mobility
patterns.

This is known as the bus network design problem and has been the subject of several studies. The problem is
so challenging that most studies until now resort to strong assumptions such as a static description of the peak hour
demand, homogeneous user behavior, and equal trip lengths. Potential effects of different types of user behavior
and trip lengths patterns on the user and/or operator cost function have not been investigated whatsoever. Moreover,
the existing studies have not considered the effects of the bus network structure on private car users, the level of
interactions between the two modes, and the passenger mode choice that depends on the traffic conditions.

This paper aims to close this gap and provide a general framework considering multiple trip length patterns,
two types of user behavior, and the effects that the bus network structure might have on the traffic performance and
passenger mode choice. For modeling different trip length patterns, the proposed approach combines all origin-
destination pairs with the same trip length and uses the trip length distribution as an intermediate level of abstraction.
As such, it allows to solve the optimal bus network design problem in an analytical way, while considering a more
realistic setting including network congestion, mixed traffic, and different mode choice decisions depending on trip
lengths and walking preferences.

Numerical analysis reveals that both, the user behavior and the trip length patterns, have significant effects on
the operator and user cost function. Results show that the probability of choosing any given mode is not constant
across the user trip lengths, but follows certain distribution. This distribution is not unique, but varies across the trip
length patterns, indicating the importance of modeling the mode choice at the trip length level. Finally, the analysis
demonstrates the significance of addressing simplifications made in previous studies.
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1. Introduction and background

Multi-modality plays a critical role in mobility management. If not managed well, traffic congestion will be
increasingly pervasive in urban areas. Constructing new infrastructure is an expensive solution, as the cost needed to
keep pace with an increase in demand, including the induced demand, is very high (Small, 2004). Therefore, special
attention should be given to the design, management, and operation of the existing road facilities for different modes.
This is, however, challenging due to the complexity of the system dynamics and the lack of tools for understanding
and optimizing multi-modal traffic performance under different network structures and traffic flow operations.

Motivated by the need to address the everlasting increase in travel demand, support sustainability, and preserve
existing transport land use, transportation solutions are often sought in the domain of public transport systems. Public
transport is often seen as a key component of a sustainable urban development. It is regarded as a public service that
should provide mobility access to all citizens in an urban area.

One of the commonly explored problems in the public transport sector, more specifically in the domain of bus
operations, is the bus network design. In this problem, the arrangement of bus lines atop a street network needs to be
determined in a way that it provides a good level of accessibility and service between every pair of points in the city
throughout the day. Several studies have looked at the optimal bus network configuration, investigating different city
network structures: grid systems (Holroyd, 1967), radial systems (Byrne, 1975), systems of corridors (Wirasinghe
et al., 1977), and hub-and-spoke systems (Newell, 1979). All these studies have a common objective - to determine
the topological (e.g. line and stop spacings) and operational (e.g. service frequency) characteristics of the bus system
that minimize the user and the operator cost.

To achieve a service and accessibility level competitive with that of the automobile at a reasonable cost, Daganzo
(2010) proposed a hybrid concept, obtained by combining hub-and-spoke and grid systems. This concept has further
been generalized and extended to account for more realistic network configurations (Estrada et al., 2011; Badia et al.,
2014; Chen et al., 2015). The model developed by Estrada et al. (2011) also served as an inspiration to construct a
real transfer-based bus network, the Nova Xarxa in Barcelona, Spain.

A recent study by Badia et al. (2017) empirically proved that such a well-designed transfer-based network could
attract new users, who would not be opposed to transferring. However, most scientific literature on the bus network
design problem (see e.g. Daganzo, 2010; Estrada et al., 2011; Nourbakhsh and Ouyang, 2012; Badia et al., 2014;
Chen et al., 2015; Amirgholy et al., 2017) assume, up to now, that bus users choose the closest origin and destination
stops such that they minimize the number of transfers, adjusting their walking distance to meet this criteria. This,
in turn, may result in longer access (including the egress) time, thus longer total user time traveled, depending on
the selected design parameters (e.g. stop and line spacings). Potential effects of other types of user behavior (e.g.
assuming that users are willing to adjust the number of transfers in order to minimize the walking distance) on the
user and/or operator cost function have not been investigated.

Furthermore, these studies have also assumed trip origins and destinations to be uniformly and independently
distributed across the network, reducing thereby the complexity in the mathematical modeling. Consequently, the
optimal bus network design is determined for one particular trip length pattern, imposed by the homogeneously placed
origins and destinations. To the best of the authors’ knowledge, the only attempt made to address this limitation can
be found in Ouyang et al. (2014), who studied the optimal bus network configuration under spatially heterogeneous
demand patterns.

Although the last reference investigated an irregular design of the bus network across a city, it still used a single
trip length for all users in the network, similarly to all the previous studies. If, however, we look at the urban mobility
patterns, we can see that such assumption is not realistic, since the trip lengths are not uniform. In addition, the
authors considered only one mode (i.e. buses), without accounting for the collective effect of the analyzed topology
in the global traffic performance. As a matter of fact, none of the aforementioned studies on the bus network design
problem analyzed the effects of the bus network structure on private users, the level of interactions between the two
modes, and the passenger mode choice that depends on the traffic conditions. A recent empirical study by Levinson
(2012) found that the travel time is highly correlated with the topology of a road network. Hence, to maximize
mobility in bi-modal urban systems, the impact of the bus network structure on the traffic performance should be
carefully investigated.

To capture such interaction effects, we can use the recently proposed bi-modal Macroscopic Fundamental Diagram
(MFD) (see e.g. Geroliminis et al., 2014; Loder et al., 2017, 2019; Dakic et al., 2019a). The bi-modal MFD allows to
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determine and model network-wide capacities and congestion levels, and describe city traffic macroscopically, while
paying attention to multiple modes. As such, it offers new ways to analyze complex interactions between buses and
cars (Dakic and Menendez, 2018), and has been mainly used to develop efficient perimeter control schemes for bi-
modal urban networks (Ampountolas et al., 2017; Haitao et al., 2019; Dakic et al., 2019b, 2020). The potential to
apply the bi-modal MFD for the purpose of capturing traffic conditions for the bus network design problem has not
been explored whatsoever.

In this paper, we aim to close this gap and provide a general framework, capable of accounting for any trip length
pattern, two types of user behavior, and the effects that the bus network structure might have on car traffic (hence
the passenger mode choice). To model different trip length patterns, we propose to combine all OD pairs with the
same trip length and use the trip length distribution as an intermediate level of abstraction. This way we are able to
determine the optimal bus network design in an analytical way, while accounting for possibly different types of user
behavior and trip length patterns for the same level of passenger demand.

Overall, the contributions of this research are sixfold. First, we account for spatially non-uniform network topol-
ogy and distribution of the passenger demand across cardinal directions. Second, we use the distribution of the user
trip lengths as an intermediate level of abstraction to determine the optimal design parameters. Such a level of abstrac-
tion allows to not only account for different trip length patterns (per and across cardinal directions) for the same level
of passenger demand, but also to capture more accurately the network loading for all modes. Third, we consider the
passenger mode choice, thus include the travel costs for both, the bus and the car mode, into the objective function.
This way we optimize the performance of the whole network, while taking into account all transport modes. Fourth,
we consider the influence of the passenger demand and the network topology on the traffic performance, which, in
turn, affects the passenger mode choice (i.e. the demand). In other words, we use a full feedback loop to model all
aforementioned dependencies. Fifth, we incorporate different lane allocations into the bus network design problem,
and account for their different influences on car traffic. Six, we investigate the effects of user behavior and trip length
patterns on the optimal bus network design.

For the readers convenience, Table 1 provides the list of the most important notation used in this paper.
The rest of the paper is organized as follows. Section 2 describes in detail the proposed methodological framework

used to determine the optimal design parameters. In Section 3, we discuss the effects of user behavior and trip length
patterns on the optimal network configuration and the passenger mode choice. Concluding remarks and future research
directions are given in Section 4.
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Table 1: Nomenclature.

