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Abstract

Medical insurance claims are becoming increasingly common data sources to answer a
variety of questions in biomedical research. Although comprehensive in terms of
longitudinal characterization of disease development and progression for a potentially
large number of patients, population-based studies using these datasets require
thoughtful modification to sample selection and analytic strategies, relative to other
types of studies. Along with complex selection bias and missing data issues, claims-
based studies are purely observational, which limits effective understanding and
characterization of the treatment differences between groups being compared. All these
issues contribute to a crisis in reproducibility and replication of comparative findings.
This paper offers some practical guidance to the full analytical process, demonstrates
methods for estimating causal treatment effects on several types of outcomes common
to such studies, such as binary, count, time to event and longitudinally varying repeated
measures outcomes, and aims to increase transparency and reproducibility. We provide
an online version of the paper with readily implementable code for the entire analysis
pipeline to serve as a guided tutorial for practitioners. The online version can be
accessed at https://rydaro.github.io/. The analytic pipeline is illustrated using a sub-
cohort of patients with advanced prostate cancer from the large Clinformatics TM Data
Mart Database (Optuminsight, Eden Prairie, Minnesota), consisting of 73 million distinct

private payer insurees from 2001-2016.
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Introduction and Background

Health service billing data can be used to answer many clinical and epidemiological
guestions using a large number of patients and has the potential to capture patterns in
health care practice that take place in the real world.1,2,34,5 Such large datasets allow
investigators to conduct scientific queries which may be difficult, if not practically
impossible, to answer via a randomized clinical trial. For example, comparing multiple
treatments that are produced by different drug companies and with varying guidelines
for their use for a disease may only be feasible in a real healthcare database.s,7
Although these large data sources offer a wealth of information, there are many
challenges and drawbacks, such as confounding, selection bias, heterogeneity, missing
values, duplicate records and misclassification of disease and exposures. These added
complexities of these observational datasets contribute to the challenge of reproducing
findings from studies using administrative health data. As regulatory agencies and
pharmaceutical companies increasingly consider studying the real world evidence
present in such databases, the importance of proper methodology, reporting, and
reproducibility of the analysis for a broad audience of researchers is of
necessity.s,9,10,11,12,13,14 We emulate newly introduced principles from the predictability,
computability, and stability (PCS) framework for veridical data scienceis to examine
comparative effectiveness research questions that administrative claims data can be
used to address. We provide documentation and code in R Markdown for each stage of

analysis online at https://rydaro.github.io/ .
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Challenges to Characterizing Treatments using Claims Data

Healthcare claims data has been extensively criticized for its use in epidemiological
research.16,17 These types of data are prone to issues such as misclassification, missing
data, and bias. For example, ICD codes are entered by the care provider, and thus
certain diagnoses may be missed or may not be accurate or may differ across
providers.17 Further, coding schema can change over time, such as the change from
ICD-9 to ICD-10, which can further complicate analyses. Outcomes can be particularly
difficult to define and identify. For example, there is no agreed upon algorithm for
identifying Emergency Room visits, and thus many definitions are used.1s While not as
clean as gold standard clinical trial data, these datasets are still the best source of data
for a wide variety of questions regarding drug utilization, effectiveness, and monitoring
of adverse events.19,20 Claims data have the benefit of reflecting how medications are
actually being prescribed, and thus may provide a more accurate depiction of treatment
benefit in practice or real-life evidence. Further, these datasets provide a wide breadth
of a patient’s interaction with the healthcare system that electronic medical record
(EHR) data alone,21 going beyond just visits by adding procedures, tests, and pharmacy
fills. With proper study design and methodological considerations, many of the common
issues and concerns can be addressed,s9,10,11,12,13,14 and these large databases of
longitudinal data can provide insight to many research questions and be used to

emulate a clinical trial.22
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With claims data, and observational data in general, the assignment of treatment is not
random, and thus susceptible to confounding and selection bias. In practice, the
clinician and patient decide among treatment options based on the patient’s
circumstances and overall health. Further, these same factors may also be associated
with the health outcome of interest. If not properly incorporated, these factors will
misrepresent and bias the true treatment effect comparison. While there are several
approaches to handling confounding and selection bias available, propensity score-
based methods are versatile in that they can be used for a variety of research questions
and can be used for many different kinds of study designs and databases. Propensity
score models can be particularly useful when there are many potential confounders and
the outcome is rare. Propensity score approaches also prevent p-hacking of a desired
result in the outcome model.23 Thus, these methods have gained increasing popularity,
especially for questions of comparative effectiveness in pharmacoepidemiologic and

pharmacoeconomic research.

Lack of Reporting and Reproducibility

A downside to this rise in popularity is that the assumptions and critical steps for the
propensity score-based methods are often ignored or unreported. This lack of reporting
hinders other researchers’ ability to replicate the findings. Ali et al24 found 296 published
medical papers in a 6-month period that reported use of a propensity score method.
However, in their systematic review, they found that 194 (65.5%) did not report how
variables were selected for the propensity model, and that only 177 (59.8%) reported

test for balance of confounders between the two groups of comparison. Others have
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also noted common misuse of propensity methods.25,26,27,28 Yao et al.29 concluded in a
recent systematic review of cancer studies that there is considerable room for
improvement in reporting propensity analysis and offered guidelines for such reporting.
Yet, some researchers are still not clear with their use of propensity methods and
presentation in a scientific paper. For example, when comparing the effectiveness of
allopurinol or febuxostat on reducing the risk of atrial fibrillation using Medicare data,
Singh et also matched subjects based on the propensity score. While they did report
which variables were used for propensity construction and balance diagnostics after
matching, many important details were not reported. Analysis questions arise, such as
how the propensity score was calculated (logistic regression or otherwise), what
distance measure was used to match subjects, if subjects were matched with or without
replacement. These details are essential for researchers wishing to replicate the results
reported. Additionally, even for many those researchers that did describe such
methods, sensitively analysis to the results were often not reported. Propensity score
methods do not account for unmeasured confounding, and sensitivity analyses can
provide the reader with crucial information on the robustness of the findings. In many
situations it is not clear what is the target estimand, for example, whether we are

estimating the average treatment effect or the conditional average treatment effect.

Austinz1 provides a conceptual overview of propensity score methods from a

foundational and introductory standpoint. Stuart et als2 provide a general framework for
using propensity methods with observational health care data, providing an example of
effect estimation of drug monitoring programs for individuals with serious mental illness.

Additionally, Brookhart et alsz provide practical example when comparing the risk of
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angioedema between two treatments for hypertension. While these papers offer an
elegant and lucid exposition of the underlying principles, and are extremely important
contribution to the literature, these overviews do not offer the reader complete practical
guidance at every analysis step, as there remains a gap from methodological
understanding to actual implementation. Further, these tutorials do not directly address
the use of propensity methods for a range of outcomes commonly found in claims data,
such as non-continuous, time to event or correlated outcomes. For example, a
researcher may be interested in if a rare adverse event occurs or not (categorical) or
monitoring a patient’s disease progression over the course of several visits (correlated
repeated measures and time to event outcomes). There are unique assumptions and
considerations when using propensity methods for these different types of outcomes
beyond those used for a simple continuous and normally distributed outcome.
Additionally, there is need for a demonstrated sensitivity analysis after the treatment

effect estimation to understand the strength of evidence supporting the results.

