
 

1 
 

  On the quark scaling theorem and the polarisable dipole of the quark                      
                                                  in a scalar field 
 

Engel Roza 
Philips Research Labs, Eindhoven, The Netherlands (retired) 
Email: engel.roza@onsbrabantnet.nl 

Summary 
In this article the possible impact on the present state of particle physics theory is discussed of two 
unrecognized theoretical elements. These elements are the awareness that (a) the quark is a Dirac 
particle with a polarisable dipole moment in a scalar field and that (b) Dirac’s wave equation for 
fermions, if derived from Einstein’s geodesic equation, reveals a scaling theorem for quarks. It is 
shown that recognition of these elements proves by theory quite some relationships that are up to 
now only empirically assessed, such as for instance, the mass relationships between the elementary 
quarks, the relationship between the bare mass and the constituent mass of quarks, the mass 
spectrum of hadrons and the mass values of the Z boson and the Higgs boson.  
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1. Introduction 

This article is aimed to discuss the possible impact that the recent discovery of a third-type 
Dirac particle (next to the electron-type and the Majorana-type), might have had on the 
development of particle physics theory, were it would have been revealed quite some 
decades ago. The discussion will be focussed on the bonds between quarks in mesons and 
baryons. As is well-known, canonical theory is captured in a rather abstract mathematical 
formalism. This formalism has been developed under adoption of some axiomatic attributes 
that were unknown prior to the development of the Standard model. Among these are, for 
instance, weak isospin and hypercharge. They show up as quantum numbers attributed to 
the elementary fermions [1], such as listed in Table I.   

Table I 

Fermions u d e- e  
S- spin 1/2 1/2 1/2 1/2 
m0-mass ? ? em  0 

ZI -weak isospin charge 1/2 -1/2 -1/2 1/2 
Y-hypercharge 1/3 1/3 -1 -1 

2/YIQ Z   2/3 -1/3 -1 0 
 

It is my aim to show how these attributes are related to those of quark that has a polarisable 
dipole moment in a scalar potential field. Such a dipole moment is a unique property of 
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Dirac’s third type, while it is absent in electron-type ones. As will be shown, this dipole 
moment is also the key for assigning reliable figures to the rest masses of elementary quarks 
and their hadron composites. It will be shown that a re-interpretation of these attributes 
removes the reason to accept the asymmetrical electric charge break of quarks. It will be 
shown as well that the number of elementary fermions can be reduced significantly.   

Like all elementary fermions, quarks follow Fermi-Dirac statistics, obey the Pauli exclusion 
principle,  have half integer spin and  have distinct antiparticles. They can be modelled with 
the Dirac equation. The canonic formulation of Dirac’s particle equation reads as [2,3],  

0)i( 0   
 cm . 

 
where  is a 4 x 4 unity matrix and where the 4 x 4 gamma matrices have the properties,  
 

0    if   ;  and 1;1 22
0  i .                                                                         (1) 

 
As usual, c is the vacuum light velocity,  is the reduced Planck constant and 0m is the rest 

mass of the particle. While this equation captures a basic attribute as mass and attributes as 
spin state and particle/antiparticle state, it does not include quite some other properties of 
elementary fermions. It does not even include electric charge as attribute, while Dirac’s 
theory is originally conceived for electrons. It includes mass 0m and nuclear spin S , but the 

hypercharge and weak isospin are missing. These are rather artificial attributes,  conceived in 
a mathematical model in which empirical phenomena are captured by axiomatic abstraction.  

While spin S can be physically understood in terms of the eigen value of an elementary 
angular moment  , weak isospin has no known physical interpretation. Apart from its 
relationship with the electric charge as shown by the Gell-Mann-Nishijma formula [4,5] at 
the bottom line of Table I, it plays a role in the classification of hadrons, in interactions 
between nuclear particles and in the interaction with the omni-present energetic 
background field, known as the Higgs field. Weak isospin shows the same behaviour as the 
nuclear spin S  in the sense of being subject to the same algebra rules as nuclear spin, 
thereby establishing an isospin triplet state 1,1  or 0,1 next to a singlet state 0,0 .  

 
Particle physics theory has been developed over many decades of years. As is well-known, a 
major milestone in this development was set in 1961 by Gell-Mann and Ne’eman, dubbed as 
the Eightfold Way [6]. It is a classification scheme for hadrons, in which isospin has been 
introduced as a heuristic attribute without a known physical interpretation. One may 
wonder how this scheme would have been set up if isospin would have been comprehended 
physically. Within the scope of this article, it is my aim to show that such a physical 
interpretation allows a less heuristic alternative for  the Eightfold Way.  

To show that such a novel view might be a useful complement to present theory, some 
problems will be addressed that are difficult to solve with present-state theory. Examples of 
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such problems are mass related, because present theory shows a weakness in that respect. 
In particular, it will be shown how the mass spectrum of hadrons can be calculated to a 
rather high precision, how the masses of the bare quarks can be calculated and why, for 
instance, the mass of a neutral pion is 4.6 MeV larger than that of a charged pion.   

After a summary in chapter 2 of the third-type Dirac particle, the quark will be profiled in 
relationship with the electroweak theory.  Thereafter, in chapters 4 and 5 the archetype 
meson (pion), based on this profile, will be described thereby showing the relationship 
between the constituent mass of quarks and their bare masses. Chapter 6 contains a 
numerical assessment of the Z boson mass. In chapter 7 a description is given of the quark-
scaling theorem, followed in chapter 8 by an assessment of the Higgs boson mass. Chapter 9 
deals with the influence of electromagnetic interaction in mesons. In chapter 10, a short 
description of baryons is given on the basis of the developed theory. Chapter 11 contains a 
discussion and the conclusion. In these chapters, quite some results are invoked from 
previously documented works in publications and preprints. The highlight on the third-type 
Dirac particle and the quark-scaling theorem as two unrecognized theoretical principles will 
place those in a better context.  

 

2. Summary of the third 
 
Where the canonical set of gamma matrices is given by, 
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the  -set of the third type has been found as, 
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where i are the Pauli matrices. 
 
Although the wave equation of the electron type and that of the “third” are hardly different, 
there is a major difference in an important property. Both have two dipole moments. A first 
one, to be indicated in this text as the angular dipole moment, is associated with the 
elementary angular momentum ħ. The second one, to be indicated as the polarisable dipole 
moment is associated with the vector ħ/c.  These dipole moments show up in the calculation 
of the excess energy of the particle in motion subject to a vector potential ),,,( 0 zyx AAAAA . 

In the canonic case (2a) we have, 
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 where  is the Pauli vector, defined by 

kji 321   ,                                                                                                                           (3) 

where ( kj,i, ) are the spatial unit vectors and where B  and E are generic field vectors 

derived from the vector potential. The redundancy in (3) allows writing it as, 

02
Δ

m

e
E  (  ħ B + i  ħ/c E ),                                                                                                      (4) 

The electron has a real first dipole moment ( 02/ me ), known as the magnetic dipole 

moment, and an imaginary second dipole moment ( cme 02/i  ), known as the anomalous 

electric dipole moment. The spin vector 2/S  has an eigen value 2/1S . In the case 
that the Dirac particle is of the third type as defined by (2b), we have [7], 
 

02
Δ

m

e
E  (  ħ B   ħ/c E ),                                                                                                      (5) 

The generic third type Dirac particle has two real dipole moments, generically, i.e.,  without 
identifying it as an electromagnetic one, to the amounts of  , respectively c/ . If the 
quark would be of the electron type, it would not be polarisable in a scalar potential field, 
because such a field is Coulomb-like and is unable to polarize an imaginary electric dipole 
moment. If, however, the quark is a third type, its second dipole moment can be polarized 
under influence of a scalar potential field. This field is not necessarily the electromagnetic 
one. The coupling factor is not necessarily the elementary electric charge. If the field is just a 
static one, eq. (5) can be written as, 
 

(
2

Δ
0m

g
E


  ħ/c )0A ,                                                                                                                   (6) 

where g is a generic coupling factor. Hence, taking into account that the eigen value of the 
spin vector with the state variable   is 2/12/  S , the dipole moment p of a quark 
particle in a scalar nuclear field 0.A is given by, 
 

p
cm

g

20

 .                                                                                                                                           (7)  

 
Summarizing: conceiving the quark as a third type Dirac particle allows to consider the quark 
as a particle that, under influence of its dipole moment, may “spin” (i.e., can be polarized) in 
a scalar nuclear potential field. The associated quantity   is a state variable that can be 
conceived as isospin next to the nuclear spin associated with the elementary angular 
momentum  .    
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3. A qualitative profile of a quark and an antiquark bond. 
 

Before profiling the quark in mathematical terms, it might be useful to start with a 
qualitative description on the consequences that this polarisable dipole moment might have.   
 
Similarly as an electron, the quark has an energetic monopole. For an electron, the 
monopole is an electric point charge. For the quark it is the nuclear equivalent of the electric 
point charge. Next to the monopole, the electron and the quark have two dipole moments. 
These dipole moments are the results from the elementary angular momentum ħ  and the 
elementary mass dipole moment ħ/c. In the case of an electron, these dipole moments give 
rise to, respectively, a real magnetic dipole and an imaginary  electric dipole. In the case of a 
quark, these dipole moments gives rise to, respectively, a real equivalent of the magnetic 
dipole and a real nuclear equivalent of the electric dipole. While, due to its imaginary value, 
the electric dipole moment of the electron cannot be polarized in a scalar potential field, the 
nuclear equivalent can, because of its real value.  
 