D set of decision variables
M set of modes, indexed by m ∈ M
A set of possible lane allocations, indexed by a ∈ A
P set of cardinal directions of travel, indexed by p ∈ P
φx/φy network length along E-W/N-S directions
ψx/ψy street spacing along E-W/N-S directions
sx/sy stop spacing along E-W/N-S directions
lx/ly line spacing along E-W/N-S directions
Hx/Hy bus headway along E-W/N-S directions
Nx/Ny number of corridors along E-W/N-S directions
Nx,b/Ny,b number of bus lines along E-W/N-S directions
ζx,m,a/ζy,m,a fraction of corridors with lane allocation a on which mode m operates along E-W/N-S directions
`x/`y trip length realization along E-W/N-S directions
f (`x, `y) joint probability density function of the user trip lengths
TTTm | `x ,`y total time traveled for mode m, for a given combination of `x and `y
IVTTm | `x ,`y in-vehicle time traveled for mode m, for a given combination of `x and `y
Pr(m | `x, `y) probability of choosing mode m for a given combination of `x and `y
Am access (including the egress) time for mode m
Wm waiting time for mode m
um free flow speed of mode m
τp,m,a experienced car delay along a corridor with lane allocation a in direction p
vp,m,a operating speed of mode m for lane allocation a in direction p
vp,m expected speed of mode m in direction p
Op maximum bus occupancy in direction p
w average walking speed
ϕ expected number of transfers
α average value of time
θ parameter of the Logit model
δ fixed penalty for transfers expressed in terms of an equivalent walking distance
ω time lost per stop due to required door operations and deceleration/acceleration maneuver
ω′ time added per boarding/alighting passenger
Ω average dwell time in the network
C bus capacity
La infrastructure length of lane allocation a
B size of the bus fleet
V total vehicular distance traveled by buses per hour of operation
Λ trip generation rate during the loading time of the peak hour
λ trip generation rate during the unloading time of the peak hour and the off-peak periods
ZU/ZO/Z user/operator/total system cost function

2. Methodological framework

2.1. General network settings
Considered here is a bi-modal, bi-directional urban network with an average trip generation rate Λ during the

loading time of the peak period, and an average trip generation rate λ during the off-peak periods and unloading time
of the peak period (see Fig. 1). Notice that, unlike the previous studies on the bus network design problem, we do
not consider a mean value for the passenger demand over the full peak period, but distinguish between the loading
and unloading phase. This is because we are interested in analyzing how the congestion emerges across the network,
allowing more realistic modeling of traffic conditions.

Let M = {b, c} be the set of modes, indexed by m ∈ M, such that b denotes the bus and c denotes the car
mode. Index cardinal directions of travel by p ∈ P = {eb,wb, nb, sb}, where eb, wb, nb, and sb stand for the
eastbound, westbound, northbound, and southbound directions, respectively. Similarly to previous studies (Daganzo,
2010; Ouyang et al., 2014; Chen et al., 2015; Badia et al., 2016; Amirgholy et al., 2017), we assume that the network
has a grid-like structure. To make a grid representation as realistic as possible, we assume a rectangular shape with
sides φx and φy, as depicted in Fig. 2. Such a rectangular form is inspired by many cities (e.g. Barcelona, Manhattan,
Buenos Aires, Oslo, Helsinki, Miami, and Washington D.C) that are elongated in shape (Estrada et al., 2011). The
spacings between the streets along E-W (including eb and wb) and N-S (including nb and sb) directions are ψx and
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Figure 1: Modeling trip generation rate during the peak and off-peak periods.

ψy, respectively. Atop this street structure is the bus network. The bus network consists of two types of bus lines: (i)
horizontal lines, with stop spacing sx and line spacing ly; and (ii) vertical lines, with stop spacing sy and line spacing
lx (see Fig. 2).

x
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Figure 2: City structure and the corresponding bus network.

Following the approach by Estrada et al. (2011) and Fan et al. (2018), and for simplification purposes, we assume
that the stop spacing includes an integer number of street segments, such that:

sx = zs,xψx, zs,x ∈ N, (1a)
sy = zs,yψy, zs,y ∈ N. (1b)

Likewise, the line spacing includes an integer number of stop spacings to facilitate transfers between the E-W and
the N-S directions, i.e.:

lx = zl,xsx = zl,xzs,xψx, zl,x, zs,x ∈ N, (2a)
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ly = zl,ysy = zl,yzs,yψy, zl,y, zs,y ∈ N. (2b)

Let { f (x1, y1, x2, y2) : x1, x2 ∈ [0, φx], y1, y2 ∈ [0, φy]} be the probability density function describing the spatial
distribution of the passenger demand across the network, generated during the peak hour. Each pair of coordinates
(x1, y1) and (x2, y2) represents the corresponding origin and destination, respectively. For each OD pair, we find the
user trip length as the minimum Manhattan distance for that OD:

` = |`x| + |`y| = |x2 − x1| + |y2 − y1|, (3)

where `x and `y denote the user trip lengths along the E-W and N-S directions, respectively. Notice that `x ≥ 0 for
eb, `x < 0 for wb, `y ≥ 0 for nb, and `y < 0 for sb. Then, the probability density function of the user trip lengths
{ f (`x, `y) : `x ∈ [−φx, φx], `y ∈ [−φy, φy]} can be obtained by grouping all OD pairs with the same `x and `y. We
consider the transformation f (x1, y1, x2, y2)→ f (`x, `y) to be out of the scope for this study, thus assume that f (`x, `y)
is exogenously given.

It should be noted here that with the transformation f (x1, y1, x2, y2) → f (`x, `y) we lose the information about
the locations of the trip initialization. Consequently, very spatially-heterogeneous demand distributions cannot be
accurately modeled. That being said, the proposed framework is valid for all distributions of the user origins that are
slowly-varying in space. The transformation allows to achieve not only a more realistic modeling of urban mobility
patterns compared to the uniform distribution of user origins and destinations that comes with a unique trip distance,
but also the analytical tractability of the problem.

Also note that f (`x, `y) has no time dependency. This is reasonable, as we design our network according to the
demand in the peak period, during which we consider the average traffic conditions for the loading and unloading
phase, hence the trip length distribution does not vary in time. This implies that for different peak periods (i.e.
morning and afternoon) we can use different trip length distributions and determine the the corresponding optimal bus
network configurations. The final bus network design can then be found as the best out of the two.

In this study we consider two types of user behavior: users adjust the walking distance at the origin and the
destination to minimize the number of transfers while respecting a maximum threshold for the walking distance (Type
1); and users adjust the number of transfers to minimize the walking distance at the origin and the destination (Type
2). In both cases, we assume that users arrive at the stop independently of the schedule, thus they wait on average half
of the bus headway (as in Daganzo, 2010; Ouyang et al., 2014). This assumption is reasonable for relatively short
headways.

In each direction of travel, the bus demand is served by buses operating with a constant headway (Hx along E-W;
Hy along N-S) and identical passenger capacity C, such that Cx = Cy = C (i.e. all N-S lines have the same headway
which is not necessarily the same as that of the E-W lines; and all buses are the same size). Furthermore, each mode of
transport can operate in either dedicated or mixed lane fashion. For the car traffic, we can further distinguish between
the corridors with a dedicated bus lane and car-only lanes. These operating regimes directly affect the level of service
provided by each individual mode, thus the passenger mode choice. LetAm be the set of possible lane allocations for
mode m, indexed by a ∈ Am. Assuming that cars can drive along all corridors in the network (i.e. the number of lanes
along a corridor in any given direction p is ηp ≥ 2), we set Ab = {db,mb} and Ac = {co, db,mb}, where co, db, and
mb stand for a corridor with car-only lanes, a corridor with a dedicated bus lane, and a corridor with a mixed lane,
respectively. Denote by Nx,b the number of E-W corridors with a bus line and by Ny,b the number of N-S corridors
with a bus line, such that:

Nx,b =
∑
a∈Ab

Nx,b,a = bφy/lyc + 1, (4a)

Ny,b =
∑
a∈Ab

Ny,b,a = bφx/lxc + 1, (4b)

where b·c indicates the floor function; Nx,b,a and Ny,b,a represent the total number of corridors with a bus line operating
with lane allocation a ∈ Ab along E-W and N-S directions, respectively. Then, assuming that the lane allocation
remains the same along the whole corridor and for both travel directions (eb and wb along E-W; nb and sb along N-S),
the fraction of bus lines with each lane allocation type along E-W and N-S directions can simply be obtained as:

ζx,b,a = Nx,b,a/Nx,b, a ∈ Ab (5a)
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ζx,b,a = Ny,b,a/Ny,b, a ∈ Ab. (5b)

Similarly, the fraction of corridors available for car traffic operating with lane allocation a ∈ Ac along E-W (ζx,c,a)
and N-S (ζy,c,a), can be computed using Eq. 6, where Nx is the number of E-W corridors and Ny is the number of N-S
corridors in the network (Eq. 7).