Therefore, there is need for a usable, simple and comprehensive tutorial for all stages of
analysis when characterizing a binary treatment effect on various outcome types using
claims data, with accompanying software code for each step. This paper outlines the
use of three primary propensity score-based methods: Propensity Matching, Spline
Adjustment, and Inverse Probability of Treatment Weighting (IPTW). The paper also
details how to use each method to estimate average treatment effect for four common
outcome types: 1) Binary, 2) Count, 3) Time to event, and 4) Longitudinally varying

repeated measures. Finally, we conduct sensitivity analysis for two of the outcome
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types. To improve transparency for reproducibility and usage of the methods discussed,

detailed R code is provided in an online version at https://rydaro.github.io/ .

To illustrate the entire process, we chose to study treatment patterns and treatment
outcomes among patients with advanced stage prostate cancer from the Clinformatics
TM Data Mart Database (Optuminsight, Eden Prairie, Minnesota). This database has a
wealth of de-identified medical claims, pharmacy claims, inpatient confinement
information, provider information, and socio-demographic information. Each outcome
type is defined from emergency room visits (binary and count), time on treatment and in
database (time to event), and prescription fills for opioids (repeated measures over

time).

Causal Inference and Average Treatment Effect

Causal inference relies on the potential-outcomes framework, where each individual has
a potential outcome under each possible treatment, with in reality only one actually
assigned to him/her.34 This framework allows researchers to clearly define what it
means for an effect to be causal through the use of counterfactuals that can be viewed
as missing data. Consider the case of two possible available treatments, a treatment of
interest compared to another established treatment for the same disease, with a single
outcome measured after treatment. We would define the causal effect of the treatment
of interest as the difference between the actual and counterfactual outcomes in both

treatment scenarios.

As described by Rubin,3s,35 many causal inference problems involve comparison of

potential outcomes on the same (say it") individual. Define Y;(0) as the potential
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outcome under the control treatment, and Y;(1) as the potential outcome under the
active treatment of interest. We wish to know the treatment effect for each individual,
typically defined as Y;(1) — Y;(0), which cannot be estimated directly from the observed
data because for each individual we observe either Y;(1) or Y;(0), but never both. If
subject i actually received the active treatment, denoted by T; = 1,then Y;(1) is
observed and Y; = Y;(1); otherwise, T; = 0, and we observe Y; = Y;(0), under the stable
unit treatment value and consistency assumptions. Often, researchers are interested in
how patients receiving a specific treatment compares to a comparison group within a
larger population. We can define the average treatment effect (ATE) as E[Y;(1) — Y;(0)],
which is the average treatment effect across the entire population.ss In a randomized
trial, we can estimate ATE as E[Y;(1) — Y;(0)] = E[Y;|T; = 1] — E[Y;|T; = 0] as
randomization ensures that the treatment groups are balanced and hence E[Y;(a)] =
ElY;(@)|T; = a] = E[Y;|T; = a] for a = 0,1. 31,37 ATE can be defined on different scales,

E[Vi|T; = 1]

E[Y;|T;=1]/(1-E[Y{|T;=1])
BT, = 0] e

such as a ratio E[Yi|T;=0]/(1=E[¥;|T;=0])

or odds ratio for binary outcomes

can also define the average treatment effect on the treated (ATT) as E[Y;(1) —
Y;(0)|T; = 1] and the average treatment effect on the control (ATC) as [Y;(1) —

Y;(0)|T; = 0] when a particular sub-population is of interest.

The standard method of estimating treatment effect for data from a randomized trial, or
from observational data that is sufficiently balanced, is a general linear model with the

treatment variable as the sole predictor:

;) = Bo + BT
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where u; = E[Y;|T;] and f; is the parameter of interest for treatment comparison. In the
simple linear regression case where g() is the identity function, g, = E[Y;|T; = 1] —
E[Y;|T; = 0]. When using claims data, the mechanism behind treatment assignment is
not random, and thus the treatment populations may differ greatly. Therefore

E[Y(D|T =1]# E[Y(1)] and E[Y(0)|T = 0] # E[Y(0)] in general.31 As a result, the

estimate for g, will not equal the ATE because of confounding.

When confounders are present, a natural inclination would be to extend our outcome

model to account for such confounders:

gu;) = Bo + BiTi + aXy; + B3 Xzi+... + B X

However, B, in the multivariate adjustment model generally does not estimate ATE
even if we have the correct confounders and the model is correctly specified,
particularly when g() is not a collapsible link function. One approach to estimate ATE is
G-computation, which predicts the pair of potential outcomes for each individual.3s39
The accompanying standard error can be computed using sandwich estimation.4o,41
While a valid analytical approach, it may be difficult for the researcher to specify the
outcome model, as there may be limited understanding of the relationship between the
outcome and each covariate. The notion of the propensity score, a unidimensional
construct, offers an alternative analytical approach that may be more suitable. The
researcher may have more subject matter knowledge to construct a proper propensity
score model, may want to avoid unconscious bias of demonstrating a desired causal
effect in the outcome models by choosing confounders to adjust for, or use the

propensity score simply as a dimension reduction technique. Using the propensity score

10
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in analysis involves several steps that have to be exercised with care and caution, as
outlined in Figure 1. Below, we briefly explain each analysis step, and demonstrate all

steps in the prostate cancer treatment example.

Propensity Score Estimation

Proposed by Rosenbaum and Rubin,42 the propensity score is defined as e; =

Pr(T; = 1]|X;). The score can be interpreted as the probability a subject receives
treatment, predicted from the confounding variables denoted as X;. Rosenbaum and
Rubin42 showed that conditional on the propensity score, an unbiased estimate of ATE
can be obtained if the treatment is strongly ignorable. A treatment is strongly ignorable if
two conditions are met: 1) 0 < P(T; = 1|1X; ) <1, 2) (Y;(0),Y;(1)) L T;|X;.42 The second
of these assumptions is the “no unmeasured confounders” assumption. Thus, a critical
assumption for use of the propensity score is that all variables that affect the outcome
and treatment assignment are measured. If all confounding variables are identified and
included, and the model is correctly specified, this score achieves covariate balance
between treatment and control groups. More formally, the correct e; satisfies that T; L
X;|e;, removing the effect of the confounders from the treatment effect when we
condition on e; alone. We explain covariate balance in further detail in the balance
assessment section. With the treatment groups more comparable, we can better
characterize the treatment’s effect on the outcome of interest. We can estimate this
probability using logistic regression, predicting treatment received from our observed

covariates.

