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Abstract 

Medical insurance claims are becoming increasingly common data sources to answer a 

variety of questions in biomedical research. Although comprehensive in terms of 

longitudinal characterization of disease development and progression for a potentially 

large number of patients, population-based studies using these datasets require 

thoughtful modification to sample selection and analytic strategies, relative to other 

types of studies.  Along with complex selection bias and missing data issues, claims-

based studies are purely observational, which limits effective understanding and 

characterization of the treatment differences between groups being compared. All these 

issues contribute to a crisis in reproducibility and replication of comparative findings. 

This paper offers some practical guidance to the full analytical process, demonstrates 

methods for estimating causal treatment effects on several types of outcomes common 

to such studies, such as binary, count, time to event and longitudinally varying repeated 

measures outcomes, and aims to increase transparency and reproducibility. We provide 

an online version of the paper with readily implementable code for the entire analysis 

pipeline to serve as a guided tutorial for practitioners. The online version can be 

accessed at https://rydaro.github.io/. The analytic pipeline is illustrated using a sub-

cohort of patients with advanced prostate cancer from the large Clinformatics TM Data 

Mart Database (OptumInsight, Eden Prairie, Minnesota), consisting of 73 million distinct 

private payer insurees from 2001-2016.  
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Introduction and Background 

Health service billing data can be used to answer many clinical and epidemiological 

questions using a large number of patients and has the potential to capture patterns in 

health care practice that take place in the real world.1,2,3,4,5 Such large datasets allow 

investigators to conduct scientific queries which may be difficult, if not practically 

impossible, to answer via a randomized clinical trial. For example, comparing multiple 

treatments that are produced by different drug companies and with varying guidelines 

for their use for a disease may only be feasible in a real healthcare database.6,7 

Although these large data sources offer a wealth of information, there are many 

challenges and drawbacks, such as confounding, selection bias, heterogeneity, missing 

values, duplicate records and misclassification of disease and exposures. These added 

complexities of these observational datasets contribute to the challenge of reproducing 

findings from studies using administrative health data. As regulatory agencies and 

pharmaceutical companies increasingly consider studying the real world evidence 

present in such databases, the importance of proper methodology, reporting, and 

reproducibility of the analysis for a broad audience of researchers is of 

necessity.8,9,10,11,12,13,14 We emulate newly introduced principles from the predictability, 

computability, and stability (PCS) framework for veridical data science15 to examine 

comparative effectiveness research questions that administrative claims data can be 

used to address. We provide documentation and code in R Markdown for each stage of 

analysis online at https://rydaro.github.io/ . 
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Challenges to Characterizing Treatments using Claims Data 

Healthcare claims data has been extensively criticized for its use in epidemiological 

research.16,17 These types of data are prone to issues such as misclassification, missing 

data, and bias. For example, ICD codes are entered by the care provider, and thus 

certain diagnoses may be missed or may not be accurate or may differ across 

providers.17 Further, coding schema can change over time, such as the change from 

ICD-9 to ICD-10, which can further complicate analyses. Outcomes can be particularly 

difficult to define and identify. For example, there is no agreed upon algorithm for 

identifying Emergency Room visits, and thus many definitions are used.18 While not as 

clean as gold standard clinical trial data, these datasets are still the best source of data 

for a wide variety of questions regarding drug utilization, effectiveness, and monitoring 

of adverse events.19,20 Claims data have the benefit of reflecting how medications are 

actually being prescribed, and thus may provide a more accurate depiction of treatment 

benefit in practice or real-life evidence. Further, these datasets provide a wide breadth 

of a patient’s interaction with the healthcare system that electronic medical record 

(EHR) data alone,21 going beyond just visits by adding procedures, tests, and pharmacy 

fills. With proper study design and methodological considerations, many of the common 

issues and concerns can be addressed,8,9,10,11,12,13,14 and these large databases of 

longitudinal data can provide insight to many research questions and be used to 

emulate a clinical trial.22 
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With claims data, and observational data in general, the assignment of treatment is not 

random, and thus susceptible to confounding and selection bias. In practice, the 

clinician and patient decide among treatment options based on the patient’s 

circumstances and overall health. Further, these same factors may also be associated 

with the health outcome of interest. If not properly incorporated, these factors will 

misrepresent and bias the true treatment effect comparison. While there are several 

approaches to handling confounding and selection bias available, propensity score-

based methods are versatile in that they can be used for a variety of research questions 

and can be used for many different kinds of study designs and databases. Propensity 

score models can be particularly useful when there are many potential confounders and 

the outcome is rare. Propensity score approaches also prevent p-hacking of a desired 

result in the outcome model.23 Thus, these methods have gained increasing popularity, 

especially for questions of comparative effectiveness in pharmacoepidemiologic and 

pharmacoeconomic research.  

Lack of Reporting and Reproducibility  

A downside to this rise in popularity is that the assumptions and critical steps for the 

propensity score-based methods are often ignored or unreported. This lack of reporting 

hinders other researchers’ ability to replicate the findings. Ali et al24 found 296 published 

medical papers in a 6-month period that reported use of a propensity score method. 

However, in their systematic review, they found that 194 (65.5%) did not report how 

variables were selected for the propensity model, and that only 177 (59.8%) reported 

test for balance of confounders between the two groups of comparison. Others have 
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also noted common misuse of propensity methods.25,26,27,28 Yao et al.29 concluded in a 

recent systematic review of cancer studies that there is considerable room for 

improvement in reporting propensity analysis and offered guidelines for such reporting. 

Yet, some researchers are still not clear with their use of propensity methods and 

presentation in a scientific paper. For example, when comparing the effectiveness of 

allopurinol or febuxostat on reducing the risk of atrial fibrillation using Medicare data, 

Singh et al30 matched subjects based on the propensity score. While they did report 

which variables were used for propensity construction and balance diagnostics after 

matching, many important details were not reported. Analysis questions arise, such as 

how the propensity score was calculated (logistic regression or otherwise), what 

distance measure was used to match subjects, if subjects were matched with or without 

replacement. These details are essential for researchers wishing to replicate the results 

reported.  Additionally, even for many those researchers that did describe such 

methods, sensitively analysis to the results were often not reported. Propensity score 

methods do not account for unmeasured confounding, and sensitivity analyses can 

provide the reader with crucial information on the robustness of the findings. In many 

situations it is not clear what is the target estimand, for example, whether we are 

estimating the average treatment effect or the conditional average treatment effect. 

Austin31 provides a conceptual overview of propensity score methods from a 

foundational and introductory standpoint. Stuart et al32 provide a general framework for 

using propensity methods with observational health care data, providing an example of 

effect estimation of drug monitoring programs for individuals with serious mental illness. 

Additionally, Brookhart et al33 provide practical example when comparing the risk of 
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angioedema between two treatments for hypertension. While these papers offer an 

elegant and lucid exposition of the underlying principles, and are extremely important 

contribution to the literature, these overviews do not offer the reader complete practical 

guidance at every analysis step, as there remains a gap from methodological 

understanding to actual implementation. Further, these tutorials do not directly address 

the use of propensity methods for a range of outcomes commonly found in claims data, 

such as non-continuous, time to event or correlated outcomes. For example, a 

researcher may be interested in if a rare adverse event occurs or not (categorical) or 

monitoring a patient’s disease progression over the course of several visits (correlated 

repeated measures and time to event outcomes). There are unique assumptions and 

considerations when using propensity methods for these different types of outcomes 

beyond those used for a simple continuous and normally distributed outcome. 

Additionally, there is need for a demonstrated sensitivity analysis after the treatment 

effect estimation to understand the strength of evidence supporting the results. 