ζx,c,a =

1 − Nx,b/Nx, if a = co,
ζx,b,aNx,b/Nx, if a ∈ {db,mb},

(6a)

ζy,c,a =

1 − Ny,b/Ny, if a = co,
ζy,b,aNy,b/Ny, if a ∈ {db,mb},

(6b)

with

Nx = φy/ψy + 1, (7a)
Ny = φx/ψx + 1. (7b)

Notice from Eqs. 5–6 that we do not specify which corridors have a dedicated bus line. Instead, we stick to the
fraction of dedicated bus lines along E-W and N-S directions as the global parameters for our design problem.

2.2. Mathematical formulation of the objective function

Here we formulate the objective function used to determine the optimal design parameters. The set of decision
variables D = {zs,x, zs,y, zl,x, zl,y,Hx,Hy, ζx,b,db, ζy,b,db} includes stop spacings (zs,x and zs,y), line spacings (zl,x and zl,y),
headways (Hx and Hy), and fractions of dedicated bus lines (ζx,b,db and ζy,b,db) along E-W and N-S directions. The
objective function is given by Eq. 8 and, similarly to the previous studies, it consists of two components: agency cost
ZO(D); and user cost ZU(D).

min
D

Z(D) = ZO(D) + ZU(D), (8)

s.t. Hx,Hy ≥ Hmin, (9)
zs,x, zs,y, zl,x, zl,y ∈ N, (10)
0 ≤ ζx,b,db ≤ 1, 0 ≤ ζy,b,db ≤ 1, (11)
Op ≤ C, ∀p ∈ P. (12)

where Op is the maximum bus occupancy in direction p.
Note that all decision variables need to be strictly positive for physical reasons. In addition, the headway in each

cardinal direction should not be below the predefined threshold Hmin (Eq. 9). The stop spacings should include an
integer number of street segments, whereas the line spacings should consist of an integer number of stop spacings
(Eq. 10). Moreover, the number of dedicated bus lines cannot exceed the number of bus corridors (Eq. 11). Finally,
the last constraint (Eq. 12) indicates that the maximum bus occupancy in each cardinal direction p needs to be lower
than the bus passenger capacity C.

The agency cost metrics include the infrastructure length of each lane allocation type {La(D) : a ∈ Ab}, the size
of the bus fleet B(D), and the total vehicular distance traveled by buses per hour of operation V(D) (Eq. 13). The
associated parameters {πL,a : a ∈ Ab}, πB, and πV are the corresponding unit costs. To put all the cost components
in the objective function (Eq. 8) under the same unit (i.e. hours per passenger), we convert agency money into an
equivalent user riding time with parameter α denoting an average value of time, and divide it by the total number of
bus passengers, Pr(b)λ. Note that we use lower trip generation rate value (λ) in Eq. 13 as is gives us the maximum
bound for the operator cost, which corresponds to the worst-case scenario (see Daganzo (2010) for more details).

ZO(D) = [πL,dbLdb(D) + πL,mbLmb(D) + πBB(D) + πVV(D)]/[αPr(b)λ], (13)
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with

Pr(m) =

∫ φx

−φx

∫ φy

−φy

Pr(m | `x, `y) f (`x, `y) d`y d`x, m ∈ M, (14)

where Pr(m | `x, `y) stands for the probability of choosing mode m for a given combination of `x and `y. This probability
can be computed by applying the Logit model (Bhat and Guo, 2004), as given by Eq. 15, where θ is the parameter of
the Logit model, and TTT (D)m | `x,`y denotes the total time traveled for a given mode m and combination of `x and `y.

Pr(m | `x, `y) =
exp(−θ · TTT (D)m | `x,`y )∑

m′∈M exp(−θ · TTT (D)m′ | `x,`y )
, m ∈ M. (15)

On the other hand, the user cost metric of interest is the expected total time traveled, computed across both modes
and the entire set of the user trip lengths (Eq. 16).

ZU(D) =

∫ φx

−φx

∫ φy

−φy

TTT (D)m | `x,`y Pr(m | `x, `y) f (`x, `y) d`y d`x. (16)

In the following, we derive the components of the operator cost function. We start by formulating the infrastructure
length (Eq. 17). This variable can simply be obtained by multiplying the length associated with one bus line by the
total number of bus lines with a given lane allocation along E-W and N-S directions.

La(D) =

ζx,b,dbNx,bφx + ζy,b,dbNy,bφy, if a = db,
(1 − ζx,b,db)Nx,bφx + (1 − ζy,b,db)Ny,bφy, if a = mb.

(17)

The bus fleet consists of buses operating in all cardinal directions (Eq. 18). In each direction of travel, the number
of required buses can be approximated by multiplying the number of buses required for one bus line by the total
number of bus lines.

B(D) =
∑

p∈{eb,wb}

Nx,bφx/(Hxvp,b) +
∑

p∈{nb,sb}

Ny,bφy/(Hyvp,b), (18)

where vp,b stands for the expected bus speed (including the dwell and acceleration/deceleration time) in direction p.
This expected bus speed can be determined using Eq. 19, where vp,m,a denotes the operating speed of mode m for lane
allocation a in direction p.

vp,m =


∑

a∈Am
vp,m,aζx,m,a, if p ∈ {eb,wb},∑

a∈Am
vp,m,aζy,m,a, if p ∈ {nb, sb},

m ∈ M (19)

Note that the operating speeds vp,m,a are not predefined, but depend on the network loading and the topology in a
given cardinal direction. This will be further elaborated in Section 2.4. Following the approach by Daganzo (2010),
we formulate the bus operating speed as follows:

vp,b,a =


[1/ub + ω/sx + Ω]−1, if p ∈ {eb,wb}, a = db
[1/ub + ω/sy + Ω]−1, if p ∈ {nb, sb}, a = db,
[1/vp,c,mb + ω/sx + Ω]−1, if p ∈ {eb,wb}, a = mb,
[1/vp,c,mb + ω/sy + Ω]−1, if p ∈ {nb, sb}, a = mb,

(20)

where ub is the bus free-flow speed; vp,c,mb denotes the operating car speed along a mixed lane in direction p; ω
represents the time lost per stop due to required door operations and deceleration/acceleration maneuvers; Ω stands
for the average dwell time in the network. To estimate Ω, we first need to define the last agency cost metric, the total
vehicular distance traveled by buses per hour of operation V(D). This distance can be obtained by multiplying the
total number of buses operating in all cardinal directions by the corresponding expected bus speeds (Eq. 21).

V(D) = 2[Nx,bφx/Hx + Ny,bφy/Hy]. (21)
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Then, the average dwell time in the network can be determined using Eq. 22, where ω′ denotes the time added per
boarding/alighting passenger and ϕ(D) is the expected number of transfers. To get the maximum bound for the user
cost function, we use higher trip generation rate value (Λ) in Eq. 22, similarly to Daganzo (2010) and Estrada et al.
(2011).

Ω = ω′ Pr(b)Λ[1 + ϕ(D)]/V(D). (22)

Finally, the last term in the objective function is the total time traveled for a given mode m and combination of
the user trip lengths. It consists of the expected access (including the egress) time Am(D), the expected waiting time
Wm(D), the in-vehicle time traveled IVTT (D)m | `x,`y for a given `x and `y, and some additional time components (Eq.
23). For the bus mode, these additional components include the transferring time, whereas for the car mode, the
additional time traveled is related to the equivalent mileage costs of an auto trip (as in Daganzo, 2010).1

TTT (D)m | `x,`y = Am(D) + Wm(D) + IVTT (D)m | `x,`y

+ 1{m=b}ϕ(D)δ/w + 1{m=c}(|`x| + |`y|)πD/α, m ∈ M, (23)

with
IVTT (D)m | `x,`y = |`x|/vξ(`x),m + |`y|/vξ(`y),m, m ∈ M, (24)

where δ is a fixed penalty for transfers expressed in terms of an equivalent walking distance; w denotes the average
walking speed (accounting for the delays that users encounter when crossing streets); πD represents the auto cost per
unit distance; 1{condition} is an indicator function that return the value of 1 if condition is satisfied; ξ(·) stands for a
function that maps each trip length component (`x and `y) to a cardinal direction in which it is traversed, such that:
ξ(`x ≥ 0) = eb; ξ(`x < 0) = wb; ξ(`y ≥ 0) = nb; and ξ(`y < 0) = sb.