11
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While logistic regression is commonly used to estimate this propensity score,
researchers have expanded their attention beyond parametric models. Many have used
machine learning methods such as boosted logistic regression, random forests, and
neural networks.4s,44,45 Another method we highlight in this paper is the covariate

balancing propensity score (CBPS) proposed by Imai and Ratkovic.4e

Covariate Balancing Propensity Score (CBPS) is a generalized method of moments
estimate that captures two characteristics of the propensity score, namely, as a
covariate balancing score and as the conditional probability of treatment assignment.4s
This method is a more automated form of propensity score construction, in that it
calculates the propensity score with the exact balancing goal in mind. Thus, CBPS
provides a balancing score for each subject that ensures all covariates included in the
CBPS construction are balanced. Therefore, CBPS is an efficient alternative to
propensity score estimation by a parametric model. We do note that if using another
estimation technique, the ultimate goal of the propensity model is not to predict

treatment assignment, but to reduce bias by balancing covariates.s7

Still, the treatment effect estimation methods are sensitive to misspecification of the
propensity score model, and thus the variables and their functional forms used in this
model can affect the estimation of average treatment effect. Many suggest including all
variables at all associated with the outcome, while excluding those only associated with
the treatment of interest, based on subject-matter knowledge.ss 48,49,50,51 Vanderweeles2
provides a comprehensive general guide to confounder selection in observational
studies. The sensitivity analysis can show how estimates can change under many

plausible propensity score models.

12
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Using the Propensity Score

Once the propensity score is constructed, there are four basic ways to use the score in
treatment effect estimation: 1) Stratification based on the propensity score, 2) Direct
covariate adjustment using propensity score as a covariate in the outcome model, 3)
Matching treatments and controls based on the propensity score (PM), and 4) Inverse
probability treatment weighting on the propensity score (IPTW). Stratification ranks
subjects by the estimated propensity score and splits them into mutually exclusive
stratum (say, deciles). The treatment effect in each stratum (decile) can then be
estimated and pooled to obtain an overall treatment effect.ss We will not discuss
stratification at length in the main paper as it is used less commonly,s455 and refer you
to the online supplementary materials and website for further information regarding the
implementation of this method. The rest of this paper will focus on the three routinely

used methods: Spline Adjustment, Propensity Matching, and IPTW.

Spline Adjustment

The propensity score is the coarsest balancing score while the full list of confounders is
the finest.seé This approach is similar to the G-computation approach above, except the
confounders in the outcome model are replaced with a single covariate of the predicted
propensity score. The ATE is calculated from the predicted potential outcomes for each
individual, and estimate the standard error using sandwich estimation.ss,39,40,41
Typically, the propensity score is fit with a smoothing function, such as a polynomial
spline function,se allowing for a more flexible model that is also computationally fast and

reliable.

13
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Propensity Matching

The first method discussed is matching observations based on the propensity score to
estimate ATT. Often, exactly identical scores do not exist across individuals, and thus
matching requires a clear definition of “closeness” of propensity based on a measure of
distance.s758 Stuart et al.s7 provide a comprehensive overview of the various matching
methods available. In practice, it is common to do 1: 1 matching, where each individual
in the treatment group is matched to a single individual in the comparison group, based
on the predefined measure of closeness. This matching ratio can result in major loss of
data, especially if the treatment groups are of very different sizes. An alternative is using
1: k matching, where k is a max number of controls. With a defined distance, called a
caliper, all potential matches within the distance up to k will be matched. This allows for
maximal efficiency of data while still reducing bias since all close matches are kept.
There is little guidance on what caliper a researcher should specify; however, Austinsg
suggests a caliper of 0.2 standard deviations of the logit of the propensity score as a
default choice that works well across scenarios. Matching typically estimates the ATT,

though some packages and techniques can estimate ATE.ss

Inverse Probability of Treatment Weighting (IPTW)
The next method we consider is the inverse probability of treatment (IPTW) proposed by

Rosenbaum.so We can calculate the IPTW v; as

T 1-T,
i /\_l+( /\l)
€ (1_81)

where ¢; is the estimated propensity score. These weights can be very unstable for

extreme values of ¢;, so trimming (sometimes called truncating) these values away

14
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from the extreme is often practiced.s1,62 In this paper we assume values greater than .99
or less than .01 to be extreme, so these values are rounded to the less extreme
boundaries. The construction of weights used here estimates ATE, and different

constructions can be used for ATT and other effect estimates of interest.s2

Balance Assessment

It is good practice to check if the chosen propensity method achieved its goal of
balancing the covariates. While there are several balance diagnostics a common
balance diagnostic originally proposed by Rosenbaum and Rubines is the standardized

difference (or standardized bias) for 1:1 matching, defined as

This is the difference in mean value of the covariate in the treatment group x; vs. the

control group x,, adjusting for variability s,,, where here we defined s, as the pooled

2 2
standard deviation of the two treatment groups, defined as s, = fsf :SC .64,65 This value

is calculated for each covariate, with values closer to zero indicating better mean
balance and potentially less bias. The measure can be calculated for both continuous
and categorical indicator variables.29,65 A lack of balance indicates that the propensity
model may be incorrect, or that a different method should be used. There is no
generally accepted threshold, although some suggest that the standardized difference
should not be greater than 0.1.64,6566 We can modify this difference calculation for a

different ration of matching, say 1: k, using weights.s7,6s8 The weighted mean is defined

as x, = % and the weighted standard deviation is

Wi

15
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[ 2w — Xy)?
Sw = 2w
Ew)? — Yw;?

where w; is the weight for subject i. For 1:1 matching, all observations have equal
weight. If 1: k matching is used, observations in the control treatment group have 1/k
weights and treated observations have weights 1. For IPTW, the calculated weights can
be used, so v; = w; for each observation.es If sufficient balance is not achieved, the
process of propensity score construction and balance assessment is repeated, by
changing the functional form of the propensity model. An important note here is that a
researcher can repeat this process until balance is achieved to a desired level.
Experimenting with the model specification at this stage is preferable to post-hoc
modification of the outcome model with ATE as a desired target, especially in terms of

reproducibility of results.

Treatment Effect Estimation

Once sufficient balance has been achieved, one can estimate the average treatment

effect using a general outcome model

gwy) = Bo + BTy
This model can be used directly on the matched dataset if 1:1 matching is used. If 1: k

matching or IPTW is used, the constructing weights need to be used as well. Weights
can be incorporated in the same fashion as weights from a survey design, using robust
standard error estimation to account for error in weight estimation.s1,68 For the spline

adjustment model, ATE is estimated by G-computation (also called standardization) with

16
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direct variance calculation.se Once an estimate is obtained, it is often useful to run a
sensitivity analysis to see how the estimate may change under different model
specifications and understand how sensitive the result is to some unmeasured

confounder.
Sensitivity Analysis

For the sensitivity analysis, we adapt the visualization tool of capturing vibration of
effects from Patel et al.e9 to a universe of potential propensity score models. This
visualization tool allows the researcher to see the results of many possible models,
providing an overall understanding of the ATE estimate’s robustness to model
specifications with the observed set of confounders. To summarize sensitivity to an
unobserved confounder, we calculate the estimate’s E-value.7o The E-value tells us the
minimum value of the association parameter that an unobserved confounder must have
with both the treatment and the outcome of interest. Put more simply, the E-value tells
us how strong an unmeasured confounder must be to explain away a significant effect.
A large E-value indicates that the significance of our estimate for ATE is robust to
confounders not accounted for, whereas a small E-value is weak evidence of a

significant causal relationship.