Therefore, there is need for a usable, simple and comprehensive tutorial for all stages of 

analysis when characterizing a binary treatment effect on various outcome types using 

claims data, with accompanying software code for each step. This paper outlines the 

use of three primary propensity score-based methods: Propensity Matching, Spline 

Adjustment, and Inverse Probability of Treatment Weighting (IPTW). The paper also 

details how to use each method to estimate average treatment effect for four common 

outcome types: 1) Binary, 2) Count, 3) Time to event, and 4) Longitudinally varying 

repeated measures. Finally, we conduct sensitivity analysis for two of the outcome 
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types. To improve transparency for reproducibility and usage of the methods discussed, 

detailed R code is provided in an online version at https://rydaro.github.io/ .  

To illustrate the entire process, we chose to study treatment patterns and treatment 

outcomes among patients with advanced stage prostate cancer from the Clinformatics 

TM Data Mart Database (OptumInsight, Eden Prairie, Minnesota). This database has a 

wealth of de-identified medical claims, pharmacy claims, inpatient confinement 

information, provider information, and socio-demographic information. Each outcome 

type is defined from emergency room visits (binary and count), time on treatment and in 

database (time to event), and prescription fills for opioids (repeated measures over 

time). 

Causal Inference and Average Treatment Effect 

Causal inference relies on the potential-outcomes framework, where each individual has 

a potential outcome under each possible treatment, with in reality only one actually 

assigned to him/her.34 This framework allows researchers to clearly define what it 

means for an effect to be causal through the use of counterfactuals that can be viewed 

as missing data. Consider the case of two possible available treatments, a treatment of 

interest compared to another established treatment for the same disease, with a single 

outcome measured after treatment. We would define the causal effect of the treatment 

of interest as the difference between the actual and counterfactual outcomes in both 

treatment scenarios. 

 As described by Rubin,34,35 many causal inference problems involve comparison of 

potential outcomes on the same (say  𝑖𝑡ℎ) individual. Define 𝑌𝑖(0) as the potential 
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outcome under the control treatment, and 𝑌𝑖(1) as the potential outcome under the 

active treatment of interest. We wish to know the treatment effect for each individual, 

typically defined as 𝑌𝑖(1) − 𝑌𝑖(0), which cannot be estimated directly from the observed 

data because for each individual we observe either  𝑌𝑖(1) or  𝑌𝑖(0), but never both. If 

subject 𝑖 actually received the active treatment, denoted by 𝑇𝑖 = 1, then 𝑌𝑖(1) is 

observed and 𝑌𝑖 = 𝑌𝑖(1); otherwise, 𝑇𝑖 = 0, and we observe 𝑌𝑖 = 𝑌𝑖(0), under the stable 

unit treatment value and consistency assumptions. Often, researchers are interested in 

how patients receiving a specific treatment compares to a comparison group within a 

larger population. We can define the average treatment effect (ATE) as 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)], 

which is the average treatment effect across the entire population.36 In a randomized 

trial, we can estimate ATE as 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)] = 𝐸[𝑌𝑖|𝑇𝑖 = 1] − 𝐸[𝑌𝑖|𝑇𝑖 = 0] as 

randomization ensures that the treatment groups are balanced and hence 𝐸[𝑌𝑖(𝑎)] =

𝐸[𝑌𝑖(𝑎)|𝑇𝑖 = 𝑎] = 𝐸[𝑌𝑖|𝑇𝑖 = 𝑎] for 𝑎 = 0,1. 31,37 ATE can be defined on different scales, 

such as a ratio  
𝐸[𝑌𝑖|𝑇𝑖 = 1]

𝐸[𝑌𝑖|𝑇𝑖 = 0]
 or odds ratio for binary outcomes  

𝐸[𝑌𝑖|𝑇𝑖=1]/(1−𝐸[𝑌𝑖|𝑇𝑖=1])

𝐸[𝑌𝑖|𝑇𝑖=0]/(1−𝐸[𝑌𝑖|𝑇𝑖=0])
. We 

can also define the average treatment effect on the treated (ATT) as 𝐸[𝑌𝑖(1) −

𝑌𝑖(0)|𝑇𝑖 = 1] and the average treatment effect on the control (ATC) as [𝑌𝑖(1) −

𝑌𝑖(0)|𝑇𝑖 = 0] when a particular sub-population is of interest. 

The standard method of estimating treatment effect for data from a randomized trial, or 

from observational data that is sufficiently balanced, is a general linear model with the 

treatment variable as the sole predictor: 

𝑔(𝜇𝑖) = 𝛽0 + 𝛽1𝑇𝑖 
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where 𝜇𝑖 = 𝐸[𝑌𝑖|𝑇𝑖] and 𝛽1 is the parameter of interest for treatment comparison. In the 

simple linear regression case where 𝑔() is the identity function, 𝛽1 = 𝐸[𝑌𝑖|𝑇𝑖 = 1] −

𝐸[𝑌𝑖|𝑇𝑖 = 0]. When using claims data, the mechanism behind treatment assignment is 

not random, and thus the treatment populations may differ greatly. Therefore 

𝐸[𝑌(1)|𝑇 = 1] ≠ 𝐸[𝑌(1)] and 𝐸[𝑌(0)|𝑇 = 0] ≠ 𝐸[𝑌(0)] in general.31 As a result, the 

estimate for 𝛽1 will not equal the ATE because of confounding.  

When confounders are present, a natural inclination would be to extend our outcome 

model to account for such confounders:  

𝑔(𝜇𝑖) = 𝛽0 +  𝛽1𝑇𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖+. . . +𝛽𝑘𝑋𝑘𝑖 

 

However,  𝛽1 in the multivariate adjustment model generally does not estimate ATE 

even if we have the correct confounders and the model is correctly specified, 

particularly when 𝑔() is not a collapsible link function. One approach to estimate ATE is 

G-computation, which predicts the pair of potential outcomes for each individual.38,39 

The accompanying standard error can be computed using sandwich estimation.40,41 

While a valid analytical approach, it may be difficult for the researcher to specify the 

outcome model, as there may be limited understanding of the relationship between the 

outcome and each covariate. The notion of the propensity score, a unidimensional 

construct, offers an alternative analytical approach that may be more suitable. The 

researcher may have more subject matter knowledge to construct a proper propensity 

score model, may want to avoid unconscious bias of demonstrating a desired causal 

effect in the outcome models by choosing confounders to adjust for, or use the 

propensity score simply as a dimension reduction technique. Using the propensity score 
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in analysis involves several steps that have to be exercised with care and caution, as 

outlined in Figure 1. Below, we briefly explain each analysis step, and demonstrate all 

steps in the prostate cancer treatment example. 

 

Propensity Score Estimation 

Proposed by Rosenbaum and Rubin,42 the propensity score is defined as 𝑒𝑖 =

𝑃𝑟(𝑇𝑖 = 1|𝑿𝑖). The score can be interpreted as the probability a subject receives 

treatment, predicted from the confounding variables denoted as  𝑿𝑖. Rosenbaum and 

Rubin42 showed that conditional on the propensity score, an unbiased estimate of ATE 

can be obtained if the treatment is strongly ignorable. A treatment is strongly ignorable if 

two conditions are met: 1) 0 < 𝑃(𝑇𝑖 = 1|𝑿𝑖  ) < 1 , 2) (𝑌𝑖(0), 𝑌𝑖(1)) ⊥ 𝑇𝑖|𝑿𝑖.42 The second 

of these assumptions is the “no unmeasured confounders” assumption. Thus, a critical 

assumption for use of the propensity score is that all variables that affect the outcome 

and treatment assignment are measured. If all confounding variables are identified and 

included, and the model is correctly specified, this score achieves covariate balance 

between treatment and control groups. More formally, the correct 𝑒𝑖 satisfies that 𝑇𝑖 ⊥