The following equations approximate the network-level components of the user cost function for the bus mode
(Eq. 23), including the access, the waiting, and the transferring time, for each type of user behavior. For Type 1, Eqs.
25–27 represent an extension of those in Estrada et al. (2011) for more general bus network configurations. On the
other hand, for Type 2, Eqs. 28–30 require a more detailed explanation. Their derivation is provided in the Appendix.

Type 1. (adjusting the walking distance to minimize the number of transfer)

A1,b(D) = [lx + sy + ly + sx]/[4w]. (25)

ϕ1(D) = Pr(ϕ > 0) = 1 − Pr(ϕ = 0) = 1 − [lyφx + lxφy − lxly]/[φxφy]. (26)

W1,b(D) = [1 + ϕ1(D)]H̄/2. (27)

where Pr(ϕ = 0) and Pr(ϕ > 0) are the probabilities for making zero and non-zero transfers, respectively; H̄ =

[Nb,xHx + Nb,yHy]/[Nb,x + Nb,y] denotes the weighted (by the number of bus lines in the corresponding cardinal
directions) bus headway in the network.

Type 2. (adjusting the number of transfer to minimize the walking distance)

A2,b(D) =

[6lxly + 6lxsx − 2l2y − 3lysx + 3lysy]/[12lxw], if lx ≥ ly,
[6lxly + 6lysy − 2l2x − 3lxsy + 3lxsx]/[12lyw], if lx < ly.

(28)

ϕ2(D) =

Pr(ϕ > 0)[4l2xl2y − 2lxl3y + l4y]/[2l2xl2y], if lx ≥ ly,
Pr(ϕ > 0)[4l2xl2y − 2l3xly + l4x]/[2l2xl2y], if lx < ly.

(29)

W2,b(D) =

Pr(ϕ = 0)H̄/2 + Pr(ϕ > 0)[Hx(8l2xl2y − 4lxl3y + l4y) + Hy(4l2xl2y + l4y)]/[8l2xl2y], if lx ≥ ly,
Pr(ϕ = 0)H̄/2 + Pr(ϕ > 0)[Hx(4l2xl2y + l4x) + Hy(8l2xl2y − 4l3xly + l4x)]/[8l2xl2y], if lx < ly.

(30)

1Alternatively, one can also incorporate the fare for using the bus mode and/or congestion tolls, parking, and garaging costs associated with the
car mode.
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2.3. Derivation of the maximum bus occupancy

Now that we have derived all components of the objective function, we can compute the maximum bus occupancy
Op in each cardinal direction p. This variable is important to ensure that the bus service provided is enough to
accommodate the passenger demand generated in the most restrictive links during the peak hour.

To compute Op, we have to evaluate the maximum number of on-board passengers Qp across all points in the
corresponding cardinal direction. For this purpose, we use vertical and horizontal cordons denoted as βφx and βφy,
respectively, such that β ∈ [0, 1] (see Fig. 3). Intuitively, vertical cordons are used for Qeb and Qwb, whereas the
horizontal ones are used for Qnb and Qsb. Recall that due to the transformation f (x1, y1, x2, y2) → f (`x, `y) we do not
know the locations of the trip initialization. Hence, for each cordon, we have to determine the probability that bus
users cross the cordon for a given `x (in case of a vertical cordon) or `y (in case of a horizontal cordon), in which
case they are considered as part of the total number of on-board passengers in the corresponding cardinal direction.
These probabilities are denoted as Pr(Jβ(`x)) and Pr(Jβ(`y)), where Jβ(`x) is the event that bus users travel across
vertical cordon βφx for a given `x, and Jβ(`y) is the event that bus users travel across horizontal cordon βφy for a given
`y. Given the assumption regarding the slowly-varying spatial distribution of the user origins, the aforementioned
probabilities can be computed as:

Pr(Jβ(`x)) =


|`x,b|/(φx − |`x,b|), if |`x,b| ≤ min{βφx, (1 − β)φx},

min{βφx, (1 − β)φx}/(φx − |`x,b|), if min{βφx, (1 − β)φx} < |`x,b| ≤ max{βφx, (1 − β)φx},

1, if |`x,b| > max{βφx, (1 − β)φx},

(31a)

Pr(Jβ(`y)) =


|`y,b|/(φy − |`y,b|), if |`y,b| ≤ min{βφy, (1 − β)φy},

min{βφy, (1 − β)φy}/(φy − |`y,b|), if min{βφy, (1 − β)φy} < |`y,b| ≤ max{βφy, (1 − β)φy},

1, if |`y,b| > max{βφy, (1 − β)φy},

(31b)

where φx − |`x| and φy − |`y| represent the domains of valid user origins for the corresponding `x and `y (see Fig. 3).

(1 − β)φy

βφy

βφx (1 − β)φx

φx − |`x | |`x |

|`y |

φy − |`y |

city

vertical cordon

horizontal cordon

x

y

N

Figure 3: A city and its vertical and horizontal cordons.

Then, the maximum bus occupancy can simply be obtained by dividing the maximum number of on-board passen-
gers across all bus lines and all cordons in a given cardinal direction by the total number of bus lines and the respective
bus frequency (Eq. 32). To get the maximum number of on-board passengers, we use the higher trip generation rate
in Eq. 33, i.e. the value of Λ observed during the loading time of the peak period.

Op =

QpHx/Nx,b, if p ∈ {eb,wb},
QpHy/Ny,b, if p ∈ {nb, sb},

(32)
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with

Qeb = max
β∈[0,1]

{ ∫ φx

0

∫ φy

−φy

Pr(Jβ(`x))Λ Pr(b | `x, `y) f (`x, `y) d`y d`x

}
, (33a)

Qwb = max
β∈[0,1]

{ ∫ 0

−φx

∫ φy

−φy

Pr(Jβ(`x))Λ Pr(b | `x, `y) f (`x, `y) d`y d`x

}
, (33b)

Qnb = max
β∈[0,1]

{ ∫ φy

0

∫ φx

−φx

Pr(Jβ(`y))Λ Pr(b | `x, `y) f (`x, `y) d`x d`y

}
, (33c)

Qsb = max
β∈[0,1]

{ ∫ 0

−φy

∫ φx

−φx

Pr(Jβ(`y))Λ Pr(b | `x, `y) f (`x, `y) d`x d`y

}
. (33d)

Notice from Eq. 32 the importance of providing different bus headways along E-W and N-S directions. In other
words, a unique bus headway for the entire network might lead to an efficient bus service (measured by the ability
to serve the total generated demand with the available bus capacity) in some directions. However, other directions
might experience a lower level of service, i.e. significantly higher bus occupancy, due to its less favorable design
parameters (e.g. less number of bus lines, lower fraction of dedicated bus lines, or longer stop spacing), constrained
by the geometrical characteristics of the network. In other words, a unique bus headway, as it has been previously
proposed in most of the literature (see e.g. Daganzo, 2010; Estrada et al., 2011; Ouyang et al., 2014; Amirgholy et al.,
2017), might not lead to the optimal design parameters in all cardinal directions of travel. Therefore, by considering
different bus headways, we balance the bus level of service provided in each direction, preventing such scenario.

To verify Eqs. 31–33, we show that the solution for the maximum bus occupancy in case of uniformly and
independently distributed origins and destinations is the same to that of Daganzo (2010) (see the Appendix for more
details).

2.4. Derivation of the operating car speed for each lane allocation type

As mentioned before, in the problem investigated in this study, there are three types of corridor in each cardinal
direction of travel p for which the operating speed vp,m,a needs to be estimated: (i) corridors with car-only lanes; (ii)
corridors with a dedicated bus lane; and (iii) corridors with a mixed lane. For corridors with a dedicated bus lane,
the operating bus speed vp,b,db is not affected by the traffic conditions, i.e. interactions with the car mode (assuming
that a dedicated bus lane operates with a transit signal priority). Hence, it can simply be modeled as the free-flow
bus speed ub (including the dwell and acceleration/deceleration time) (Eq. 20). Likewise, assuming that buses and
cars drive at the same free-flow speed (as in e.g. Daganzo, 2010; Zheng and Geroliminis, 2013; Dakic and Menendez,
2018), i.e. ub = uc, the operating bus speed for corridors with a mixed lane, vp,b,mb, can be modeled as the operating
car speed along a mixed lane in the corresponding direction of travel, vp,c,mb (including the dwell time and accelera-
tion/deceleration time) (Eq. 20). As a result, for each cardinal direction, we only need to estimate the operating car
speeds.