Example: Comparing Oral Hormone Therapy vs.

Immunotherapy for Advanced Prostate Cancer

Many patients with advanced prostate cancer will receive a number of different

therapies sequentially to try to control the disease and symptoms. The three different

17


https://doi.org/10.20944/preprints202006.0295.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2020

types of outcomes that we consider are based on what clinicians are typically interested
in. Patients may have varying degrees of responsiveness and tolerance to different
therapies during the period of treatment. For example, some patients who experience
pain from their cancer will have pain relief after starting a treatment and thus require
less opiates to manage their cancer. On the other hand, some patients will have poor
tolerance of specific therapies and may experience exacerbation or development of
comorbid conditions and seek emergency critical care. It is also important to note that a
treatment is typically only continued for as long as it is effectively controlling the disease
or symptom. Thus, the longer a patient is on a treatment, presumably the longer the

duration of effective disease control on that treatment.

Cohort Definition and Data Preparation

We defined a cohort of men who received treatment for advanced prostate cancer,
based on receiving one of four focus medications (abiraterone, enzalutamide,
sipuleucel-T, docetaxel) known to have a survival benefit in men with advanced prostate
cancer from January 2010 through June 2016 from the Clinformatics TM Data Mart
Insurance Claims Database. The initial cohort included any patient over the age of 18
with a diagnosis of malignant neoplasm of the prostate, coded as “185” in ICD-9 and
“C61” in ICD-10. We restricted our final cohort to include patients that were continuously
enrolled in the plan for the 180 days before the first medication claim. Finally, we wished
to compare first-line therapies between patients where first-line treatment was defined
as the first medication given of the four focus medications. We then categorized patients

given abiraterone or enzalutamide as a common oral therapy group. Thus, there are

18
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three final first-line treatment groups: 1) Immunotherapy, 2) Oral Therapy, and 3)

Chemotherapy.

Define Treatment Effect (ATE)

Binary Outcome

We defined a binary outcome to be whether the patient had any emergency room (ER)
visit within 60 days of the first pharmacy claim of the focus medications. ER visits were
identified using both the provider and facility definition. The provider definition uses
Current Procedural Technology (CPT) codes 99281-99285, and the facility definition

uses revenue center codes 0450-0459, 098.18,71

Count Outcome

Using the previously defined ER visits, we counted the number of ER visits each patient
had within 180 days from the first pharmacy claim as a count outcome. ATE is defined

on the rate ratio scale
Time to Event Outcomes

We were also interested in the overall survival of patients; however, exact death dates
were unavailable with this version of the data. We thus considered two other time to
event outcomes as possible surrogates: time on treatment and time in database. Time
on treatment was defined as the time from start of first medication to the last claim of
any of the four focus medications, thus the event is stopping all focus treatment

permanently. Time in database was defined as the time from start of the first
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medication to the last claim for that subject within the Clinformatics TM Data Mart
Database for any medical-related issue. The last claim was identified by extracting the
latest claim from each dataset, removing those after the enrollment end-date, and taking
the maximum of those remaining. This definition of time in database could be
considered a censored surrogate for death because we expect most patients to have
medical needs until shortly before death. These two endpoints differ in that some
individuals may have stopped treatment from a focus medication, yet still used medical
services and managed pain beyond ending treatment, while others may have been
treated continuously right up until death. Patients would be expected to have less total
time on treatment if they had a highly resistant cancer that would not respond to any
treatments (and thus treatments would not be continued if they were ineffective), or if
they had severe toxicities to treatment that did not allow for continuation. Also, these
endpoints differed across treatment groups, with those on oral therapy continuing
treatment near the end of enroliment, whereas chemotherapy patients may stop a year
or more before ending enrollment. ATE was defined as the mean difference in time,

restricting to five years of follow-up.

Time Varying Repeated Measures Outcome

For the final longitudinal varying repeated measures outcome, we used opioid usage
over time, calculated using prescription drug pharmacy claims. Common opioid drug
types were identified and were converted into morphine milligram equivalents (MME)
according to the Center for Disease Control conversion factors.72 The total (MME)

supply prescribed was calculated in 30-day periods, starting with the 30 days before the
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first-line of treatment, which was used as a baseline, and continuing at 30-day intervals
for the duration of claims data available. Many patients with metastatic prostate cancer
have pain from their disease that require opiates for pain control. Therefore, the level of
MMESs may be a surrogate measure for disease burden, and disease response to
treatment. ATE is defined as the mean difference in opioids prescribed at three
specified time points: treatment start, 3 months after treatment start, and 6 months after

treatment start.

Potential Confounder Selection

Potential confounders were identified using previous research explored factors
associated with treatment and our outcomes of interest.73,74 These include age, race,
sociodemographic variables and comorbid conditions from Elixhauser Comorbidity
Index and Clinical Classification Software,7s,76 all shown in Table 2. For more detall, see

supplementary materials and website.

Propensity Analysis

Empirically identifying the optimal sequence of therapies through disease course is a
complex problem due to sparse sample size. To determine which first-line treatment
may lead to better outcomes regardless of which treatments a patient receives
subsequently, we classified patients into one of the three categories of treatment that
were prescribed first-line: oral therapy (abiraterone or enzalutamide), chemotherapy
(docetaxel), or immunotherapy (sipuleucel-T). Since cabazitaxel and radium-223 were

used infrequently as first-line treatments (n=110), we did not include patients who
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received cabazitaxel or radium-223 first-line in our analysis. We compared
immunotherapy to oral therapy and compared immunotherapy to chemotherapy in two
separate analyses. We chose immunotherapy as the reference group for both analyses,
as it is the only treatment among the four included in the final analysis for which there is
a clear treatment recommendation to be used in patients with minimally to
asymptomatic metastatic castration-resistant prostate cancer. Our step-by-step example
will primarily focus on the analysis process comparing immunotherapy to oral therapy

and follow the same for comparing immunotherapy to chemotherapy.

Propensity Score Estimation

We can construct a model for treatment assignment, T; = 0 if immunotherapy was given
and T; = 1 if oral therapy was given using logistic regression, and the CBPS method.
We repeat the same analysis comparing immunotherapy to chemotherapy in a separate
analysis. All potential confounders listed in the previous section were included. From the
regression results, we can calculate the estimated propensity score for each subject e;.
The propensity score constructed from the CBPS approach was implemented through
the R package CBPS.46 The weights from this propensity score were used in the
outcome models similar to the inverse probability weights. For chemotherapy

estimation, the urologist variable was excluded as a confounder due to low cell counts.