𝑿𝑖|𝑒𝑖, removing the effect of the confounders from the treatment effect when we 

condition on 𝑒𝑖 alone. We explain covariate balance in further detail in the balance 

assessment section. With the treatment groups more comparable, we can better 

characterize the treatment’s effect on the outcome of interest. We can estimate this 

probability using logistic regression, predicting treatment received from our observed 

covariates. 
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While logistic regression is commonly used to estimate this propensity score, 

researchers have expanded their attention beyond parametric models. Many have used 

machine learning methods such as boosted logistic regression, random forests, and 

neural networks.43,44,45 Another method we highlight in this paper is the covariate 

balancing propensity score (CBPS) proposed by Imai and Ratkovic.46 

Covariate Balancing Propensity Score (CBPS) is a generalized method of moments 

estimate that captures two characteristics of the propensity score, namely, as a 

covariate balancing score and as the conditional probability of treatment assignment.46 

This method is a more automated form of propensity score construction, in that it 

calculates the propensity score with the exact balancing goal in mind. Thus, CBPS 

provides a balancing score for each subject that ensures all covariates included in the 

CBPS construction are balanced. Therefore, CBPS is an efficient alternative to 

propensity score estimation by a parametric model. We do note that if using another 

estimation technique, the ultimate goal of the propensity model is not to predict 

treatment assignment, but to reduce bias by balancing covariates.47  

Still, the treatment effect estimation methods are sensitive to misspecification of the 

propensity score model, and thus the variables and their functional forms used in this 

model can affect the estimation of average treatment effect. Many suggest including all 

variables at all associated with the outcome, while excluding those only associated with 

the treatment of interest, based on subject-matter knowledge.33,48,49,50,51 Vanderweele52 

provides a comprehensive general guide to confounder selection in observational 

studies. The sensitivity analysis can show how estimates can change under many 

plausible propensity score models. 
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Using the Propensity Score  

Once the propensity score is constructed, there are four basic ways to use the score in 

treatment effect estimation: 1) Stratification based on the propensity score, 2) Direct 

covariate adjustment using propensity score as a covariate in the outcome model, 3) 

Matching treatments and controls based on the propensity score (PM), and 4) Inverse 

probability treatment weighting on the propensity score (IPTW). Stratification ranks 

subjects by the estimated propensity score and splits them into mutually exclusive 

stratum (say, deciles). The treatment effect in each stratum (decile) can then be 

estimated and pooled to obtain an overall treatment effect.53 We will not discuss 

stratification at length in the main paper as it is used less commonly,54,55 and refer you 

to the online supplementary materials and website for further information regarding the 

implementation of this method. The rest of this paper will focus on the three routinely 

used methods: Spline Adjustment, Propensity Matching, and IPTW. 

Spline Adjustment 

The propensity score is the coarsest balancing score while the full list of confounders is 

the finest.56 This approach is similar to the G-computation approach above, except the 

confounders in the outcome model are replaced with a single covariate of the predicted 

propensity score. The ATE is calculated from the predicted potential outcomes for each 

individual, and estimate the standard error using sandwich estimation.38,39,40,41  

Typically, the propensity score is fit with a smoothing function, such as a polynomial 

spline function,56 allowing for a more flexible model that is also computationally fast and 

reliable.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2020                   doi:10.20944/preprints202006.0295.v1

https://doi.org/10.20944/preprints202006.0295.v1


 14 

Propensity Matching 

The first method discussed is matching observations based on the propensity score to 

estimate ATT. Often, exactly identical scores do not exist across individuals, and thus 

matching requires a clear definition of “closeness” of propensity based on a measure of 

distance.57,58 Stuart et al.57 provide a comprehensive overview of the various matching 

methods available. In practice, it is common to do 1: 1 matching, where each individual 

in the treatment group is matched to a single individual in the comparison group, based 

on the predefined measure of closeness. This matching ratio can result in major loss of 

data, especially if the treatment groups are of very different sizes. An alternative is using 

1: 𝑘 matching, where 𝑘 is a max number of controls. With a defined distance, called a 

caliper, all potential matches within the distance up to 𝑘 will be matched. This allows for 

maximal efficiency of data while still reducing bias since all close matches are kept. 

There is little guidance on what caliper a researcher should specify; however, Austin59 

suggests a caliper of 0.2 standard deviations of the logit of the propensity score as a 

default choice that works well across scenarios. Matching typically estimates the ATT, 

though some packages and techniques can estimate ATE.58 

Inverse Probability of Treatment Weighting (IPTW) 

The next method we consider is the inverse probability of treatment (IPTW) proposed by 

Rosenbaum.60 We can calculate the IPTW 𝑣𝑖 as 

𝑣𝑖 =
𝑇𝑖

𝑒̂𝑖

+
(1 − 𝑇𝑖)

(1 − 𝑒̂𝑖)
 

where 𝑒𝑖̂ is the estimated propensity score. These weights can be very unstable for 

extreme values of 𝑒𝑖̂,  so trimming (sometimes called truncating) these values away 
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from the extreme is often practiced.61,62 In this paper we assume values greater than .99 

or less than .01 to be extreme, so these values are rounded to the less extreme 

boundaries. The construction of weights used here estimates ATE, and different 

constructions can be used for ATT and other effect estimates of interest.62 

Balance Assessment  

It is good practice to check if the chosen propensity method achieved its goal of 

balancing the covariates. While there are several balance diagnostics a common 

balance diagnostic originally proposed by Rosenbaum and Rubin63 is the standardized 

difference (or standardized bias) for 1:1 matching, defined as 

𝑥𝑡 − 𝑥𝑐

𝑠𝑝
 

This is the difference in mean value of the covariate in the treatment group 𝑥𝑡 vs. the 

control group 𝑥𝑐, adjusting for variability 𝑠𝑝, where here we defined 𝑠𝑝 as the pooled 

standard deviation of the two treatment groups, defined as 𝑠𝑝 = √𝑠𝑡
2+𝑠𝑐

2

2
 .64,65 This value 

is calculated for each covariate, with values closer to zero indicating better mean 

balance and potentially less bias. The measure can be calculated for both continuous 

and categorical indicator variables.29,65 A lack of balance indicates that the propensity 

model may be incorrect, or that a different method should be used. There is no 

generally accepted threshold, although some suggest that the standardized difference 

should not be greater than 0.1.64,65,66 We can modify this difference calculation for a 

different ration of matching, say  1: 𝑘, using weights.67,68 The weighted mean is defined 

as  𝑥𝑤 =
∑𝑤𝑖𝑥𝑖

∑𝑤𝑖
  and the weighted standard deviation is  
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𝑠𝑤 = √
∑𝑤𝑖(𝑥𝑖 − 𝑥𝑤)2

∑𝑤𝑖

(∑𝑤𝑖)2 − ∑𝑤𝑖
2

 

 

where 𝑤𝑖  is the weight for subject 𝑖. For 1:1 matching, all observations have equal 

weight. If 1: 𝑘 matching is used, observations in the control treatment group have 1/𝑘 

weights and treated observations have weights 1. For IPTW, the calculated weights can 

be used, so 𝑣𝑖 = 𝑤𝑖  for each observation.68 If sufficient balance is not achieved, the 

process of propensity score construction and balance assessment is repeated, by 

changing the functional form of the propensity model. An important note here is that a 

researcher can repeat this process until balance is achieved to a desired level. 

Experimenting with the model specification at this stage is preferable to post-hoc 

modification of the outcome model with ATE as a desired target, especially in terms of 

reproducibility of results.  