Similarly as the monopole of the electron, the monopole of the quark, spreads a scalar 
potential field. This field is able to polarize the electric dipole equivalent of another quark. 
Such a dipole spreads an en energetic potential with 2x dependency along the orientation 
axis of the dipole. As a consequence, an equilibrium of forces can arise between a repelling 
force from the  1r  monopole field dependency and the attractive force with 2x  dipole field 
dependency from suitably aligned dipoles of two quarks. Because nuclear forces have a short 
range, these potential fields must experience a shielding effect akin to the shielding of the 
field of an electric point charge in an ionized plasma. This shielding is known as the Debije 
effect. It occurs under influence of an omni-present fluidal field of energy, in particle physics 
known as the Higgs field, in gravity known as the cosmological background field due to the 
Cosmological Constant. Hence, in qualitative terms, the potential field of a quark along the 
axis of the polarisable dipole, can be expressed as,  
 

}
1

)(

1
){exp(Φ)(Φ

20 x
w

x
xx


  ,                                                                                              (8) 

 
where  ( in dimension m-1) is a measure for the range of the nuclear potential, where 0
(in units of energy, i.e. joule) is a measure for one of the two quark’s “charges”, and where 
w is a dimensionless weigh factor that relates the strength of the monopole field to the 
dipole field. The far field, decaying as xx  /)exp( is due to the monopole. It can be seen as 
the weak interaction between the quarks. The near field, decaying as 2)/()exp( xx   can be 
seen as the strong interaction between the quarks. The strong interaction is due the 
polarisable dipole. Because of the lack of this dipole, the electron and the other leptons are 
not subject to strong interaction. Hence, unlike quark bonds, such lepton bonds don’t exist. 
Figure 1 shows a schematic configuration between two elementary quarks.  
 
Let us proceed by considering this assembly as a bond between a quark and an antiquark. 
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Note:  Although the considerations between eqs. (10) and (44) to be described next, can be 
found in leading textbooks [1,10], the summary is  required for proper unders
role of Dirac’s polarisable dipole.
 
 

 
Fig. 1. A quark has two real dipole moments, hence two dipoles. One of these (horizon
polarisable in a scalar potential field. The other one (vertically visualized) is not. The 
subject to spin statistics. However, the polarity of the horizonta
dipoles are only oriented in the same direction
 
In canonic theory the interaction between nuclear particles is described in terms of fie
The field of a particle can be viewed as 

 of the four components of the solution 
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This mapping is visualized in figure 1 for 1+2 dimensionality. 
 
The left-hand part is a geometric interpretation of Einstein’s energy law in Hawking metric 

),,,(  for ( zyxct ,,,i ), i 
generic free moving particle with rest
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where p is the three-vector momentum (
momentum p ). Under adoption of the Hawking metric 
[8]),  
 

222
0

22
00

2 )( pccmcpEW 
 
which can be normalized as, 
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are complex quantities. As a consequence of the semantics of the particle’s wave function, 
these amplitudes can be represented as orthogonal vectors in a unit sphere. 
mapping is not one-to-one. In momentum space, the angle 
momentum 0p and the vector sum of the spatial momenta 
the particle’s energy is not changed by a field of force, the angle remains the same. In spinor 
space, there is a characteristic angle 
temporal momentum and the vector sum of the components 
momenta. Although the mapping is not one
influence of forces on the momenta, the angle 
momentum space will remain the same owing to the normalization.
space will change as well and 
the wave function semantics. 
space equation into a covariant one. 
moving in a field of forces has the same format as the free space equation after redefi
the normal differential operators into covariant ones, i.e. 

do it, is the modification of a global invariant quantity into a local invariant one. 
modifying the global invariance of the Lorentz transform 
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are complex quantities. As a consequence of the semantics of the particle’s wave function, 
these amplitudes can be represented as orthogonal vectors in a unit sphere. 

one. In momentum space, the angle  between the temporal 
and the vector sum of the spatial momenta ip is a global invariant. As long as 

t changed by a field of force, the angle remains the same. In spinor 
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nd the vector sum of the components i associated with the spatial 
Although the mapping is not one-to one, the angle s is globally invariant. Under 

influence of forces on the momenta, the angle   will change, while 
momentum space will remain the same owing to the normalization. The angle in the s
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do it, is the modification of a global invariant quantity into a local invariant one. 
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has been able to derive the transformation rule for the covariant derivatives that modified 
his equations of Special Relativity in free space into covariant equivalents for his equations 
of General Relativity. Paul Dirac’s prescription for making his equation (1) covariant in a 
conservative field of forces ),( 0 AAA , 
 

 Agpp     and    Agpp  ˆ ;  
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can be interpreted as the modification of the global invariance of   and s  into local 
invariant ones, because (14) are just infinitesimal rotations in, respectively, momentum 
space and spinor space. Effectively, these rotations takes place in 2D space, as long as a 
single particle is involved.  
 
It is instructive to consider the particle’s antiparticle in this picture. The momentum 
amplitude of the antiparticle has the same value as the amplitude of the vector sum of the 
spatial momenta of the particle. And, in spite of the fact that the mapping from momenta to 
the values of the spinor components is non one-to-one, the absolute value of the amplitude 
of the spinor component associated with the temporal momentum is equal to the value of 
the vector sum in spinor space of the amplitudes of the spinor components associated with 
the spatial momenta of the antiparticle.  
 
This picture allows to represent the particle-antiparticle bond as a 2 x 2 matrix pa ,  
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








st

st
pa

22

11 ,                                                                                                                           (15) 

 
where it represent the components associated with the temporal momenta and where is
represent those associated with the spatial momenta. This matrix now has the following 
properties, 
 
 11111  

sstt ; 12222  
sstt ;  ts 12   and   st 12 .                                 (16) 

 
Because of this relationship, the matrix (15) is unitary, i.e. 
 

1 T
papa ,                                                                                                                                        (17)                                                   

 
where T

pa is the transpose conjugate of pa .  

 
Note that the elements of pa  are  complex numbers. All objects that can be represented by 

such a 2  x 2 unitary matrix form a class that is known as the SU(2) Lie-group. It will be clear 
that a particle-antiparticle bond, consisting of an archetype quark and its antiquark, i.e., the 
u  quark and the u quark, will belong to an SU(2) Group. This even holds for mixed 
compositions, such as for instance uand s , because as will be shown later, the strange 
quark s  is a scaled version of the up quark u in the sense of just a difference of their bare 
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quark rest masses. Hence the two quark flavors behave the same in the normalized 
momentum space.  
 
The particle-antiparticle bond can be visualized in the spinor space as an assembly of two 
vectors that have some position with respect to each other. This position is characterized by 
three (Euler) angles between the two vectors. As long as the interaction forces that bind the 
two particles do not change, the three angles can be seen as variables that are globally 
invariant. An increase or decrease of the interaction force will change the value of the three 
angles. Because, there are three angles involved, rather than a single one as in the case of a 
single particle, there might be three independent boson vector fields that may change the 
relative positions of the two particles in the bond. In that respect, any operation that results 
in the same Lagrangian condition is equivalent. In other words: it leaves the two particles in 
the same mathematical group. This gives the recipe for defining a covariant derivative, 
formally dubbed as gauge, in  Dirac-type wave equations of particle bonds. The gauge for 
particle bonds with a wave function (= field)  that is subject to the unitary constraint, is 
originally generically formulated by Yang and Mills [9]. Let us apply these considerations on 
the SU(2) group of the particle-antiparticle such as composed by the quark and antiquark. 
 
A complex n x n matrix has 2n2 real parameters. The unitary condition on the rows removes 
n2 of these and an additional one is removed by the constraint of unit determinant. That 
leaves 3 degrees of freedom for the SU(2) operator. The matrix (15) can then be generically 
represented as, 
 









 






cosesine-

sinecose
i-i

ii

.                                                                                                                  (17) 

 
Obviously, this matrix is unitary, thereby meeting the constraints as imposed by (15). Lie-
group theory states that any matrix multiplication with the generic SU(2) format as defined 
in (17) leaves the object in the group. Hence, the transformation that maintains the desired 
property of Lagrangian equivalence  is given by 
 

)iexp(   with ),,( 321    and ),,( 321   ,                                        (18) 
 
as long as the matrices ),,( 321   match with (17). The most simple ones are the 
three Pauli matrices,  
 

;
01

10
1 








 ;

0i

i0
2 







 
  











10

01
3 .                                                                                (19) 

 
From (19) should follow )iexp(   DD . This is true if 

 
)(i  D .                                                                                                              (20) 

 
By identifying  
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k
k

k
k Wg  ,                                                                                                                     (21) 

 
where g is a generic dimensionless coupling factor, 
 
we get, 
 

k
kWgD  i ;   3,2,1k .                                                                                               (22) 

 
Because kkW are operations in the field domain with a complex number type, kW cannot be 
identified as mappings of real valued momenta. Hence, it makes sense to redefine, 
 

211 iWWW  ;  211 i- WWW  ;  3
0 WW   .                                                                               (23) 

 
From (22) and (23), 
 

)(i 0
021   WWWgD   ,                                                                                     (24) 

 
where k now are real valued matrices, 
 

;
00

01
1 








 ;

00

10
2 








  











10

01
0 .                                                                                      (25) 

 
Note that as yet the  sign and the sign have no electrical meaning here. The next issue to 
be solved is the question how to generalize the covariant derivative to an expression that 
incorporates, next to the weak interaction, the electromagnetic behavior and the strong 
interaction of the quark as well. Naively, one might suppose that the quark is a monopole for 
weak interaction energy, electromagnetic energy and strong interaction energy. The 
canonical electroweak theory unifies electroweak interaction and electromagnetic on the 
basis of the assumption that the quark is a monopole for electric charge. It leaves strong 
interaction for an issue to be developed later. A naïve approach to unify weak interaction 
with electromagnetic interaction would suggest extending the covariant derivative by an 
additional term, such that 
 

  AgWWWgD ei)(i 0
021   .                                                                      (26) 

 
One might even go a step further, supposing that similarly as 

W and 
W  are intimately 

related, zW and A would be related as well. This marks the birth of the electroweak theory 

, credited to Glashow, Salam and Weinberg [10,11,12]. As long as the boson fields are mass 
less, this would make sense. However, the short range of the massive weak interaction 
bosons, is orders of magnitude larger than the range of the mass less electromagnetic 
boson. Without an explanation of this mismatch the pairing of zW and A wouldn’t be 

meaningful. How to give an explanation for the mass of the weak interaction bosons? At this 
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point, Weinberg proposed a paradigm shift in particle physics theory [12]. He did so by 
building out some basic steps made before by various theorists.  
 