Propensity Score Matching

To create a matched dataset, we used the R package Matchit.7z We defined our
distance with logistic regression using the “nearest neighbor” method select matches

within a defined caliper distance of 0.2 standard deviations of the logit propensity score,
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with a variable matching ratio of 1: 4 within the defined caliper, without replacement.
These matching specifications were chosen to ensure maximal efficiency of this data.
By using variable matching, we allow multiple matches for a subject in the control group
if several in the treatment group have close propensity scores by our defined distance
measure. This allows us to retain more subjects in our analysis dataset than a standard
1:1 ration. The caliper was decided using an iterative process, where several calipers
were assessed and the one providing the highest quality matched sample was kept,

based on the standardized differences across the covariates.

Inverse Probability Treatment Weighting

Weights were created from both the logistic regression and CBPS estimated propensity
scores using the formula described above. Some weights were unstable, so propensity
scores greater that 0.99 were trimmed to 0.99, and scores below 0.01 were trimmed to

0.01. Trimmed weights were used for analysis.

Assessment of Covariate Balance

Each method can be assessed for successful reduction in standardized difference for
the analysis sample. Figure 2 shows a plot of the standardized difference of the
covariates between the immunotherapy group, and oral therapy group for CBPS, IPTW
and propensity matching methods. We can see that the inverse weighted data and the
matched sample reduced the standardized difference for many covariates, even if

perfect balance was not achieved. Unsurprisingly, the CBPS weights have very low
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standardized differences in the means, as the weights are constructed to achieve this
goal of exact matching. Here, we are assuming covariates have a linear relationship
with the outcome, and thus checking means is sufficient. With balance among the

covariates achieved, we can now begin treatment effect estimation.

Treatment Effect Estimation

Binary Outcome: Visit to the Emergency Room (ER) in 60 days

The first outcome of interest is whether a patient had an emergency room (ER) visit
within the first 60 days of starting their treatment. Let Y; = 1 if the i-th patient had an ER
visit within the first 60 days of starting their first treatment, and Y; = 0 if not. Thus, m;(1)
is the probability an individual had an ER visit if they received oral therapy as first-line
treatment, and m; (0) if they received the immunotherapy. We are interested in the odds
ratio patient had an ER visit when treated with oral therapy to the odds a patient had an
ER visit when treated with immunotherapy. We can model this odds ratio using a logistic
regression model We cannot yet make any causal inferences from this model, as we
haven’t addressed the imbalance across the confounding variables. After running this
model, we get an estimate of 0.75 (0.46,1.23), reported in Table 3. This odds ratio
indicates that patients treated with oral therapy first line had 0.75 times the odds of an

ER visit in 60 days than immunotherapy patients, before making adjustments.

Now we compare these results to our estimates of ATT and ATE. Since covariate
balance is achieved, we can run the marginal logistic regression model on our
propensity matched dataset, obtaining an estimate of 0.86 (0.51,1.45). Notice the larger

confidence interval, as the matching process reduced the sample size. Next, we fit an
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outcome model on the full dataset that uses the propensity score directly as a covariate,
using a spline function from the R package splines.7s ATE is calculate using the
methods above, and we obtain an estimate of 0.83 (0.49, 1.41). Now, we can again fit
the outcome model on the full dataset, now weighting each observation by the IPTW
weights from the propensity scores estimated through logistic regression and the CBPS.
Here, we use the same marginal model, using the weights for robust standard error
estimation as described previously. We did so by using the R package survey.79 The
estimates from these weighted models are 0.56 (0.26,1.23) and 0.55 (0.25 1.21).
Finally, we report the multivariate adjustment model using G-computation with ATE of
0.80 (0.47, 1.37). None of these ORs were statistically significant, indicating that there
may not be a significant difference in the odds of ER visits between these two treatment
groups. When comparing immunotherapy and chemotherapy, the IPTW logistic
regression and CBPS estimates are 1.51 (0.87, 2.61) and 1.85 (1.12,3.05), suggesting

that chemotherapy patients may have a greater odds of an ER visit.

Count Outcome: Number of Emergency Room (ER) visits in 180 days

Next, we model our count outcome, the number of ER visits, where Y; can take any
positive integer values. We are interested in the rate ratio of the expected number of ER
visits had all patients taken chemotherapy or oral therapy compared to immunotherapy.
We can model that difference using a Poisson model with a log link. All models we fit in
the binary outcome can be fit in a similar fashion to this count outcome, now considering

the different link function and scale of ATE. Table 3 shows the results of each method
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for the count outcome. The models show that we can expect the same number of ER
visits for patients who receive an oral therapy first-line vs. those who receive
immunotherapy. For example, the matched ratio estimate is 1.00 (0.59,1.71), indicating
the expected number of ER visits is the same for both treatment groups. However, we
see a different pattern when comparing immunotherapy to chemotherapy, the matched

ratio is 1.86 (1.15, 3.00), indicating that patients on chemotherapy have more ER visits.

Time to Event Outcomes: Time on Treatment and Time in Database

We will now discuss the time to events outcomes previously described. For each

treatment group, we are interested in the difference in days from stopping all treatment,
and the difference in days from total time in database. We can define these differences
in terms of Restricted Mean Survival Time (RMST) within a given follow up window. We

can calculate RMST, denoted ., as the area under the curve of the survival function:

w, = fo s (t)dt

where S(t) is the survival function, and t is the parameter for restricted the follow-up
time. We can then define our ATE estimate as p,; — 1, Or the difference in RMST
between the treatment groups being compared. For example, when looking at our
treatment time outcome comparing oral therapy to immunotherapy, we can interpret this
ATE as “when restricting follow-up to t days, patients given immunotherapy as first
treatment will on average be treated u, days longer than patients give oral therapy as
first treatment.” For both of our outcomes, we estimated the survival function S(t) using

a Kaplan-Meier function, and choose 7 = 1825, restricting our follow-up time to 1,825
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days - the equivalent of five years. We can estimate the difference in RMST using the
package survrm2.so We can also obtain estimates of RMST with covariate adjustments1

and with weights we calculate from the propensity score.s2

Here, the matched estimate of -49 (-88, -9) shows that patients who receive an oral
therapy first-line stopped treatment on average 49 days sooner than patients given the
immunotherapy first-line, restricting to five years of follow-up. In other words, we’d
expect patients who received an oral therapy first-line stop all treatment much sooner
than patients who received immunotherapy as their first-line therapy. Again, looking at
the matched estimates now comparing immunotherapy to chemotherapy, patients who
received chemotherapy as first-line stopped all treatment an average of 167 (120, 214)
days sooner than those patients who started on immunotherapy. In Table 3, we can see
the time differences for ending enroliment as well, with matched estimates of -125 (-
164, -96) comparing oral therapy to immunotherapy, and -177 (-224, -131) comparing

chemotherapy to immunotherapy.