Treatment Effect Estimation  

Once sufficient balance has been achieved, one can estimate the average treatment 

effect using a general outcome model 

𝑔(𝜇𝑖) = 𝛽0 + 𝛽1𝑇𝑖 

This model can be used directly on the matched dataset if 1:1 matching is used. If 1: 𝑘 

matching or IPTW is used, the constructing weights need to be used as well. Weights 

can be incorporated in the same fashion as weights from a survey design, using robust 

standard error estimation to account for error in weight estimation.61,68  For the spline 

adjustment model, ATE is estimated by G-computation (also called standardization) with 
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direct variance calculation.56 Once an estimate is obtained, it is often useful to run a 

sensitivity analysis to see how the estimate may change under different model 

specifications and understand how sensitive the result is to some unmeasured 

confounder.  

Sensitivity Analysis 

For the sensitivity analysis, we adapt the visualization tool of capturing vibration of 

effects from Patel et al.69 to a universe of potential propensity score models. This 

visualization tool allows the researcher to see the results of many possible models, 

providing an overall understanding of the ATE estimate’s robustness to model 

specifications with the observed set of confounders. To summarize sensitivity to an 

unobserved confounder, we calculate the estimate’s E-value.70 The E-value tells us the 

minimum value of the association parameter that an unobserved confounder must have 

with both the treatment and the outcome of interest. Put more simply, the E-value tells 

us how strong an unmeasured confounder must be to explain away a significant effect. 

A large E-value indicates that the significance of our estimate for ATE is robust to 

confounders not accounted for, whereas a small E-value is weak evidence of a 

significant causal relationship.  

Example: Comparing Oral Hormone Therapy vs. 

Immunotherapy for Advanced Prostate Cancer 

Many patients with advanced prostate cancer will receive a number of different 

therapies sequentially to try to control the disease and symptoms. The three different 
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types of outcomes that we consider are based on what clinicians are typically interested 

in. Patients may have varying degrees of responsiveness and tolerance to different 

therapies during the period of treatment. For example, some patients who experience 

pain from their cancer will have pain relief after starting a treatment and thus require 

less opiates to manage their cancer. On the other hand, some patients will have poor 

tolerance of specific therapies and may experience exacerbation or development of 

comorbid conditions and seek emergency critical care. It is also important to note that a 

treatment is typically only continued for as long as it is effectively controlling the disease 

or symptom. Thus, the longer a patient is on a treatment, presumably the longer the 

duration of effective disease control on that treatment.  

Cohort Definition and Data Preparation 

We defined a cohort of men who received treatment for advanced prostate cancer, 

based on receiving one of four focus medications (abiraterone, enzalutamide, 

sipuleucel-T, docetaxel) known to have a survival benefit in men with advanced prostate 

cancer from January 2010 through June 2016 from the Clinformatics TM Data Mart 

Insurance Claims Database. The initial cohort included any patient over the age of 18 

with a diagnosis of malignant neoplasm of the prostate, coded as “185” in ICD-9 and 

“C61” in ICD-10. We restricted our final cohort to include patients that were continuously 

enrolled in the plan for the 180 days before the first medication claim. Finally, we wished 

to compare first-line therapies between patients where first-line treatment was defined 

as the first medication given of the four focus medications. We then categorized patients 

given abiraterone or enzalutamide as a common oral therapy group. Thus, there are 
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three final first-line treatment groups: 1) Immunotherapy, 2) Oral Therapy, and 3) 

Chemotherapy.  

Define Treatment Effect (ATE) 

Binary Outcome 

We defined a binary outcome to be whether the patient had any emergency room (ER) 

visit within 60 days of the first pharmacy claim of the focus medications. ER visits were 

identified using both the provider and facility definition. The provider definition uses 

Current Procedural Technology (CPT) codes 99281-99285, and the facility definition 

uses revenue center codes 0450-0459, 098.18,71  

Count Outcome 

Using the previously defined ER visits, we counted the number of ER visits each patient 

had within 180 days from the first pharmacy claim as a count outcome. ATE is defined 

on the rate ratio scale 

Time to Event Outcomes 

We were also interested in the overall survival of patients; however, exact death dates 

were unavailable with this version of the data. We thus considered two other time to 

event outcomes as possible surrogates: time on treatment and time in database.  Time 

on treatment was defined as the time from start of first medication to the last claim of 

any of the four focus medications, thus the event is stopping all focus treatment 

permanently.  Time in database was defined as the time from start of the first 
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medication to the last claim for that subject within the Clinformatics TM Data Mart 

Database for any medical-related issue. The last claim was identified by extracting the 

latest claim from each dataset, removing those after the enrollment end-date, and taking 

the maximum of those remaining. This definition of time in database could be 

considered a censored surrogate for death because we expect most patients to have 

medical needs until shortly before death.  These two endpoints differ in that some 

individuals may have stopped treatment from a focus medication, yet still used medical 

services and managed pain beyond ending treatment, while others may have been 

treated continuously right up until death. Patients would be expected to have less total 

time on treatment if they had a highly resistant cancer that would not respond to any 

treatments (and thus treatments would not be continued if they were ineffective), or if 

they had severe toxicities to treatment that did not allow for continuation. Also, these 

endpoints differed across treatment groups, with those on oral therapy continuing 

treatment near the end of enrollment, whereas chemotherapy patients may stop a year 

or more before ending enrollment.  ATE was defined as the mean difference in time, 

restricting to five years of follow-up.  

Time Varying Repeated Measures Outcome 

For the final longitudinal varying repeated measures outcome, we used opioid usage 

over time, calculated using prescription drug pharmacy claims. Common opioid drug 

types were identified and were converted into morphine milligram equivalents (MME) 

according to the Center for Disease Control conversion factors.72 The total (MME) 

supply prescribed was calculated in 30-day periods, starting with the 30 days before the 
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first-line of treatment, which was used as a baseline, and continuing at 30-day intervals 

for the duration of claims data available. Many patients with metastatic prostate cancer 

have pain from their disease that require opiates for pain control. Therefore, the level of 

MMEs may be a surrogate measure for disease burden, and disease response to 

treatment. ATE is defined as the mean difference in opioids prescribed at three 

specified time points: treatment start, 3 months after treatment start, and 6 months after 

treatment start.  

Potential Confounder Selection 

Potential confounders were identified using previous research explored factors 

associated with treatment and our outcomes of interest.73,74 These include age, race, 

sociodemographic variables and comorbid conditions from Elixhauser Comorbidity 

Index and Clinical Classification Software,75,76 all shown in Table 2. For more detail, see 

supplementary materials and website. 

Propensity Analysis 

Empirically identifying the optimal sequence of therapies through disease course is a 

complex problem due to sparse sample size. To determine which first-line treatment 

may lead to better outcomes regardless of which treatments a patient receives 

subsequently, we classified patients into one of the three categories of treatment that 

were prescribed first-line: oral therapy (abiraterone or enzalutamide), chemotherapy 

(docetaxel), or immunotherapy (sipuleucel-T). Since cabazitaxel and radium-223 were 

used infrequently as first-line treatments (n=110), we did not include patients who 
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received cabazitaxel or radium-223 first-line in our analysis. We compared 

immunotherapy to oral therapy and compared immunotherapy to chemotherapy in two 

separate analyses. We chose immunotherapy as the reference group for both analyses, 

as it is the only treatment among the four included in the final analysis for which there is 

a clear treatment recommendation to be used in patients with minimally to 

asymptomatic metastatic castration-resistant prostate cancer. Our step-by-step example 

will primarily focus on the analysis process comparing immunotherapy to oral therapy 

and follow the same for comparing immunotherapy to chemotherapy.  

Propensity Score Estimation 

We can construct a model for treatment assignment, 𝑇𝑖 = 0 if immunotherapy was given 

and 𝑇𝑖 = 1 if oral therapy was given using logistic regression, and the CBPS method. 