Since corridors have regular configuration along E-W and N-S directions, the operating car speed can be deter-
mined using the bi-modal Macroscopic Fundamental Diagram (MFD) (see e.g. Geroliminis et al., 2014; Loder et al.,
2017, 2019; Dakic et al., 2019a). The bi-modal MFD is defined as Pp,c,a = Pp,c,a(np,c,a), where Pp,c,a is the total travel
production and np,c,a is the total car accumulation along a corridor with lane allocation a in direction p (Fig. 4). Its
analytical approximation is based on the variational formulation of kinematic wave theory (VT) (Daganzo, 2005a,b;
Daganzo and Menendez, 2005; Daganzo and Geroliminis, 2008; Leclercq and Geroliminis, 2013). VT uses a shortest
path (or least cost) formulation to solve complex kinematic wave problems given a concave flow-density relationship.
As the description of VT and the method of cuts applied to the bi-modal MFD estimation (see Fig. 4) is out of the
scope for this study, we refer the readers to Dakic et al. (2019a) for more details.

To estimate vp,c,a, we first need to determine whether the total generated car demand Λp,c,a (Eq. 34) along a corridor
with allocation a in direction p during the loading time T of the peak period (Fig. 5) is smaller than the corresponding
corridor capacity µp,c,a (µp,c,a = P∗p,c,a/φx along E-W; µp,c,a = P∗p,c,a/φy along N-S). From that perspective, we can
distinguish the following two cases: Λp,c,a ≤ µp,c,a; and Λp,c,a > µp,c,a. The first case implies uncongested traffic
conditions, in which the corridor capacity is enough to serve the total generated demand, hence no delays due to the
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vp,c,a

Pp,c,a

np,c,a

P∗p,c,a

cut

bi-modal MFD

n∗p,c,a

Figure 4: A family of cuts and the bi-modal MFD-based operating car speed for a given traffic state and lane allocation.

congestion are experienced in the system. Consequently, there is a direct match between the total generated demand
and the mean travel production along a corridor. In the second case, however, such a direct match between the demand
and the mean travel production can no longer be established, as the mean production might be limited to the corridor
capacity during the time when congestion is active. Therefore, to tackle this problem, we follow the approach by
Amirgholy et al. (2017) and use a simple bottleneck model that considers the entire corridor as a single bottleneck
with a mean capacity (see Amirgholy et al. (2017) for more details). Below we summarize how the operating car
speed is computed for each case separately.

Λeb,c,a =

∫ φx

0

∫ φy

−φy

[Λ/Nx(ηp − 1{a=db})] Pr(c | `x, `y) f (`x, `y) d`y d`x, (34a)

Λwb,c,a =

∫ 0

−φx

∫ φy

−φy

[Λ/Nx(ηp − 1{a=db})] Pr(c | `x, `y) f (`x, `y) d`y d`x, (34b)

Λnb,c,a =

∫ φy

0

∫ φx

−φx

[Λ/Ny(ηp − 1{a=db})] Pr(c | `x, `y) f (`x, `y) d`x d`y, (34c)

Λsb,c,a =

∫ 0

−φy

∫ φx

−φx

[Λ/Ny(ηp − 1{a=db})] Pr(c | `x, `y) f (`x, `y) d`x d`y. (34d)

In Eq. 34 we assume that the car capacity for a corridor with a dedicated bus line is reduced by one lane compared
to other lane allocation types.

Case 1. (Λp,c,a ≤ µp,c,a): the network operates in the uncongested regime. The operating car speed can be deter-
mined by finding the point on the bi-modal MFD in which the total travel production is equivalent to that obtained by
applying the queuing formula of Little (1961):

Pp,c,a = Λp,c ¯̀p, p ∈ Ac, p ∈ P. (35)

where ¯̀p is the average trip length in direction p (Eq. 36).

¯̀eb =

∫ φx

0

∫ φy

−φy
|`x| f (`x, `y) d`y d`x∫ φx

0

∫ φy

−φy
f (`x, `y) d`y d`x

, (36a)

¯̀wb =

∫ 0
−φx

∫ φy

−φy
|`x| f (`x, `y) d`y d`x∫ 0

−φx

∫ φy

−φy
f (`x, `y) d`y d`x

, (36b)

12

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2020                   



Λp,c,a

λp,c,a

µp,c,a

loading time (T ) unloading time

peak period

τmax
p,c,a

time

cumulative vehicle count

Figure 5: Computing the average car delay experienced along a corridor with allocation a in direction p.

¯̀nb =

∫ φy

0

∫ φx

−φx
|`y| f (`x, `y) d`x d`y∫ φy

0

∫ φx

−φx
f (`x, `y) d`x d`y

, (36c)

¯̀sb =

∫ 0
−φy

∫ φx

−φx
|`y| f (`x, `y) d`x d`y∫ 0

−φy

∫ φx

−φx
f (`x, `y) d`x d`y

. (36d)

Case 2. (Λp,c,a > µp,c,a): the network operates at capacity. Due to the congestion, cars experience certain delay
τp,c,a, which needs to be taken into account when computing vp,c,a. Following the approach by Amirgholy et al.
(2017), we can compute this delay as half of the maximum car delay τmax

p,c,a experienced during the peak hour, i.e.
τp,c,a = τmax

p,c,a/2 = [T (Λp,c,a − µp,c,a)/µp,c,a]/2 (see Fig. 5). The operating car speed is then given as:

vp,c,a = [1/v∗p,c,a + τp,c,a]−1 = [n∗p,c,a/P
∗
p,c,a + τp,c,a]−1, p ∈ P, a ∈ Ac (37)

3. Numerical results

3.1. Solution algorithm

For the purpose of computing the optimal design parameters, we follow the approach of previous studies and use
a grid search (see e.g. Daganzo, 2010; Estrada et al., 2011; Badia et al., 2016). To speed up the searching process
over the feasible region, we perform a Monte Carlo sampling for a given trip length pattern. The result is the set of
trip length values along E-W (Lx) and N-S (Ly) directions. Then we find the network-level parameters of the bus user
cost function according to the selected type of user behavior (i.e. minimizing the number of transfers or the walking
distance). To compute the total travel cost for each mode, we then need to find the operating speeds. These operating
speeds depend on the mode choice, which is, on the other hand, a function of the utility cost function (i.e. the travel
time) for each mode. In other words, the total travel costs are determined by solving a fixed point problem, as shown
by the flow chart in Fig. 6. This flow chart summarizes the methodological steps.

Considering that the set R of potential mode choice values (Pr(m)) discretized by 1% is limited, we use a simple
grid search method rather than a conventional convergence algorithm to solve the fixed point problem. For each mode
choice value r ∈ R, we compute its absolute difference ∆r to the mode choice value given by the Logit model (Eqs.
14–15), and find the one (r∗) with the minimum difference, i.e. r∗ = arg minr{∆r}. Since we discretize our set R by
1%, the computed difference ∆r∗ is always less than 1%. Once the fixed point problem is solved, we compute the
operator and user costs, hence the total system cost.
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Figure 6: Schematic representation of the solution algorithm.

3.2. Optimal design parameters and the effects of user behavior and trip length patterns

Here we investigate the effects of user behavior and trip length patterns on the optimal bus network design and
passenger mode choice (i.e. traffic performance) by applying the previously described framework to the Barcelona
network. Table 2 summarizes the input parameters for this case study. The values are similar to those in the literature
(see e.g. Daganzo, 2010; Estrada et al., 2011; Badia et al., 2014, 2016). Similarly to Ouyang et al. (2014), we explore
four distinct trip length patterns, reflecting different spatial demand distributions: (i) a uniform city (Fig. 7a), where
origins and destinations are uniformly distributed across the entire network; (ii) a mono-centric city (Fig. 7c), where
most of the origins and destinations are located within the city center, resulting in shorter trip lengths compared to (i)
(see Fig. 7d); (iii) a commuter city (Fig. 7e), where most of the origins and destinations are located in two regions
positioned in the opposite corners of the network, resulting in longer trip lengths compared to (i) (see Fig. 7f); and
(iv) a twin city (Fig. 7g), where most of the origins and destinations are located in two nearly-adjacent regions near
the city center.

Table 2: Experimental settings.