Longitudinally Varying Repeated Measures Outcome: Opioid Usage

During Treatment

Lastly, in those patients who had an opioid prescribed at any time, we evaluated the
longitudinally varying repeated measures outcome of opioids prescribed in MME per
month for patients who had baseline opioid use before starting one of the focus
treatments for their prostate cancer. Each patient included in this subset had baseline
opioid prescriptions (30 days prior to start of treatment) as well as 180 days of opioids

prescribed after initiation of treatment. The opioid prescriptions were defined in 30-day
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periods. We wish to model the trend and to test if there is any difference in mean opioid
prescribing at any time point between treatment groups. We can model the quantity of

opioids prescribed in MME Y;; at the jt" 30-day period t; for each individual i as:
Yij = Bo + boi + B1T; + S(t;) + S(t)T; + €5

where j = 1,..,n;, n; € {1,2,3,4,5,6,7}, by ~ N(0,7%) and ¢; ~ MV N, (0,0°1I,,,). Here,
S(t;) is specified as a penalized regression spline with 3 degrees of freedom, allowing
more flexible smooths for modeling the prescribing trend over time. We set the smooth
in an interaction term to allow for different smooth trends for the immunotherapy and
oral therapy treatment groups. Thus, the main parameter of interest tells us the
difference in the mean opioid prescribing over time between the two groups. We can fit
each of the methods in this outcome, adding covariates and smooths directly in the
model, and fitting the model on a matched dataset. We use the R package mgcv.s3
Maindonaldss also provides more detail on smooths when using GAM models. An
important note when using IPTW and CBPS is that we are only weighting on the initial
treatment, so at other time points the weights may bias the results. Also, we truncated
the time to six months because many patients will only respond to or tolerate treatment
for around six months before switching therapies to another focus treatment. Opiate use
may parallel disease response to treatment in those who are started on opiates for their
cancer. In other words, a patient’s opiate use may decrease when their cancer is
improving on treatment and subsequently increase when the cancer has become
resistant to treatment. Pain management beyond six months from the initial treatment is

unlikely related to that treatment as many patients have changed regimens or stopped
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treatment altogether. Any inferences using the full time period will be heavily biased by
changing therapy or require advanced methods to handle switching treatments, such as
marginal structure models.ss Table 3 shows the estimated difference in mean opioid
usage between groups at selected time points. For example, the difference in MME
prescribed to an average individual in the immunotherapy group vs. the oral therapy
group at treatment start is -83 MME (CI -391, 224) in the unadjusted model. In other
words, among patients prescribed opioids, the average individual in the immunotherapy
group treatment is predicted to have 83 more MME's of prescribed opioids than the
average individual in the oral therapy group at treatment start; however, this difference
is not significantly significant. This estimate changes 90 days post treatment start to -
130 MME (CI -380, 121) demonstrating how the estimate varies across time. We did not
detect any significant differences in opioid usage at any time point, for both the oral and

immunotherapy comparison and the chemotherapy and immunotherapy comparison.

Sensitivity Analysis

We assessed robustness of the estimates by looking at the vibration of effects to many
propensity score models based on observed set of confounders, and also calculating an
E-value for unobserved confounding. For the binary outcome, we assessed the
estimates to all possible propensity score models for three selected methods. Age was
included as a baseline predictor in all models. E-values were calculated for the model

that included the full covariate set. Figure 3 shows the results of these analyses.
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Discussion

We have presented a very simple and standard use of propensity methods for
estimating the causal effects of a treatment on the outcomes of interest that are
routinely used. We showed methods that can make the comparison groups more
balanced on a large number of characteristics, and thus provide more accurate
estimates of possible causal relationships. To illustrate these methods, we analyzed
treatment outcomes for different therapies used to treat patients with advanced prostate
cancer. The results above showed that patients who received chemotherapy (docetaxel)
first-line may have more frequent trips to the emergency room in the first six months
compared to patients who receive immunotherapy as first-line therapy. The results also
demonstrated that patients who received immunotherapy first-line may have longer total
time on all treatments (first-line and subsequent treatments) than patients whose first-
line therapy is an oral therapy or chemotherapy. Finally, among patients who already
have a baseline opioid requirement for pain control when they initiated treatment for
advanced prostate cancer, we saw higher average baseline requirements among those
patients who were started on chemotherapy than those patients who were started on
immunotherapy. However, patients in the chemotherapy group appeared to have better

pain control after starting treatment than those patients started on immunotherapy.

There are inherent limitations to the data, as the Clinformatics TM Data Mart Database
is designed for billing purposes and not for research. Thus, the data is subject to
misclassification of diagnosis codes and is missing socioeconomic values for many

individuals. Although we could not identify if an individual was correctly classified as
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having prostate cancer, we only included those that also had a pharmacy claim of one
of the six focus medications which are primarily used for advanced prostate cancer.
Those individuals with missing sociodemographic information were still included in the

analysis and treated as a separate category.

A significant limitation to making any clinical conclusions about prostate cancer
outcomes with the findings in this paper is that prostate cancer is a heterogeneous
cancer, with a wide variation in prognosis and expected responses to therapy, even in
the metastatic setting. Thus, a major unmeasured confounder when studying prostate
cancer in claims data is the extent of disease at initiation of treatment. This unmeasured
confounder may explain some of the observed effects on our outcomes. Claims can
identify if a patient is metastatic but cannot identify the extent of their metastases. This
limitation has significant implications if one were to clinically interpret the data. For
example, when comparing opioid requirements and differences of opioid use among
treatment groups, we cannot ascertain whether a patient is using opioids for their
cancer or for another reason. It's possible that patients in the immunotherapy group who
have a baseline opioid requirement may use opioids for a condition unrelated to their

advanced prostate cancer, as opposed to patients in the chemotherapy or oral therapy

group.

In addition, while we could identify when a patient visited the ER, we did not have the
reason a patient visited the ER available. Patients may be presenting to the ER due to
their disease, toxicities of the treatment, or another reason unrelated to their disease or

treatment. These other un-related factors may be driving the large odds ratios observed
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between chemotherapy and immunotherapy patients. ldentifying the fact that patients
treated with chemotherapy first-line visit the ER more frequently may be signaling the
fact that patients treated with chemotherapy first-line have more severe prostate cancer

with more associated problems that require ER evaluation.

Some of these limitations are inherent to analyzing claims data. If we were able to
control for disease severity at initiation of treatment, then an increased odds of visiting
the ER would more reliably indicate a higher toxicity of therapy, or less control of
disease from the treatment. Furthermore, since we cannot control for disease severity,
we are not able to confidently say that patients who received immunotherapy are on
treatment longer because of immunotherapy — we are only able to conclude that they
remain on treatment longer. It's possible that patients started on immunotherapy have
less aggressive disease at the start of therapy. However, interestingly, we did find that
the increased time that patients in the immunotherapy group remained in database
(potential surrogate for survival) compared to patients in the other two groups was
longer than the differences we saw when comparing the amount of time on treatment.
While impossible to conclude from these data, these data do suggest it's possible that
patients who receive immunotherapy first-line may derive a longer-term benefit that is
demonstrated even after all treatment is discontinued. For this comparison we used the
dates from the last claim per individual as a censored time endpoint, as death records
were unavailable. While the true death date is ideal, this endpoint is an underestimate
for all prostate cancer patients and is a right censored measure of survival. These
limitations are important for researchers to recognize, as the methods do provide

conclusive interpretations when all confounders are controlled, however they do not
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overcome fundamental limitations of the data. Thus, researchers must be very
cognizant of what variables are available, are used, and if they are adequate for causal

interpretation.