We repeat the same analysis comparing immunotherapy to chemotherapy in a separate 

analysis. All potential confounders listed in the previous section were included. From the 

regression results, we can calculate the estimated propensity score for each subject 𝑒𝑖. 

The propensity score constructed from the CBPS approach was implemented through 

the R package CBPS.46 The weights from this propensity score were used in the 

outcome models similar to the inverse probability weights. For chemotherapy 

estimation, the urologist variable was excluded as a confounder due to low cell counts.  

Propensity Score Matching 

To create a matched dataset, we used the R package Matchit.77 We defined our 

distance with logistic regression using the “nearest neighbor” method select matches 

within a defined caliper distance of 0.2 standard deviations of the logit propensity score, 
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with a variable matching ratio of 1: 4 within the defined caliper, without replacement. 

These matching specifications were chosen to ensure maximal efficiency of this data. 

By using variable matching, we allow multiple matches for a subject in the control group 

if several in the treatment group have close propensity scores by our defined distance 

measure. This allows us to retain more subjects in our analysis dataset than a standard 

1:1 ration. The caliper was decided using an iterative process, where several calipers 

were assessed and the one providing the highest quality matched sample was kept, 

based on the standardized differences across the covariates. 

 

Inverse Probability Treatment Weighting 

Weights were created from both the logistic regression and CBPS estimated propensity 

scores using the formula described above. Some weights were unstable, so propensity 

scores greater that 0.99 were trimmed to 0.99, and scores below 0.01 were trimmed to 

0.01. Trimmed weights were used for analysis. 

 

Assessment of Covariate Balance 

Each method can be assessed for successful reduction in standardized difference for 

the analysis sample. Figure 2 shows a plot of the standardized difference of the 

covariates between the immunotherapy group, and oral therapy group for CBPS, IPTW 

and propensity matching methods. We can see that the inverse weighted data and the 

matched sample reduced the standardized difference for many covariates, even if 

perfect balance was not achieved. Unsurprisingly, the CBPS weights have very low 
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standardized differences in the means, as the weights are constructed to achieve this 

goal of exact matching. Here, we are assuming covariates have a linear relationship 

with the outcome, and thus checking means is sufficient. With balance among the 

covariates achieved, we can now begin treatment effect estimation. 

Treatment Effect Estimation 

Binary Outcome: Visit to the Emergency Room (ER) in 60 days 

The first outcome of interest is whether a patient had an emergency room (ER) visit 

within the first 60 days of starting their treatment. Let 𝑌𝑖 = 1 if the i-th patient had an ER 

visit within the first 60 days of starting their first treatment, and 𝑌𝑖 = 0 if not. Thus,  𝜋𝑖(1) 

is the probability an individual had an ER visit if they received oral therapy as first-line 

treatment, and 𝜋𝑖(0) if they received the immunotherapy. We are interested in the odds 

ratio patient had an ER visit when treated with oral therapy to the odds a patient had an 

ER visit when treated with immunotherapy. We can model this odds ratio using a logistic 

regression model We cannot yet make any causal inferences from this model, as we 

haven’t addressed the imbalance across the confounding variables. After running this 

model, we get an estimate of 0.75 (0.46,1.23), reported in Table 3. This odds ratio 

indicates that patients treated with oral therapy first line had 0.75 times the odds of an 

ER visit in 60 days than immunotherapy patients, before making adjustments.  

Now we compare these results to our estimates of ATT and ATE. Since covariate 

balance is achieved, we can run the marginal logistic regression model on our 

propensity matched dataset, obtaining an estimate of 0.86 (0.51,1.45).  Notice the larger 

confidence interval, as the matching process reduced the sample size. Next, we fit an 
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outcome model on the full dataset that uses the propensity score directly as a covariate, 

using a spline function from the R package splines.78 ATE is calculate using the 

methods above, and we obtain an estimate of 0.83 (0.49, 1.41). Now, we can again fit 

the outcome model on the full dataset, now weighting each observation by the IPTW 

weights from the propensity scores estimated through logistic regression and the CBPS. 

Here, we use the same marginal model, using the weights for robust standard error 

estimation as described previously. We did so by using the R package survey.79 The 

estimates from these weighted models are 0.56 (0.26,1.23) and 0.55 (0.25 1.21). 

Finally, we report the multivariate adjustment model using G-computation with ATE of 

0.80 (0.47, 1.37). None of these ORs were statistically significant, indicating that there 

may not be a significant difference in the odds of ER visits between these two treatment 

groups. When comparing immunotherapy and chemotherapy, the IPTW logistic 

regression and CBPS estimates are 1.51 (0.87, 2.61) and 1.85 (1.12,3.05), suggesting 

that chemotherapy patients may have a greater odds of an ER visit. 

 

Count Outcome: Number of Emergency Room (ER) visits in 180 days 

Next, we model our count outcome, the number of ER visits, where 𝑌𝑖  can take any 

positive integer values. We are interested in the rate ratio of the expected number of ER 

visits had all patients taken chemotherapy or oral therapy compared to immunotherapy. 

We can model that difference using a Poisson model with a log link. All models we fit in 

the binary outcome can be fit in a similar fashion to this count outcome, now considering 

the different link function and scale of ATE. Table 3 shows the results of each method 
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for the count outcome. The models show that we can expect the same number of ER 

visits for patients who receive an oral therapy first-line vs. those who receive 

immunotherapy. For example, the matched ratio estimate is 1.00 (0.59,1.71), indicating 

the expected number of ER visits is the same for both treatment groups. However, we 

see a different pattern when comparing immunotherapy to chemotherapy, the matched 

ratio is 1.86 (1.15, 3.00), indicating that patients on chemotherapy have more ER visits. 

Time to Event Outcomes: Time on Treatment and Time in Database 

We will now discuss the time to events outcomes previously described. For each 

treatment group, we are interested in the difference in days from stopping all treatment, 

and the difference in days from total time in database. We can define these differences 

in terms of Restricted Mean Survival Time (RMST) within a given follow up window. We 

can calculate RMST, denoted 𝜇𝜏, as the area under the curve of the survival function: 

𝜇𝜏 = ∫ 𝑆
𝜏

0

(𝑡)𝑑𝑡 

where 𝑆(𝑡) is the survival function, and 𝜏 is the parameter for restricted the follow-up 

time. We can then define our ATE estimate as 𝜇𝜏1 − 𝜇𝜏0, or the difference in RMST 

between the treatment groups being compared. For example, when looking at our 

treatment time outcome comparing oral therapy to immunotherapy, we can interpret this 

ATE as “when restricting follow-up to 𝜏 days, patients given immunotherapy as first 

treatment will on average be treated 𝜇𝜏 days longer than patients give oral therapy as 

first treatment.” For both of our outcomes, we estimated the survival function 𝑆(𝑡) using 

a Kaplan-Meier function, and choose 𝜏 = 1825, restricting our follow-up time to 1,825 
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days - the equivalent of five years. We can estimate the difference in RMST using the 

package survrm2.80 We can also obtain estimates of RMST with covariate adjustment81  

and with weights we calculate from the propensity score.82 

Here, the matched estimate of -49 (-88, -9) shows that patients who receive an oral 

therapy first-line stopped treatment on average 49 days sooner than patients given the 

immunotherapy first-line, restricting to five years of follow-up. In other words, we’d 

expect patients who received an oral therapy first-line stop all treatment much sooner 

than patients who received immunotherapy as their first-line therapy. Again, looking at 

the matched estimates now comparing immunotherapy to chemotherapy, patients who 

received chemotherapy as first-line stopped all treatment an average of 167 (120, 214) 

days sooner than those patients who started on immunotherapy. In Table 3, we can see 

the time differences for ending enrollment as well, with matched estimates of -125 (-

164, -96) comparing oral therapy to immunotherapy, and -177 (-224, -131) comparing 

chemotherapy to immunotherapy. 