The first one is giving a bias to the field of a particle in free space. Its impact becomes 
apparent in a Lagrangian analysis. Generically, the Lagrangian density L  of a bosonic field 
has the format 
 

 
 )(

2

1
UL ,                                                                                                     (27) 

 
where )(U is the potential energy of the background field and where  is the source 
term. A shielded field DB would have the format, 
 

r

r

DB

DB
DB 

 )exp(
0


 ,                                                                                                                    (28) 

 
which can be derived by application of the Euler-Lagrange equation from (27) if 
 

2

2
2 

 DBDBU  .                                                                                                                                  (29) 

 
Such a field presupposes a particular energetic background field, such as described by 
Debije[13]. This field has no bias, because 0DBU for 0 . Higgs [14] and independently 
Englert and Brout [15], hypothesized a bias to the background energy field that results in a 
typical field format that later has been dubbed as the “Higgs field”. This field has the format,  
 

4
2

22

2
)(  H

HU


 .                                                                                                                (30) 

 
This broken field is zero for 2)/(0 HH  .  
 
For the proper understanding of the relationship between the canonical theory and the view 
from the quark modeling as a third type Dirac particle, it is useful to compare the Debije field 
(30) with the Higgs field (29). In both cases the field is a background field, which, particularly  
in the case of (30), should not be confused with the energetic field spread by a massive 
photon as hypothesized in Proca’s generalization of electromagnetism. In the case of 
Debije’s theory, it is the influence of the polarized ionic plasma that shields the mass less 
boson field from the electric charged pointlike source. Nevertheless, the result is the same 
as if it were the Proca field of a massive photon. This is a first remark.  A second remark has 
to do with the semantic difference between the spinor space and the momentum space as 
illustrated in figure 1. It has been emphasized that the mapping 

},,{},,,{ 32103210 pppp is not one-to-one. This is due to the twisting of 
components in consequence of Dirac’s model.  As stated  in chapter 2, this twist is the origin 
of the two dipole moments. A   field vector can be regarded as the energetic state of a 
nuclear particle, such as  a quark. This   vector can be regarded as a one-to-one mapping of 
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the vectorial momentum sum.  Similarly as the angle between two momentum vectors is a 
measure for its energetic state, an equivalent angle between two field vectors 1 and 2
may do. The two of these can be captured by a single complex field  , such that 
 

21 i .                                                                                                                                  (31) 
 
Similarly as the angle between the two momentum vectors in momentum space shifts under 
influence of a boson field A  the angle between the field components, 1 and 2 may shift. 
As a consequence, the energetic state of the particle will change. The energetic state of the 
ensemble of the field ensemble is represented by the Lagrangian density as formulated by 
(27). Applying the same rules of interaction as in the spinor space, the new state of energy 
can be found under use of the axiom as formulated in (14). All what is needed is defining a 
covariant derivative that replaces the normal one, followed by insertion into the Lagrangian. 
Hence, after defining in spinor space,   
 

Ag   ,                                                                                                                                 (32) 

 
and insertion in the Lagrangian composition due to a Debije-type background field, we get, 
 

FFgAgAL DB


 


16

1

2

1
)i()i(

2

1 2   .                                              (33) 

 
Elaboration of this expression gives, 
 

FFAAgL DB





 


16

1

2

1

2

1 22   .                                                           (34) 

 
As compared with the Lagrangian with a zero background field 0)( U , a massive 

component 
 AAg 2 shows up. It seems as if the Debije background field has changed a mass 

less photon as if it were a boson with mass. The proper interpretation is that the free boson 
field spread by the nuclear particle is shielded by a background field. As discussed before, 
the spatial expression of this field, as shown in (28) can be readily obtained from (27). The 
Debije decay parameter ccmDBDB /)( 2  can be interpreted in terms of the energetic 
quantum of the background field. In this particular case, the origin of this boson can be 
traced back to a well understood physical process. However, in vacuum electromagnetic 
fields are not shielded. This might be different for the force interaction fields between 
nuclear particles. So, let us try putting the origin of the Higgs field and the mass attribute of 
the weak interaction bosons into this perspective. As discussed before, the meson bond 
between a quark and an antiquark must be the result of a short range interaction force. The 
possible equivalent energetic states of this bond justifies the hypothesis of three interaction 
fields. Similarly as the bosons that carry the electric field spread by an electric charge in an 
ionic plasma seem to get mass from a background energy (albeit that this mass is just 
virtual), interaction bosons might get their mass from an energetic background field as well. 
However, if this field were a symmetric one, there would be no reason why mass less 
interaction bosons would gain non-virtual mass. For this reason it has been hypothesized 
that the symmetry break (30) in the field might give an explanation. The proposed symmetry 
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break is the change of a symmetrical Debije type background field into the asymmetrical 
Higgs field. Interaction of mass less bosons with the field around its bias, splits the bosons 
into two different types . One of the field components remains mass less (as a consequence 
of Goldstone’s theorem [16,17]) and the other one gives mass to the electromagnetic boson. 
By giving a proper bias to the angle in the covariant derivative (20), the mass less boson 
disappears.  
 
However, giving mass to an electromagnetic boson has not been Weinberg’s aim. The 
electromagnetic boson should remain mass less, while the mass less weak interaction boson 
in the covariant derivative (26) should gain mass. The approach to obtain this goal marks the 
second step in Weinberg’s approach. To accommodate the weak interaction bosons,  a single 
angle between the field components is not enough and the field needs additional 
components. Moreover, the covariant derivative has to be extended. In Weinberg’s theory  
to, 
 


  )}(i
2

gi{ 0
021   WWWgBD ;  Wg

g tan



,                                (35) 

 
where 222 ggg  . 
 
In a particular ratio of the mix, part of the bosons gets mass while another part gets not. The 
mix is characterized by the matrix, 
 




























0W

B

Z WW

WW




cossin

sincosemA
.                                                                                                         (36) 

 
The matrix shows that the present mass less electromagnetic field emA  and the present 
massive neutral weak interaction field Z  are  a mix of originally mass less fields B and 0W  . 
From (36),  
 

WW  sincos 0em WBA   

WW  cossin 0WBZ   .                                                                                                              (37)  
 
Multiplying the upper equation with Wsin , the lower one with Wcos and addition gives 

0W .  Multiplying the upper one Wcos etc., gives B . Hence, 
 

WW  sincos em0 AZW    and WW  cossin emAZB  .                                              (38) 
 
Note that the matrix (36) only shows the mix condition and that it does not contain mass 
information. Neither does the covariant derivative. The electromagnetic part of the 
covariant derivative is partly due to B  and partly due to 0

W .  From (38) and (35), 

 

 W
em

W
em AgAgWgBg   sin)sin

2
(

2 0
0

0 


 + terms without emA  .                     (39) 
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It means that the electromagnetic coupling factor e is related by the weak interaction 
coupling factor g by,  
 

Wge sin .                                                                                                                                      (40) 
 
It also means that the electric charge of the quark is given by 
 

)
2

( zIeQ 


 ;  
2

1
zI ,                                                                                                                 (41) 

 
 where zI is the eigen value of the weak isospin component 0  .      
 
It has to be emphasized here that (40) does not apply to g  , defined in (35). The latter is, in 
the Standard Model, related with the Fermi constant (10). 
 
Note that the hypercharge  just gives a bias to the electric charge of the quark, because 
the polarity of the charge is determined by zI . Including the electron in this theory, imposes 
for the electron the values 1  and 2/1zI . Where an electron shows a single 
polarity to zI , a quark shows two. This can be interpreted from the structural model of 
figure 1 from the consideration that an electron doesn’t have a polarisable dipole moment in 
a scalar potential field (in Dirac’s theory, the electrical dipole moment shows up as an 
imaginary quantity). This explains why the electron can only assume the weak isospin 
condition 2/1zI . Unlike the electron, the archetype quark has two zI  values with 
opposite polarity. It is common to say that an electron does not show isospin, while the 
archetype quark does. In the Standard Model, the archetype quark with isospin up and its 
counterpart with isospin down are regarded as different elementary particles, dubbed as, 
respectively u quark and d quark.  
 
The magnitude of the mixing angle is empirically found from experimentally established 
energy values of the weak interaction bosons W  ( W  80.4 MeV) and the Z  boson (

Z 91.15 MeV).  Because   emAZ  , we have from (38), 
 

Z





 W
W cos .                                                                                                                                   (42) 

 
It is worthwhile to note that neither the magnitude of the mixing angle W nor the value of 
the hypercharge  is fixed by theory. Later in this article it will be shown that the value of 
the mixing angle is, in fact, fixed by theory as a consequence of the third type Dirac quark. In 
the Standard Model, the hypercharge bias has got a value 1/3, for reasons of classification.  
It is instructive to discuss the hypercharge issue with the structure as shown in figure 1 in 
mind.   
By proper normalization of the potential field emA , the coupling factor g  can, as a 
dimensionless quantity,  related to e by the fine structure expression, 
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cge 20
2 4 .                                                                                                                                 (43) 

 
Hence, from (40) and (43) 
 

W
W

c

g

g
cgge





sin

4
4sin 0

0


 


 .                                                                           (44) 

 
Note that emA  and Z both are four-dimensional fields. Curiously, while the emA0 component 
of the emA  field is easily recognized as a potential field, the 0Z component of the Z  field is 
usually not considered. Hence, the awareness of a nuclear potential field is lacking in the 
Standard Model. In the structural model shown in figure 1, it is the monopole field of a quark 
such as expressed by (8). Other quarks may couple to this field, similarly as electrons couple 
to the field of other electrons. Also here, I prefer using a dimensionless coupling constant to 
such a field.  
 