There are also challenges and drawbacks to the methods used here. Propensity
methods rely on correct specification of the propensity model. Here, we used a
theoretical framework, pre-emptively specifying which variables are most associated
with assignment of treatment, such as age, economic status, and pre-existing comorbid
conditions. These variables were considered as potential confounders to both treatment
and outcome assessment. Yet, we assessed many plausible propensity score models in
our sensitivity analysis to assess the robustness of our findings. We were unable to
account for all known confounders, and thus the propensity model may not have
addressed all imbalance between groups. Our reporting of the E-value summarizes the
sensitivity our results to unobserved confounding. Another potential limitation to this
method is that we used a logistic regression model to calculate the propensity scores.
While this model allows for natural interpretation of the variables included (which may
still be of interest), it may be poor at predicting propensity in comparison to machine
learning models.43,44,45 Furthermore, the uncertainty around the propensity estimates is
not accounted for in many outcome models, and thus lead to incorrect inference and
confidence with the estimates.s2 Additionally, we effectively have three treatments of
interest, yet we stratified the data to have two separate, independent analyses, of two
treatment groups. This provided easier calculation and matching from propensity;
however, segmenting may mis-specify the treatment allocation mechanisms, as in

practice all options are available. Generalized propensity scores can be calculated for
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multiple categories, with the cost of considerably greater complexity.ss,s7 Nonetheless,
the methods are very useful for two clear treatment groups to be compared, and when

there are many confounding variables.

Conclusion

In summary, the methods shown, and process outlined are very standard and routinely
used tools for estimating causal effects from observed data in claims databases. It is
important to note that these tools cannot perfectly answer causal questions, even with
the most extensive data. There are assumptions that need to be met for causal
interpretation of these estimates and they are often not verifiable from observed data.
Careful consideration is required by the researchers as to what variables are
confounding treatment and outcome, and what method and assumptions best fit the
study. Adding sensitivity analysis to a study can add understanding to the robustness
and generalizations of the results. We hope the extensive detail, documentation, and
accompanying code aide researchers in their own studies and improve replication
among these studies. The online implementable version of these steps for various types
of outcomes with the accompanying tutorial guide is the most salient contribution of this

paper.
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Immunotherapy Chemotherapy Oral Therapy
(N =504) (N=2,214) (N =2,747)
Binary Outcome Count (%) Count (%) Count (%)
ER Visit in 60 Days 22 (4.4 182 (8.2 100 (3.6)
Count Outcome Mean (SD) Mean (SD) Mean (SD)
ER Visits in 180 Days 0.13 (0.44) 0.23 (0.79) 0.12 (0.50)
Time to Event Outcome
(days) Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3)
Time on Treatment1 227 (29,638) 110 (43,338) 224 (83,462)
Time in Database2 414 (183,785) 256 (105,541) 291 (125,541)
Longitudinally Varying
Repeated Measures
Outcome Count (%) Count (%) Count (%)
Enrolled at 90 days 438 (87.0) 1707 (77.1) 2235 (81.4)
Enrolled at 180 days 381 (75.6) 1353 (61.1) 1788 (65.1)
Any Opioids Prescribed at
Any Time 166 (32.9) 936 (42.3) 1281 (46.6)
Opioids at Baselines 73 (14.5) 653 (29.5) 825 (30.0)
Opioids at 90 Days 87 (19.9) 427 (25.0) 578 (25.9)
Opioids at 180 Days 65 (17.1) 359 (26.5) 515 (28.8)
Patients Prescribed
(morphine milligram
equivalents, 30-day supply) Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3)
Opioids at Treatment Start 112 (39,435) 241 (75,1052) 184 (72,674)
Opioids 90 Days from
Treatment Start 87 (73,871) 427 (87,1182) 578 (83,887)
Opioids 180 Days from
Treatment Start 391 (97,895) 406 (89,1448) 191 (60,667)

Table 1 Legend: Table 1 shows outcome characteristics across the three treatment
groups: immunotherapy (sipuleucel-T), chemotherapy (docetaxel), and oral therapy

(enzalutamide or abiraterone). ER is an abbreviation for emergency room. Q1 denotes
first quartile of distribution, and Q3 denotes third quatrtile.

1Total time on treatment was defined as when the last of any focus treatment was

recorded.

2 Ending enrollment was defined as the last claim of any type.

3 Opioids were identified from a list of generic brand names and converted into 30 day

milligram morphine equivalents (MME) using the CDC compilation and conversion

factors.
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Immunotherapy Chemotherapy Oral Therapy
(N =504) (N=2,214) (N =2,747)
Variable Count (%) | Count (%) | Count (%)
Age
<55 14 (2.8) 93 4.2) 62 (2.3)
55-64 87 (17.3) 329 (14.9) 341 (12.4)
65-74 194 (38.5) 915 (41.3) 769 (30.0)
>75 209 (41.7) 876 (39.6) 1574 (57.3)
Race
White 369 (73.2) 1,582 (71.5) 1,863 (67.8)
Asian 7 (1.4) 33 (1.5) 68 (2.5)
Black 62 (12.3) 284 (12.8) 376 (13.7)
Hispanic 22 (4.4) 127 (5.7) 252 9.2)
Unknown 24 (8.8) 188 (8.5) 188 (6.8)
Education level
No College 122 (24.2) 689 (31.1) 814 (29.6)
Some College or More 348 (69.0) 1400 (63.2) 1827 (66.5)
Unknown 34 (6.7) 124 (5.6) 105 (3.8)
Household income range
<50k 148 (29.4) 798 (36.0) 997 (36.3)
50k-99k 164 (32.4) 656 (29.6) 862 (31.4)
>99k 119 (23.6) 431 (19.5) 527 (19.2)
Unknown 73 (14.5) 329 (14.6) 361 (13.1)
Geographic Region:
New England 24 (4.8) 109 (5.0 151 (5.5)
Middle Atlantic 37 (7.3) 134 (6.1) 257 (9.4)
South Atlantic 129 (25.6) 554 (25.0) 582 (21.2)
East North Central 76 (15.1) 305 (13.8) 403 (24.7)
East South Central 20 (4.0 86 (3.9 89 (3.2
West North Central 63 (12.5) 386 (17.4) 137 (5.0
West South Central 50 (9.9 231 (10.4) 250 (9.1)
Mountain 75 (14.9) 221 (10.0) 302 (11.0)
Pacific 30 (6.0) 179 (8.1) 557 (20.3)
Unknown 0 (0.0) 9 (0.4 19 (0.7)
Product
HMO 128 (25.4) 797 (36.0) 991 (36.1)
PPO 36 (7.1) 181 (8.2) 208 (7.6)
Other 340 (67.5) 1,236 (55.9) 1,548 (56.4)
Metastatic
Yes 474 (94.0) 2010 (90.8) 2,301 (83.8)
No 30 (6.0) 204 (9.2 446 (16.2)
ASO
Yes 96 (19.0) 344 (15.7) 434 (15.8)
No 408 (81.0) 1,866 (84.3) 2,313 (84.2)
Provider
Urologist 167 (33.1) 4 (0.2) 318 (11.6)
Other/ Unknown 337 (66.9) 2209 (99.8) 2428 (88.4)
Comorbid Conditions
Diabetes 154 (30.6) 593 (26.8) 802 (29.2)
Hypertension 362 (71.8) 1,479 (66.8) 1,920 (69.9)
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Arrhythmia 86 (17.1) 398 (18.0) 640 (23.3)
CHF 42 (8.3) 180 (8.1) 359 (13.1)
Osteoporosis 55 (11.0) 114 (5.1 204 (7.4)