Longitudinally Varying Repeated Measures Outcome: Opioid Usage 

During Treatment 

Lastly, in those patients who had an opioid prescribed at any time, we evaluated the 

longitudinally varying repeated measures outcome of opioids prescribed in MME per 

month for patients who had baseline opioid use before starting one of the focus 

treatments for their prostate cancer. Each patient included in this subset had baseline 

opioid prescriptions (30 days prior to start of treatment) as well as 180 days of opioids 

prescribed after initiation of treatment. The opioid prescriptions were defined in 30-day 
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periods. We wish to model the trend and to test if there is any difference in mean opioid 

prescribing at any time point between treatment groups. We can model the quantity of 

opioids prescribed in MME 𝑌𝑖𝑗 at the 𝑗𝑡ℎ 30-day period 𝑡𝑗 for each individual 𝑖 as: 

𝑌𝑖𝑗 = 𝛽0 + 𝑏0𝑖 + 𝛽1𝑇𝑖 + 𝑆(𝑡𝑗) + 𝑆(𝑡𝑗)𝑇𝑖 + 𝜖𝑖𝑗 

 where 𝑗 = 1, . . , 𝑛𝑖, 𝑛𝑖 ∈ {1,2,3,4,5,6,7}, 𝑏0 ∼ 𝑁(0, 𝜏2) and 𝜖𝑖 ∼ 𝑀𝑉𝑁𝑛𝑖
(0, 𝜎2𝐼𝑛𝑖

). Here,  

𝑆(𝑡𝑗) is specified as a penalized regression spline with 3 degrees of freedom, allowing 

more flexible smooths for modeling the prescribing trend over time. We set the smooth 

in an interaction term to allow for different smooth trends for the immunotherapy and 

oral therapy treatment groups. Thus, the main parameter of interest tells us the 

difference in the mean opioid prescribing over time between the two groups. We can fit 

each of the methods in this outcome, adding covariates and smooths directly in the 

model, and fitting the model on a matched dataset. We use the R package mgcv.83 

Maindonald84 also provides more detail on smooths when using GAM models. An 

important note when using IPTW and CBPS is that we are only weighting on the initial 

treatment, so at other time points the weights may bias the results. Also, we truncated 

the time to six months because many patients will only respond to or tolerate treatment 

for around six months before switching therapies to another focus treatment. Opiate use 

may parallel disease response to treatment in those who are started on opiates for their 

cancer. In other words, a patient’s opiate use may decrease when their cancer is 

improving on treatment and subsequently increase when the cancer has become 

resistant to treatment. Pain management beyond six months from the initial treatment is 

unlikely related to that treatment as many patients have changed regimens or stopped 
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treatment altogether. Any inferences using the full time period will be heavily biased by 

changing therapy or require advanced methods to handle switching treatments, such as 

marginal structure models.85 Table 3 shows the estimated difference in mean opioid 

usage between groups at selected time points. For example, the difference in MME 

prescribed to an average individual in the immunotherapy group vs. the oral therapy 

group at treatment start is -83 MME (CI -391, 224) in the unadjusted model. In other 

words, among patients prescribed opioids, the average individual in the immunotherapy 

group treatment is predicted to have 83 more MME’s of prescribed opioids than the 

average individual in the oral therapy group at treatment start; however, this difference 

is not significantly significant. This estimate changes 90 days post treatment start to -

130 MME (CI -380, 121) demonstrating how the estimate varies across time. We did not 

detect any significant differences in opioid usage at any time point, for both the oral and 

immunotherapy comparison and the chemotherapy and immunotherapy comparison. 

Sensitivity Analysis 

We assessed robustness of the estimates by looking at the vibration of effects to many 

propensity score models based on observed set of confounders, and also calculating an 

E-value for unobserved confounding. For the binary outcome, we assessed the 

estimates to all possible propensity score models for three selected methods. Age was 

included as a baseline predictor in all models.  E-values were calculated for the model 

that included the full covariate set. Figure 3 shows the results of these analyses.  
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Discussion 

We have presented a very simple and standard use of propensity methods for 

estimating the causal effects of a treatment on the outcomes of interest that are 

routinely used. We showed methods that can make the comparison groups more 

balanced on a large number of characteristics, and thus provide more accurate 

estimates of possible causal relationships. To illustrate these methods, we analyzed 

treatment outcomes for different therapies used to treat patients with advanced prostate 

cancer. The results above showed that patients who received chemotherapy (docetaxel) 

first-line may have more frequent trips to the emergency room in the first six months 

compared to patients who receive immunotherapy as first-line therapy. The results also 

demonstrated that patients who received immunotherapy first-line may have longer total 

time on all treatments (first-line and subsequent treatments) than patients whose first-

line therapy is an oral therapy or chemotherapy. Finally, among patients who already 

have a baseline opioid requirement for pain control when they initiated treatment for 

advanced prostate cancer, we saw higher average baseline requirements among those 

patients who were started on chemotherapy than those patients who were started on 

immunotherapy. However, patients in the chemotherapy group appeared to have better 

pain control after starting treatment than those patients started on immunotherapy.   

There are inherent limitations to the data, as the Clinformatics TM Data Mart Database 

is designed for billing purposes and not for research. Thus, the data is subject to 

misclassification of diagnosis codes and is missing socioeconomic values for many 

individuals. Although we could not identify if an individual was correctly classified as 
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having prostate cancer, we only included those that also had a pharmacy claim of one 

of the six focus medications which are primarily used for advanced prostate cancer. 

Those individuals with missing sociodemographic information were still included in the 

analysis and treated as a separate category.  

A significant limitation to making any clinical conclusions about prostate cancer 

outcomes with the findings in this paper is that prostate cancer is a heterogeneous 

cancer, with a wide variation in prognosis and expected responses to therapy, even in 

the metastatic setting. Thus, a major unmeasured confounder when studying prostate 

cancer in claims data is the extent of disease at initiation of treatment. This unmeasured 

confounder may explain some of the observed effects on our outcomes. Claims can 

identify if a patient is metastatic but cannot identify the extent of their metastases. This 

limitation has significant implications if one were to clinically interpret the data. For 

example, when comparing opioid requirements and differences of opioid use among 

treatment groups, we cannot ascertain whether a patient is using opioids for their 

cancer or for another reason. It’s possible that patients in the immunotherapy group who 

have a baseline opioid requirement may use opioids for a condition unrelated to their 

advanced prostate cancer, as opposed to patients in the chemotherapy or oral therapy 

group.  

In addition, while we could identify when a patient visited the ER, we did not have the 

reason a patient visited the ER available. Patients may be presenting to the ER due to 

their disease, toxicities of the treatment, or another reason unrelated to their disease or 

treatment. These other un-related factors may be driving the large odds ratios observed 
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between chemotherapy and immunotherapy patients. Identifying the fact that patients 

treated with chemotherapy first-line visit the ER more frequently may be signaling the 

fact that patients treated with chemotherapy first-line have more severe prostate cancer 

with more associated problems that require ER evaluation.  

Some of these limitations are inherent to analyzing claims data. If we were able to 

control for disease severity at initiation of treatment, then an increased odds of visiting 

the ER would more reliably indicate a higher toxicity of therapy, or less control of 

disease from the treatment. Furthermore, since we cannot control for disease severity, 

we are not able to confidently say that patients who received immunotherapy are on 

treatment longer because of immunotherapy – we are only able to conclude that they 

remain on treatment longer. It’s possible that patients started on immunotherapy have 

less aggressive disease at the start of therapy. However, interestingly, we did find that 

the increased time that patients in the immunotherapy group remained in database 

(potential surrogate for survival) compared to patients in the other two groups was 

longer than the differences we saw when comparing the amount of time on treatment. 