To establish the nuclear equivalent of the electromagnetic potential, the far field force FF

evoked by a quark is compared with the electromagnetic force eF . Generally, under 
consideration of (8),  
 

r

e

r
eFe

04


        and       
r

r

r
gFF 

 )exp(
Φ 0





 .                                                         (45) 

 
There is no reason why these forces would be the same. What is clear, however, is, that 

/0g plays a similar role as )4/( 0
2 e , i.e.,  

 





0

0

2

4

ge
 .                                                                                                                                   (46) 

 
Using a dimensionless coupling constant g , as defined by (43) is a suitable and allowable 
choice, because any other choice can be accommodated in the quantities 0 and  . The 
dimensionality of g is compatible with the dimension 0 in units of energy and with the m-1 

dimensionality of  . 
 
The hypercharge 
 
Apart from the strong interaction dipoles, the figure shows the common nuclear dipole set. 
While the orientation of the strong interaction dipole is fixed by polarization, the nuclear 
dipole caused by the elementary angular momentum is still subject to spin statistics. Table II 
shows the possible nuclear spin configurations. In the convention that I wish to adopt within 
the scope of this article, a quark in clockwise spin will be regarded as a quark in up condition, 
to be coded as u , and a quark in anticlockwise spin will be coded as d . This is different from 
the coding convention in the Standard Model where u and d quarks are regarded as different 
particles. For distinction, for the convention in this article italics u and d are used, and 
regular u and d for the Standard Model convention.  
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The spin states of a two quantum mechanical particles in conjunction establish a triplet state 

1,1  or 0,1 next to a singlet state 0,0 . Where the pseudoscalar state of the quark 

junction shows the triplet state only, the vector state shows the singlet next to the triplet. 
Due to the third-type Dirac properties, the quark has two dipole moments that are both 
subject to spin statistics. In spite of the polarization constraint, the polarisable dipole 
moment is still subject to these spin statistics. This spin will be denoted as isospin. From 
figure 1 it is obvious that the polarisable dipoles (isospins) of the particle are oriented in the 
same direction. The sign of the direction may change, even to the extent that the 
unidirectional sign may be mixed up. This is reflected in the third column of Table II. The 
table shows the possible nuclear spin states and isospin states of the archetype meson. It 
also shows how the electric charge of the meson can be found from the isospin condition. 
The coding is based upon the status of isospin. The table suggests by hypothesis that this 
status of the polarisable dipole, hence isospin, is the true cause of electric charge. Hence, 
the electric charge might be a holistic attribute of the meson, rather than a sum of individual 
contributions. This is different from the Standard Model, where a bias   1/3 makes two 
different quarks, each with their own charge. Table III shows the composition of the 
archetype meson as conceived in the Standard Model.  
 
Table II 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table III 
 

 
 
 
 
 
 

 
The difference between the two tables is due to the assignment of the hypercharge. As 
noted above, the electroweak theory is not decisive on this issue. In the Standard Model, the 
hypercharge has been heuristically established from the hadron classification model, as 
proposed in 1964, independently by Gell-Mann [6] and Zweig [18]. The bias allowed a 

meson 
uq  uq  isospin bias  pseudo 

scalar 
vector Q 

 
 

uuqq  

      0 du  
    1 

      
 

0 ud  
   -1 

    
 

0 dduu   
0    0 

    
 

0 uu     
1 

    
 

0 dd     
-1 

      0 dduu    0ρ  
0 

    
 

0 dduu   
    0 

meson 
uq  uq  bias  pseudo 

scalar 
vector Q 

 
 

uuqq  

u  d  1/3 du  
     1 

d  u  1/3 ud  
    -1 

du/  ud/  1/3 uddu   
0  0ρ   0 
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streamlining of the charges of mesons with those of baryons. However, at the time only u, d 
and s quarks were known. After the discovery of more flavors, the charge formula in table I 
has been heuristicly adapted by including more quantum numbers. In chapter 4 the issue will 
be rediscussed, including the observation that, while the archetype quark shows two 
different states of isospin, the non-archetypes only show a single state.  
 
 
Spatial expression of the Higgs field 
 
Similarly as in the case of the Debije field example, it would be nice to find a spatial 
expression for the Higgs field. In principle, it can be done by means of the Lagrange-Euler 
equation, by supposing that a quark is an energetic pointlike source. Because of the high 
dominance of the weak interaction over the electromagnetic interaction, the influence of 
the latter can be first ignored and later be added as a second order effect. Hence, the scalar 
part of the weak interaction potential determines the stationary condition of the spatial 
field. Unfortunately the high non-linearity of the Higgs field prevents deriving an analytical 
solution ( )r  from (27) and (30). However, a numerical procedure allows deriving a two-
parameter expression for ( )r that closely approximates a true analytical solution. In this 
approach a generic Ansatz format is adopted for )(r from which an expression is retrieved 
of )(U . Subsequently, a fit of is searched on (30). In this approach, first of all, the Euler-
Lagrange equation is applied on the static Lagrangian density (27). Hence, from 
 

0)
)(

L
(

L









i
i ,                                                                                                                       (47) 

 
we have from (27), 
 




 )(U
d

di
i .                                                                                                                 (48) 

 
The Ansatz format of the field )(r is chosen as,  
 

}1
)exp(

{
)exp(

)( 0 



r

r

r

r
r







.                                                                                             (49) 

 
Substitution of (49) into (46) and subsequent calculation of )(U gives a fit with (30) for 2

H
and 2

H , such that  
 

 22 06.1
2

1  H  and 
2
0

2
2 3.32

4

1




H .                                                                                            (50)             

 
The rationale behind this choice is the assumption that the inter-quark potential will behave 
similarly as the inter-nucleon potential [18].  
 
The two-parameter field is indistinguishable from the three-parameter field, 
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The quark’s field would show the characteristics as shown in Figu
quark would be repelled by any other quark under influence of the far field, but attracted by 
the near field, thereby giving rise to mesons as stable two
three-quark junctions.  
 
 

 
Figure. 3. (Left) The quark’s scalar field

background  field Φ(Φ)( UUH 
 
Unfortunately, this radial symmetric format is not viable, because it violates the 
renormalization constraint. 
correspondence. Nevertheless, there is a major difference as well
of  (50) has been based upon a presupposed energetic monopole mod
is the result of a dipole moment next to a monopole. 
(51) to the dipole axis x , the renormalization problem is removed by rewritin
sum of a far field and a near field, such that,
 

)()()( xxx NF   with 

 
The conclusion therefore is that the Higgs field has to be interpreted as the shielded radial 
symmetric field of an energetic monopole in conjunction with a one
field. The quark, conceived as a third
near field is due to the dipole and gives an interpretation for t
implicitly present in the electroweak theory, is 
interaction glue that binds the quarks together in hadroni
field that spoils the symmetry of the Debije field, thereby modifying it into the Higgs field, 
can be ascribed to the quark’s 
has already shown the similar characteristic at the early time of the break
universal energy into electromagnetic energy and nuclear energy. 
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The quark’s field would show the characteristics as shown in Figure 3. It would imply that a 
quark would be repelled by any other quark under influence of the far field, but attracted by 
the near field, thereby giving rise to mesons as stable two-quark junctions and baryons as 

 

t) The quark’s scalar field  as a function of the normalized radius 
)Φ retrieved from the spatial expression. 

radial symmetric format is not viable, because it violates the 
 However, comparing (51) with (8) reveals a striking 

Nevertheless, there is a major difference as well. Where the derivation 
upon a presupposed energetic monopole model for the quark, (8

is the result of a dipole moment next to a monopole. Hence, by restricting the validity of 
, the renormalization problem is removed by rewritin

sum of a far field and a near field, such that, 
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The conclusion therefore is that the Higgs field has to be interpreted as the shielded radial 
symmetric field of an energetic monopole in conjunction with a one-dimensional dipole 

The quark, conceived as a third-type Dirac particle is compatible with this model. 
near field is due to the dipole and gives an interpretation for the near field that, although 
implicitly present in the electroweak theory, is usually not recognized as the strong 
interaction glue that binds the quarks together in hadronic structures. The break in the 

he symmetry of the Debije field, thereby modifying it into the Higgs field, 
can be ascribed to the quark’s polarisable dipole moment. One may speculate if a quark 
has already shown the similar characteristic at the early time of the break
universal energy into electromagnetic energy and nuclear energy.      
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4. The meson model  
 
Let us proceed by describing the bond between a quark and an antiquark on the basis of the 
potential field of a quark that has been derived from the modeling of the quark as a third 
type Dirac particle, which resulted into the field expression, shown by (51). Conceiving the 
pion as a structure in which a quark couples to the field of the antiquark with the generic 
quantum mechanical coupling factor g , the pion can be modeled as the one-body 
equivalent of a two-body oscillator, described by the equation for its wave function  , 
 


ExdUxdU

mm

 )}()({
2 2

22

dx

d
;  )()( xgxU  ,                                                (53) 

 
where   is Planck’s reduced constant, 2d  the quark spacing, mm is the bare mass of the 
quark (not to be confused with the constituent mass), )()()( xdUxdUxV  its 
potential energy, and E the generic energy constant, which is subject to quantization. It will 
be clear from (49) that the potential energy ( )V x can be expanded as, 
 
 ....)()()()( 22

200  xkkgxdUxdUxV  ,                                                             (54) 
 
where 0k and 2k are dimensionless coefficients that depend on the spacing 2d  between the 
quarks. 
 