Input parameter Variable Units Value
Network length φx/φy km 10/4.95
Street spacings ψx/ψy km 0.25/0.15
Equivalent penalty distance per transfer δ km 0.03
Trip generation rate during the peak hour Λ pax/hr 75000
Trip generation rate during the off-peak hour λ pax/hr 30000
Loading time of the peak period T hr 1
Bus free-flow speed ub km/hr 40
Average walking speed w km/hr 2
Time lost per stop ω sec 30
Boarding and alighting time per passenger ω′ sec/pax 1
Unit dedicated-infrastructure cost πL,db $/km-hr 90
Unit mixed-infrastructure cost πL,mb $/km-hr 9
Unit vehicle cost πB $/veh-hr 40
Unit distance cost πV $/veh-km 2
Unit mileage cost πD $/km 0.3
Value of time α $/pax-hr 20
Minimum headway Hmin min 3
Bus passenger capacity C pax/veh 150
Average car waiting time Wc min 7
Parameter of the Logit model θ ∅ 1.5
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Figure 7: Concentration of user origins and destinations, and the corresponding trip length pattern in case of: (a-b) uniform city; (c-d) a mono-
centric city; (e-f) a commuter city; and (g-h) a twin city.

Table 3 shows the results, including the optimal design parameters, operator and user costs, as well as the corre-
sponding mode choice, for each type of user behavior and trip length pattern. The headways are given in minutes,
whereas the costs are expressed in hours. First thing to notice is that both, the user behavior and the trip length pat-
terns, affect the optimal bus network configuration and the passenger mode choice. The results suggest that for longer
trip length patterns more users tend to choose the bus system. This is due to the fact that, besides the in-vehicle time
traveled, the mileage cost component in the car user cost function (defined as in Daganzo, 2010) also linearly increases
with an increase in the trip length (see Eq. 23). This is not the case for the bus mode, as all the cost components,
except for the in-vehicle time traveled, remain the same, i.e. they are independent of the user trip length.

We also observe that for different trip length patterns the optimal bus network configuration does not always
provide a fully dedicated or mixed (with car traffic) bus system across the entire network (i.e. all cardinal directions),
as it was the case in the previous studies (see e.g. Daganzo, 2010; Estrada et al., 2011; Amirgholy et al., 2017). In fact,
most of the decision variables vary along E-W and N-S, indicating the importance of considering a heterogeneous bus
network design across cardinal directions. This holds true for both types of user behavior.
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Table 3: Optimal design parameters, operator cost, user cost, and the corresponding mode choice.

User behavior Trip pattern zs,x zs,y zl,x zl,y Hx Hy ζx,b,db ζy,b,db ZO ZU Z Pr(b)

Type 1

(i) 2 3 2 2 6 5 0 0.5 0.065 0.538 0.603 0.36
(ii) 1 2 3 3 8 6 0 0 0.061 0.357 0.419 0.36
(iii) 3 3 1 2 3 3 1 1 0.112 0.826 0.939 0.46
(iv) 1 3 3 2 7 4 0 0.9 0.081 0.479 0.560 0.40

Type 2

(i) 2 4 4 1 5 3 0 1 0.068 0.491 0.559 0.42
(ii) 1 4 7 1 6 4 0 0.7 0.061 0.311 0.372 0.42
(iii) 3 3 1 2 3 4 1 1 0.099 0.792 0.891 0.48
(iv) 1 4 7 1 6 3 0 1 0.064 0.437 0.501 0.44

A closer look into the mode choice distribution reveals that the probability of choosing a given mode m is not
constant across the user trip lengths, but follows certain distribution (Fig. 8). This distribution is not unique, but
varies across the trip length patterns, indicating the importance of modeling the mode choice at the trip length level.
Interestingly, the distribution for Type 2 behavior shows higher deviation and is shifted towards right (i.e. higher
number of users choose to use the bus system) compared to Type 1. The reason for this is that the bus system designed
according to Type 2 behavior provides higher level of service, as elaborated further below.
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Figure 8: Mode choice distribution for the optimal bus network design in case of: (a) uniform city; (b) a mono-centric city; (c) a commuter city;
and (d) a twin city.

For quantifying the effects of user behavior, we compare the objective functions of Type 1 and Type 2, such that
∆ZO = [Z2,O − Z1,O]/Z1,O, ∆ZU = [Z2,U − Z1,U]/Z1,U , and ∆Z = [Z2 − Z1]/Z1 (Table 4). We observe that for all trip
length patterns users can benefit (according to the cost functions used here) if they are willing to adjust the number of
transfers to minimize the walking distance at the origin and the destination. This is consistent with empirical results
from the city of Barcelona (Badia et al., 2017). Potential improvements can range from 4.2% to 12.9%, depending on
the prevailing trip length pattern.

To achieve the user willingness to adjust the number of transfers, i.e. provide a well-designed transfer-based
network, the user waiting time needs to be minimized. This is indicated by the optimal decision variables in Table
3, where we can see that the optimal bus network configuration for Type 2 behavior provides higher bus frequency
compared to Type 1 (i.e. lower headways in the two directions for almost all types of cities). As a result, the operator
cost might increase for some trip length patterns (e.g. uniform city), as shown in Table 4. However, since the operator
costs are significantly lower than the user costs, the total cost function still gets reduced if the network is designed
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according to Type 2 user behavior. The improvements can range from 5.1% to 11.1% (see Table 4).

Table 4: Effects of user behavior on the cost functions.

Trip pattern ∆ZO ∆ZU ∆Z
(i) +4.46% -8.85% -7.42%
(ii) -1.02% -12.87% -11.13%
(iii) -11.62% -4.22% -5.1%
(iv) -21.24% -8.83% -10.63%

Similarly, the effects of trip length patterns are quantified by comparing the costs obtained when the bus network
parameters are optimally determined for a given trip length pattern, with those obtained if we were to assume uni-
formly distributed origins and destinations (Table 5). A negative value means that accounting for the actual trip length
distribution does lead to lower costs. As expected, such lower total costs are achieved for both types of user behavior,
with a similar magnitude of improvements. The highest improvement (3.2% for Type 1; 3.5% for Type 2) is acquired
for the longest trip length pattern (a commuter city), whereas a twin city exhibits the lowest improvement in the total
cost function (0.1% for Type 1; 1.8% for Type 2). Notice that in some cases the operator costs increase when we
use the actual trip length distribution (e.g. for a commuter city). Nevertheless, such increases are compensated with a
much more efficient level of service from the user perspective, leading to overall lower costs.

Table 5: Effects of trip length patterns on the cost functions.

User behavior Trip pattern ∆ZO ∆ZU ∆Z

Type 1
(ii) -5.48% -0.24% -1.04%
(iii) +109.96% -9.83% -3.24%
(iv) +38.46% -4.6% -0.09%

Type 2
(ii) -10.44% -1.06% -2.73%
(iii) +57.35% -8.01% -3.55%
(iv) -1.36% -1.81% -1.75%

It is also worth mentioning that the optimal bus network design for a uniform city that does not always satisfy
the constraint for the maximum bus occupancy (Eq. 12) when applied to other trip length patterns, thus cannot be
considered to be optimal. This is the case for a commuter city, where an increase in the operator cost (imposed by
considering the actual trip length distribution) is justified by ensuring that the bus capacity is enough to serve the
maximum bus occupancy during the peak hour.

4. Conclusions

In this study we investigate the effects of user behavior and trip length patterns on the optimal bus network design,
as well as the effects that the bus network structure might have on the traffic performance and passenger mode choice.
For this purpose, we introduce several major extensions to the classical problem formulation. First, we consider two
types of user behavior when selecting bus routes: (i) minimization of the number of transfers; and (ii) minimization of
the walking distance. Second, we propose a new concept for considering trip length heterogeneity related to different
origin-destination trips in the network. Third, we explicitly account for mixed traffic (i.e. mutual influence of cars
and buses in the network) and mode choice at the trip level. Forth, we use a dynamic description of the peak hour
demand by distinguishing between the loading and unloading phase. This way, we are able to achieve a more realistic
modeling of network congestion, hence determine a mean speed that depends on the demand profile and mode choice.

Overall, the contributions of this research are sixfold: (i) we account for spatially non-uniform network topology
and distribution of the passenger demand across cardinal directions; (ii) we use the distribution of the user trip lengths
as an intermediate level of abstraction to determine the optimal design parameters. Such a level of abstraction allows
not only to account for different trip length patterns (per and across cardinal directions) for the same level of passenger
demand, but also to capture more accurately the network loading for all modes; (iii) we consider the passenger mode
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choice, thus include the travel costs for both, the bus and the car mode, into the objective function. This way we
optimize the performance of the whole network, while taking into account all transport modes; (iv) we consider the
influence of the passenger demand and the network topology on the traffic performance, which, in turn, affects the
passenger mode choice (i.e. the demand). In other words, we use a full feedback loop to model all aforementioned
dependencies; (v) we incorporate different lane allocations into the bus network design problem, and account for their
different influences on car traffic; and (vi) we investigate the effects of user behavior and trip length patterns on the
optimal bus network design; all in an analytical manner.