While impossible to conclude from these data, these data do suggest it’s possible that 

patients who receive immunotherapy first-line may derive a longer-term benefit that is 

demonstrated even after all treatment is discontinued. For this comparison we used the 

dates from the last claim per individual as a censored time endpoint, as death records 

were unavailable. While the true death date is ideal, this endpoint is an underestimate 

for all prostate cancer patients and is a right censored measure of survival.  These 

limitations are important for researchers to recognize, as the methods do provide 

conclusive interpretations when all confounders are controlled, however they do not 
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overcome fundamental limitations of the data. Thus, researchers must be very 

cognizant of what variables are available, are used, and if they are adequate for causal 

interpretation. 

There are also challenges and drawbacks to the methods used here. Propensity 

methods rely on correct specification of the propensity model. Here, we used a 

theoretical framework, pre-emptively specifying which variables are most associated 

with assignment of treatment, such as age, economic status, and pre-existing comorbid 

conditions. These variables were considered as potential confounders to both treatment 

and outcome assessment. Yet, we assessed many plausible propensity score models in 

our sensitivity analysis to assess the robustness of our findings. We were unable to 

account for all known confounders, and thus the propensity model may not have 

addressed all imbalance between groups. Our reporting of the E-value summarizes the 

sensitivity our results to unobserved confounding. Another potential limitation to this 

method is that we used a logistic regression model to calculate the propensity scores. 

While this model allows for natural interpretation of the variables included (which may 

still be of interest), it may be poor at predicting propensity in comparison to machine 

learning models.43,44,45 Furthermore, the uncertainty around the propensity estimates is 

not accounted for in many outcome models, and thus lead to incorrect inference and 

confidence with the estimates.32 Additionally, we effectively have three treatments of 

interest, yet we stratified the data to have two separate, independent analyses, of two 

treatment groups. This provided easier calculation and matching from propensity; 

however, segmenting may mis-specify the treatment allocation mechanisms, as in 

practice all options are available. Generalized propensity scores can be calculated for 
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multiple categories, with the cost of considerably greater complexity.86,87 Nonetheless, 

the methods are very useful for two clear treatment groups to be compared, and when 

there are many confounding variables.  

Conclusion 

In summary, the methods shown, and process outlined are very standard and routinely 

used tools for estimating causal effects from observed data in claims databases. It is 

important to note that these tools cannot perfectly answer causal questions, even with 

the most extensive data.  There are assumptions that need to be met for causal 

interpretation of these estimates and they are often not verifiable from observed data. 

Careful consideration is required by the researchers as to what variables are 

confounding treatment and outcome, and what method and assumptions best fit the 

study. Adding sensitivity analysis to a study can add understanding to the robustness 

and generalizations of the results. We hope the extensive detail, documentation, and 

accompanying code aide researchers in their own studies and improve replication 

among these studies. The online implementable version of these steps for various types 

of outcomes with the accompanying tutorial guide is the most salient contribution of this 

paper.  
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Tables  

 

Table 1. Outcome Characteristics   

 

Immunotherapy 
(N = 504) 

Chemotherapy 
(N = 2,214) 

Oral Therapy 
(N = 2,747) 

Binary Outcome Count (%)  Count (%)  Count (%) 
ER Visit in 60 Days 22 (4.4) 182 (8.2) 100 (3.6) 

Count Outcome Mean (SD) Mean (SD) Mean (SD) 
ER Visits in 180 Days  0.13 (0.44) 0.23 (0.79) 0.12 (0.50) 

Time to Event Outcome 
(days) Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3) 

Time on Treatment1  227 (29,638) 110 (43,338) 224 (83,462) 
Time in Database2  414 (183,785) 256 (105,541) 291 (125,541) 

Longitudinally Varying 
Repeated Measures 
Outcome Count (%) Count (%) Count (%) 

Enrolled at 90 days 438 (87.0) 1707 (77.1) 2235 (81.4) 
Enrolled at 180 days 381 (75.6) 1353 (61.1) 1788 (65.1) 
Any Opioids Prescribed at 
Any Time 166 (32.9) 936 (42.3) 1281 (46.6) 
Opioids at Baseline3 73 (14.5) 653 (29.5) 825 (30.0) 
Opioids at 90 Days  87 (19.9) 427 (25.0) 578 (25.9) 
Opioids at 180 Days  65 (17.1) 359 (26.5) 515 (28.8) 

Patients Prescribed  
(morphine milligram 
equivalents, 30-day supply) Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3) 

Opioids at Treatment Start  112 (39,435) 241 (75,1052) 184 (72,674) 
Opioids 90 Days from 
Treatment Start 87 (73,871) 427 (87,1182) 578 (83,887) 
Opioids 180 Days from 
Treatment Start 391 (97,895) 406 (89,1448) 191 (60,667) 

Table 1 Legend: Table 1 shows outcome characteristics across the three treatment 
groups: immunotherapy (sipuleucel-T), chemotherapy (docetaxel), and oral therapy 
(enzalutamide or abiraterone). ER is an abbreviation for emergency room. Q1 denotes 
first quartile of distribution, and Q3 denotes third quartile. 

1Total time on treatment was defined as when the last of any focus treatment was 
recorded. 

2 Ending enrollment was defined as the last claim of any type. 

3 Opioids were identified from a list of generic brand names and converted into 30 day 
milligram morphine equivalents (MME) using the CDC compilation and conversion 
factors. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2020                   doi:10.20944/preprints202006.0295.v1

https://doi.org/10.20944/preprints202006.0295.v1


 42 

 

Table 2. Confounder Characteristics   

 

Immunotherapy 
(N = 504) 

Chemotherapy 
(N = 2,214) 

Oral Therapy 
(N = 2,747) 

Variable Count (%)  Count (%) 
 

Count (%) 
Age       
  <55 14 (2.8) 93 (4.2) 62 (2.3) 
  55-64 87 (17.3) 329 (14.9) 341 (12.4) 
  65-74 194 (38.5) 915 (41.3) 769 (30.0) 
  >75 209 (41.7) 876 (39.6) 1574 (57.3) 

Race       
White 369 (73.2) 1,582 (71.5) 1,863 (67.8) 
Asian 7 (1.4) 33 (1.5) 68 (2.5) 
Black 62 (12.3) 284 (12.8) 376 (13.7) 
Hispanic 22 (4.4) 127 (5.7) 252 (9.2) 
Unknown 24 (8.8) 188 (8.5) 188 (6.8) 

Education level       
No College 122 (24.2) 689 (31.1) 814 (29.6) 
Some College or More 348 (69.0) 1400 (63.2) 1827 (66.5) 
Unknown 34 (6.7) 124 (5.6) 105 (3.8) 

Household income range       
<50k 148 (29.4) 798 (36.0) 997 (36.3) 
50k-99k 164 (32.4) 656 (29.6) 862 (31.4) 
>99k 119 (23.6) 431 (19.5) 527 (19.2) 
Unknown 73 (14.5) 329 (14.6) 361 (13.1) 

Geographic Region1       
New England 24 (4.8) 109 (5.0) 151 (5.5) 
Middle Atlantic 37 (7.3) 134 (6.1) 257 (9.4) 
South Atlantic 129 (25.6) 554 (25.0) 582 (21.2) 
East North Central 76 (15.1) 305 (13.8) 403 (14.7) 
East South Central 20 (4.0) 86 (3.9) 89 (3.2) 
West North Central 63 (12.5) 386 (17.4) 137 (5.0) 
West South Central 50 (9.9) 231 (10.4) 250 (9.1) 
Mountain 75 (14.9) 221 (10.0) 302 (11.0) 
Pacific 30 (6.0) 179 (8.1) 557 (20.3) 
Unknown 0 (0.0) 9 (0.4) 19 (0.7) 