In spite of the resemblance with a classical quantum mechanical oscillator, the model is 
relativistic, because the mass in the wave equation does not represent the individual masses 
of the two bodies. Instead, it is an equivalent mass that captures the energy of the field. 
Furthermore, it has to be kept in mind that this model holds in the center of mass frame, so 
that a lab frame interpretation will need a relativistic correction. To facilitate the analysis, 
(53) is normalized as, 
 

 ExV
x




 )(
d

d
2

2

0 ,                                                                                                              (55) 

where ,
2 0

22
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.......)()()( 2

20  xkkxdUxdUxV  
 
Moreover, from [20, eq. (C2),9], 
 

2
0

0
22

k

k
  .                                                                                                                                           (56) 

 
Normalized quantities in this text will be indicated by a “prime” (‘).The coefficients )(0 dk 

and )(2 dk  can be straightforwardly calculated from (56) and (49) as, 
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The two quarks in the meson settle in a state of minimum energy, at a spacing ,22 mindd   
such that [20,21], 
 

 dd min 0.853; 0k -1/2 and 2k 2.36.                                                                                 (58) 
 
Note: the field format (49) has been preferred above the indistinguishable field format (52) 
because (49) is a two-parameter format, while (52) is a three-parameter one.  
 
The archetype, the pion, is the two-quark oscillator in its ground state. The first excitation 
state transforms a pion into a kaon. The mass ratio between the two is the same as the mass 
ratio of the normalized energy constants 0kE  . This is not trivial and it reflects the basic 
theorem of the theory. This theorem states that the energy wells of the two quarks are not 
massive. Instead, the mass attribute of two-quark junctions (mesons) and three-quark 
junctions (baryons) is made up by the vibration energy as expressed by the energy state of 
the quantum mechanical oscillator that they build. The distribution of this mass over 
constituent quarks is a consequence of this mechanism.  Unfortunately, an analytical 
calculation of the 0kE   ratio of kaons over pions, is only possible for the quadratic 
approximation of the series expansion of the potential energy . A more accurate 
calculation requires a numerical approach. A procedure to do so has been documented in 
[20, Appendix C]. It shows that some simple lines of code in Wolfram’s Mathematica [22] 
may do the job. The numerically calculated ratio of the energy constants appears to be 3.57 
instead of 3 as it would have been in the harmonic case. The result explains the excitation of 
the 137 MeV/c2 pion mass to the 490 MeV/c2 mass of the pseudoscalar kaon. This result 
gives a substantial support for the viability of the theory as will be further developed in this 
article. This result also gives rise to the question if other mesons can be regarded as a result 
from enhanced excitation. Table IV gives a survey of the calculated ratios for higher 
excitation ratios. It gives the pseudoscalar meson as a candidate from second level 
excitation. The table gives no candidate for third level excitation. As shown in [23], the 
corresponding level of energy would imply a meson state with a positive value for the 
binding energy (as is reflected in the value of 0k ), which prevents a sustainable quasi-stable 
configuration. 
 
In this calculation, the electromagnetic interactions have been ignored, because their 
influence is considered to be of second order as compared to the nuclear interaction. More 
on this will be subject of chapter 9. Interestingly, the kaon energy does not only correspond  
with the energy of a pion in its state of first excitation, but also with the ground state energy 
of a quark junction at smaller spacing, thereby composing the kaon as a su or a su  bond, 
composed by the u quark next to the heavier s  quark, such as illustrated in figure Therefore, 
the excitation mechanism is potentially subject to bootstrapping. It shows many excitation 
and de-excitation routes, resulting in a quasi-chaotic, but nevertheless deterministic, mass 
spectrum of mesons. 

)(zV 
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Table IV: meson excitations 
 
Bottom level bindE  - 1/2 mass ratio mass in MeV/c2 
Ground state  bindEE0  0.84 1 137  

(pion = 135-140) 

First excitation  bindEE1  3.00 3.57 489 
(kaon = 494-498) 

Second excitation  bindEE2  6.06 7.21 988 
(’= 958) 

Third excitation  bindEE3  9.94 11.83 ??? 

 
So, the meson’s mass spectrum can be explained from excitations of a basic structure 
consisting of two identical quarks. The pion-kaon-etaprime sequence is just the hat-stand of 
a framework for the assignment of constituent quark masses. Next to this excitation 
mechanism, there is another major influence on the mass of mesons. This is interaction of 
nuclear spins between the two quarks. This mechanism will be discussed in the next chapter. 
It causes a major difference between the masses of pseudoscalar mesons and vector 
mesons. The result of this influence is shown in figure 5.   
 
This is beyond the scope in this article. Details on this and more about mass excitation can 
be found in [23], which is an update of [20]. 
 
 

 
 
Figure 4. The light sector limit. The graph shows the increase of the massive energy of a quark/antiquark pair 
relative to the pion state as a function of the quark spacing. Two excitation levels beyond the pion’s ground 
state are converted into the ground state of, respectively, the kaon and the  , thereby producing the 

),( su quark family. Third level excitation is prevented by the loss of binding energy (lower curve).  
 
 
Table V shows the meson classification based upon isospin coding as used before in Table II . 
Note the difference between the italic coding as used in this article and the regular coding as 
used in the P(article)D(ata)G(roup) tables. The upper part of Table V is just another 
representation of the “octet” classification by Gell-Mann and Murray (the Eightfold Way). 
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Figure5: Illustration of the influence of the nuclear spin interactions between the quarks in the light sector. The 
black dots on the vertical axis represent the sum of the constituent masses in, respectively, the ud, us and ss 
mesons.  
 
 
Table V: meson classification 
 
meson Isospin 

modes 
 recode Q pseudo 

scalar 
vector 

 
 
uu  

  uu  du  1     

  dd  du  -1     
 

  
2/)( dduu   2d)/du(u   0 0  0  

2/)( dduu   2d)/du(u   0  x   

su    su  su  1 K  *K  
  sd  sd  0 0K  0*K  

su    su  sd  0 0K  0*K  
  sd  su  -1 K  *K  

ss    ss  ss  0  x   

cu    cu  cd  1 D  D  
   cd  cu  0 0D  0D  
cu    cu  cu  0 0D  0D  

   cd  cd  -1 -D  D  
cs    cs  cs  -1 -

sD  -
sD  

cs    cs  cs  1 
sD  

sD  

cc    cc  cc  0  x /J  
 
The table shows a particular issue of attention. Where the du / quark shows both polarities 
of the polarisable dipole moment, read isospin, the scaled quarks violate parity in this 
respect. These show just a single state of polarity. The origin of this parity difference is not 
quite clear. It might have to do with the origin of the scaled quarks from the excitation 
mechanism. In the Standard Model, the problem is heuristically settled by axiom. To 
illustrate this, it has to be taken into account that a Dirac particle possess a wave function 



,





K

K

0

0

E mass

uu us ss
mesons

binding energy
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that can be split into two parts that are chirally different (Weyl’s decomposition of Dirac’s 
wave function [3]).  One part is left-handed, the other part is right-handed. The chirality of a 
particle is opposite to that of an antiparticle. This property has been invoked in this text 
before by showing that all mesons belong to an SU(2) group. To explain the classification 
phenomenon just mentioned, it is hypothesized in the Standard Model by axiom that quarks 
are single-handed, such that each left-handed quark has a right-handed counterpart, just as 
if they were antiparticles. The u-quark forms a chiral pair with a d-quark, the s-quark forms a 
pair with the c-quark and the b-quark forms a pair with the t-quark. This suggests that the 
parity problem is solved by theory. It is true that this solves the classification phenomenon. 
From a physical point of view, it is not different from the observation that scaled quarks 
violate the isospin parity.  
 
In [20] it has been documented in detail how the rest masses of the pseudoscalar as well as 
the vector mesons can be calculated to a rather high precision. The results of the calculation 
are shown in the lower part of Table VI. The second column shows the constituent mass 
values of the quarks. Mass values before the / are for the pseudoscalar mesons, behind the / 
for the vector mesons. The third column shows mesons with a homogeneous composition, 
the other columns are those with a inhomogeneous composition. Note that the coding is in 
italic convention as used in this text, in which a u quark is equivalent to a d quark.    
 
Table VI: Calculated meson masses compared with experimental evidence 
 
                                               experimental evidence 

um      uu (775/139) uuuu  (782/n.a.)   

sm   ss (1020/n.a.) us (892/489)   

cm   cc (3096/2983) sc (2112/1968) uc (2007/1869)  

bm   bb (9460/n.a.) cb (?/6276) sb (5415/5367) ub (5325/5279) 

 
                                                       calculated 

um  310 uu (780/140) uuuu  (780/n.a.)   

sm  483 ss (1032/n.a.) us (896/485)   

cm  1515 cc (3096/2983) sc (2119/1988) uc (1996/1865)  

bm  4720 bb (9469/n.a.) cb (6263/6263) sb (5400/5358) ub (5332/5289) 

 
 
  

5. Bare mass and constituent mass  
 
Let us now proceed by modelling the quark somewhat further. Because it is a Dirac particle 
of the third kind, it possesses a second dipole moment with the value cdm p 2/ , where 

pm and d are unknown quantities. The individual values are just auxiliary. It has to be 

emphasized, though, that pm qum  ,i.e., different from the quark’s rest mass qum . This 

dipole creates along the dipole axis x  a gravitational near field potential field  )(Φ xGN , such 

that,  
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where G  is the common gravitational constant. Note that 0Φ is energy per unit of mass. 

Apart from the near field there must be a far field  as a result from the mass associated with 
the elementary momentum  . Let us interpret the elementary angular moment  as a spin 
with eigen value 1/2 as a consequence of a virtual rotation at light speed of the mass pm  at 

a fictitious radius kr /10  . Hence, 

c
km

k
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p

p 
 22


 .                                                                                                                  (60) 

 
The quantity k is an unknown adaption constant, introduced here to couple the   
parameter to the one used in the preceding chapters. Hence, from classical field theory, 
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and,  under consideration of 0 as defined in (59), 
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Hence, if the potential field of the quark modeled as a third type Dirac particle can be 
expressed as, 
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According to the theory developed in the previous chapters, a quark feels a force from 
another quark as, 
 

quΦ
r

gF



 .                                                                                                                                   (64) 

 
The format of the field qu matches with the format of the field (63). Because k is a degree 

of freedom, we may equate )( xqu  .  