Table 2 Legend

Characteristics of patients by first of focus treatment given: immunotherapy (sipuleucel-
T), chemotherapy (docetaxel), and oral therapy (enzalutamide or abiraterone)

HMO, health maintenance organization; PPO, preferred provider organization; ASO,
administrative services only (self-funded health plan); CHF, Congestive Heart Failure
1Geographic region:

e New England (NE): Connecticut (CT), Maine (ME), Massachusetts (MA), New
Hampshire (NH), Rhode Island (RI), Vermont (VT)

e Middle Atlantic (MA): New Jersey (NJ), New York (NY), Pennsylvania (PA)

¢ East North Central (ENC): lllinois (IL), Indiana (IN), Michigan (MI), Ohio (OH),
Wisconsin (WI)

e West North Central (WNC): lowa (lA), Kansas (KS), Minnesota (MN), Missouri (MO),
Nebraska (NE), North Dakota (ND), South Dakota (SD)

e South Atlantic (SA): Delaware (DE), Washington D.C. (DC), Florida (FL), Georgia
(GA), Maryland (MD), North Carolina (NC), South Carolina (SC), Virginia (VA), West
Virginia (WV)

e East South Central (ESC): Alabama (AL), Kentucky (KY), Mississippi (MS),
Tennessee (TN)

e West South Central (WSC): Arkansas (AR), Louisiana (LA), Oklahoma (OK), and
Texas (TX)

e Mountain (M): Arizona (AZ), Colorado (CO), Idaho (ID), Montana (MT), Nevada
(NV), New Mexico (NM), Utah (UT), Wyoming (WY)

Pacific (PAC): Alaska (AK), California (CA), Hawaii (HI), Oregon (OR), Washington
(WA)
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Table 3: Estimates of Causal Treatment Effects Across Methods of Oral Therapies
or Chemotherapy Compared to Reference Immunotherapy

Non-Causal | ATT ATE
. IPTW USINg | o1y using
. Spline of Propensity . L
Unadjusted . Propensity | Multivariate
o Matched Propensity Score from )
Association Lo Score from | Adjustment
Score Logistic
. CBPS
Regression
Binary Outcome: Emergency Room visit in 60 days - Odds Ratio Scale
0.75 0.89 0.83 0.56 0.59 0.80
Oral Therapy
(0.46,1.23) (0.53,1.50) (0.50, 1.38) (0.26,1.23) (0.28,1.22) | (0.47,1.37)
1.86 1.74 1.75 1.79 181 1.70
Chemotherapy
(1.16,2.97) | (1.08, 2.80) (1.09,2.82) (1.09,2.93) (1.11,2.95) | (1.03,2.81)

Count Outcome: Number of Emergency Room visits in 180 Days - Rate Ratio Scale

0.92 1.00 0.99 0.87 0.88 0.96
Oral Therapy
(0.56,1.52) (0.59,1.71) (0.63,1.56) (0.48,1.60) (0.46,1.70) | (0.60, 1.53)
1.87 1.86 1.72 1.74 2.75 1.73
Chemotherapy
(1.36,2.58) (1.15 3.00) (1.13,2.61) | (1.29,2.57) | (1.73,4.38) | (1.15, 2.58)

Time to Event Outcome: Total Time on Tr

eatment — Difference in Mean
Immunotherapy (restricted to 5 years of follow-up)

Days on Treatment from

-68 -52 -49 -27 -31 -57*
Oral Therapy
(-106, -30) (-92, -12) (-88, -9) (-45, -10) (-48, -13) (-95, -19)
-135 -164 -167 -164 -139 -135*
Chemotherapy
(-174, -96) | (-213, -117) (-214, -120) | (-184, -144) | (-160, -119) (-174, -95)
Time to Event Outcome: Total Time in Database - Difference in Mean Days in Database from
Immunotherapy (restricted to 5 years of follow-up)
-146 -130 -125 -107 -116 -124*
Oral Therapy
(-184, -109) (-169, -90) (-164, -96) (-125, -90) (-134, -98) (-226, -22)
-147 -172 -177 -186 -155 -147*
Chemotherapy
(-186, -108) | (-200, -125) (-224, -131) | (-207, -164) | (-176, -134) | (-194, -101)

Equivalents per 30-day period (mg/30 days) for Patients Prescribed

Longitudinally Varying Repeated Measures Outcome: Opioids Prescribed in Morphine Milligram

Difference in Mean mg/30 days, Oral Therapy from Immunotherapy

44



https://doi.org/10.20944/preprints202006.0295.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2020 d0i:10.20944/preprints202006.0295.v1

Treatment -83 -144 -104 -211 -44 -106
Start (-391,224) (-464, 177) (-420, 212) (-846, 423) (-311,221) (-419,208)
-130 -169 -151 -342 14 -130
90 Days
(-380, 121) (-431, 94) (-412, 110) (-738,52) (-220, 249) (-388, 128)
-178 -263 -199 -469 -63 -181
180 Days

(-497,141) | (599, 73) |  (-526,128) | (-1114,177) | (-343,216) | (-506, 144)

Difference in Mean mg/30 days Chemotherapy from Immunotherapy

Treatment 187 291 203 301 258 177
Start (-155,530) (-133, 716) (-173, 578) (-100, 702) (-46, 563) (191, 547)
34 97 50 -64 44 25
90 Days
(-248,316) (-252,447) (-272, 373) (-415, 287) (-229, 317) (-290, 341)
226 234 242 112 284 235
180 Days

(-133,586) | (-220,687) | (-150, 635) | (-298,521) (-50, 619) | (-152, 622)

Table 3 Legend: Table or estimates and confidence intervals for the treatment effect on
each outcome. Immunotherapy is the reference group for each treatment comparison.
Estimates reported are unadjusted association (before any adjustments are used, so
estimate is non-causal observed association), using a propensity matched dataset,
adjusting for propensity score in the outcome model, inverse propensity score weighting
(IPTW) and covariate balance propensity score (CBPS), and estimate from predicted
outcomes use full covariate adjustment. For binary and count outcomes, multivariate
adjustment estimates come from G-computation. For time to event outcome,
multivariate estimates are difference in mean time, restricted to 5 years of follow-up
time. For time-varying, estimates are difference in mean opioid morphine milligram
equivalents at the designated time points.

*Adjustment covariates limited to age and race due to computational issues with full
covariate set.
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