Numerical experiments performed for different trip length patterns, reflecting different spatial demand distribu-
tions, show that both, the user behavior and the trip length patterns, affect the optimal bus network configuration.
Results reveal that the probability of choosing any given mode is not constant across the user trip lengths, but follows
certain distribution. This distribution is not unique, but varies across the trip length patterns, indicating the impor-
tance of modeling the mode choice at the trip length level. Finally, we demonstrate the significance of addressing
simplifications made in previous studies. From that perspective, we show that the bus network parameters optimally
determined for a given trip length pattern lead to lower costs compared to those obtained if we were to assume uni-
formly distributed origins and destinations. In other words, accounting for the actual trip length distribution allows
the operator to design the bus network in accordance to the prevailing demand pattern.
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Appendix: Proofs

Result 1. The expected walking time at the origin and the destination for Type 2 user behavior is given by Eq. 28:

A2,b(D) =

[6lxly + 6lxsx − 2l2y − 3lysx + 3lysy]/[12lxw], if lx ≥ ly,
[6lxly + 6lysy − 2l2x − 3lxsy + 3lxsx]/[12lyw], if lx < ly.

Proof. Recall that for this type of behavior we assume users to choose the closest origin and destination stops such
that they minimize the walking distance. Consequently, how the users access/exit the bus system (using a vertical or
a horizontal bus line) depends on where their origin/destination is located within a rectangle defined by the horizontal
and vertical line spacings (see Fig. 9). This, in turn, defines the walking distance (thus the access time), as well as
the number of transfers (thus the waiting time). From that perspective, we can distinguish four regions within the
rectangle, as shown in Fig. 9. Note that if the origin/destination falls within region (1) or (3), the users access/exit
the bus system at the stop closest to their origin/destination along the nearest horizontal bus line. Otherwise, they
access/exit the bus system at the closest stop along the nearest vertical bus line. As the shape of the rectangle and the
corresponding regions depends on the ratio between lx and ly, we consider the following two cases:

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

(a) (b)

ly/2 lx − ly sx

lx

ly
2

sy

ly

lx/2sx

lx

lx

2

ly − lx

sy

ly

45◦ 45◦

45◦45◦

45◦ 45◦

45◦ 45◦

Figure 9: Regions defining potential locations of an origin/destination within a rectangle defined by sides lx and ly in case: (a) lx ≥ ly; and (b)
lx < ly.

Case 1. (lx ≥ ly): regions (1) and (3) consist of two subregions: a rectangle with sides lx − ly and ly/2; and two
right triangles with legs ly/2 and ly/2. The first subregion has the area of P(1)

�
= (lx − ly)ly/2 and the associated

average walking distance of (1/2)(ly/2) = ly/4 along N-S and (1/2)(sx/2) = sx/4 along E-W directions, i.e. the
average walking distance is A(1)

�
= (ly/4 + sx/4)/w. The area of the second subregion (combining the two triangles)

is P(1)
4 = l2y/4, with the associated average walking distance of (1/3)(ly/2) = ly/6 along N-S and (1/2)(sx/2) = sx/4

along E-W directions, i.e. A(1)
4 = (ly/6 + sx/4)/w. Similarly, regions (2) and (4) have each the area of P(2)

4 = l2y/4,
with the associated average walking distance of (1/3)(ly/2) = ly/6 along E-W and (1/2)(sy/2) = sy/4 along N-S
directions, i.e. A(2)

4 = (ly/6 + sy/4)/w. Then, assuming that the expected access and egress distances traveled are the
same (similarly to Daganzo, 2010; Estrada et al., 2011), the expected walking time can be computed by considering
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all possible combinations of the subregions in which the origin/destination might be located:

A2,b(D) = 2
[
A(1)
�
·

P(1)
�

P(1)
�

+ P(1)
4 + P(2)

4

+ A(1)
4 ·

P(1)
4

P(1)
�

+ P(1)
4 + P(2)

4

+ A(2)
4 ·

P(2)
4

P(1)
�

+ P(1)
4 + P(2)

4

]
= [6lxly + 6lxsx − 2l2y − 3lysx + 3lysy]/[12lxw].

Case 2. (lx < ly): regions (1) and (3) have the area of P(1)
4 = l2x/4 and the associated average walking distance of

(1/3)(lx/2) = lx/6 along N-S and (1/2)(sx/2) = sx/4 along E-W directions, i.e. A(1)
4 = (lx/6 + sx/4)/w. On the other

hand, regions (1) and (3) consist of two subregions (similarly to regions (1) and (3) in Case 1): a rectangle with sides
ly−lx and lx/2; and two right triangles with legs lx/2 and lx/2. The first subregion has the area of P(2)

�
= (ly−lx)lx/2 and

the associated average walking distance of (1/2)(lx/2) = ly/4 along E-W and (1/2)(sy/2) = sy/4 along N-S directions,
i.e. A(2)

�
= (lx/4 + sy/4)/w. The area of the second subregion (combining the two triangles) is P(2)

4 = l2x/4, with the
associated average walking distance of (1/3)(lx/2) = lx/6 along E-W and (1/2)(sy/2) = sy/4 along N-S directions,
i.e. A(2)

4 = (lx/6 + sy/4)/w. Similarly to the previous case, the expected walking time is given as:

A2,b(D) = 2
[
A(1)
4 ·

P(1)
4

P(1)
4 + P(2)

�
+ P(2)

4

+ A(2)
�
·

P(2)
�

P(1)
4 + P(2)

�
+ P(2)

4

+ A(2)
4 ·

P(2)
4

P(1)
4 + P(2)

�
+ P(2)

4

]
= [6lxly + 6lysy − 2l2x − 3lxsy + 3lxsx]/[12lyw].

�

Result 2. The expected number of transfers per trip for Type 2 user behavior is given by Eq. 29:

ϕ2(D) =

Pr(ϕ > 0)[4l2xl2y − 2lxl3y + l4y]/[2l2xl2y], if lx ≥ ly,
Pr(ϕ > 0)[4l2xl2y − 2l3xly + l4x]/[2l2xl2y], if lx < ly.

Proof. As mentioned before, the expected number of transfers depends on the location of the user origin and the
destination within a rectangle defined by sides lx and ly. From that perspective, if the origin is in region (1) or (3)
and the destination is in region (1) or (3), but not along the same corridor as the origin, users need to make two
transfers (from a horizontal bus line along which they access the system to a vertical one; and from a vertical to
another horizontal bus line from which they reach the destination). Likewise, if the origin is in region (2) or (4) and
the destination is in region (2) or (4), but not along the same corridor as the origin, users also need to make two
transfers (from a vertical bus line along which they access the system to a horizontal one; and from a horizontal to
another vertical bus line from which they reach the destination). If the origin is in region (1) or (3) and the destination
is in region (2) or (4), or vice versa, users make one transfer. If both, the origin and the destination, are along the
same corridor (a horizontal corridor for regions regions (1) and (3), and a vertical corridor for regions (2) and (4)),
users do not make any transfer. This leads to the following formulations for the expected number of transfers for each
rectangular shape shown in Fig. 9. Recall that the probability that both, the origin and the destination, are along the
same corridor is equivalent to the probability of making zero transfer, Pr(ϕ = 0) = [lyφx + lxφy − lxly]/[φxφy].