 
Hence, expressing the gravitational force between the quarks as an equivalent nuclear force,  
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 .                                                                                                                 (65)   
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From (61) and considering that 0Φ in (64) is energy per unit of mass, we get from (65) , 
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gmkGm
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G
kmg quququ 2

)
2

( 2
2 

 .                                                                           (66) 

 
This mass quantity determines the strength of the gravitational interaction in relation to the 
weak interaction strength. The quark’s bare mass can be found from the relativistic 
correction of this quantity from the center of mass frame to the lab frame. This can be done 
by establishing the relationship between the  value in the center of frame with the  value 
in the lab frame. This is possible by considering that the spacing between the quarks in the 
center of frame is equal or near to the half wavelength of a boson W . Considered, 

however, in the inertial frame, the energy of the boson is the rest mass of the meson  . 
Hence 
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The dimensionless factor  is of order 1. Its numerical value  0.69 has been assessed 
from an application of this meson theory that enabled to calculate the gravitational constant 
G  in terms of quantum mechanical quantities [21]. 
 
From (66) and (67) the quark’s bare massive energy amounts to, 
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  (2.6 MeV).                                                       (68) 

 
This is in agreement with the values reported by PDG (Particle Data Group).  
 
Where the bare mass is evoked by the elementary dipole moment c/  , the massive energy 
of the pion’s center of mass is due to the quantum mechanical oscillator state that results 
from the equilibrium of forces made up by the nuclear field spread by the quarks. This 
oscillator is, in fact, a one-body equivalent of a two-body one. Hence the massive energy of 
the center of mass can be interpreted in terms of constituent masses of the two quarks. 
Where we have considered so far the role of the polarisable dipoles of those masses that, 
like we have seen, create the strong interaction force, there still is a first dipole moment as 
well, which can be interpreted as the nuclear equivalent of the magnetic moment of an 
electron. Similarly as the magnetic moment of the electron in its orbit around a proton or 
positron interacts with the magnetic moment of the proton or positron, the nuclear 
moments of the quark interact. For its analysis, I’ll assume Griffith’s model as a starting 
point. In Griffith’s model, the interaction energy 12U between an electron and the proton 
nucleus of the hydrogen atom amounts to [24], 
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where the  ’s are the gyromagnetic ratios, m ’s the rest masses and where 0d is radius of 
the orbit. Like discussed before, see (46), the nuclear equivalent of the interaction can be 
obtained by replacing 0

2 4/ e  by the nuclear equivalent /0g . 
 
Hence, from (69), we have for two identical particles, 
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The spins will align themselves in parallel or in anti-parallel, which gives, respectively, 
 

4
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 21 σσ      and        

4

3 2
 21 σσ                                                                                        (72)    

 
Hence, the energy difference between the parallel spin condition and the antiparallel 
condition is given by  
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Actually, the difference is 7/4 times larger. This is due to an additional amount of energy as a 
consequence of the recoil of the bond in the higher state of energy. The correction factor 
can be found from the positronium case. For the positronium, we have from (71) 
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Where the Bohr radius is given by, 
 

 
cmg

d
)2/(20


 .                                                                                                                            (75) 

 
Hence, from (74) and (75), 
 

28

3

1
mcgE  .                                                                                                                               (76) 

 
Including the recoiling influence (beyond the scope of this article), the actual amount is 
[25,26], 
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4
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3

1 282828 mcgmcgmcgE  .                                                                                  (77) 

 
Let us proceed by taking the recoil correction into account. Hence, from (77), 
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The center of mass value of and the lab frame values of   have been shown in (65). Using 
this expression in (78) gives,  
 


 




mm
dc

dm

dmd

c

c
E g 







 65.4
)(

1

3

14
)

)(

2
()(

12

7
Δ

min

2

2
3min

3
min

2

2

2

min
2 

 .                                   (79) 

 
Let us the define the mass qum  of the constituent mass as the mass of the quark if there 

were no interaction between the spins. With interaction, then we have 
 

ququ mAmm  32     and ququ mAmm  2 .                                                                             (80) 

 
Hence  qumAmmE  4 ,  and from  (80),                                    
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4

32
.                                                                                                    (81) 

 
From (79) and (81), we get  mA  .518.0 . 
 
This is surprisingly close to the empirical value mA  51.0 as mentioned in Griffith’s 
textbook. So, this empirical one has now got a theoretical basis. Because the mass Km of the 
kaon has got a theoretical basis as well, we may calculate the constituent mass sm of the 
strange quark s from the following set of equations,  
 

 mAm mu 32 140 MeV.                                                                                                   (82a) 

    



 m

su

u
suK A

mm

m
mmm

2

3 3.57 m 489 MeV.                                                            (82b) 

    mAm  51.0                                                                                                                               ( 82c) 
 
Solving this set for um  and sm reveals   um  300 MeV and sm  478 MeV.  
 
This means that the constituent masses of the quarks can be theoretically derived from a 
single reference for which we have adopted the constituent mass of the archetype quark. 
This mass of the constituent quark is the lab frame value of the weak boson interaction 
boson that binds the quark in the archetype meson. This implies that there is no reason to 
consider the quark flavors as elementary.  
 
 

6. The Z boson 
 
There is somewhat more. Because the spin spin interaction is a boson phenomenon next to 
to the weak interaction, one may expect that, where the weak interaction manifests itself as 
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the weak interaction boson, the spin spin interaction will manifest itself as a boson as well. 
The massive energy of this boson is the energy of A , which is a quarter of the energy of the 
mass difference between the pion and the rho. Hence, correcting this for the center of mass 
frame, we get 
 

16.91
140

4.80
.

4

140775



A  GeV.                                                                                           (83) 

 
This is just the value of the Z-boson. It is fair to conclude that the Z-boson is the 
manifestation of the spin spin interaction. Note that, while in the Standard Model the value 
of the Z boson is empirically established, the spin spin interaction boson is actually 
determined by theory.  
 
 

7. The quark-scaling theorem  
 
The wave function of the simple pion model as shown in (53) is Schrodinger’s wave equation, 
which in fact is the non-relativistic approximation of Dirac’s covariant wave equation. In the 
non-relativistic approximation, Dirac’s four-component wave equation falls apart into two 
two-component wave equations. The covariant format has been obtained from the 
covariant derivative as shown by (14). As is well known, Dirac adopted the Einsteinean 
energy formula as a starting point. He might have chosen Einstein’s geodesic equation 
instead. There is no reason why the momenta in the geodesic equation would not allow the 
same momentum-wave function transformation as in the energy equation. But why doing 
so?  The consideration is that the geodesic equation may give additional results on top of 
those from the energy equation. The reason is that it contains an additional symmetry: apart 
from energy conservation, it complies momentum conservation. In a previous study, I have 
shown that the simplicity of the one-dimensional meson model as described in the previous 
chapter allows a geodesic approach. Equating the results of both, yields a very interesting 
theorem. This theorem shows an invariance of the /0  ratio, 
 

min0

0

4 dk

c
g




 


,                                                                                                                             (84) 

 
where 0k 1/2 and mind  0.853 as shown in (56) and where  0.69. This ratio holds for 

all quarks. It means that the strength 0 as well as the range 1 of the potential field may 
be different for different quark flavors under invariance of the of the /0  ratio. As we 
shall see the quantities 0k and mind  are subject to an almost negligible adaptation if the 
influence of the electromagnetic interaction between the quarks is taken into account. As 
mentioned before, the quoted numerical value has been initially established from an 
expression of the Gravitational Constant G  in terms of quantum mechanical quantities that 
could be derived by means of the geodesic view on Dirac’s theory. The actual proof of this 
result is beyond the scope of this article, but the interested reader may find it in a previous 
article [21]. Nevertheless, the meaning of  can be understood from a simple consideration: 
it will be clear that the actual bond between the quark and the antiquark in a meson is 
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sustained by the weak interaction boson. Hence, the spacing minmin 22 dd   is expected 
about equal to a half wave length of the weak interaction boson W . Hence, 
 

)(

)(2 min

c

dW











 ,  where  is a dimensionless correction factor of order 1.                        (85) 

 
The difference from 1  is due to the fact that the weak interaction boson is a product of the 
far field determined by the far field boson and the strong interacting near field. Hence, the 
far field parameter  is only partly decisive. Neither this scaling theorem nor the concept of 
quarks as third-type Dirac particles are part of the canonic particle physics theory. 
Nevertheless they are a result of the application by sound theoretical principles. If we adopt 
that these results are complementary to the gauge based theory as summarized in the 
preceding chapter, there must be three modes for the boson interaction between the quark 
and the antiquark. If this boson interaction is visualized as a standing wave between the 
quarks, two of the modes can be conceived as transversal modes, it is tempting to conceive 
the third one as a longitudinal mode. As noted by Peskin and Schroeder[10, p.692] as well as 
in Griffiths textbook [1, p.367], the longitudinal mode has got no other explanation apart 
from a the mathematical one associated with the gauge invariance and the spontaneous 
breaking mechanism: the binding of particles that belong to the same SU(2) group, requires 
the existence of three independent boson fields. These three fields take up energy from an 
energetic background field, just by theoretical consequence. In the view described in this 
article a more physical interpretation is given. In this view, illustrated in figure 1,  two of the 
boson fields are the transversal modes associated with the binding force due to the 
polarisable dipole and the third mode is due to the dipole created from the angular 
momenta, such as described in the previous chapter.     
 
As explained in the previous chapter, the influence of the bare masses of the quarks  in the 
energetic state of the pion is of negligible influence. Virtually, all energy is comprised by the 
binding energy due to the nuclear bosons. Under decay, the pion breaks up into W-bosons 
or photons, which will manifest themselves into a decay path of fermions. While the bosons 
fly at light speed, the fermions don’t. Hence the energy of the fermions is the non-relativistic 
map of the energy from the ultra non-relativistic bosons. In principle the massive energy of 
these fermions can therefore be established by a relativistic correction of the boson 
energies. 
 