Product       
HMO 128 (25.4) 797 (36.0) 991 (36.1) 
PPO 36 (7.1) 181 (8.2) 208 (7.6) 
Other 340 (67.5) 1,236 (55.9) 1,548 (56.4) 

Metastatic       
Yes 474 (94.0) 2010 (90.8) 2,301 (83.8) 
No 30 (6.0) 204 (9.2) 446 (16.2) 

ASO       
Yes 96 (19.0) 344 (15.7) 434 (15.8) 
No 408 (81.0) 1,866 (84.3) 2,313 (84.2) 

Provider       
   Urologist 167 (33.1) 4 (0.2) 318 (11.6) 

Other/ Unknown 337 (66.9) 2209 (99.8) 2428 (88.4) 

Comorbid Conditions       
Diabetes 154 (30.6) 593 (26.8) 802 (29.2) 
Hypertension 362 (71.8) 1,479 (66.8) 1,920 (69.9) 
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Arrhythmia 86 (17.1) 398 (18.0) 640 (23.3) 
CHF 42 (8.3) 180 (8.1) 359 (13.1) 
Osteoporosis 55 (11.0) 114 (5.1) 204 (7.4) 

 
Table 2 Legend 
Characteristics of patients by first of focus treatment given: immunotherapy (sipuleucel-
T), chemotherapy (docetaxel), and oral therapy (enzalutamide or abiraterone) 
HMO, health maintenance organization; PPO, preferred provider organization; ASO, 
administrative services only (self-funded health plan); CHF, Congestive Heart Failure 
1Geographic region: 

• New England (NE): Connecticut (CT), Maine (ME), Massachusetts (MA), New 
Hampshire (NH), Rhode Island (RI), Vermont (VT) 

• Middle Atlantic (MA): New Jersey (NJ), New York (NY), Pennsylvania (PA)  

• East North Central (ENC): Illinois (IL), Indiana (IN), Michigan (MI), Ohio (OH), 
Wisconsin (WI)  

• West North Central (WNC): Iowa (IA), Kansas (KS), Minnesota (MN), Missouri (MO), 
Nebraska (NE), North Dakota (ND), South Dakota (SD) 

• South Atlantic (SA): Delaware (DE), Washington D.C. (DC), Florida (FL), Georgia 
(GA), Maryland (MD), North Carolina (NC), South Carolina (SC), Virginia (VA), West 
Virginia (WV) 

• East South Central (ESC): Alabama (AL), Kentucky (KY), Mississippi (MS), 
Tennessee (TN) 

• West South Central (WSC): Arkansas (AR), Louisiana (LA), Oklahoma (OK), and 
Texas (TX)  

• Mountain (M): Arizona (AZ), Colorado (CO), Idaho (ID), Montana (MT), Nevada 
(NV), New Mexico (NM), Utah (UT), Wyoming (WY) 

Pacific (PAC): Alaska (AK), California (CA), Hawaii (HI), Oregon (OR), Washington 
(WA) 
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Table 3: Estimates of Causal Treatment Effects Across Methods of Oral Therapies 
or Chemotherapy Compared to Reference Immunotherapy 

  Non-Causal  ATT ATE 

  
Unadjusted 
Association 

Matched  
Spline of 
Propensity 
Score  

IPTW using 
Propensity 
Score from 
Logistic 
Regression 

IPTW using 
Propensity 
Score from 
CBPS 

Multivariate 
Adjustment  

Binary Outcome: Emergency Room visit in 60 days - Odds Ratio Scale 

Oral Therapy 
0.75 0.89 0.83 0.56 0.59 0.80 

(0.46,1.23) (0.53,1.50) (0.50, 1.38) (0.26,1.23) (0.28,1.22) (0.47, 1.37) 

Chemotherapy 
1.86 1.74 1.75 1.79 1.81 1.70 

(1.16, 2.97) (1.08, 2.80) (1.09,2.82) (1.09,2.93) (1.11,2.95) (1.03, 2.81) 

Count Outcome: Number of Emergency Room visits in 180 Days - Rate Ratio Scale 

Oral Therapy 
0.92 1.00 0.99 0.87 0.88 0.96 

(0.56,1.52) (0.59,1.71) (0.63,1.56) (0.48,1.60) (0.46,1.70) (0.60, 1.53) 

Chemotherapy 
1.87 1.86 1.72 1.74 2.75 1.73 

(1.36,2.58) (1.15 3.00) (1.13,2.61) (1.29, 2.57) (1.73, 4.38) (1.15, 2.58) 

Time to Event Outcome: Total Time on Treatment – Difference in Mean Days on Treatment from 
Immunotherapy (restricted to 5 years of follow-up) 

Oral Therapy 
-68 -52 -49 -27 -31 -57* 

(-106, -30) (-92, -12) (-88, -9) (-45, -10) (-48, -13) (-95, -19) 

Chemotherapy 
-135 -164 -167 -164 -139 -135* 

(-174, -96) (-213, -117) (-214, -120) (-184, -144) (-160, -119) (-174, -95) 

Time to Event Outcome: Total Time in Database - Difference in Mean Days in Database from 
Immunotherapy (restricted to 5 years of follow-up) 

Oral Therapy 
-146 -130 -125 -107 -116 -124* 

(-184, -109) (-169, -90) (-164, -96) (-125, -90) (-134, -98) (-226, -22) 

Chemotherapy 
-147 -172 -177 -186 -155  -147* 

(-186, -108) (-200, -125) (-224, -131) (-207, -164) (-176, -134) (-194, -101) 

Longitudinally Varying Repeated Measures Outcome: Opioids Prescribed in Morphine Milligram 
Equivalents per 30-day period (mg/30 days) for Patients Prescribed 

Difference in Mean mg/30 days, Oral Therapy from Immunotherapy  
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Treatment 
Start 

-83 -144 -104 -211 -44 -106 

(-391,224) (-464, 177) (-420, 212) (-846, 423) (-311,221) (-419,208) 

90 Days   
-130 -169 -151 -342 14 -130 

( -380, 121) (-431, 94) (-412, 110) (-738,52) (-220, 249) (-388, 128) 

180 Days  
-178 -263 -199 -469 -63 -181 

(-497, 141) (-599, 73) (-526, 128) (-1114,177) (-343,216) (-506, 144) 

Difference in Mean mg/30 days Chemotherapy from Immunotherapy  

Treatment 
Start 

187 291 203 301 258 177 

(-155,530) (-133, 716) (-173, 578) (-100, 702) (-46, 563) (191, 547) 

90 Days 
34 97 50 -64 44 25 

(-248,316) (-252,447) (-272, 373) (-415, 287) (-229, 317) (-290, 341) 

180 Days 
226 234 242 112 284 235 

(-133, 586) (-220,687) (-150, 635) (-298,521) (-50, 619) (-152, 622) 

 

Table 3 Legend: Table or estimates and confidence intervals for the treatment effect on 
each outcome. Immunotherapy is the reference group for each treatment comparison. 
Estimates reported are unadjusted association (before any adjustments are used, so 
estimate is non-causal observed association), using a propensity matched dataset, 
adjusting for propensity score in the outcome model, inverse propensity score weighting 
(IPTW) and covariate balance propensity score (CBPS), and estimate from predicted 
outcomes use full covariate adjustment. For binary and count outcomes, multivariate 
adjustment estimates come from G-computation. For time to event outcome, 
multivariate estimates are difference in mean time, restricted to 5 years of follow-up 
time. For time-varying, estimates are difference in mean opioid morphine milligram 
equivalents at the designated time points. 

*Adjustment covariates limited to age and race due to computational issues with full 
covariate set. 
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