Case 1. (lx ≥ ly):

ϕ2(D) = 0 · Pr(ϕ = 0) + Pr(ϕ > 0)[1 · Pr(ϕ = 1) + 2 · Pr(ϕ = 2)]

= Pr(ϕ > 0)
[
1 ·

2
(
P(1)
�

+ P(1)
4

)
P(2)
4(

P(1)
�

+ P(1)
4 + P(2)

4

)2 + 2 ·

(
P(1)
�

+ P(1)
4

)2
+

(
P(2)
4

)2(
P(1)
�

+ P(1)
4 + P(2)

4

)2

]
= Pr(ϕ > 0)[4l2xl2y − 2lxl3y + l4y]/[2l2xl2y]
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Case 2. (lx < ly):

ϕ2(D) = 0 · Pr(ϕ = 0) + Pr(ϕ > 0)[1 · Pr(ϕ = 1) + 2 · Pr(ϕ = 2)]

= Pr(ϕ > 0)
[
1 ·

2P(1)
4

(
P(2)
�

+ P(2)
4

)(
P(1)
�

+ P(1)
4 + P(2)

4

)2 + 2 ·

(
P(1)
4

)2
+

(
P(2)
�

+ P(2)
4

)2(
P(1)
�

+ P(1)
4 + P(2)

4

)2

]
= Pr(ϕ > 0)[4l2xl2y − 2l3xly + l4x]/[2l2xl2y]

�

Result 3. The expected waiting time per user including that at the origin and all transfer stops for Type 2 user
behavior is given by Eq. 30:

W2,b(D) =

Pr(ϕ = 0)H̄/2 + Pr(ϕ > 0)[Hx(8l2xl2y − 4lxl3y + l4y) + Hy(4l2xl2y + l4y)]/[8l2xl2y], if lx ≥ ly,
Pr(ϕ = 0)H̄/2 + Pr(ϕ > 0)[Hx(4l2xl2y + l4x) + Hy(8l2xl2y − 4l3xly + l4x)]/[8l2xl2y], if lx < ly.

Proof. Following the rationale for the expected number of transfers, we compute the expected waiting time as follows:
(i) users with zero transfer wait on average half of the weighted bus headway in the network, i.e. H(i) = H̄/2 =

[Nb,xHx + Nb,yHy]/[2(Nb,x + Nb,y)]; (ii) users with two transfers, the origin in region (1) or (3), and the destination in
region (1) or (3) use two horizontal and one vertical bus line, thus wait on average H(ii) = Hx + Hy/2; (iii) users with
two transfers, the origin in region (2) or (4), and the destination in region (2) or (4) use two vertical and one horizontal
bus line, thus wait on average H(iii) = Hy + Hx/2; and (iv) users with one transfer, the origin in region (1) or (3), and
the destination in region (2) or (4), or vice versa, use one horizontal and one vertical bus line, thus wait on average
H(iv) = Hx/2 + Hy/2. As for the previous parameters of the user cost function for the bus mode, the expected waiting
time is computed by multiplying these four groups of users by the corresponding probabilities (and in case of users
with non-zero transfer by the probability of making a transfer Pr(ϕ > 0) = 1 − Pr(ϕ = 0)) for each rectangular shape
shown in Fig. 9.

Case 1. (lx ≥ ly):

W2,b(D) = H(i) · Pr(ϕ = 0) + Pr(ϕ > 0)[H(ii) · Pr(ii) + H(iii) · Pr(iii) + H(iv) · Pr(iv)]

= H(i) · Pr(ϕ = 0) + Pr(ϕ > 0)
[
H(ii) ·

(
P(1)
�

+ P(1)
4

)2(
P(1)
�

+ P(1)
4 + P(2)

4

)2

+ H(iii) ·
(
P(2)
4

)2(
P(1)
�

+ P(1)
4 + P(2)

4

)2 + H(iv) ·
2
(
P(1)
�

+ P(1)
4

)
P(2)
4(

P(1)
�

+ P(1)
4 + P(2)

4

)2

]
= Pr(ϕ = 0)H̄/2 + Pr(ϕ > 0)[Hx(8l2xl2y − 4lxl3y + l4y) + Hy(4l2xl2y + l4y)]/[8l2xl2y]

Case 2. (lx < ly):

W2,b(D) = H(i) · Pr(ϕ = 0) + Pr(ϕ > 0)[H(ii) · Pr(ii) + H(iii) · Pr(iii) + H(iv) · Pr(iv)]

= H(i) · Pr(ϕ = 0) + Pr(ϕ > 0)
[
H(ii) ·

(
P(1)
4

)2(
P(1)
�

+ P(1)
4 + P(2)

4

)2

+ H(iii) ·

(
P(2)
�

+ P(2)
4

)2(
P(1)
�

+ P(1)
4 + P(2)

4

)2 + H(iv) ·
2P(1)
4

(
P(2)
�

+ P(2)
4

)(
P(1)
�

+ P(1)
4 + P(2)

4

)2

]
= Pr(ϕ = 0)H̄/2 + Pr(ϕ > 0)[Hx(4l2xl2y + l4x) + Hy(8l2xl2y − 4l3xly + l4x)]/[8l2xl2y]

�
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Result 4. When the trip origins and destinations are uniformly and independently distributed across the network, Eq.
32 becomes equivalent to that of Daganzo (2010) for grid-like structures:

Op =

(Λ/4)Hx/Nx,b, if p ∈ {eb,wb},
(Λ/4)Hy/Ny,b, if p ∈ {nb, sb}.

Proof. It suffices to show that the maximum number of on-board passengers along E-W/N-S directions is across the
vertical/horizontal cordon that bisects the city, i.e. β = 1/2 (see Fig. 3). For brevity, we only show this for the eb
direction. Given the symetry of the network, derivations for other cardinal directions are done in an entirely analogous
manner using the corresponding subscripts.
To be able to obtain the same result as Daganzo (2010), we need to use the same assumption that the abscissa and
the ordinate of both, the trip origins (x1, y1) and the destinations (x2, y2), are distributed uniformly and independently
on [0, φx] and [−φy, φy], respectively. As abscissae x1 and x2 are independent uniforms, their difference x1 − x2 has a
triangular distribution, hence the user trip length in the eb direction {`x = x1−x2 : `x ≥ 0} has the following probability
density function: { f (`x) = (φx − `x)/φ2

x : `x ∈ [0, φx]}. Furthermore, due to the independence, the joint probability
density function becomes f (`x, `y) = f (`x) f (`y). Finally, since Daganzo (2010) does not consider the mode choice,
we also assume that Pr(b | `x, `y) = 1, ∀`x, `y. It follows that the maximum number of on-board passengers in the eb
direction is:

Qeb = max
β∈[0,1]

{ ∫ φx

0

∫ φy

−φy

Pr(Jβ(`x))Λ Pr(b | `x, `y) f (`x, `y)d`yd`x

}
= max

β∈[0,1]

{
Λ

φ2
x

∫ φx

0
Pr(Jβ(`x))(φx − `x) d`x

}
= max

β∈[0,1]

{
Λ

φ2
x

[ ∫ min{βφx,(1−β)φx}

0

`x

φx − `x
(φx − `x) d`x

+

∫ max{βφx,(1−β)φx}

min{βφx,(1−β)φx}

min{βφx, (1 − β)φx}

φx − `x
(φx − `x) d`x

+

∫ φx

max{βφx,(1−β)φx}

(φx − `x) d`x

]}
= max

β∈[0,1]

{
Λ

φ2
x

[1
2

(max{βφx, (1 − β)φx})2

+ min{βφx, (1 − β)φx}[max{βφx, (1 − β)φx} −min{βφx, (1 − β)φx}]

+ φx[φx −max{βφx, (1 − β)φx}] −
1
2

[φ2
x − (max{βφx, (1 − β)φx})2]

]}
= max

β∈[0,1]

{
Λ

φ2
x

[
min{βφx, (1 − β)φx}max{βφx, (1 − β)φx}

−
1
2

(min{βφx, (1 − β)φx})2 +
1
2
φ2

x − φx max{βφx, (1 − β)φx}

+
1
2

(max{βφx, (1 − β)φx})2
]}

To complete the proof, let us consider the following two cases:

Case 1. βφx ≤ (1 − β)φx:

Qeb(β) =
Λ

φ2
x

[
βφx(1 − β)φx −

1
2
β2φ2

x +
1
2
φ2

x − φx(1 − β)φx +
1
2

(1 − β)2φ2
x

]
= Λ(β − β2)
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Case 2. βφx > (1 − β)φx:

Qeb(β) =
Λ

φ2
x

[
(1 − β)φxβφx −

1
2

(1 − β)2φ2
x +

1
2
φ2

x − φxβφx +
1
2
β2φ2

x

]
= Λ(β − β2)

Notice that both cases yield the same result. Therefore, we can compute the value of β for which the maximum value
of Qeb(β) is reached by solving the following equation:

dQeb(β)
dβ

= 0⇔ Λ(1 − 2β) = 0⇔ β =
1
2

It then follows that the maximum number of on-board passengers in the eb direction is Qeb = Qeb(β = 1/2) = Λ/4,
which is the same result as that of Daganzo (2010). �
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