Under recognition of the quark-scaling theorem, the mass generation mechanism can be 
well understood. Next to the scaling law (84) and the weak interaction boson law (85), the 
only other one needed is the quantum mechanical oscillator law, 
 

2
20

2

2



kg

mm  .                                                                                                                            (86) 

 
Conventionally, mm represents is the central mass of the oscillator. In the relativistic model 
described in chapter 4, it does not represent the individual bare masses of the two bodies, 
but it is an equivalent mass that captures the energy of the field.  As usual,  is related with 
the vibration energy )2/1(  nEn .   Considering  (53), we may state, 
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W   .                                                                                                                                          (87)   

 
Hence, from (86)  and (87),  
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Invoking (84) on this gives, 
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kdkg
cmm W

mm


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This represents the relativistic mass of the pion. Because of the required non-relativistic 
correction, this expression cannot serve to calculate the lab frame value of the meson’s 
mass. Nevertheless, the expression is very relevant, because it expresses that mass ratios 
can be calculated as ratios of )(2 dk  . Taking the mass value of the pion in the lab frame as 
the reference, the meson’s mass spectrum can be established from the behavior of )(2 dk  .  
 
As noted before, the scaling theorem and the quark description as a third type Dirac particle 
are not part of canonic particle physics theory. In my previous studies it  has been shown 
that the scaling theorem can be successfully applied for calculating the mass spectrum of 
mesons and baryons. On top of that, we have already concluded in chapter 5 that the 
constituent masses of the quark flavors can be calculated as welll, thereby revealing that 
these masses are scaled values of the archetype quark. This means that the quark flavors 
strange ( s  ), charm (c ) and bottom (b ) should not be regarded as elementary particles, but 
instead scaled versions of the up/down quark archetype ( du / ).   
 
 

8. The Higgs boson 
 
In the preceding chapters it has been demonstrated that the meson’s mass spectrum can be 
explained from the quark’s far field as defined in (50), supplemented by a near field from a 
dipole moment. The far field is a scalar field obtained from the steady state solution of a 
Proca-type wave equation with the format  
 

2 2
2

2 2 2

1
( , )H

r
r r r t

c t r
   

    
 

,                                                                                           (89) 

 
where ( , )H r t is a Dirac-type pointlike source that can be expressed as, 
 

0( , ) 4 ( ) ( )H r t r H t    ,  
 
where )(tH is Heaviside’s step function. Its solution is given by [20], 
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.                                                                                 (90) 

 
If, under violence of particle collisions, the equilibrium between the quarks is broken, the far 
field bosons will show up in decay channels of pairs of gamma photons, W-bosons or Z-
bosons, which will manifest themselves into a decay path of fermions. Momenta and 
energies of these fermions can be measured and can be traced back to numerical values for 
the energy of a nuclear boson pair. So, ultimately, the Higgs field will show up as two 
quantum fields, instead of the single one that is expected by the Standard Model. The 
massive energy of the far field part, if interpreted as a single boson, would therefore be 
assigned as,  
 

)(2 cmH  .                                                                                                                                    (91) 
 
Subsequent application of (85) on this gives, 
 





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W
H

md
m min4

127 GeV,                                                                                                               (92) 

 
which nicely fits with experimental evidence from the detection in 2012 by CERN of a 126.5 
GeV bosonic particle. 
 
One might wonder about the factor 2. The Standard Model value Hm  of the Higgs boson in 
natural units documented in [10] gives, under consideration of (48), 
 

)(222 cmm HHH   .                                                                                              (93)       
 
This is just the same as (91). The result gives a strong support to the viability as developed in 
this article, including its compatibility with the Standard Model. However, unlike as in the 
Standard Model, the numerical value is now established by theory. 
 
 

9. Electric charge and electromagnetic interaction 
 
In chapter 3, it has been shown that the weak interaction boson emitted by a quark is 
subject to weak isospin, where the weak isospin vector, although closely related, is 
somewhat different from the Pauli vector. The eigen value of the weak isospin vector is 

2/1zI . In that respect, there is no difference with the Pauli-type eigen value of the 
second dipole moment of the quark, which we have denoted as isospin.  Where in the 
Standard Model the weak isospin is adopted as an axiomatic attribute of the archetype, it is 
in our model a straightforward consequence of a third-type Dirac particle.  In table II it has 
been suggested that the Pauli-type isospin states of the quarks can be related with the 
electric charge state of the meson.  Where in our model, the u  and d quarks are identical, 
albeit in a different state of isospin, they are different in the Standard Model because of the 
hypercharge bias  and defined opposite values of the weak isospin state. As long as the 
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charge of the meson is considered as a holistic quantity, the hypercharge bias does not make 
any difference. Its role will be discussed later in this article.   
 
 
meson isospin 

modes 
recode Q pseudo 

scalar 
vector 

zI  Y  

 
 
uu  

  du  1     1/2+1/2 (1/3-1/3)/2 

  du  -1     -1/2-1/2 (-1/3+1/3)/2 

 
  

 

2/)( dduu   
0 0  0  0 0 

2/)( dduu   
0  x   0 0 

 
 
In the analysis so far presented in this article, the electromagnetic interaction has been 
regarded as a second order effect. In this chapter, it will be shown that the scaling theorem 
applied on quarks conceived as third type Dirac particles is a powerful instrument for 
calculating the mass difference between the charged pion and the neutral pion. The method 
how to do it under use of the scaling theorem alone has been documented before [20]. In 
this chapter an update will be given, which takes the particular characteristic of the third 
type Dirac into account. The task to be done is including the electromagnetic interaction into 
account as an additional force on the nuclear force between the quark and the antiquark. 
We may combine this additional force with the weak interaction force, implying that each 
quark feels a repulsive force )(rF  from the other quark, such that 
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 ,                                                                                                              (94) 

 
where p is a dimensionless factor, which depends on the composition of the pion. If we 
would suppose that the quark and the antiquark are electrically symmetrical, like done [20], 
we would adhere a positive or a negative value 2/e to each of the quarks. In that case, the 
p  value would be +1/4 for the charged pions and – 1/4 for the neutral pion. In the canonical 

model with unequal charges for the u  quark and the d quark we have p  2/9 for  charged 
pions and p    2/9 for neutral pions.   
 
Under the unification condition 
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we get for (94) 
 

2

2

d

d
)(

r

cg
p

r
grF





 .                                                                                                                 (96) 

 
This means that the far field potential is modified due to electric interaction into, 
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 )exp()( 0 .                                                                                                      (97) 

 
Now, the potential )(x of the field built up by the quarks felt by the center of mass , 
expanded along the dipole axis, is built up by the near field )(xN  from the dipole moment, 
the far field )(xF   component of the weak interaction and the electromagnetic potential 

),(xem   such that 
 

)()()()( xxxx emFN    with xx  , 
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Note: em  holds under the assumption of equal charge distribution over the two quarks. The 
dimensionless factor w is the one introduced in (49) for weighing the far field relative to the 
near field. As discussed, this factor is close to 2. This factor has not been taken into account 
in my previous study [20] on the electromagnetic interaction.  
 
Eq.  (98) can now be written as, 
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Hence, after invoking the invariance /0 as expressed by (84),  
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The potential is minimum if 0k   is minimum. Hence, the minimum values for 0k   and the 
spacing values for minimum potential are slightly different from 21)( min0 dk  and 

852.0min d  as they were calculated without the electromagnetic interaction. As a 
consequence of the shift, the mass formula  (89) has to be modified into,  
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The reason for the difference between 0k  and 0k in, respectively, the numerator and 
denominator of (101), has been discussed in my previous study [20]. The expression reveals 
two different mechanisms that influence the mass difference due to electromagnetic 
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interaction. One of these is the change of the binding energy due to 0k  and the other one is 
the change in harmonic oscillator ground state energy due to 2k . The effects are opposite. 
As shown in [20], it explains the rather queer phenomenon that, while charged pions heve a  
larger mass value than neutral pions, the opposite is true for kaons. As far as I know, similar 
detailed successful calculations have not been obtained so far with Standard Model theory. 
It is the quark scaling theorem (84) , which have no equivalent in the Standard Model, that 
reveals such subtleties. My previous study contains rather ore extensive details for 
calculation, including documentation of numerical programs in Wolfram’s Mathematica [22]. 
In that study, the calculated mass difference amounts to 2.3 MeV, which is just half of the 
empirical value. Only recently, I realized myself that the factor 2 difference is due to the w
factor in (100), for which, at that time, I had no explanation.   
 
 

10. Baryons 
 
Where a meson can be conceived as the one-body equivalent of a two-body harmonic 
oscillator, a baryon can be conceived as the one-body equivalent of a three-body harmonic 
oscillator. The one-body equivalent of the three-body quantum mechanical oscillator can be 
analyzed in terms of pseudo-spherical Smith Whitten coordinates [27]. The Smith-Whitten 
system of coordinates is six-dimensional. Next to a (hyper)radius , the square of which is 
the sum of the squared spacings between three bodies, there are five angles ,,,,,   
where and model the changes of shape of the triangular structure and where and

are the Euler angles. The latter ones define the orientation of the body plane in 3D-space. 
The planar forces between three identical interacting bodies are not only the cause of 
dynamic deformations of the equilateral structure, but are also the cause of a Coriolis effect 
that result in vibra-rotations around the principal axes of inertia of the three-body structure 
[28]. The application of this approach for baryons has been documented by the author in 
[29], showing that the wave equation of the quasi-equilateral baryon structure can be 
formulated as 
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This wave function is the three-body equivalent of the pion’s two-body wave equation 
shown in (5-3). In the ground state 0m . Hence, 
 

)4(),,0(  llkvRR ; kvl  .                                                                                               (103) 
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The radial variable  is the already mentioned hyper radius. The potential field is just the 
threefold of the potential field in the wave equation of the pion. There are three quantum 
numbers involved. Two of those are left in the ground state, effectively bundled to a single 
one. The quantum number k allows a visual interpretation, while v  is difficult to visualize. 
The impact of k is shown in figure 6. It illustrates the motion of the center of mass under 
influence of k . Note that this rotation is quite different from a rotation of the triangular 
frame around the center of mass. It is the center of mass itself that rotates, while the frame 
does not. Actually, the small motions of the individual quarks are responsible for this 
motion. 
 
 

 
 
Figure 6: . Physical interpretation of the motion associated with the angular quantum number k . 
 
As shown in [29], this relatively simple wave function expression allows a pretty accurate 
calculation of the mass spectrum of baryons. The octet states in the baryon classification are 
the counter part of the meson pseudoscalar states, the decuplet states are the counter part 
of the vector mesons.  A single integer step in the quantum number l , brings the p,n/ level 
to the  / -level, etc. The results of the mass calculations are shown in the right-hand part 
of the tables III and IV. 
 
Table I: Re-interpretation of the light baryon octet 
 
                                              singlet states (octet) 
baryon modes code recode spin 

(nuclear) 
bias charge symb mass 

 calc. 
mass  
act. 

  uud  udu  +1/2 +1/2 0 p 934 938 

 dud  udd  -1/2 +1/2  n 934 939 

  sud  uds  -1/2 +1/2 0  1105 1115 

 )(  suu  uus  +1/2 +1/2 1  1170 1189 

)(  sdd  dds  -3/2 +1/2 -1  1170 1197 

)(  sdu  uds  -1/2 +1/2 0  1170 1192 

  spatial spin conflict  
 )(  uss  ssu  -1/2 +1/2 0  1314 1321 

)(  dss  ssd  -3/2 +1/2 -1  1314 1314 

  spatial spin conflict in singlet state 
 

uuu)( )(

)(
suu)( )( 0
suu )( 


0

uss)(
uss )( 0


sss)(

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2020                   doi:10.20944/preprints202006.0304.v1

https://doi.org/10.20944/preprints202006.0304.v1


 

36 
 

 
 
Table II: Re-interpretation of the light baryon decuplet 
 
                                           triplet states (decuplet) 
baryon modes  recode spin 

(nuclear) 
bias charge symb mass 

calc. 
mass 
act. 

 )(  uuu  udu  +1/2 +1/2 1  1237 1232 

)(  ddd  udd  -1/2 +1/2 0  1237 1232 

)(  udu  uuu  +3/2 +1/2 2  1237 1232 

)(  dud  
 

ddd  -3/2 +1/2 -1  1237 1232 

  not possible in triplet state 
 )(  sdu  uus  +1/2 +1/2 1  1377 1382 

)(  sud  dds  -3/2 +1/2 -1  1377 1387 

)(  )( sdd  uds  -1/2 +1/2 0  1377 1383 

  not possible in triplet state 
 )(  uss  ssu  -1/2 +1/2 0  1521 1531 

)(  dss  ssd  -3/2 +1/2 -1  1521 1536 

 )(  sss  sss  -3/2 +1/2 -1  1671 1672 

 
 
The most left columns of the table need some explanation. To avoid spatial spin conflicts 
with Pauli’s law, in this modeling of baryons as a planar three-body configuration one of the 
three quarks should be different from the other two. A different state of isospin makes a 
quark not more or not less different from an identical other one as a different state of 
“temporal spin” that turns a into an antiquark. Hence representing a different state of 
isospin as an antiparticle like shown in the tables is an allowable way of coding. Curiously, 
the coding of isospin state similar as the coding in terms of two particles next to an 
antiparticle does not make any difference for the classification. This phenomenon has been 
mentioned in the context of mesons as well (see chapter 4).Similarly as in the case of 
mesons, u and d quarks are considered as identical particles in a different state of nuclear 
spin. Unlike as in the case of mesons, baryons have some charge bias. Similarly as in the case 
of mesons, the scaled quarks s (and higher) have a only a single state of spin. Note the 
difference between theu and d coding with the u and d (re)coding.  
 
Where the mesons in this article are considered as members of an SU(2) group, it makes 
sense considering the baryons as members of an SU(3) group. This is most obvious if one  
the three quarks would be in antiparticle state. This is reflected in the wave function 
representation shown in (104). Because the archetype quarks are supposed to be identical, 
they hold each other in equilibrium by spatial momenta  with relative values of, 

respectively, and These values are reflected in the spatial 
components of the wave function.  While two of the quarks can be in particle state with 
opposite direction of their spatial spin, the third one has to be in antiparticle state. 
 

uuu )( 
0




suu)(
suu )( 


0

uss)(
uss )( 0


sss )( 

),( yx pp

)2/1,2/3(),2/1,2/3(  ).1,0(

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2020                   doi:10.20944/preprints202006.0304.v1

https://doi.org/10.20944/preprints202006.0304.v1


 

37 
 












































ab

aab

aab

yxt

yxt

yxt

pa

0i

2/i2/3i

2/2/3i

333

222

111

,                                                    (104) 

 
It is not difficult to prove that, under proper scaling of the amplitudes, this matrix is unitary 
(i.e. , where is the transpose conjugate of and that its determinant is equal 
to 1 for any value of the ratio . In a conservative field of forces, like it is the case of 
interaction between the quarks as a consequence of their nuclear potential fields, the ratio 

 is subject to change. This implies that the nine-component spinor may rotate 

over eight spatial angles  in a nine-dimensional spinor space. This rotation is the 
equivalence of the weak interaction in the meson case. The bosons involved in SU(3) are 
known as gluons. Because the wave function shown in (102) is a single dimensional center of 
frame Schrodinger approximation of the generic nine-dimensional wave function (104), the 
fine nuances have disappeared. But, in fact, there is no conflict here with the Standard 
Model.  
 
 

11. Discussion and conclusion 
 
In this article it has been shown how two unrecognized theoretical consequences from 
Dirac’s electron theory may influence the view on the Standard Model of particle physics 
without substantially affecting its basics of SU(2) and SU(3) gauging, electroweak unification 
and the mass generation mechanism from the Higgs field. Most of the presented results 
have been documented in literature by me before in more detail, some in journals, others in 
prepublications that met opposition because of a seeming conflict with common views that 
are considered as proven in the wealth of studies and experiments in the high standard of 
present theory. The highlight on two additional principles that are not yet covered in the 
Standard Model, may help showing that results obtained before might be useful 
complements to the present status. This holds in particular for the mass calculations, 
because, while mass, next to charge, is the main attribute of physical particles, its 
assessment in the Standard Model is mainly empirically based and has not yet reached the 
same high standard as many other attributes. The two basic principles highlighted in this 
article that can be added to the Standard Model are, 
 

1. The quark is an unrecognized  Dirac particle that has, next to the well-known real 
dipole moment associated with the elementary angular momentum h, a second real 
dipole moment associated with an elementary linear dipole h/c, which, unlike as in 
the case of electrons, is polarisable in a scalar potential field.  

2. Deriving Dirac’s fermionic wave equation from Einstein’s geodesic equation rather 
than from Einstein’s energy expression reveals a complementary property to the 
quark conceived as a Dirac particle described in the first highlight. This property is the 
invariance of the frame-independent ratio /0 , where 0 , expressed in units of 
energy, is a measure of the quark’s potential and where  , expressed in m-1, is a 
measure for the range of the quark’s potential. In the article, this property is dubbed  
as the quark-scaling theorem. 

1   )
ba /

ba / amp

)( i
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The details of the derivation of these two principles can be found in, respectively, [7] and 
[21]. In the theory reviewed in this article, the quark is an energetic pointlike particle that 
emits energy into the vacuum filled with background energy. The symmetry of the quark’s 
potential due to the background energy is broken. In the view developed in this article, the 
break is due to the polarisable dipole moment. If the weak interaction and electromagnetism 
have a common source split up because of a spontaneous break event in the background 
field, the polarisable dipole might have turned off from an electron-type imaginary one into 
a real one as a result of the very same event. In that respect there is no principal difference 
with the Standard Model. The mass generation mechanism remains the same with the 
difference that, under recognition of the quark-scaling mechanism, the mass of hadrons can 
be traced back to the massive energy evoked as the ground state energy of the archetype 
meson. As a consequence, the number of elementary particles is substantially reduced. It 
has been shown that the hadron masses can be derived from a single reference for which we 
have adopted the rest mass of the pion  The mass value of the Z-boson and the mass value 
of the Higgs boson, which in present theory both are empirically assessed, have been related 
by theory with the mass value of weak interaction, which is shown to be the non-relativistic 
equivalent of the lab frame mass value of the pion. Although the view outlined in this article 
is shown being compatible with SU(2) and SU(3) gauging as well as with electroweak 
unification, the view on electric charge is slightly different. Where in the Standard Model 
electric charge is seen as an attribute of an individual quark, the adopted view in this article 
is considering electric charge as a holistic attribute of an hadron, evoked as a result from  the 
spin characteristics of all dipole momenta involved in the hadron. Similarly as mass is a 
holistic result in which bare masses are of second order, electric charge might be a holistic 
result as well with no need to adopt the usual 1/3-2/3 split.  
 
The theory described in this article is a structural view on particle physics with a physical 
interpretation on some of the axiomatic principles adopted in the mathematical formalism 
of the Standard Model. The model description of the mesons and the baryons is based upon 
a non-relativistic approximation of the multi-dimensional Dirac’s fermionic wave equation  
to a single dimensional Schrödinger one in the center of mass frame of hadrons, extended by 
separate additions of some second order effects not covered in the approximation and 
interpreted in the lab frame after relativistic correction. Hence, it lacks the rigidity of the 
conventional Standard Model description. On the other hand, the recognition and inclusion 
of the quark’s polarisable dipole moment and the quark-scaling theorem reveals results that 
are not obtained so far in the present state of theory. 
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